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ABSTRACT We propose a new method for the visual quality assessment of 360-degree (omnidirectional)
videos. The proposed method is based on computing multiple spatio-temporal objective quality features
on viewports extracted from 360-degree videos. A new model is learnt to properly combine these features
into a metric that closely matches subjective quality scores. The main motivations for the proposed
approach are that: 1) quality metrics computed on viewports better captures the user experience than
metrics computed on the projection domain; 2) the use of viewports easily supports different projection
methods being used in current 360-degree video systems; and 3) no individual objective image quality
metric always performs the best for all types of visual distortions, while a learned combination of them is
able to adapt to different conditions. Experimental results, based on both the largest available 360-degree
videos quality dataset and a cross-dataset validation, demonstrate that the proposed metric outperforms
state-of-the-art 360-degree and 2D video quality metrics.

INDEX TERMS Visual quality assessment, omnidirectional video, 360-degree video, multi-metric fusion.

I. INTRODUCTION

RIVEN by the growing interest in virtual and aug-

mented reality, omnidirectional (or 360-degree) videos
are becoming prevalent in many immersive applications, e.g.,
medicine, education, and entertainment. Omnidirectional
videos are spherical signals captured by cameras with a full
360-degree field-of-view (FoV). When consumed via head-
mounted displays (HMDs) omnidirectional videos allow the
user to be immersed in the content. During runtime, based
on the user’s head motion, the portion of the sphere in the
user’s field of view, named viewport, is seamlessly updated
following the user’s head motion, thus providing an improved
sense of presence. Together, the new immersive features
and interactive dimension change the end user perceived
quality of experience (QoE) in many ways when compared
to traditional videos [2]. Similarly to traditional audiovi-
sual multimedia content, methods for assessing the QoE
of omnidirectional content plays a central role in shaping
processing algorithms and systems, as well as their imple-
mentation, optimization, and testing [24]. In particular, the
visual quality assessment of omnidirectional videos is one of

the most important aspects of users’ QoE when consuming
such immersive content.

Quality assessment of 360-degree visual content con-
sumed through HMDs brings its own specificities. For
instance, to reuse existing image and video processing
technologies, the 360-degree visual content is commonly
mapped to a 2D plane (the projection domain) and stored
as a rectangular image [1], [2]. Examples of commonly
used projections include: equirectangular (ERP), truncated
square pyramid (TSP), cube map (CMP), and equian-
gular cube map (EAC) [10]. The coupled interaction
between projection and compression of the resulting rect-
angular images, however, brings new types of visual dis-
tortions [2]. Also, the magnification of the content, the
supported increased field-of-view, the fact that the user is
completely immersed, and the new interactive dimension,
all contribute to the overall perceived visual quality and
QoE [2]. Such new features call for the development of
new methods and good practices related to both subjec-
tive and objective quality assessment of 360-degree visual
content [1], [2], [13].
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Subjective video quality assessment (VQA) methods
collect quality judgments from human viewers through psy-
chophysical experiments. Subjective VQA has the advantage
of being more reliable, since humans are the ultimate
receivers of the multimedia content. Subjective VQA, how-
ever, is expensive, time-consuming, and not suitable for
real-time processing quality control. Thus, objective VQA
algorithms are required to estimate video quality auto-
matically. Based on the amount of the reference content
they use, objective VQA metrics can be divided into: full-
reference (FR) methods, which require complete access to
the reference video; reduced-reference (RR) methods, which
do not require the complete reference, but some features
that characterize the reference video; and no-reference (NR)
methods, which do not require any information about the
reference video. With regards to the prediction accuracy,
FR methods are in general more accurate and more widely
applied. This paper proposes a new FR method for 360-
degree VQA; thus the metrics discussed hereafter are FR
schemes.

