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ABSTRACT This work proposes a learning model to predict the outcome of electrical defibrillation
from ECG signals in ventricular fibrillation (VF) periods, which is a lethal situation happening when a
patient is suffering cardiac arrest. An animal experiment of rats is conducted to obtain the ECG signals
and necessary information for this study. This proposed model only extracts one feature from the ECG
signals and enjoys low computational complexity at both training and testing stages. The statistics of this
extracted single feature is further analyzed, and mathematical closed-form formulas for several interesting
performance indices including the sensitivity, specificity, accuracy, precision and Area Under the Curve
(AUC) are obtained to gain more insights of the proposed system. Moreover, the extracted feature can
be treated as a linear combination of individual frequency components of the ECG signal, where the
combining coefficients of the linear combination may show informative clinical inference. Frequencies
corresponding to large trained combining coefficients imply that they contribute more in distinguishing
the defibrillation outcome, and vice versa. As a result, important frequencies of the ECG signals can
be identified and insignificant frequencies can also be filtered out by the proposed training. Simulation
results corroborate the analytical results, and show that the proposed scheme greatly outperforms several
competitive learning models and traditional methods in terms of testing accuracy and computational
complexity.

INDEX TERMS Ventricular fibrillation, electrical defibrillation, outcome prediction, machine learning,
statistical model, clinical inference via learning, principal component analysis, linear discriminant analysis.

I. INTRODUCTION

TO PROVIDE first aid to the patient who is suffer-
ing out-of-hospital cardiac arrest (OHCA), paramedics

implement cycles of cardiopulmonary resuscitation (CPR)
followed by electrical defibrillation. When having a cardiac
arrest, the heart does not simply stop beating but tremble
irregularly for a period of time, which is known as ven-
tricular fibrillation (VF) and is a lethal circumstance that

paramedics need to handle as soon as possible. VF can be
observed through electrocardiography (ECG) and electrical
defibrillation has been proved to be an effective therapy
for this lethal circumstance [1]. However, frequent electri-
cal defibrillation leads to myocardial damages and decreases
survival rate as well as successful rate of the following defib-
rillations. Hence it is important to find methods for effective
defibrillations.
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To avoid frequent electrical defibrillation, a methodol-
ogy is to find a best timing of defibrillation or predicting
the success rate of defibrillation. Several research has been
conducted in this field. To name a few: The popular ampli-
tude spectrum area (AMSA) was proposed by Young et al.
in [2]. AMSA evaluates the area of amplitude spectrum
of the ECG signals and has been used for evaluating the
effort of cardiopulmonary resuscitation, predicting the suc-
cess of defibrillation and suggesting optimal defibrillation
timing (see, e.g., [2]–[6]). In [7], the authors found that
the shortest waveform still retained predictive characteristics
in frequency domain for amplitude spectrum area (AMSA)
was 0.8 seconds while in time domain for median slope
(MS) was 1.8 seconds and discussed that 1-second wave-
form generally included information for deriving waveform
measures. In [8], they also overcame the general reduction
in performance of classifying VF with chest compression by
using support vector machine (SVM) to classify the com-
bined information from 24 individual measures. The ECG
of pigs was analyzed in [9] by their proposed method, blind
source separation (BSS), which involved short time Fourier
transform (STFT), singular value decomposition (SVD), and
independent component analysis (ICA). The work in [10]
distinguished ventricular tachycardia (VT) from VF and
considered overlapping case of them as VT-VF. In [11],
the authors found that the minimum duration with accurate
prediction in time domain for sample entropy predictor was
1.5 seconds. A predictor called smoothed nonlinear energy
operator (SNEO) was proposed in [12], which had a good
performance for 2 seconds as the shortest length of seg-
ment. The authors in [13] synthesized VF with white noise
for trend analysis. A method called detrended fluctuation
analysis (DFA) was proposed in [14] to specifically predict
the result of first-shock defibrillation. The authors analyzed
the variance of ECG in [15] and proposed a neural network
model in [16] for first-shock result prediction.
In general, the signals used for analysis can be categorized

into time or frequency domain or both. Also, some VF sig-
nals are with chest compression. These are categorized and
summarized as follows: VF without chest compression was
analyzed in [7]–[12], while the continuous waveform of VF
with and without chest compression was analyzed together
in [15] and [16]. The differences of analysis between VF with
and without chest compression were compared in [8]. Time
domain and frequency domainwere both analyzed in [7]–[11],
whereas time domain was the main focus in [12]–[14], and
frequency domain was the main focus in [15] and [16].
Recent research efforts have been put to solve this issue

using machine learning, e.g., see [15]–[16]. Most of the
works attempt to build a good learning model to best predict
the outcome of the defibrillation. However, there is still
room for improvement including 1) reducing the number of
extracted features, and 2) decreasing the computational com-
plexity of the learning model. For 1), too many features may
lead to over fitting issues while few features may also result
in poor prediction outcome. A suitable number of features

is usually determined via simulation in the current literature.
2) is important for implementations in hardware and power
consumption limited devices. In addition to 1) and 2), few
studies have built mathematical model for the extracted fea-
tures and provide a clinical inference about what may cause
the successful or failed outcome via the extracted features
and learning models. These motivate us to explore this topic,
and try to solve 1) and 2) as well as to propose a statisti-
cal model for the extracted features and provide informative
clinical inference for the defibrillation outcome.
In this paper, we propose a new learning model to predict

