
Received 21 March 2021; revised 13 June 2021; accepted 23 June 2021. Date of current version 23 July 2021.

Digital Object Identifier 10.1109/OJCAS.2021.3095000

Self-Healing Router Approach for High-Performance
Network-on-Chip

KASEM KHALIL (Member, IEEE), OMAR ELDASH (Member, IEEE),

ASHOK KUMAR (Senior Member, IEEE), AND MAGDY BAYOUMI (Life Fellow, IEEE)
The Center for Advanced Computer Studies, University of Louisiana at Lafayette, Lafayette, LA 70504, USA

This article was recommended by Guest Editor L. V. Agostini.

CORRESPONDING AUTHOR: K. KHALIL (e-mail: kasem.khalil1@louisiana.edu)

ABSTRACT Network-on-Chip (NoC) is used as the communication network in many applications that use
multiple cores or Processing Elements (PEs). Routers play a crucial role as connectors since a faulty router
can degrade the NoC’s performance and cause miscommunication between the network’s components.
Thus a faulty router may cause the system to fail. To avoid failure in routers in NoCs, a novel self-healing
technique is proposed. Self-healing serves to recover hardware faults, and it is defined as the ability of
a system to recover from its faults without any external intervention. The proposed self-healing method
is to heal faulty routers and their port buffers of faults as they occur. The proposed method uses the
neighboring routers of a faulty router for computation. The data packet includes three bits for routing. A
neighbor’s active router updates these bits according to the destination of the packet. A self-healing block
is added inside each router. The proposed method also covers faulty buffers, and it uses active buffers
to store the packet of a faulty one. It has been implemented and tested using VHDL and Altera Arria
10 GX FPGA. It has been found to attain improved reliability and Mean Time to Failure (MTTF) at an
area overhead of 27%. It has been tested for complex NoC structure, and the results show it is practical,
scalable, stable, and robust.

INDEX TERMS NoC, self-healing, hardware faults, fault tolerance, neural network, FPGA architecture.

I. INTRODUCTION

IN QUEST of increased performance, the semiconductor
industry has been rapidly switching from a single micro-

processor to multiple core architectures. This is enabled by
a rapid reduction in the dimensions of the integrated cir-
cuit, which enables the placing of several components on a
single chip. NoC is used to provide effective and efficient
communication for large systems with multiple cores. NoC
is used for routing between multiple cores as NoC is a flexi-
ble, scalable, and efficient interconnection technique [1], [2].
NoC can be used in many applications, such as processing
components of an aircraft [3], [4] and processors in comput-
ers [5]–[8]. Apart from providing efficient communication,
NoCs are expected to be power efficient [9], [10] and ideally
free of fault and failures.
NoC, however, is a complex system that consists of

billions of transistors and enables enormous amounts of com-
munication, which makes it vulnerable to faults. Therefore,
fault recovery is critical for increasing system reliability

in such a system. The network faults can be divided into
router fault, link fault, and core fault. A router fault may
make the network fail at providing the needed performance.
The traditional method for a fault-tolerant router uses spare
or redundant routers, which increases the area overhead
significantly. Sometimes, spare or redundant channels are
allowed [11]. Another traditional method uses a fault-tolerant
routing algorithm [12], [13]. The drawbacks of these meth-
ods are latency overhead and high area overhead that make
the cost too high for mission-critical systems such as aircraft
or biomedical systems. A self-healing mechanism is used to
recover faults [14], [15]. Self-healing can fix faults through
healing or repairing without external intervention.
Multiple processing cores can be integrated on a chip,

and a faulty core can be repaired by isolating it and using
a spare core instead. Such a system can be functional but
with limited performance. In an NoC architecture, routers
manage communications between cores [16]–[19]. In the
case of a router failure, the performance degrades due to

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 2, 2021 485

HTTPS://ORCID.ORG/0000-0002-9659-8566
HTTPS://ORCID.ORG/0000-0002-9740-1219

KHALIL et al.: SELF-HEALING ROUTER APPROACH FOR HIGH-PERFORMANCE NoC

FIGURE 1. NoC architecture.

the disconnection of cores [20]. Therefore, one of the main
challenges in NoC is to heal and recover faulty routers. In
this paper, we focus on using self-healing to recover faulty
routers at a minimal cost. The role of self-healing becomes
even more critical for fault recovery in places where there
may be no option for external maintenance, such as in an
aircraft during flight. Self-healing performs fault repairs and
improves reliability, which refers to the ability of the system
to perform its function correctly and within a specific period.
NoC consists of multiple routers, and each router is con-

nected to PE, as shown in Fig. 1. The main component of
NoC for routing is the router, and the main focus of this paper
is on proposing a self-healing router in NoC. The architec-
ture of the baseline router consists of multiple components,
as shown in Fig. 2. The router has five input/output ports,
Virtual Channel (VC) buffers, Virtual-channel Allocation
(VA), Routing Computation (RC), and Switch Allocator
(SA), and Crossbar Switch (CS). The operation of each one
is described as follows. The VC is the base unit of each port
buffer. It is used to maximize the stored data in each port
buffer. The VA component is used to make a decision for
which packet request access can be the selected one. The RC
block has the responsibility for routing and directing data
packets towards the appropriate output channel and port.
The SA component moves between VCs requesting access
to the crossbar, and it gives permission to the winning packet.
The central crossbar switch is a switch that makes a connec-
tion between input and output ports. It selects which input
port is forwarded to which output port.
Hardware faults in NoC are divided into two classes: tran-

sient and permanent faults [21]–[23]. The transient fault is a
fault that comes from external disturbance, and it may stay
for a short period. The permanent fault is irretrievable phys-
ical damage in the system, and it is a continuous fault and
stable with time. In this paper, we focus on permanent faults,
and the reasons are described as follows. Time-Dependent
Dielectric Breakdown (TDDB) is one of the sources, and
it indicates insulating film breakdown due to continuous
stresses to a gate oxide-film causes [24]. Negatively Biased
Temperature Instability (NBTI) is another source that causes

threshold voltage degradation due to a stressed transistor with
negatively biased gate voltage [25]. Electromigration (EM)
is also another source that occurred because of the excessive
stress of current density. It causes a sudden delay increase,
short, or open fault [26]. Stress Migration (SM) occurs due
to excessive structural stress, and it also causes short, open,
and delay faults [27]. Furthermore, Hot Carrier Injection is
a source of the fault, and it causes an increase in the thresh-
old voltage under the stress of source-drain voltage [28].
The focus of this paper to repair a faulty router.
The main focus of this work is to heal faulty routers in an