PSNR-based objective image quality assessment (IQA)
metrics that take into account the properties of 360-degree
images have been recently proposed in the literature, e.g.,
S-PSNR [46] CPP-PSNR [47], and WS-PSNR [38]. Those
methods are easy to implement and can be efficiently
integrated into video coders, but their correlation with
subjective judgements are far from satisfactory. Moreover,
when used for video quality assessment they lack a proper
modelling of the temporal characteristics of the human-
visual system (HVS). VQA methods must also consider
the temporal factors apart from the spatial ones and the
contribution and their interaction to the overall video qual-
ity. Therefore, more perceptually-oriented metrics are still
required for 360-degree VQA.

In contrast to previous work, we propose a viewport-based
multi-metric fusion (MMF) approach for 360-VQA. The
proposed approach extends [4]' and is based on: i) extracting
spatio-temporal quality features (i.e., computing objective
IQA metrics) from viewports; ii) temporally pooling them
taking the characteristics of the human-visual system (HVS)
into consideration, and; iii) then training a regression model
to predict the 360-degree video quality.

On one hand, working with viewports allows us to better
account for the final viewed content and naturally supports
different projections [3], [6]. On the other hand, the use
of multiple objective metrics computed on these viewports
allows our method to have a good performance for the com-
plex and diverse nature of visual distortions appearing in
360-degree videos. Indeed, previous work in both traditional
2D [25], [32], [34] and 360-degree [3] VQA have recognized
that even with the multitude of available objective IQA met-
rics, there is no single one that always performs best for all

1. Compared to [4], we extend the individual features used by our model,
propose an adapted temporal pooling method, and provide an extensive
new set of experiments, including different regression methods and a cross-
dataset validation.
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types of distortions. The combination of multiple metrics is
thus a promising approach that can take advantages of the
power of individual metrics to properly estimate 360 video
quality [26], [34].

Experimental results, based on the largest publicly avail-
able 360-degree video quality dataset, VQA-ODV [21], and
on the VR-VQA48 [43] dataset show the viability of our
proposal, which outperforms state-of-the-art methods for
360-degree VQA.

The rest of the paper is organized as follows. Section II
presents the related work. Section III describes our pro-
posal and highlights the main contributions of our proposal.
Section IV presents the experimental setup used to validate
our approach and the experimental results. Section V-A pro-
vides further experiments through ablations studies. Finally,
Section VI brings our conclusions and future work.

Il. RELATED WORK

A. TRADITIONAL IQA/VQA METHODS

Traditional 2D image and video quality assessment have
attracted a lot of attention in recent years [24], [29].
Some objective IQA metrics are well-established today,
e.g., Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity (SSIM) [42], Multiscale Structural Similarity (MS-
SSIM) [41], Most Apparent Distortion (MAD) [8], Feature
Similarity (FSIM) [48], Gradient Magnitude Similarity
Deviation (GMSD) [44], and Haar wavelet-based Perceptual
Similarity Index (HaarPSI) [33]. Different from IQA met-
rics, VQA metrics must also take into consideration the
temporal dimension and model the temporal aspects of the
HVS. A straightforward and convenient approach to VQA
is to use an IQA method on a frame-by-frame basis and
then compute the global quality score by simple average of
Minkowski summation. However, such approaches do not
correctly model the temporal dimension.

Examples of metrics specifically developed for VQA
include VQM [30], MOVIE [36], Vis3 [40], and SSTS-
GMSD [45]. Although such metrics have produced
interesting results, currently the best results are achieved
by MMF approaches, from which VMAF is one of the most
prominent examples. VMAF [32]> is an MMF approach
for traditional visual content. The objective metrics used as
features to train an SVM (Support vector machine) regres-
sor are: Visual Information Fidelity (VIF) [37], Detail Loss
Metric (DLM) [23], Anti-Noise Signal-to-Noise Ratio (AN-
SNR), and Mean Co-located Pixel Difference (MCPD).
MCPD is used as a simple metric for the temporal dimension.
The SVM-based regressor is trained to provide an output in
the range of 0-100 per video frame. By default, VMAF
final output is the average of the individual frame VMAF
scores, which is clearly not the best approach for modeling
the temporal aspects of the HVS [35].