the electrical defibrillation outcome. An animal experiment
of rats was conducted to capture the ECG signals and neces-
sary information for this work. The proposed learning model
contains two modules. One is feature extraction module and
the other is the classification module. In the feature extrac-
tion module, the proposed model extracts only one feature.
We analyze this extracted feature and find that its statistic is
close to a Gaussian distribution for both successful and failed
outcomes. Consequently, classical detection can be applied
at the classification module, and the corresponding theoret-
ical results are available for the proposed model. We derive
several interesting performance indices in closed-form for-
mulas including sensitivity, specificity, accuracy, precision
and Area Under the Curve (AUC) for the proposed system.
These closed-form formulas help in gaining more insights
and further understanding the proposed system. Moreover,
the feature extraction module is linear and has low com-
putational complexity in both training and testing stages.
Thanks to the linearity, the feature extraction module can
be treated as an equivalent system that linearly combines
the frequency domain components of the input ECG signal.
As a result, the extracted feature is a linear combination of
the frequency components, where the combining coefficients
after training can be regarded as the contribution from indi-
vidual frequency components. Large values of weights imply
the corresponding frequency components are important in
distinguishing the successful and failed cases, and vice versa.
The values of the trained weights may provide informative
clinical inference. For instance, the values of weights for
frequency at 0 Hz and 60 Hz are small, which correspond
to DC (direct current) and harmonic of electrical supply.
This means that the proposed training model “filters out”
these large interference sources irrelevant to the decision.
On the other hand, we find that some frequencies have large
value of weight, and the simulation results also indicate that
the successful and failed cases have significant differences
at these frequencies. Simulation results corroborate the ana-
lytical results, and show that the proposed scheme greatly
outperforms several competitive learning models as well as
traditional methods such as AMSA [2] and DFA [14] in
terms of testing accuracy and computational complexity.
The rest of this paper is organized as follows: In Section II,

we propose the learning model and the corresponding
mathematical derivations. Section III analyzes the proposed
system and obtains theoretical results. Simulation results are

VOLUME 2, 2021 687



LING et al.: PREDICTING VENTRICULAR DEFIBRILLATION RESULTS USING LEARNING MODELS

FIGURE 1. The proposed system consisting of signal acquisition system,
preprocessing, feature extraction, and classification modules.

FIGURE 2. A quick view of the lab setup for animal experiments and signal
acquisition.

provided in Section IV, and conclusions are summarized in
Section V.

II. PROPOSED SYSTEM AND METHODS
A block diagram of the proposed system is shown in Fig. 1,
which consists of signal acquisition system, preprocessing,
feature extraction, and classification modules.

A. ANIMAL EXPERIMENTS AND SIGNAL ACQUISITION
Fig. 2 shows a diagram that represents a quick view of the
lab setup for animal experiments and signal acquisition. The
whole experiment process from VF inducement to cycles
of CPR and electrical defibrillation is shown in Fig. 3.
The experiment subjects, male Wistar rats, were controlled
in weight 450 ± 50 g and age 14 weeks. The rat was
anesthetized with 50 mg/kg body weight sodium pentobar-
bital intraperitoneal injection so that it could stay still for
at least 1 hour. Further injection was proceeded based on
the situation. Breath supply by a ventilator pumped air with
0.65 mL/100 g body weight tidal volume and fraction of
inspired oxygen (FiO2) 1.0 at frequency 100 breaths/min
through tracheal intubation with a PE 200 catheter. Original
ECG signal was probed as lead III, a differential pair signal
from the left arm and the left leg with the right leg con-
nected to the ground, so that we could observe the electrical

FIGURE 3. The whole experiment process.

FIGURE 4. Defibrillation process: An example of successful defibrillation.

activity of the interior of heart. Body temperature was mon-
itored through a thermodilution catheter which was inserted
through left femoral artery and advanced into the abdominal
aorta. Other physiological signal observations and environ-
mental settings were the same as mentioned in [17]. While
keeping body temperature at 37±0.5◦C, we induced cardiac
arrest on the rat by providing a 60 Hz current progressively
increasing to 1 mA through the guidewire for 1.5 minutes
and then waited for 3.5 minutes to make sure no sponta-
neous defibrillation. When starting CPR, we first pressed
for 1 minute and then gave an electrical shock of 3 J for
defibrillation. If VF kept happening, rest CPR cycles were
pressing for 30 seconds followed by electrical shock until
ROSC, PEA, or asystole. After 2 electrical shocks, the energy
of shock was raised to 5 J. The gap between pressing and
electrical shock was about 1.3 to 1.5 seconds. Defibrillation
result judgement time was set to 5 seconds, the same as
in [14], counted from the release of electrical shock.
The results of defibrillation were separated into four types

including: 1) return of spontaneous circulation (ROSC),
2) pulseless electrical activity (PEA), 3) asystole, and 4) VF
that kept happening. Paramedics stopped electrical defibril-
lation since there was no VF in the judgment time when the
former three types of result happened. Hence, these results
were categorized to be successful defibrillations; while the
last type was considered as a failed one. Similar categoriza-
tion was used in [18]. An example of successful defibrillation
is shown in Fig. 4.
The electrical signal was collected and amplified to an

easier observing scale, then sampled and digitized to com-
putable data. The signal was amplified by an instrumentation
amplifier. The gain was set to 2000 V/V by adjusting a poten-
tiometer which was connected to specific pins to about 25 �.
The bandwidth was higher than 1 KHz and common-mode
rejection ratio (CMRR) was about 130 dB.
The amplified signal was sampled and digitized by

National Instrument multifunction I/O device USB-6351 (NI
6351). Supply voltage of ±10 V was also provided by
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FIGURE 5. Data extraction for 1.3-second VF before charging and 30-timed
augmentation.