NoC as a faulty router may cause isolation of its PE from
the rest of the network components, and cause the degra-
dation of performance or even failure of the system. The
main contributions of this paper are to provide a self-healing
method for network-on-chip based on sharing computa-
tion with neighbor routers. The proposed method addresses
faults recovery for router components through the following
specific contributions:

• A self-healing method,
• A packet and method for packet selection,
• Algorithm for routing in the event of a faulty router,
• A self-healing method for faulty buffers, and
• Detailed analysis and implementation results
The proposed method is scalable and incurs a small area

overhead. The proposed methods are implemented on FPGA.
The results show the proposed method improves mean
time to failure 12.75 times more reliable than unprotected
traditional baseline router and the prior works.
The remainder of this paper is organized as follows.

Section II presents an overview of NoC, its application, and
related work. Section III presents the proposed method of
self-healing routers in NoC. Section IV discusses parame-
ters for evaluation of self-healing. Section V presents the
implementation and experimental results, followed by the
conclusion in Section VI.

II. NOC BACKGROUND AND RELATED WORK
NoC is used as the enabling network for many applications
such as biomedical, aerospace, and processors. For exam-
ple, NoC is used for facilitating communication between the
80 cores of Teraflop processor [29]. It is used in NVIDIA
Tesla V100 processor, which has 640 Tensor cores and 5000
cores that communicate using NoC [30]. NoC is also used
in Tilera processor, which includes 100 cores [31]. NoC’s
functionality and reliability are important for many critical
systems. Cores are connected to NoC via routers, and any
fault that may happen in any router makes a PE isolate from
the rest of PEs in the network, and the network performance
decreases. The reliability of each component in an NoC can
impact the overall reliability of the system [32], [33].
Motamedi et al. [34] present a fault-tolerant NoC tech-

nique with reconfigurable architecture. Their method is based
on using redundancy to recover faulty components and
increase reliability. It provides a fault recovery in the NoC’s
processor cores, and an application-specific configuration

486 VOLUME 2, 2021

FIGURE 2. Block diagram of the router architecture.

topology is implemented for the aircraft control system.
If there is a faulty component, an extra core compensates
for the faulty core’s operation. The method is implemented
using Altera Quartus II software on a Cyclone II FPGA.
The main drawback of the method is high area overhead.
Heisswolf et al. [35] propose a method of fault-tolerance in
NoC. Their method is based on a communication interface.
The idea is to disable or isolate the faulty router, and another
network layer is added to adapt the operations of the faulty
routers. The setup of the second layer is implemented using
a distributed configuration. Their method is implemented
on an NoC size of 3 × 3 and ASIC. The method saves
up to 72.2% power of the communication infrastructure
power.
Fick et al. [36] propose a Vicis router architecture to

recover permanent faults on routers and links. Their method
is based on using redundancy to repair router operation where
it uses bypassing a faulty path and port swapping. This
technique uses a built-in self-test to reroute the data around
the faulty routers and links. Vicis router has bidirectional
links, and each link contains two input and output ports. In
the case one port fails, the rest three ports are used for a
new connection.
Wang et al. [37] propose a fault resilient router using a

High-Performance Reliable (HPR) technique. It uses virtual
channel closing for an input port, and for touting, it uses
look-ahead routing. A bypass mechanism is used to tolerate
the faults of the crossbar.
Constantinides et al. [38] propose a Bulletproof technique

for repairing a faulty router. It utilizes a spatial redundancy
mechanism where a backup is used for each component. The
drawback of this method is that the area overhead is high.
The Bulletproof provides a model of automatic clustering
decomposition to achieve modularity in router architecture
design. It divides the process of fault tolerance into sub-
stages of detection, diagnosis, repair, and recovery.

FIGURE 3. Proposed self-healing method for router.

Baloch et al. [39] present a defender method for a fault-
tolerant router. It is based on adding other components to
deal with router faults. The defender method provides fault
tolerance to both the routing computation unit and the input
ports by grouping the neighboring ports together.
A fault routing algorithm for network faults is presented

in [12]. Their method uses an alternate bypass path that is
formed around a faulty node in the network. In this way, the
alternative bypass path forwards the packet to a neighboring
node of a faulty node. The packet follows the XY routing
algorithm through a fault-free path. The main drawbacks of
this method are the complexity and scalability of wires and
connections for complex systems.
Khalil et al. [40] propose a self-healing technique for

routers in NoC. The proposed method uses a simplified
spare block in each router, which allows the network to
work within an expected range of performance. The spare
block works as a path for the coming packets. It is used to
forward the coming data to another active neighbor router.
It is implemented using VHDL and ISE Xilinx Vertex 5.
The method has a lower area overhead than the traditional
methods that use spare routers. The method improved the
reliability of the network to longer age with an area overhead
of 18%.
Chatterjee and Chattopadhyay [41] present a fault-tolerant

method for mesh architecture. It recovers faulty routers using
a double network interface and spare links. Liu et al. [42]
introduce a fine-grained path salvaging method for data in
NoC. It splits the data path components such as links, cross-
bars, and input buffer into slices instead of using redundancy.
It makes a connection between multiple routers and one PE,
which is implemented by designing additional ports. This is
to avoid isolation of PE because of the faulty router. This
method’s drawbacks are that it has a large area overhead
due to using spare components, links, and routers.