In this paper, similar to VMAF, we also propose an MMF
approach, but we focus on omnidirectional visual content

2. https://github.com/Netflix/vmaf
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and take into consideration the perceptual particularities of
this new media type. In particular, we compute the individual
features in the viewports domain, which allows our method
to better account for the final viewed content. Our method
uses a different set of individual spatial and temporal features
and pooling method (detailed in Section III) which support
a better correlation to subjective tests. Finally, in our pro-
posal we use a Random Forest Regression model (RFR) [7]
whereas VMAF uses SVR. Such choices are supported by
the experimental results in Section IV.

B. OBJECTIVE METRICS FOR 360-DEGREE VQA
Currently, the main approaches for objectively assessing the
quality of 360-degree content can be broken into 4 categories:
1) well-known objective metrics for 2D content computed on
the projection domain; 2) well-known objective metrics for
2D content computed on the viewports; 3) objective metrics
specifically developed for 360-degree visual content; and
4) deep learning techniques.

The use of standard 2D image and video metrics (e.g.,
the ones discussed in Section II-A) directly in the projec-
tion domain is straightforward, but they do not properly
model the perceived quality of the 360-degree content.
The main issues with such an approach are two-fold:
first, it gives the same importance to the different parts
of the spherical signal, which not only is sampled very
differently from classical images, but also have different
viewing probabilities (thus different importance); and sec-
ond, even for traditional images, these metrics are known
to have limitations for different visual distortion types—
none is universally satisfactory [25]. In this paper, we
address such issues by computing objective metrics in
the viewport domain and by employing a MMF fusion
approach.

To cope with the sampling issue of the projection domain,
recent proposals for omnidirectional image quality assess-
ment have been developed to tackle the specific geometry of
360-degree images: Spherical-PSNR (S-PSNR) [46], Craster
Parabolic Projection PSNR (CPP-PSNR) [47], Weighted-
to-Spherical-PSNR (WS-PSNR) [38], and S-SSIM [9]. In
S-PSNR, sampling points uniformly distributed on a spher-
ical surface are re-projected to the original and distorted
images respectively to find the corresponding pixels, fol-
lowed by the PSNR calculation. In CPP-PSNR, the PNSR
is computed between samples in the CPP domain [47], where
pixel distribution is closer to that in the spherical domain.
The pixels of the original and distorted content are first pro-
jected to the spherical domain and then mapped to the CPP
domain, where PSNR is computed. In WS-PSNR, the PSNR
computation at each sample position is performed directly
on the planar domain, but its value is weighted by the area
on the sphere covered by the given sample. Different weight
patterns may be used for different projections. S-SSIM is
a similar approach to S-PSNR, but using SSIM instead of
PSNR [9].
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The use of objective metrics computed on the view-
ports is an interesting approach, in which N viewports
of different viewing directions are generated for both the
original and the distorted content, and the 2D metric is
computed individually for each of these viewports. Then,
the overall 360-degree quality metric can be computed by
aggregating the quality of individual viewports. If the objec-
tive metric properly models the human perceptibility, in
theory, it could be a good approximation of the overall 360-
degree quality. The use of viewports [3], [6] and Voronoi
patches [11], [12] for computing individual IQA metrics
have also been discussed. Here, we acknowledge that the
use of viewports (or patches) to compute the 360-VQA is
indeed a more perceptually-correct ways of assessing 360
visual quality. Previous methods, however, simply compute
the quality of 360 images as the average of the viewports (or
patches). In contrast, we use an MMF approach that allows
to better account for different visual distortion types, the
temporal dimension, and viewing probability of 360-degree
videos.

Recent works have also proposed deep learning architec-
tures to estimate 360-degree video quality [20], [21], [22].
One of the main issues with such approaches is that the
current 360-VQA datasets are not big enough to satisfacto-
rily train deep learning methods. Thus, they need to perform
data augmentation, such as splitting the original image into
patches or rotating the original 360-degree images. In both
cases, however, it is not clear if the new generated patches or
rotated images share the same quality scores as the original
content.