NI 6351. When digitizing the analog signal to resolution
of 16 bits, the minimum recognizable voltage range was
±0.31 mV. The maximum peak of amplified ECG signals
was smaller than ±10 V, which is smaller than the volt-
age limitation of NI 6351. Thus there was no clipping issue
during signal acquisition.
The collected data is divided into two non-overlapping

groups. One is for training and the other is for testing. For
the training data, 294 of them are labeled as fail and 67 as
success; while in the testing data, 192 are labeled as fail and
18 as success.

B. PREPROCESSING
The raw data is preprocessed using the following pro-
cedure. First the raw data is transformed from time
domain to frequency domain and use its magnitude as
input data for next process. From Fig. 4, the VF period
between pressing and charging is only 1.5-second. Hence
we extract 1.3-second VF data before charging. Then from
the 1.3-second VF data, we further extract only 1 second
duration for every 0.01-second delay starting from the end
of the data until we obtain total 30 pieces of 1-second data.
The extraction procedure is shown in Fig. 5.
In the experiment, 1000 samples are gathered in 1 second,

which is a 1kHz sampling rate widely used for extracting
the ECG of rats. Hence the extracted 1 second VF has data
dimension of 1000 (N = 1000), and it is augmented to
30 times. To reduce different prior probabilities between
failed and successful classes in training data and testing
data sets, we duplicate success-labeled training data by a
factor of 4; while success-labeled testing data by 10. After
all augmentation process, for training, the number M(0) for
failed cases is 294 × 30 = 8820 and the number M(1) for
successful cases is 67 × 30 × 4 = 8040. Thus the total
number M of cases for training is 16860. Similarly, for
testing, 192×30 = 5760 failed cases and 18×30×10 = 5400
successful cases.
Let the mth augmented data be sA(m). Every of the 16860

augmented data is normalized using the following equation
so that each of them contains the same energy:

s(m) = sA(m)
√
sA(m)� · sA(m)

. (1)

FIGURE 6. Distribution range of data after preprocessing.

Fourier transform comes after normalization. The magni-
tude response in the following equation is used for further
processing in the proposed model,

xk =
⎧
⎨

⎩

∣∣∣
∑N

n=1 sn · e−i· 2·π
N ·k·(n−1)

∣∣∣, k = 1 and N
2 + 1

2 ·
∣∣∣
∑N

n=1 sn · e−i· 2·π
N ·k·(n−1)

∣∣∣, k = 2 . . . N2 .
(2)

After preprocessing, we obtain 501 dimensional data from
0 Hz, i.e., direct current (DC), to 500 Hz. The Nyquist
frequency of sampling rate is at 1 KHz. The means and
distribution ranges of the successful and failed classes from
the largest to the smallest value are shown in Fig. 6, where
the upper sub-figure shows the distribution ranges of all
frequency responses while the lower one is the enlarged
version and only shows the ranges of which are inside
100 Hz.
Each bar includes the magnitude values of successful cases

and failed cases at specific frequency and shows the range
from the largest value to the smallest one. Point markers and
cross markers represent means of failed cases and successful
cases at specific frequencies respectively. In general, the
magnitude at 0 Hz has the largest mean value and second
large distribution range while the magnitude of at 60 Hz,
which is the frequency of electrical supply, has the largest
distribution range and second large mean value. Since the
magnitudes of these two frequencies are much larger than
others, they may provide significant effect on performance
when all frequencies are analyzed together as a combination.

C. FEATURE EXTRACTION
There are two main purposes for feature extraction in this
paper. One is to find features that have implicit characteristics
in the original data, and the other one is to reduce dimension
so that unnecessary features are discarded.
The proposed feature extraction model consists of two

popular and useful methods. One is principal component
analysis (PCA) and the other is discriminant analysis feature
Extraction (DAFE). Similar extraction models that used these
two methods were introduced in [19]–[24] for different appli-
cations. PCA is an unsupervised machine leaning method.
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Thus the process can be done without using labels of classes.
On the other hand, DAFE takes labels of classes into con-
sideration [25]. Dimension of PCA features is between 1 to
the dimension of input data according to the performance of
model in the training process, whereas dimension of DAFE
features is one fewer than the amount of classes. In the
proposed model, we also truncate the dimension of original
data in the frequency domain by applying a threshold and
reform the preserved features. This is introduced later in
Sections II-C and III-B.
At the first stage, the features of PCA are captured by lin-

ear transforming of preprocessed data. Without considering
the labels of classes, we first calculate the mean vector of
the data obtained in (2). Let the data vector be denoted by

x =
[
x1 x2 · · · xN

2 +1

]�
.