III. PROPOSED SELF-HEALING METHOD
The proposed self-healing method is applied for a faulty
router. A faulty router isolates its local PE from the rest of
PEs in the network, and the proposed method provides a

VOLUME 2, 2021 487

KHALIL et al.: SELF-HEALING ROUTER APPROACH FOR HIGH-PERFORMANCE NoC

TABLE 1. Selection sequence for the output ports and the input ports.

router recovery to keep the connection of the isolated PE
with the others. The self-healing technique considers the
faulty components of the router’s components and ports’
buffers. The proposed method of architecture is shown on
each port in addition to the spare buffer, as shown in Fig. 3.
In the case of a faulty router, the fault detection technique
sends a notification to all neighbors of the faulty one. All
neighbors consider this notification to update the routing
bits. In NoC, each packet is 64 bits and composed of seven
fields. The first two fields save the destination X-coordinate
and Y-coordinate, respectively. The third and fourth fields
have source X-coordinate and Y-coordinate, respectively. The
fifth field has the packet sequence number. The sixth field
includes the time of transmission of the packet. The last
field has the payload data, which models the information
inside the packet. The proposed method is based on adding
three bits in the packet for routing in the case of a faulty
router. These routing bits determine which port in the faulty
router receives the packet from the active neighbors. The
value of these bits determines the target port, “000”, “0001”
“010”, “011”, “100”, “101”, are used for Local, East, West,
North, South, Spare ports, respectively as shown in Table 1.
When the faulty router receives the packet through ports, a
recovery technique is used for routing the packet in the right
direction. The proposed architecture is shown in Fig. 3. It
has a multiplexer with inputs from the six ports, and input
selection signals are used for switching between these ports.
The input selection signals are three bits that decide which
port forwards its packet to the output. These values are
“000”, “0001” “010”, “011”, “100”, “101” for Local, East,
West, North, South, Spare ports, respectively, as shown in
Table 1.
The operation is explained as follows. Each clock cycle the

input selection value changes between the ports in sequence
from “000” to “101”, and then repeats it back. The output
packet from the multiplexer is checked by the routing block
to decide which output port receives this packet. It checks the
last three bits as shown for each port in addition to the spare
buffer, as shown in Fig. 4. The routing bits are sent to the
demultiplexer, and it forwards the packet to the appropriate
port according to the routing bits. The relation between the
routing bits and the output ports is described in Table 1. The
output port sends the packet to the neighbor router, and it
uses XY routing and store-and-forward switching techniques.
The algorithm of the proposed method is shown in and
Algorithm 1 and Algorithm 2. For more clarification, it is
assumed that the router9 is faulty, as shown in Fig. 5. The

FIGURE 4. Block diagram of packet selection.

fault detection block sends a notification to the neighbor
routers router5, router8, router10, router13. It is also assumed
router10 needs to send its packet to router9. Router10 checks
the coordinate of the packet with the coordinate of the faulty
router. If the coordinate is the same as the faulty router,
the router10 updates the routing bits to be “000”. If the
X-coordinate of the packet is lower than that of the faulty
router, the routing bits are updated to be “010”. This means
the packet will forward to West port. If the Xcoordinate of
the packet is the same as the faulty router, it means the
packet should be sent in this column. Therefore, it checks
the Y-coordinate to know which port should be used (North
or South). If the Y-coordinate of the packet is higher than
the faulty router, the routing bits are updated to “011” for
the North port. The routing bits are updated to “100” for the
South port if the Y-coordinate of the packet is lower than the
faulty router. As demultiplexer is a significant component, a
spare one used to avoid a situation of finding the connected
demultiplexer is faulty.
For First-In-First-Out (FIFO) buffer consideration, any

router has five buffers for five ports: Local, East, West, North,
and South. If there is any fault in any port buffer, it leads to
losing the received packet to this port. The traditional method
is to use a spare buffer for each port to repair the faulty one.
Therefore, five buffers are added to the router, and the area
overhead of the buffer is 100% relative to the total number of
buffers. The proposed self-healing method solves this chal-
lenge using a minimum area cost compared to the previous
work. The proposed method uses the available buffers in
addition to one spare buffer to repair any faulty buffer in
the router. The proposed self-healing methods check which
buffer has free slots, and then the control block sends the
packet of faulty buffer to the available buffer. The proposed
method reduces the area overhead by 73% compared to the
traditional method, and then power consumption overhead is
2.5%. The proposed method has comparable results in delay
and throughput as described in Section V.

488 VOLUME 2, 2021

Algorithm 1 Proposed Algorithm for Routing in Faulty
Router
if Fault signal = ‘1’ then

Compare the coordinates of data packet with the current router
coordinates to select output port
if the output port = input direction port to a faulty router then

Compare the coordinates of data packet with the coordinates
of a faulty router
if destination = faulty router address then

routing bits = “000”
else if destination is in the same direction of +X then

routing bits = “001”
else if destination is in the same direction of -X then

routing bits = “010”
else if destination is in the same direction of +Y then

routing bits = “011”
else if destination is in the same direction of -Y then

routing bits = “100”
end if

end if
Select output port to send data to next router

else
Compare the coordinates of data packet with the current
router’s coordinates to select an output port
if Destination address= faulty router address then

Output port = Local port
else if XDest − Coordinates > XLocal − Coordinates then

Output port = East port
else if XDest − Coordinates < XLocal − Coordinates then

Output port = West port
else if YDest − Coordinates > YLocal − Coordinates then

Output port = North port
else if YDest − Coordinates < YLocal − Coordinates then

Output port = South port
end if

end if

The details of the proposedmethod are described as follows.
The method includes a FIFO controller block that has a Fault
Signal (FS) input from each port. These are five signals
that are coming from (FS_E), West port (FS_W), North port
(FS_N), South port (FS_S), and spare (FS_Spare), as shown
in Fig. 6. These signals come from the fault detection block.
These signals are also used to indicate the availability of the
router in terms of buffers storage. If the result indicates the
router is full, a signal is sent to the neighbor routers to not
send data to this router until receiving a signal initiated it has
free slots. If the fault detection block detects a fault in any
port, it raises the corresponding signal to the value of one. If
there is no fault, the FS value is zero. Therefore, the FIFO
controller receives a signal which indicates fault status and
its location. The FIFO controller sends a request to the active
ports to ask about the most available one. The FS is input to
the FIFO controller, and its value is zero if there is no fault.
Therefore, the FIFO controller receives this signal to indicate
fault status and its location. The FIFO controller sends a
request to the active ports to find the most available one.
These ports send back with a grant (gnt) signal for indication
of the port availability to store packets. These grant signals are
for each port: East (gnt_E), West (gnt_W), North (gnt_N),

FIGURE 5. Block diagram of a faulty router in NoC.