Finally, all the metrics proposed for 360-VQA men-
tioned above do not explicitly model the temporal dimension
of 360-degree videos. They usually compute the overall
quality simply as the average of the quality of each indi-
vidual frame. Different from IQA, however, VQA metrics
shall ideally take the temporal dimension into considera-
tion and properly integrate the temporal properties of the
HVS. As previously mentioned, some traditional objective
VQA metrics do consider the temporal dimension but do
not take into consideration the characteristics of 360-degree
videos.

We address the above mentioned issues by computing
per-frame spatio-temporal objective metrics in the viewport
domain, temporally pooling them by taking into account
the HVS, and employing a multi-metric fusion approach
that closely matches subjective scores. As previously men-
tioned, being an MMF approach, our proposal shares
some of the principles of similar methods for 2D videos.
However, it: i) takes into account the specific features of
360-degree videos; ii) uses a different set of individual spa-
tial and temporal features; iii) is based on an improved
temporal pooling method; and iii) uses a random for-
est regression model. Considered together, those features
allows our method to support a better correlation to sub-
jective scores and more robust results than state-of-the-art
method.
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FIGURE 1. Proposed 360-VQA multi-method approach overview.

lll. VIEWPORTS-BASED MMF FOR 360 VQA

Fig. 1 shows our proposed 360-VQA approach. The pos-
sible space of visible viewports is represented by using N
viewports rendered from different viewing directions. The
same N viewports are rendered from both original and the
distorted video content, and 2D objective metrics are com-
puted individually within the viewports and then temporally
pooled using an HVS-based method. Finally, based on the
per-viewport pooled scores, we train a regression model that
is able to learn a combination of the individual objective
metrics into a new objective metric that closely relates to
subjective scores.

The rest of this section details each of the steps above.
In what follows, let R = {Rs,f =0,1,...,F—1}and D =
{Dr,f =0,1,..., F — 1} respectively be the reference and
distorted sequences of the same 360-degree video content in
the projection domain. Ry and Dy denote the f’th frame of
‘R and D, respectively, and F the total number of frames in
both R and D.

A. VIEWPORT SAMPLING AND FIELD OF VIEW

First, for each frame f, we compute a set of viewports V}Zz =
VRO vEN Y and VP = (PO, VPN, for the
respective reference and distorted frames. A viewport (Fig. 2)
is the gnomonic projection [28] of the omnidirectional signal
to a plane tangent to the sphere, which is defined by:

« the viewing direction (el,, az,), which defines the center

O where the viewport is tangent to the sphere;

e its resolution [vpy,, vpy]; and

« its horizontal and vertical field-of-view, FoV};, and FoV,,,

respectively.

When considering a viewport-based metric for 360-degree
videos, we need to define a viewport sampling process that,
given an omnidirectional image, /, and the viewports param-
eters vp,,, vpy, FoV,, and FoV}, generates N viewports from
different viewing directions (i.e., different O’s). On one hand,
larger FoVs result in both overlapped regions between the
viewports and larger geometry distortions. Having duplicated
content can be an issue because it increases the importance of

VOLUME 2, 2021
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¥

viewing sphere

FIGURE 2. Viewport parameters [14].

FIGURE 3. Uniform (left), tropical (center), and equatorial (right)viewports sampling
for computing viewport-based objective metrics.

such duplicated areas when computing objective metrics on
the viewports. On the other hand, smaller FoVs might require
more viewports to completely cover the sphere area, which
might also result in higher computational costs. Thus, a good
balance between the sampling and number of viewports and
its distribution to provide good coverage of the sphere is
necessary. Ideally, the viewport resolution [vp,,, vp] should
also match the HMD resolution used to visualize the content.
Fig. 3 shows three viewport sampling configurations: uni-
form, tropical, and equatorial [6], that sample, respectively,
25, 16, and 9 viewports. Fig. 4 shows an example of an
ERP frame and the viewports generated using the uniform
sampling method. In the figure, the viewports are aggregated
into a single frame that we will refer to as the viewports
collage (VP-Collage) frame in the rest of the paper.