Let x (m) be the mth data vector, and VP be the eigenvectors
in descending order of the covariance matrix of x for all
data. Dimension of the features are reduced by preserving
features in the amount of a number NP, which is determined
according to the performance of the model. After dimension
reduction, VP becomes ṼP as an N-by-NP matrix which
comprises PCA coefficient vectors. The PCA features can
be obtained by projecting the data vector x(m) to the column
space of Ṽ�

P , i.e.,

yP(m) = Ṽ�
P · x (m), m = 1, 2, . . . ,M. (3)

The second stage of feature extraction is DAFE, a part of
linear discriminant analysis (LDA). The algorithm seeks to
find the projection axis that data in different labels of classes
are separated the most. Since we have two different labels of
classes, 0 for failed cases and 1 for successful cases, there
is only one preserved feature after proceeding DAFE. The
calculation begins with finding means of PCA features in
different classes

µ(0)
yP = 1

M(0)
·
M(0)∑

m=1

y(0)
P (m),

µ(1)
yP = 1

M(1)
·
M(1)∑

m=1

y(1)
P (m). (4)

Then, the scatter of data within class is calculated by

Sw =
M(0)∑

m=1

[
y(0)
P (m) − µ(0)

yP

]
·
[
y(0)
P (m) − µ(0)

yP

]�

+
M(1)∑

m=1

[
y(1)
P (m) − µ(1)

yP

]
·
[
y(1)
P (m) − µ(1)

yP

]�
. (5)

Also the scatter of data between classes is calculated by

Sb =
[
µ(0)
yP − µ(1)

yP

]
·
[
µ(0)
yP − µ(1)

yP

]�
. (6)

According to Fisher criterion, the DAFE coefficient vector,
vD, is designed to maximize the ratio of the scatter of data

between classes to the scatter of data within class after the
projection as

argmax
vD

v�
D · Sb · vD

v�
D · Sw · vD

. (7)

The problem in (7) is a simple eigendecomposition
as [19]–[24].

S−1
w · Sb · vD = λD · vD, (8)

where λD is the eigenvalue of S−1
w · Sb and vD is the corre-

sponding eigenvector. In (6), Sb only has one basis consisting
of µ

(0)
yP − µ

(1)
yP , which implies that S−1

w · Sb is an rank-one
matrix with one non-zero eigenvalue. Hence after DAFE and
PCA, only one feature is preserved given by

yP+D(m) = v�
D · yP(m). (9)

From (3) and (9), the linear transformation of PCA and
DAFE can be combined as a vector given by

vP+D = ṼP · vD. (10)

For convenience, we called vP+D “coefficient vector”, which
is used to judge how individual frequency elements affect
the decision. If the coefficients are large, it implies that
the corresponding frequency components are important in
clinical inference, and they should be preserved in predicting
the defibrillation results. Hence, the single feature after the
PCA and DAFE to make decision is simply an inner product
of the coefficient vector and the magnitude response of the
ECG signal:

yP+D(m) = v �
P+D · x(m). (11)

The final process of the feature extraction is truncation. In
this process we directly eliminate specific frequencies that
does not contribute much to the extracted feature to reduce
complexity. We apply a threshold T for truncation on the
coefficient vector vP+D as

ṽP+D =
{
vP+D, if

∣∣∣vP+D
∣∣∣ > T

0, otherwise,
(12)

where the value of T can be determined according to the
testing accuracy later. Hence, the output, truncated yP+D(m)

in (11), becomes

y(m) = ṽ �
P+D · x(m). (13)

D. CLASSIFICATION
The extracted single feature can be approximated by a
Gaussian random variable, which will be verified via
simulation later. Since there are two classes, success or
fail, the decision problem becomes the classical detection
problem [26]. Under such circumstances, the maximum a
posteriori (MAP) classifier can be used and the correspond-
ing theoretical analysis can be utilized as well.
A linearized maximum a posteriori (MAP) classifier, LDC,

is used for classification of the feature. LDC is derived
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from posterior probability function with likelihood function
of normal density as mentioned in [27]. The variances of
different labels of classes are regarded as the same and are
both replaced with a pooled variance referring to [28] so that
the process is simplified as a linear transform. The feature for
classification is a scalar after dimension reduction through
the whole feature extraction process.
To compare two posterior probabilities: P(c = 0|y(m)) and

P(c = 1|y(m)), we first transform the posterior probability
function of 0-labeled class to a sigmoid function as

P(c = 0|y(m)) = 1

1 + e−z(0)(m)
� σ

(
z(0)(m)

)
, (14)

where

z(0)(m) = − ln
P(y(m)|c = 1) · P(c = 1)

P(y(m)|c = 0) · P(c = 0)

=
(

μ
(0)
y

K(0)
y

− μ
(1)
y

K(1)
y

)

· y(m) − 1

2
·
⎡

⎢
⎣

(
μ

(0)
y

)2

K(0)
y

−
(
μ

(1)
y

)2

K(1)
y

⎤

⎥
⎦

+ ln
M(0)

M(1)
− 1

2
· ln

K(0)
y

K(1)
y

− 1

2
·
(

1

K(0)
y

− 1

K(1)
y

)

· y2(m).