South (gnt_S), Local (gnt_L), and Spare (gntSpare). Each
port’s buffer has five input packets that come from each port
in addition to the local buffer, as shown in Fig. 6. According
to the available port, the controller block allows the buffer
to pass the packet and save it. Then the buffer updates the
number of available slots, and it sends the results back to the
controller block.
For example, assume the east buffer is faulty. The fault

detection block sets the faulty signal to one FS_E =‘1’.
The FIFO controller receives this signal, and it works to
recover it by another buffer. The controller sends a request
for the rest buffers (W, N, S, Spare) to check which one is
available. If more than one buffers are available, the con-
troller selects the one which has higher available slots than
others based on the feedback counter from each buffer. We
assume buffer North is available, it means the grant signal is
one gnt_N =‘1’. The FIFO controller sends a signal to the
north buffer to receive the packet of the east port (Pkt_E).
Then the buffer updates the number of available slots using
a Free Slots Counter (FSC). This counter monitors the rest
free slots in each buffer: FSC_E, FSC_W, FSC_N, FSC_S,
FSC_S, and FSC_Spare for East, West, North, South, and
Spare, respectively. The buffer sends the results back to the
controller block. The algorithm of the proposed method is
shown in Algorithm 3.

IV. PARAMETERS USED FOR EVALUATION OF
SELF-HEALING
The self-healing mechanism is verified using parameters of
reliability and Mean Time to Failure (MTTF). In this section,
both parameters are described.

A. RELIABILITY
Reliability refers to the system’s ability to perform its
function successfully under some stated conditions with
a given time interval. It is one of the important indexes
for system performance. The definition of reliability R(t)
of a router in NoC is the ability of the router to
perform its routing functionality within a time interval
[0, t] [32, 43]. The reliability of the success of NoC is defined

VOLUME 2, 2021 489

KHALIL et al.: SELF-HEALING ROUTER APPROACH FOR HIGH-PERFORMANCE NoC

FIGURE 6. Proposed self-healing method for faulty buffers.

as shown in Equation (1).

p(t) = exp(−λt) (1)

where p(t) is the probability of success and λ is the fail-
ure rate, and λ refers to the occurrence of faults per unit
time, and it can legitimately be considered time-dependent
in an electronic system. The traditional method isolates the
faulty router, and the network works with the available active
routers with limited performance, as shown in Fig. 7. The
reliability of the NoC for the traditional N × N 2D mesh is
expressed as shown in Equation (2).

R(t)sys =
(

exp(−λt)
)N×N

(2)

where N is network dimension. The proposed method is
based on dependency on the neighbor routers. Each router
depends on the neighbor router, and the probability of
success depends on both neighbors (p + (1 − p)p) which
is repeated for all routers. Therefore, the NoC reliabil-
ity depends on the neighbor reliability, and it is given by
Equation (3).

R(t)pro sys =
(

exp(−λt) +
(

1 − exp(−λt)
)

∗ exp(−λt)
)N×N

(3)

A comparison between the proposed and traditional meth-
ods, is shown in Fig. 8 for (3×3) network. The reliability of

the proposed method is higher than the traditional method.
The proposed method also is compared with the prior
methods in Section V.

B. MEAN TIME TO FAILURE (MTTF)
MTTF is the indication of the expected value of time to
failure, and the NoC assessment is determined by MTTF.
The MTTF, also, is the ratio of the total time of operation
of all components to the number of total failures. The MTTF
for the traditional method is given by Equation (4).

MTTF =
∫ ∞

0

(
exp(−λt)

)N×N
dt (4)

The MTTF for the proposed method is given by Equation (5).

MTTF =
∫ ∞

0

(
exp(−λt) +

(
1 − exp(−λt)

)
∗ exp(−λt)

)N×N
dt.

(5)

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS
The proposed self-healing method is implemented
using VHDL and Altera Arria 10 GX FPGA
10AX115N2F45E1SG. The proposed method’s effect
on network design (size of 3 × 3) is studied in terms
of reliability and MTTF. The reliability is calculated

490 VOLUME 2, 2021

Algorithm 2 Proposed Algorithm for Faulty Router
if Buffer fault signal =‘1’ then

FIFO controller works, check algorithm. 1
end if
if the current router is faulty then

Check which port is required to send the packet using the
proposed approach
if Routing bits = “000” then

Output port = Local port
else if Routing bits = “001” then

if FS_E=‘0’ then
Output port = East port

else
FIFO controller selects the appropriate port

end if
else if Routing bits = “010” then

if FS_W=‘0’ then
Output port = West port

else
FIFO controller selects the appropriate port

end if
else if Routing bits = “011” then

if FS_N=‘0’ then
Output port = North port

else
FIFO controller selects the appropriate port

end if
else if Routing bits = “100” then

if FS_S=‘0’ then
Output port = South port

else
FIFO controller selects the appropriate port

end if
end if
send the packet through the selected output port

end if

with λ = 0.315 (times/day) [44] for the network, and
the proposed method’s reliability is compared with the
traditional method’s reliability. Fault sources such as TDDB,
NBTI, EM, and SM are applied to the router architecture
as explained in Section I. These sources make circuits to
generate signals that are expected in regular and realistic
operation. A fault generator is used to allow each component
to receive signals with fault effects. Some components are
also can be isolated to present breakdown status. The fault
generator also includes a reliability measurement unit to
calculate it according to the generated failure rate and the
number of routers. The experiments are carried out using
a Uniform (UNI) pattern, and in this pattern, all nodes
receive the same traffic distribution. The implementation
of NoC on FPGA was tested using a data generator that
generates data packets with a specific destination. Thus,
the number of generated data packets and the number
received by each router is known. Each router is used
to direct the data in a desired direction. At the receiving
stage, each router counts the received packets. At the end
of processing, each number of received packets in each
router is checked and compared with the generated number.
The NOC succeeds in performing its task if the number is