B. SPATIAL AND TEMPORAL FEATURES
Based on the previously generated viewports, we compute
for each pair of reference and distorted viewports, V;z " and
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(a)

(b)

FIGURE 4. Examples of a frame on the ERP projection domain (a) and an aggregate
frame with viewports (b) computed from it using the uniform sampling process.

VJP’", 0<n<N,O0<f <F aset of M objective metrics,
denoted as:

Q= {0 (V. vP) s oua (VP )

In particular, the following spatial quality metrics are
computed for each viewport pair:

o Spatial Activity (SA),

o PSNR-HVS and PSNR-HVS-M [31],

o Multi-Scale Structural Similarity (MS-SSIM) [41], and
o Gradient Magnitude Similarity Deviation (GMSD) [44]

and the following temporal quality metrics:

« Relative change in the temporal information (R-TI), and
o Temporal Gradient Magnitude Similarity Deviation
(T-GMSD)

The above metrics were selected mainly because it has been
shown that they correlated well with subjective scores for tra-
ditional image quality assessment and they complement each
other with regards to different 2D image distortions [44].
Nevertheless, the proposed method can also be easily adapted
to other metrics, which, for instance, better reflect the distor-
tions in a specific dataset. The rest of this subsection details
each of the above metrics.

1) SPATIAL ACTIVITY

The spatial activity (SA) of a pair of frames is defined as
the root mean square (RMS) difference between the Sobel
maps of each of the frames [16]. The Sobel operator, S, is
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defined as:

S(z) = \/ (G1 %2 + (GT x2)° )

where z is the frame picture and * denotes the 2-dimensional
convolution operation, G; is the vertical Sobel filter,

given by:
1 0 -1
Gi=|2 0 =2 (3)
1 0 -1

and G{ is the transpose of G (horizontal Sobel filter).

Let u and v be V" and VP, ie., the same viewport
sampled from the same frame f from both reference and dis-
torted content, respectively. We define the difference between
the Sobel maps of both frames as:

s = Su) — SO). )

Then, we compute SA as:

1
SAw,w) = | o= D lsiil? ©)
L,

where i, j are respectively the horizontal and vertical indices
of s, and M and N are the height and width of the viewports,
respectively.

2) PSNR-HVS AND PSNR-HVS-M

PSNR-HVS [15] and PSNR-HVS-M [31] are two models
that have been designed to improve the performance of
PSNR taking into consideration the HVS properties. PSNR-
HVS divides the image into 8x8 pixels non-overlapping
blocks. Then the §(i, j) difference between the original and
the distorted blocks is weighted for every 8x8 block by
the coefficients of the Contrast Sensitivity Function (CSF).
PSNR-HVS-M [31] is defined similarly, but the difference
between the DCT coefficients is further multiplied by a
contrast masking metric (CM) for every 8x8 block.

3) MS-SSIM

The structural similarity (SSIM) metric divides the job of
computing the similarity between two images into three
comparisons: luminance, contrast, and structure, respectively
defined as:

2pxpy + Cy

I(x,y) = (6)
Y nz +u3 +Ci
200y + C
)= ——"——— 7
c(x,y) o2+t Cr @)
oxy + C3
) - 4 8
s(x, y) o0y + O3 3

where u, and w, denote the mean luminance intensities of
the compared image signals x and y; o, and o, are the
standard deviations of the luminance samples of the two
images; oy, is the covariance of the luminance samples; and
Ci and C, are stabilizing constants. For an image with a
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dynamic range L, C1 = (K L)2 where K; is a small constant
such that C| only takes effect when (uf + /Lﬁ) is small. The
SSIM index is then defined as:

SSIM(x,y) = [I(x, Y)I* - [e(x, NI’ - s(x, )T €))

where «, B, and y are positive parameters that adjust the rel-
ative importance of the three comparison functions. Setting
a=p=y =1and C3 = Cy/2 gives the specific form:

(S[,Lx,l,Ly + C])(Zaxy + C2)
(;ﬂ +ul+ 01) <ax2 +o2+ cz)

SSIM (x,y) = (10)

MultiScale-SSIM (MS-SSIM) is an extension of SSIM for
multiple scales. At every scale, MS-SSIM applies a low pass
filter to the reference and distorted images and downsample
the filtered images by a factor of two. At the mth scale,
contrast and structure terms are taken into account:

M
MSSSIM(%,y) = [y, VI* - | | lem 917 - [sm(x, 1)1

m=1

Y

4) GMSD
Gradient Magnitude Similarity Deviation (GMSD) [44] is

based on the standard deviation of the gradient magnitude
similarity map, GMS, which is computed as:
2 -m(u) - m@v) +c
m(u)2 + m(v)2 +c

GMS(u,v) = (12)
where u and v are respectively the current and previous
frame; c is a positive constant that guarantees stability; and
m(z) is:

m(z) = \/(Z*G2)2+ (z>|<G2T)2 (13)

where * denotes the convolution operator, G, represents the
vertical Prewitt filter:

Gy = (14)

S O O
|
U2 =0 | = =

Gg is the transpose of G», i.e., the horizontal Prewitt filter.
The GMSD index is then computed as:

GMSD(u, v) = NLM " (GMS(u, v) — GMS(u, v))°, (15)

ij

where GMS(u, v) is the gradient magnitude similarity mean,
computed as:

GMS(u, v) = NLM > GMS(u, v). (16)
i
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5) RELATIVE CHANGE IN TEMPORAL INFORMATION

Temporal information (TI) [19] is an indicator that charac-
terizes the amount of motion in a video and is defined as
the standard deviation of the difference between two frames:

AF, =F, —F,4
TI[F,] = std(AF,)

A7)
(18)

Here, we define the relative change in the temporal
information as:
|T1ref[Fn] — Tlgise[Fp]|

Tl Fn] =
el[ n] TIref[Fn]

; 19)

where T1,.¢[F,] and T1;5[F,] are respectively the TI for the
frame F, in the reference and distorted videos.

6) TEMPORAL GMSD

is defined as the GMSD score between the difference of two
consecutive references frames and two consecutive distorted
frames, i.e.:

AF(f) = Fr(f) = F(f = ) (20)
AF4(f) = Fa(f) —Fa(f = 1) ey
T-GMSD(f) = GMSD(AF (), AF4(f)). (22)

C. TEMPORAL FEATURE POOLING
The per-viewports metrics Q;? for each frame, f € {1, ..., F}
and viewport n € {1,... ,N}, are integrated to yield the

overall quality of each viewport: onol' This integration is
performed by the temporal pooling module. Our proposal is
modular and can be adapted to different temporal pooling
methods. Based on the experiments of Section V-C, and
inspired by [27], we propose a temporal pooling method
considering the characteristics of the HVS, in particular:

o the smooth effect, i.e., the subjective ratings of the whole
video sequence typically demonstrate far less variations
than the frame-level quality scores;

o the asymmetric effect, i.e., HVS is more sensitive to
frame-level quality degradation than to improvement;
and

o recency effect, i.e., subjects tend to put a higher weight
on what they have seen most recently.

More precisely, for each viewport n, we first process
the original scores considering both smooth and asymmetric
effects as:

") = Orp(f =D +a-AQ(f), if AQ" <0
EPEZT 0fpf — D + B - AQ(), if AQ" >0

where AQ" = Q}lrame(f) - QZP(f —1) and QZP = Qnrame(l)’
and o and B control the asymmetric weights. Then, we
perform a weighted-average sum of the above processed
scores considering the recency effect:

(23)

1 F
ool = T ]; Q1 p(HW(). (24)
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FIGURE 5. Exponential weights used to average per-frame quality metrics.