(15)

Different variances are seen as the same and replaced with
pooled variance,

Ky =
(
M(0) − 1

) · K(0)
y + (

M(1) − 1
) · K(1)

y

M(0) +M(1) − 2
. (16)

From (16), the term in (15) is simplified to

z(0)(m) = w(0) · y(m) + b(0), (17)

which is a function of y multiplying weight

w(0) = μ
(0)
y − μ

(1)
y

Ky
(18)

and adding bias

b(0) = −
(
μ

(0)
y

)2 −
(
μ

(1)
y

)2

2 · Ky + ln
M(0)

M(1)
. (19)

The posterior probability function in (14) then becomes

P(c = 0|y(m)) = σ
(
w(0) · y(m) + b(0)

)
, (20)

whereas the posterior probability of 1-labeled class becomes

P(c = 1|y(m)) � σ
(
z(1)(m)

)
= σ

(
w(1) · y(m) + b(1)

)
. (21)

By simply switching labels of parameters to the other class,
the value of z(1)(m) are derived referring to (15). The
predicted defibrillation result can then be determined by
selecting the class with larger value in posterior probability.
Another MAP classifier, Quadratic Discriminant Classifier

(QDC), can be derived using similar derivation as (14)
and (15). However, it keeps different variances as the original
one. Hence all the parameters in (15) are preserved. The cor-
responding performance comparisons for various classifiers
will be shown in the simulation results later.

III. SYSTEM PARAMETERS AND THEORETICAL MODEL
To build up a learning model with good performance in
both training and testing stages, we need to analyze the
parameters including the number of preserved PCA features,
the value T of threshold in (12), and how the coefficient
vector at individual frequencies affect the classification. After
determining the parameters, we build a theoretical model to
predict the performance of the proposed system.

A. PRESERVED FEATURES
The features are extracted from original data for disclos-
ing specific characteristics. We know that signals at 0 Hz
and 60 Hz have relatively larger magnitudes than other
frequencies, and would like to know the effects of other
frequency components. This can be done by observing the
distribution of frequency response and features.
After the first stage of feature extraction, distributions of

PCA features yP in (3) can be observed, and four of them
are shown in Fig. 7 including features 1, 2, 3 and 56 as
examples. Observed from Fig. 7, some features may have
different values of mean and variance for the failed and
successful cases, and hence the extracted features can be
used to distinguish the defibrillation results.
To see this more clearly, Gaussian distribution is used

for fitting the distribution of each feature, and the means
as well as variances are used in Welch’s t-test to indicate
the differences between distribution of features for different
classes. Welch’s t-test seeks to find the t-value to test null
hypothesis. When a t-value approaches 0, it indicates that the
two distributions being compared are almost the same. On
the contrary, a t-value with larger distance from 0 leads to
larger differences between the distributions. For comparison,
we take the absolute value of t-value, as modified Welch’s
t-test instead of the original one in the following formula:

|t − value| =
∣∣∣μ(0)

y − μ
(1)
y

∣∣∣
√
K(0)
y

M(0)
+ K(1)

y

M(1)

. (22)

Training and testing performance of PCA are shown in
Fig. 8. The left side of the y axis represents the accuracy
while the right side represents Area Under the Curve (AUC).
From this figure, the accuracy and AUC both reach a sat-
isfactory performance when the amount of preserved PCA
features is 56. Since the order of PCA features is descend-
ing referring to corresponding eigenvalues, it is reasonable
to finalize the number of preserved PCA features, Np, to
be 56 and keep only the first 56 PCA features for further
feature extraction.
Table 1 shows the parameters including eigenvalue, t-value

and the coefficients at 0 Hz and 60 Hz and the maximum
absolute value (ABS) of some coefficients of PCA+DAFE
feature. From the table, there are total twelve features after
PCA+DAFE but only the first feature has non-zero eigen-
value and large t-value. Hence we only keep the first feature
after PCA+DAFE, which is also the theoretical results
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FIGURE 7. Distribution of PCA feature (A) 1, (B) 2, (C) 3, and (D) 56.

discussed in (3)-(11) Also, the coefficients in Table 1 are cor-
responding to the coefficient vector vP+D in (10). According
to (11), the final scalar result yP+D is an inner product of

FIGURE 8. Performance of proposed model without truncation.

TABLE 1. Characteristic of PCA-plus-DAFE features.

vP+D and x, and the elements in vP+D correspond to the scal-
ing weights for signal at particular frequencies. For example,
the first element of vP+D corresponds to the scaling weight
to the frequency at 0 Hz, the second element corresponds to
1 Hz and so on. Hence, the elements with large coefficients
in vP+D imply that the corresponding frequencies are impor-
tant and contribute more to form the final results. In Table 1,
we see that for the first feature (the single kept feature), the
coefficients at 0 Hz and 60 Hz are relatively small than
the maximum absolute value of the whole coefficients. This
result implies that although the signals at 0 Hz and 60 Hz
have significantly larger magnitude than others, they are not
important in making final decision. Hence they are “filtered
out” by assigning small coefficients in vP+D in the proposed
feature extraction scheme.