Algorithm 3 Proposed Algorithm for Faulty Buffer
if FS_E= ‘1’ then

FIFO controller sends Req_W, Req_N, Req_S, Req_L,
Req_Spare
The controller receives gnt_W, gnt_N, gnt_S, gnt_L, and
gnt_Spare
The controller checks number of free slots in each buffer with
grant signal
The controller selects the freest buffer
Buffer control signal sets the selected buffer to forward Pkt_E
and FSC_E=FSC_E-1

else if FS_W= ‘1’ then
FIFO controller sends Req_E, Req_N, Req_S, Req_L,
Req_Spare
The controller receives gnt_E, gnt_N, gnt_S, gnt_L, and
gnt_Spare
The controller checks number of free slots in each buffer with
grant signal
The controller selects the freest buffer
Buffer control signal sets the selected buffer to forward Pkt_W
and FSC_W=FSC_W-1

else if FS_N= ‘1’ then
FIFO controller sends Req_E, Req_W, Req_S, Req_L,
Req_Spare
The controller receives gnt_E, gnt_W, gnt_S, gnt_L, and
gnt_Spare
The controller checks number of free slots in each buffer with
grant signal
The controller selects the freest buffer
Buffer control signal sets the selected buffer to forward Pkt_N
and FSC_N=FSC_N-1

else if FS_S= ‘1’ then
FIFO controller sends Req_E, Req_W, Req_N, Req_L,
Req_Spare
The controller receives gnt_E, gnt_W, gnt_N, gnt_S, and
gnt_Spare
The controller checks number of free slots in each buffer with
grant signal
The controller selects the freest buffer
Buffer control signal sets the selected buffer to forward Pkt_S
and FSC_S=FSC_S-1

else if FS_Spare= ‘1’ then
FIFO controller sends Req_E, Req_W, Req_N, Req_S,
Req_L
The controller receives gnt_E, gnt_W, gnt_N, gnt_S, and
gnt_L
The controller checks number of free slots in each buffer with
grant signal
The controller selects the freest buffer
Buffer control signal sets the selected buffer to forward
Pkt_Spare and FSC_Spare=FSC_Spare-1

end if

matched in all routers. The proposed method is compared
with the baseline method. This traditional baseline method
deals with fault using an isolation mechanism. It isolates
the faulty router, and the network works with the available
active routers with limited performance. For example, the
reliability of the proposed method is improved from 0.75 to
0.98 after 10 years compared to the traditional method. The
reliability is improved by 30%, which increases the age
of the network. The second important parameter is MTTF.
The MTTF of the proposed is improved to 96.0177 instead

VOLUME 2, 2021 491

KHALIL et al.: SELF-HEALING ROUTER APPROACH FOR HIGH-PERFORMANCE NoC

FIGURE 7. The traditional method for isolating a faulty router (a) NoC with a faulty
router (b) Isolating the faulty router.

FIGURE 8. Reliability for network of size 3 × 3.

of 26.1413 for the traditional method. The MTTF is also
improved using the proposed method, which is an indication
of extending the time to failure. The proposed method is
also tested using a Hotspot (HS) pattern where 90% of the
traffic is directed to the node of the hotspot, and 10% of
the traffic is distributed between all other nodes with equal
distribution. In case of a normal router, the average delay

FIGURE 9. Average delay characteristics for the network using the proposed
method.

and throughput are 72 cycles and 0.425, respectively, at a
0.36 injection rate. In the case the network has one faulty
router, in case of a normal router, the average delay and
throughput are 79 cycles and 0.41, respectively at a 0.36
injection rate. The simulation results for both the average
delay and throughput have almost the same results as the
UNI results.
The NoC has stable performance in terms of throughput

and average delay. The throughput is the average rate of
the delivered packet per unit time through a communication
channel. The throughput is given by Equation (6).

Throughput =
∑

received packets

transmission time
(6)

The throughput characteristics are studied where PE
injects packets (typically 1000) to other PEs and also receives
packets from other PEs. The Average Delay (AD) is the
average time difference between the sending and receiving
packets. It was measured from the sender, which generates
the packets up to their reception at the destinations. It is
given by Equation (7).

AD =
∑n

0(time of received packet − timeof sent packet)

the total number of received packets
(7)

Both throughput and average delay are measured to show
the behavior of the network using the proposed method.
These parameters are shown in Fig. 9 and Fig. 10. In the
implementation, we use a uniform random synthetic traf-
fic pattern. The injection rate is varied from 0.02 to 0.5.
The simulation is repeated 20 times for each injection rate,
and the average value is calculated. These results show the
network maintains its stability for communication using the
proposed method of healing. The average delay and through-
put increase versus the injection rate. This small overhead is
due to the extra computation of the controller. The proposed
self-healing method is verified using a large number of
nodes. It was applied on NoC from size of (3×3) to (20×20).
The reliability of the traditional and the proposed self-healing
method are shown in Fig. 11 and Fig. 12, respectively. The

492 VOLUME 2, 2021

FIGURE 10. Throughput characteristics for the network using the proposed method.

FIGURE 11. Reliability of the traditional method.