Here, we define the weights w(f) as an exponential func-
tion (see Fig. 5):

w(f) = F+DH=F)/7) (25)
Similar to [27], in our experiments we use o = 0.03 and
B =0.2.

D. REGRESSION

After the temporal pooling, we end up with M features for
each viewport, which are then concatenated as a feature vec-
tor, Q = [Q),....,0° .0l ....0 ot .. o
Such a vector is used for learning a non-linear mapping
between the computed per-viewport features and the subjec-
tive DMOS scores of 360-degree videos. In our framework,
we have tested three different regression methods:

o Support Vector Regression (SVR) [5];
« Gradient Boosting regression (GBR) [17]; and
« Random Forest Regression (RFR) [7].

Based on the experiments on Section IV, we have chosen
RFR as our final regression method because it signifi-
cantly outperformed the other methods. Next we detail our
experiments setup, hyper-parameter tuning, training, and test
processes.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
Unless specified otherwise, we validate our proposal based
on the VQA-ODV [21] dataset. VQA-ODV is the largest
publicly available dataset today and is composed of three
types of projections, ERP, RCMP, and TSP, and 3-levels
of H.265 distortions, quantization parameters (QP)=27, 37,
and 42. In total, there are 60 different reference sequences
(12 in raw format and others downloaded from YouTube
VR channel) and 540 distorted sequences that were rated by
221 participants. In all our following experiments, we extract
only the ERP sequences from VQA-ODV, resulting in 180
distorted sequences. Both MOS (Mean Opinion Scores) and
DMOS (Differential Mean Opinion Scores) are available for
the dataset.

We compare our method to PSNR, S-PSNR, WS-PSNR
MS-SSIM, and VMAF, using common criteria for the
evaluation of objective quality metrics: Pearson Linear
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Correlation Coefficient (PLCC), Spearman Rank Order
Correlation Coefficient (SROCC), and Root Mean Squared
Error (RMSE). SROCC measures the prediction monotonic-
ity while PLCC and RMSE measure the prediction accuracy.
Higher SROCC, PLCC and lower RMSE indicate good
correlation with subjective scores.

Moreover, we compare the performance of our method and
the other objective metrics when the features are computed
in: 1) the projection domain (“Proj.”); ii) all viewports merged
in a collage frame (“VP-Collage”) (see Fig. 4); and iii) the
viewports considered indiviually ("VP"), i.e., the metrics are
computed independently for each viewports (as discussed in
Section IIT). Computing the objective metrics in the viewport
collage frame is similar to averaging the quality of all the
viewports.

Based on the above 3 different modes, we performed the
following experiments:

« using the same fixed train/test subset of the VQA-ODV
dataset used in [21], [22] (Section IV-A);

e a cross-validation experiment in the whole ERP
sequences of VQA-ODV dataset (Section IV-B); and

« a cross dataset validation Section IV-C.

In all the above cases, we perform grouped split of the
data. Such approach divides the database into two content-
independent subsets (training and testing) ensuring that
videos generated from one reference (i.e., the same con-
tent) in the testing subset are not present in the training
subset, and vice-versa. Also, in the above following, we use
a uniform sampling with a 40-deg field of view for the view-
ports, which resolution matches the HMD resolution used in
the dataset (an HTC Vive).

A. VQA-ODV: FIXED TRAIN/TEST SUBSETS

Table 1 shows the results of our method using the
same (fixed) train/test selection of [21], [22], which ensures
that the same sequence content is not part of both train and
test sets. After separating the dataset into train and test sets,
we first run a group shuffle cross-validation on the train-
ing data to find the best random forest hyper-parameters
to predict the 360-VQA. Based on the resulting hyper-
parameters we then train and validate the model, respectively
using the previously separated test data. Then, we compute
the performance of the model to predict the scores of the
sequences in the test set. By following the above procedure,
we make sure that the hyper-parameter tunning never sees
the test data.