B. THRESHOLD FOR TRUNCATION
As mentioned in the previous section, we determine the
threshold value for truncation, T , mentioned in (15) to elim-
inate insignificant information. This can be done by setting
insignificant elements of vP+D to zeros, which corresponds
to unimportant frequency elements in making decision such
as the 0 Hz and 60 Hz components as well as the baseline
wander at 1 Hz [15] and [16].
Fig. 9 shows the accuracy as well as AUC performance

as functions of the value of threshold T . From the figure, we
determine T = 0.032 in the following experiments because
this threshold value not only keeps performance almost the
same as that without truncation but also filters out unim-
portant frequencies of DC, baseline wander, and electrical
supply.
Fig. 10 shows the coefficient values vP+D for individ-

ual frequencies. From the figure, by setting T = 0.032,
some unimportant frequencies are filtered out including 0 Hz,
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FIGURE 9. Relationship of threshold and performance.

FIGURE 10. Coefficient value at each frequency and proposed threshold.

FIGURE 11. Performance of removing specific frequency.

60 Hz and 1 Hz, which means that all coefficients within
the dash-dot lines (green lines) in Fig. 10 are set to zeros.
From the experiment, a significant performance degrada-

tion occurs when T is set to be 0.189, which also filters out
the signals at 2 Hz. The significant effect of the 2 Hz com-
ponent on performance implies that it is a good direction to
further investigate whether or not 2 Hz component is a key
of distinguishing successful and failed cases.
To see this more clearly, we conduct an experiment by

removing only one frequency component at a time and
observe how the performance is affected. The result is shown
in Fig. 11. From this figure, we see that removing 2 Hz
component indeed leads to much more serious performance
degradation than other components. Therefore, we know that
the signals at 2 Hz play a crucial role in making correct
decision in the proposed system.

C. THEORETICAL MODEL OF THE PROPOSED SYSTEM
Now we would like to build a theoretical model for the
proposed system. From the discussion in the previous

FIGURE 12. Distribution of PCA-plus-DAFE feature (A) with and (B) without
truncation at training stage.

section, the single extracted feature yP+D in (11) is used
to judge either success or failure. The distribution of yP+D
for both successful and failed cases at the training stage with
and without truncation are shown in Fig. 12. We see from
the figure that yP+D approximates the Gaussian random vari-
ables very well both for successful and failed cases. Hence it
is reasonable to approximate yP+D as Gaussian random vari-
ables with different means and variances for successful and
failed cases. Then the detection problem becomes a classical
hypothesis detection problem, see, e.g., [26]. Moreover the
results with and without truncation have almost the same
shapes of distribution except a shift of mean values. Hence
using the proposed truncation can keep almost the same
detection performance; while it can reduce the computa-
tional complexity and eliminate unnecessary information in
advance.
Similarly, we show the distribution of yP+D at the test-

ing stage for both successful and failed cases with and
without truncation in Fig. 13. Similar results including
Gaussian approximation and truncation not affecting too
much performance are also seen at the testing stage.
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FIGURE 13. Distributions of PCA-plus-DAFE feature (A) with and (B) without
truncation at testing stage.

Next let us propose a theoretical performance model for
the proposed system. Prior probabilities for successful and
failed classes can be eliminated due to the use of data aug-
mentation in the preprocessing stage. Hence the amount of
data labeled as failed is close to that labeled as success.
In addition, from Figs. 12 and 13, the variances for both
successful and failed cases can be approximated to be the
same. Thus, the posterior probability function can be sim-
plified to the likelihood function with Gaussian distribution.
The decision boundary can be derived as follows:

1
√

2 · π · Ky
· e−

(
y−μ

(0)
y
)2

2·Ky
H0
≷
H1

1
√

2 · π · Ky
· e−

(
y−μ

(1)
y
)2

2·Ky . (23)

Here, y is an arbitrary value of the extracted feature. The null
hypothesis, H0, implies that distributions on two sides are
the same; while the alternative hypothesis, H1, implies that
distributions on two sides are different. For further simplifi-
cation, we calculate the logarithm of both sides and remove

TABLE 2. Various theoretical performance metrics.

the same parts as

2 · y · μ(0)
y −

(
μ(0)
y

)2 H0
≷
H1

2 · y · μ(1)
y −

(
μ(1)
y

)2
. (24)

Decision boundary is at the middle of μ
(0)
y and μ

(1)
y given by

y
H1
≷
H0

μ
(0)
y + μ

(1)
y

2
. (25)

Extracted features with values smaller than the decision
boundary are considered as failed cases; while others are
considered as successful cases. Various performance met-
rics are also derived and expressed as commonly used Q
functions defined by

Q
(
z(0)
)

= 1√
2 · π

·
∫ ∞

z(0)

e−
u2
2 · du,

Q
(
z(1)
)

= 1√
2 · π

·
∫ ∞

z(1)

e−
u2
2 · du, (26)

where the parameters z(0) = (y − μ
(0)
y )/

√
Ky and z(1) =

(y−μ
(1)
y )/

√
Ky respectively represent the standard-deviation

normalization of the feature in specific class.
Various theoretical performance metrics are listed in terms

of the Q function in Tab. 2. One of the representative
performance metrics, namely accuracy, can be decided once
the sensitivity and specificity are determined with specific
value of known decision boundary referring in [29]. Also, the
theoretical ROC (receiver operating characteristic) curve can
be obtained by using different decision boundary to create
a fine-resolution relationship between sensitivity and speci-
ficity, more specifically, 1−specificity as the horizontal axis
and sensitivity as the vertical axis. Moreover the Area Under
the Curve (AUC) can be obtained by integrating the ROC
curve and it is expressed as the formula shown in Tab 2.