TABLE 2. Resource utilization on hardware implementation.

results show the stability of the proposed method for complex
NoC, which can be used for many applications. A compari-
son between the proposed and traditional methods is shown
in Fig. 13. It shows a big improvement in reliability com-
pared to the traditional method. The results of MTTF for
different network size is shown in Fig. 14. The results of
reliability, MTTF, throughput, and average delay show that
the proposed method is practical, scalable, and performance
is stable and robust.

FIGURE 12. Reliability of the proposed method.

FIGURE 13. A comparison between reliability of the proposed and traditional
methods.

FIGURE 14. MTTF for the proposed and traditional methods.

The other important parameter for NoC is a deadlock. A
deadlock is a problem where no further transportation of
data packets can be occurred because of the saturation of
network resources such as links or buffers. The main reason

VOLUME 2, 2021 493

KHALIL et al.: SELF-HEALING ROUTER APPROACH FOR HIGH-PERFORMANCE NoC

TABLE 3. Comparison with prior works.

FIGURE 15. The XY Routing algorithm for possible and forbidden turns.

TABLE 4. Comparison of MTTF.

for a deadlock in NoC is the cyclic acquisition of channels
in the network. It is avoided by using restrictions on where
the router can store the incoming packets. These constraints
are based on the incoming packet direction where the router
is working using the XY routing algorithm. For example, the
West buffer may contain packets directed to South, North,
East, or Local. The same behavior is applied to the rest of
the buffers. The routing is based on a turn model, as shown
in [45]–[47], where some turns are not allowed to avoid
getting complete cycles, and the network is a free deadlock.
All possible turns that may happen should be considered in
XY routing. For example, the turns of XY routing are West
to North or South as shown in turns 5 and 4 of Fig. 15,
respectively, and the turns of East to North or South, as
shown in turns 2 and 7 of Fig. 15, respectively. Therefore, a
complete cycle does not happen, and the proposed method
is deadlock-free.

The hardware implementation of the proposed method on
Altera Arria 10 GX FPGA is shown in Table 2 in terms
of resource consumption. These results present the used
resources which are consumed resources and utilization,
which is the ratio of used resources to the total available
resources. The network was implemented using Synopsys
Design Compiler in 45 nm technology. The proposed method
has an area overhead of 27% which is lower than the state-of-
the-art methods, and it has high performance. In the proposed
method, the extra block does not affect much on the power
consumption because these block works when there is a
fault in the network. The power consumption overhead for
the proposed method is 2.5% compared to the traditional
methods.
A comparison between the proposed method and previous

work is shown in Table 3. The proposed method has a lower
area overhead compared to [35], [42], and [48], while the
reliability and MTTF are higher, as shown in Table 4. The
previous work of [40] has a lower area overhead while it
does not consider the faulty buffers in all ports of the router.
Thus, the proposed method is more effective and efficient
compared to conventional methods.

VI. CONCLUSION
This paper presented a self-healing approach for NoC. The
proposed method considers the faulty routers and port’s
buffer in NoC. As the router is a very important unit in
NoC, and the network performance may decrease due to
a faulty router. The proposed method is based on using a
small additional block in each router, and computation of
routing bits using neighboring active routers. For the buffer,
a FIFO controller block utilizes the active buffers to choose
one of them to store the data packet of the faulty buffer.
This selection is based on the most free buffer among the
active buffers. The proposed method was implemented using
VHDL and tested using Altera Arria 10 GX FPGA. The

494 VOLUME 2, 2021

reliability, MTTF, throughput, and average delay are stud-
ied. The results show the proposed method is very efficient
and it makes the network stable. The proposed method has
an area overhead of 27% with high reliability and MTTF
that result in an extended network age.

REFERENCES
[1] N. L. Venkataraman, R. Kumar, and P. M. Shakeel, “Ant lion opti-

mized bufferless routing in the design of low power application
specific network on chip,” Circuits Syst. Signal Process., vol. 39,
no. 2, pp. 961–976, 2020.

[2] M. S. Sayed, A. Shalaby, M. El-Sayed, and V. Goulart, “Flexible router
architecture for network-on-chip,” Comput. Math. Appl., vol. 64, no. 5,
pp. 1301–1310, 2012.

[3] S. Majumder, J. F. D. Nielsen, A. La Cour-Harbo, H. Schiøler, and
T. Bak, “A real-time on-chip network architecture for mixed criticality
aerospace systems,” Aeronaut. J., vol. 123, no. 1269, pp. 1788–1806,
2019.

[4] J. Malburg, K. Janson, J. Raik, and F. Dannemann, “Fault-aware
performance assessment approach for embedded networks,” in Proc.
IEEE 22nd Int. Symp. Design Diagn. Electron. Circuits Syst. (DDECS),
2019, pp. 1–4.

[5] A. Graillat, C. Maiza, M. Moy, P. Raymond, and B. D. de Dinechin,
“Response time analysis of dataflow applications on a many-core
processor with shared-memory and network-on-chip,” in Proc. 27th
Int. Conf. Real-Time Netw. Syst., 2019, pp. 61–69.

[6] J. Luo, H. Zhou, Y. Zhang, N. Li, and Y. Wang, “An efficient and
reliable retransmission mechanism for on-chip network of many-core
processor,” in Proc. CCF Nat. Conf. Comput. Eng. Technol., 2019,
pp. 122–135.

[7] V. Suthar, D. D. Gaitonde, A. Gupta, and J. Singh, “Placement, rout-
ing, and deadlock removal for network-on-chip using integer linear
programming,” U.S. Patent 10 565 346, Feb. 18, 2020.

[8] J. Harttung, E. Franz, S. Moriam, and P. Walther, “Lightweight authen-
ticated encryption for network-on-chip communications,” in Proc.
Great Lakes Symp. VLSI, 2019, pp. 33–38.

[9] E. Wachter, L. L. Caimi, V. Fochi, D. Munhoz, and F. G. Moraes,
“BrNoC: A broadcast NoC for control messages in many-core
systems,” Microelectron. J., vol. 68, pp. 69–77, Oct. 2017.

[10] K. Khalil, O. Eldash, A. Kumar, and M. Bayoumi, “N2 OC: Neural-
network-on-chip architecture,” in Proc. 32nd IEEE Int. Syst.-Chip
Conf. (SOCC), 2019, pp. 272–277.

[11] B. Bhowmik, J. K. Deka, S. Biswas, and B. B. Bhattacharya,
“Performance-aware test scheduling for diagnosing coexistent chan-
nel faults in topology-agnostic networks-on-chip,” ACM Trans. Design
Autom. Electron. Syst., vol. 24, no. 2, pp. 1–29, 2019.

[12] S. Priya, S. Agarwal, and H. K. Kapoor, “Fault tolerance in network
on chip using bypass path establishing packets,” in Proc. 31st Int.
Conf. VLSI Design 17th Int. Conf. Embedded Syst. (VLSID), 2018,
pp. 457–458.

[13] J. Khichar, S. Choudhary, and R. Mahar, “Fault tolerant dynamic XY-
YX routing algorithm for network on-chip architecture,” in Proc. Int.
Conf. Intell. Comput. Control (I2C2), 2017, pp. 1–6.

[14] K. Khalil, O. Eldash, A. Kumar, and M. Bayoumi, “Intelligent fault-
prediction assisted self-healing for embryonic hardware,” IEEE Trans.
Biomed. Circuits Syst., vol. 14, no. 4, pp. 852–866, Aug. 2020.

[15] K. Khalil, O. Eldash, and M. Bayoumi, “A cost-effective self-healing
approach for reliable hardware systems,” in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), 2018, pp. 1–5.

[16] D. Xiang and Q. Pan, “Low-power and high-performance adaptive
routing in on-chip networks,” CCF Trans. High Perform. Comput.,
vol. 1, no. 2, pp. 92–110, 2019.

[17] P. Bogdan, T. Dumitraş, and R. Marculescu, “Stochastic commu-
nication: A new paradigm for fault-tolerant networks-on-chip,” VLSI
Design, vol. 2007, p. 17, Apr. 2007, doi: 10.1155/2007/95348.

[18] M. S. Sayed, A. Shalaby, M. E.-S. Ragab, and V. Goulart, “Congestion
mitigation using flexible router architecture for network-on-chip,”
in Proc. Japan-Egypt Conf. Electron. Commun. Comput., 2012,
pp. 182–187.

[19] F. Angiolini, D. Atienza, S. Murali, L. Benini, and G. De Micheli,
“Reliability support for on-chip memories using networks-on-chip,”
in Proc. Int. Conf. Comput. Design, 2006, pp. 389–396.

[20] K. Khalil, O. Eldash, and M. Bayoumi, “Self-healing router archi-
tecture for reliable network-on-chips,” in Proc. 24th IEEE Int. Conf.
Electron. Circuits Syst. (ICECS), 2017, pp. 330–333.

[21] M. Noda, S. Kajihara, Y. Sato, K. Miyase, X. Wen, and Y. Miura,
“On estimation of NBTI-induced delay degradation,” in Proc. 15th
IEEE Eur. Test Symp. (ETS), 2010, pp. 107–111.

[22] K. Khalil, O. Eldash, A. Kumar, and M. Bayoumi, “Machine learning-
based approach for hardware faults prediction,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 67, no. 11, pp. 3880–3892, Nov. 2020.

[23] T. W. Chen, K. Kim, Y. M. Kim, and S. Mitra, “Gate-oxide early
life failure prediction,” in Proc. 26th IEEE VLSI Test Symp., 2008,
pp. 111–118.

[24] T. Nigam, A. Kerber, and P. Peumans, “Accurate model for time-
dependent dielectric breakdown of high-k metal gate stacks,” in Proc.
IEEE Int. Rel. Phys. Symp., 2009, pp. 523–530.

[25] M. Ershov et al., “Dynamic recovery of negative bias temper-
ature instability in p-type metal–oxide–semiconductor field-effect
transistors,” Appl. Phys. Lett., vol. 83, no. 8, pp. 1647–1649, 2003.

[26] G. Gielen et al., “Emerging yield and reliability challenges in nanome-
ter CMOS technologies,” in Proc. Conf. Design Autom. Test Europe,
2008, pp. 1322–1327.

[27] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The impact of
technology scaling on lifetime reliability,” in Proc. DSN, 2004, p. 177.

[28] P.-H. Chen et al., “An 80 mV startup dual-mode boost converter by
charge-pumped pulse generator and threshold voltage tuned oscillator
with hot carrier injection,” IEEE J. Solid-State Circuits, vol. 47, no. 11,
pp. 2554–2562, Nov. 2012.

[29] S. R. Vangal et al., “An 80-tile sub-100-W TeraFLOPS processor in
65-nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 29–41,
Jan. 2008.

[30] Z. Xu, X. Zhao, Z. Wang, and C. Yang, “Application-aware NOC
management in GPUs multitasking,” J. Supercomput., vol. 75, no. 8,
pp. 4710–4730, 2019.

[31] G. Passas, M. Katevenis, and D. Pnevmatikatos, “Crossbar NoCs
are scalable beyond 100 nodes,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 31, no. 4, pp. 573–585, Apr. 2012.

[32] K. Khalil, O. Eldash, A. Kumar, and M. Bayoumi, “Self-healing
hardware systems: A review,” Microelectron. J., vol. 93, Nov. 2019,
Art. no. 104620.

[33] I. Schagaev, “Reliability of malfunction tolerance,” in Proc. Int.
Multiconf. Comput. Sci. Inf. Technol., 2008, pp. 733–737.

[34] K. Motamedi, N. Ioannides, M. Rümmeli, and I. Schagaev,
“Reconfigurable network on chip architecture for aerospace appli-
cations,” in Proc. 30th IFAC Workshop Real-Time Program. 4th Int.
Workshop Real-Time Softw., 2009, pp. 131–136.

[35] J. Heisswolf et al., “A novel NoC-architecture for fault tolerance and
power saving,” in Proc. 29th Int. Conf. Archit. Comput. Syst., 2016,
pp. 1–8.