IV. SIMULATION RESULT
In this section, we compare the performance of the proposed
learning models with other models. Also the proposed theo-
retical results are compared to the simulation results to show
the accuracy of the analysis. In the simulation, the PCA pre-
serves 56 features, the DAFE preserves one feature and the
thresholds of truncation, T , is set to 0.032. LDC and QDC
refer to Section II-D.
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TABLE 3. Proposed learning and theoretical models.

TABLE 4. Suggested decision boundaries.

TABLE 5. Training performance: theoretical vs. simulation results with and without
truncation.

TABLE 6. Testing performance: theoretical vs. simulation results with and without
truncation.

Experiment 1 (Theoretical vs. Simulation Results of
Proposed Models): In this example, we show the simulation
results of the proposed learning models and their theoretical
results. Table 3 shows the details of the four learning and
theoretical models to be demonstrated. For the theoretical
model, the analytical closed-form formulas in Table 2 are
used.
Also, we applied the results in Section III-C. and cal-

culated the corresponding suggested decision boundaries in
Table 4.
The training results of the four models are shown in

Table 5 and the testing results are shown in Table 6. From
Tables 5 and 6, we have the following observations:
First, the theoretical results in general match the simula-

tion quite well. For example, for the training performance

FIGURE 14. ROC curve of proposed model and theoretical model with, without
truncation in training.

in Table 5, the AUCs of the proposed model and theoreti-
cal model are 0.91 and 0.90, respectively. When truncation
is considered, the AUCs of the proposed model and the-
oretical model are both 0.91; for the testing performance
in Table 6, the AUCs of the proposed model and theoret-
ical model are both 0.88. When truncation is considered,
the AUCs of the proposed model and theoretical model are
0.87 and 0.86, respectively. These show the accuracy of the
proposed theoretical closed-form results for the proposed
systems.
Second, truncation does not degrade performance.

Sometimes it even slightly improves the performance. For
example, the training accuracy without truncation improves
from 82.9% to 83.4% with truncation. At the same time, the
testing accuracy without truncation improves from 79.8% to
80.1% with truncation. This is not a surprising result, because
learning models sometimes have over-fitting problems. By
using the proposed truncation, the insignificant information
(frequency components) can be filtered out in advance and
it only keeps useful information. Thus over-fitting problems
can be avoided. As a result, using the proposed truncation not
only reduces the computational complexity but also avoids
over-fitting problems.
We also show the ROC curves for these four models in

Fig. 14. The operating points are included in the figures as
well, which use the suggested decision boundaries to investi-
gate the performance metrics. Thus the operating points can
actually be obtained using Tabs. 5 and 6, because the term
“true positive rate” means the same thing as “sensitivity”,
and the term “false positive rate” means the same item as
1-specificity. For example, true positive rate of proposed
model in training is 0.86, and the false positive rate of
proposed model in training is 0.25. Thus the operating point
of proposed model in training is at (0.25, 0.86) in Fig. 14 (A).
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TABLE 7. Performance comparison for training stage: proposed model vs. other models.

TABLE 8. Performance comparison for testing stage: proposed model vs. other models.

FIGURE 15. ROC curve of proposed model and theoretical model with, without
truncation in testing.

From Fig. 14 and Fig. 15, we again observe that the
proposed theoretical results match the simulation results well,
especially at the training stage. For example, at the train-
ing stage in Fig. 14, the ROC gap between the proposed
and the theoretical model is within 1%; at the testing stage
in Fig. 15, the ROC gap between the proposed and the
theoretical model is within 2% near the operating point.
Although there are minor performance differences at the
testing stage, the performance trends of the theoretical and
simulation results in general meet each other in the poten-
tial operational regions. This again shows the accuracy and

usefulness of the proposed analytical results applied in the
proposed systems.
Experiment 2 (Comparison with Other Learning Models

and Traditional Methods): In this experiment, we show the
performance comparisons of the proposed scheme with other
learning models. Recall that the proposed scheme contains
two stages. The first stage is the feature extraction, which
consists of PCA, DAFE and truncation. The second stage is
the classification stage, in which LDA is used to determine
whether the input data is successful or failed case.
The learning models to be compared are modified from

the proposed model. Some of them use the same feature
extraction as the proposed one, but different classifier such
as SVM, LDC or ODC are applied. Some of the modified
models simply use DAFE at the feature extraction stage, and
use SVM, LDC or ODC as classifiers, where there are three
combinations. The parameters of those models are artificially
selected so that the their best performance is achieved. In
additions, we also include two widely used methods, namely,
AMSA [2] and DFA [14] in the comparison.
The comparisons for training performance is shown in

Table 7, and that for testing performance is shown in
Table 8. We have the following observations from these
two tables. First, some of the models can achieve much
better performance at the training stage. To name a few,
from Table 7, PCA without truncation + SVM achieves
100% accuracy and highest scores in all performance met-
rics. However, the corresponding testing performance is quite
poor from Table 8. This is a classical over-fitting problem.
Hence, even some models have good training performance,
if their testing performance is bad, they cannot be applied
in practical applications.
Second, the proposed scheme has the best testing

performance among the models from Table 8. Although one

696 VOLUME 2, 2021



FIGURE 16. ROC curves of testing performance for the proposed and other learning
models.

model, i.e., PCA+DAFE with truncation + SVM or QDC,
performs almost the same with the proposed model, using
SVM as the classifier leads to complicated computational
complexity; at the same time, further efforts are needed to
build theoretical model for PCA+DAFE+SVM. Therefore,
the proposed model has advantages in the computational
complexity as well as its interpretable theoretical results to
explain this proposed learning model.
Third, using PCA or DAFE alone as the feature extraction

in general leads to poor performance. One exception is PCA
without truncation + LDC, which has an accuracy of 79.8%
and an AUC of 0.87 from Table 8. Nevertheless, this scheme
uses PCA alone and needs to preserve 56 features to achieve
this performance. Also the corresponding analytical result is
not as easy as the proposed one. On the other hand, the
proposed scheme only keeps one feature due to the use of
the DAFE after the PCA. As a result, the proposed scheme
has advantage in terms of the number of preserved features.
Finally, from Tabs. 7 and 8, the traditional AMSA [2] and

DFA [14] that are non-learning based approaches, are also
included. One can see that the AUC values of these two
schemes are around 0.53 at the training stage and around
0.56 at the testing stage, which are relatively poor compared
to the learning based methods. Other performance indices of
these two schemes are also inferior to those of the learning
based approaches, observed from the two tables.
To see the testing performance more clearly, we show

the ROC performance for testing stage of these models in
Fig. 16. We also indicate the operating point in this figure.
To have a higher AUC, the ROC should be closer to the left
and top side. Observe that the proposed scheme performs
the best in the operating point, which can also obtained from
Table 8. Although some schemes may slightly outperform the
proposed system in different operating regions. As mentioned

earlier, the proposed scheme has advantages in computational
complexity, concise theoretical results and the number of
preserved features. Consequently the proposed solution is
preferred to be used in practical situation.
Example of Computational Complexity: The computational

complexity can be significantly reduced via the proposed
schemes, i.e., PCA+DAFEwith truncation (feature extraction)
and LDC (classification). The reduction can be divided into
two parts including: (a) Feature extraction with truncation, and
(b) classification. They are discussed separately as follows:
Feature extraction: In (a), the proposed PCA+DAFE

reduces the number of features from high dimension to only
one. This significantly reduces the computations later in clas-
sification. This procedure is a simple vector inner product
in (11), and the result is yP+D(m). Then with truncation,
the dimension of the vector inner product in (11) can be
further reduced to that in (13), and the result is y(m). Since
the dimension of vP+D is 501 in (11), after truncation, the
dimension is reduced from 501 to 82 in (13) by setting
the truncation threshold to 0.032 through the experiments
in Section III-B. Hence, the on-the-fly complexity to obtain
y(m) needs 82 multiplications.

Let us see the complexity of other feature extraction
scheme, e.g., the pure PCA. The experiments in
Section III-A showed that the best number of features after
PCA is 56. That is, there are 56 features, and the corre-
sponding computations involve matrix multiplications in (3).
Hence PCA needs 56×501 = 28056 multiplications without
truncations. Therefore, the complexity in feature extraction is
28056/82 ≈ 342 folded compared to the proposed scheme.
Classification: In (b), classification is introduced in

Section II-D. Obtaining z(0)(m) in (17) needs one multi-
plication. Then, to obtain P(c = 0|y(m)) in (14), we need
one extra exponential operation and one division. Hence
obtaining both P(c = 0|y(m)) and P(c = 1|y(m)) needs
totally 2 multiplications, two exponential operations and two
divisions. Let us see the complexity of other classification
scheme, e.g., the SVM. Even if we exclude its iteration
complexity at the training stage, for the testing stage, SVM
still needs to perform vector inner product. If the PCA in
feature extraction reserves 56 features, SVM needs at least
56 multiplications at the testing stage, which is still much
larger than that in the proposed scheme. From the discussion
above, the proposed scheme can indeed significantly reduce
the computational complexity.

V. CONCLUSION AND FUTURE WORKS
We have proposed a learning model that extracts only
one feature to predict the outcome of electrical defibril-
lation. The statistics of this proposed system have been
analyzed and several performance indices have been derived
in closed-form formulas to gain more insights of the obtained
results. We have found that the extracted single feature
can be regarded as a linear combination of individual
frequency components of the input ECG signal. The trained
combining weights provide informative clinical inference,
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where frequencies corresponding to large weights have sig-
nificant impact in judging the outcome of defibrillation, and
vise versa. We have observed that the proposed training
model has large weights near 2 Hz and small weights at
0 Hz and 60 Hz. This result has shown that 2 Hz frequency
component is important in distinguishing the outcome of
defibrillation in a rat animal experiment; while 0 Hz and
60 Hz are not and thus they have been “filtered out” via
learning. Simulation results have shown the accuracy of
the analytical results as well as that the proposed system
outperforms several competitive schemes in terms of test-
ing accuracy and computational complexity. For the future
works, the proposed schemes and algorithms can be verified
using human data. In addition, other algorithms for feature
extraction and classification can be investigated to enhance
performance and build corresponding theoretical models for
predicting ventricular defibrillation results.
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