[36] D. Fick, A. DeOrio, J. Hu, V. Bertacco, D. Blaauw, and D. Sylvester,
“Vicis: A reliable network for unreliable silicon,” in Proc. 46th Annu.
Design Autom. Conf., 2009, pp. 812–817.

[37] L. Wang, S. Ma, C. Li, W. Chen, and Z. Wang, “A high performance
reliable NoC router,” Integration, vol. 58, pp. 583–592, Jun. 2017.

[38] K. Constantinides et al., “BulletProof: A defect-tolerant CMP switch
architecture,” in Proc. 12th Int. Symp. High-Perform. Comput. Archit.,
2006, pp. 5–16.

[39] N. K. Baloch, M. I. Baig, and M. Daneshtalab, “Defender: A low
overhead and efficient fault-tolerant mechanism for reliable on-chip
router,” IEEE Access, vol. 7, pp. 142843–142854, 2019.

[40] K. Khalil, O. Eldash, A. Kumar, and M. Bayoumi, “Flexible self-
healing router for reliable and high-performance network-on-chips
architecture,” in Proc. 31st IEEE Int. System Chip Conf. (SOCC),
2018, pp. 152–157.

[41] N. Chatterjee and S. Chattopadhyay, “Fault tolerant mesh based
network-on-chip architecture,” in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), 2015, pp. 417–420.

[42] C. Liu, L. Zhang, Y. Han, and X. Li, “A resilient on-chip router design
through data path salvaging,” in Proc. 16th Asia South Pac. Design
Autom. Conf. (ASP-DAC), 2011, pp. 437–442.

[43] Z. Zhang and Y. Wang, “Method to self-repairing reconfiguration strat-
egy selection of embryonic cellular array on reliability analysis,” in
Proc. NASA/ESA Conf. Adapt. Hardw. Syst. (AHS), 2014, pp. 225–232.

VOLUME 2, 2021 495

https://doi.org/10.1155/2007/95348

KHALIL et al.: SELF-HEALING ROUTER APPROACH FOR HIGH-PERFORMANCE NoC

[44] W. J. Dally and B. P. Towles, Principles and Practices of
Interconnection Networks. Amsterdam, The Netherlands: Elsevier,
2004.

[45] D. Xiang and W. Luo, “An efficient adaptive deadlock-free routing
algorithm for torus networks,” IEEE Trans. Parallel Distrib. Syst.,
vol. 23, no. 5, pp. 800–808, May 2012.

[46] M. Ebrahimi and M. Daneshtalab, “A light-weight fault-tolerant rout-
ing algorithm tolerating faulty links and routers,” Computing, vol. 97,
no. 6, pp. 631–648, 2015.

[47] C. J. Glass and L. M. Ni, “The turn model for adaptive routing,” ACM
SIGARCH Comput. Archit. News, vol. 20, no. 2, pp. 278–287, 1992.

[48] L. Xie, K. Mei, and Y. Li, “Repair: A reliable partial-redundancy-
based router in NoC,” in Proc. IEEE 8th Int. Conf. Netw. Archit.
Storage (NAS), 2013, pp. 173–177.

[49] P. Poluri and A. Louri, “Shield: A reliable network-on-chip router
architecture for chip multiprocessors,” IEEE Trans. Parallel Distrib.
Syst., vol. 27, no. 10, pp. 3058–3070, Oct. 2016.

[50] H. J. Mohammed, W. N. Flayyih, and F. Z. Rokhani, “Tolerating
permanent faults in the input port of the network on chip router,”
J. Low Power Electron. Appl., vol. 9, no. 1, p. 11, 2019.

KASEM KHALIL (Member, IEEE) received the
B.Sc. and M.Sc. degrees in electrical engineering
and electronics and communications engineering
from Assiut University, Asyut, Egypt, in 2009
and 2014, respectively, and the second M.Sc.
degree in computer engineering and the Ph.D.
degree from the Center of Advanced Computer
Studies, University of Louisiana at Lafayette,
USA, in 2017 and 2021, respectively. His research
interests include VLSI, microelectronics, reconfig-
urable hardware, self-healing hardware systems,

machine learning, hardware accelerators, network-on-chip, intelligent hard-
ware systems, and the Internet of Things.

OMAR ELDASH (Member, IEEE) received the
B.Sc. degree in electrical engineering from
Fayoum University, Faiyum, Egypt, in 2009,
and the M.Sc. degree in computer engineering
from the Center of Advanced Computer Studies,
University of Louisiana at Lafayette, USA, in
2016, where he is currently pursuing the Ph.D.
degree. His research interests include system-on-
chip, reconfigurable hardware, hardware acceler-
ators, dynamic hardware, machine learning, and
hardware accelerators.

ASHOK KUMAR (Senior Member, IEEE) received
the B.Tech. degree from IIT (BHU), India, and the
M.S. and Ph.D. degrees in computer engineering
from the University of Southwestern Louisiana.
He is currently an Associate Professor with the
School of Computing and Informatics, University
of Louisiana at Lafayette. His research interests
include intelligent and energy-efficient software
and hardware systems.

MAGDY BAYOUMI (Life Fellow, IEEE) received the
B.Sc. and M.Sc. degrees in electrical engineering
from Cairo University, Egypt, the M.Sc. degree in
computer engineering from Washington University
at St. Louis, St. Louis, and the Ph.D. degree
in electrical engineering from the University
of Windsor, Windsor, ON, Canada. He is cur-
rently the Department Head of the Electrical and
Computer Engineering Department, University of
Louisiana at Lafayette, Lafayette, LA, USA. His
research interests include VLSI design and archi-

tectures, digital signal processing, and wireless ad hoc and sensor networks.
He was a recipient of the 2009 IEEE Circuits and Systems Meritorious
Service Award and the IEEE Circuits and Systems Society 2003 Education
Award. He was the Vice President for Conferences of the IEEE Circuits
and Systems Society.

496 VOLUME 2, 2021

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