We compare the performance of our method against:
PSNR, MS-SSIM, and VMAF (state-of-the-art metrics for
2D quality assessment) when the features are computed in
both the projection and the viewports domain; and S-PSNR
and WS-PSNR, metrics specifically developed for 360 VQA.
For the non-learned metrics (PSNR, MS-SSIM, S-PSNR, and
WS-PSNR), we emulate the training phase by fitting the fol-
lowing 4-parameter logistic function with the train set and
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TABLE 1. Fixed train/test set test results (VQA-ODV dataset).

TABLE 2. Training performance of the different regression methods on the fixed
train set of VQA-ODV.

Metric | PLCC+ SROCCt RMSE |
Metric | PLCCT SROCC?t RMSE |
PSNR 0.725 0.738 8.176
PSNR (VP-Collage) 0.762 0.763 7.582 Ours (SVR, Proj.). 0.751 0.775 7.788
S-PSNR 0.751 0.770 7.756 Ours (SVR, VP-Collage) 0.781 0.810 7.455
WS-PSNR 0.743 0.561 7.950 Ours (SVR, VP) 1.000 1.000 0.080
MS-SSIM (Proj.) 0.760 0.789 7.874 -
MS-SSIM (VP-Collage) 0.817 0.841 7.002 Ours (GB, Proj.). 0.990 0.989 1.737
VMAF (Proj.) 0.797 0.794 7.948 Ours (GB, VP-Collage) 0.989 0.987 1.798
VMAF (VP-Collage) 0.845 0.856 6.271 Ours (GB, VP) 0.999 0.999 0.410
Ours (SVR, Proj.) 0.804 0.836 7.251 Ours (RFR, Proj.). 0.935 0.946 4.259
Ours (SVR, VP-Collage) 0.858 0.905 8.121 Ours (RFR, VP-Collage) 0.966 0.972 3.224
Ours (SVR, VP) (Overfitting) 0.513 0.724 10.412 Ours (RFR, VP) 0.983 0.984 2.420
Ours (GB, Proj.) 0.847 0.850 6.474
Ours (GB, VP-Collage) 0.857 0.854 6.252 10
Ours (GB, VP) 0.915 0.889 5.041 -
Ours (RFR, Proj.) 0.856 0.869 6.359 O'8
Ours (RFR, VP-Collage) 0.906 0.893 5.550 ' <>
Ours (RFR, VP) 0.929 0.917 4.561 07 \
06
05
then computing its performance with the test set: 04
B — B2 03
s = Y + Bo. (26) 02
1+ e TRl 01

Finally, for our method, we compare different regres-
sion techniques: Support Vector Regression (SVR),
Gradient Boosting Regression (GBR), and Random Forest
Regression (RFR).

Discussion: From Table 1, the best performance for the
fixed train/test set on VQA-ODV is achieved by our method
using features computed separatly for each viewport (“VP”
mode). Such results can be explained by both the viewports
being closer to what the users see and the model being
able to learn the most important viewports, which is not
the case when using the “VP-Collage” mode. Our results in
Table 1 also show that computing objective metrics on the
viewport domain (“VP-Collage”) improve the performance
of all the tested metrics (LCC gain around 0.05) validating
our hypothesis that viewports better represents the perceived
quality when users watch a 360 video on an HMD when com-
pared to the projection domain. Finally, it is also interesting
to note that our method (on both “Proj.” and “VP-Collage”)
outperforms VMAF, which can be explained by the choice of
objective metrics, the temporal pooling, and regression meth-
ods in our method. Finally, with regards to generalization of
our method, Table 2 also brings the training performance of
our different regression methods. When comparing Table 1
and 2 it is clear that RFR is the most robust regression
method among the tested ones, providing PLCC values while
avoiding overfitting.

B. VQA-ODV: CROSS-VALIDATION

To avoid bias on the specific train/test set used above, we also
performed a full cross-validation on the VQA-ODV dataset.
In the cross-validation experiments, we performed a 1000x
randomly group selection of 80%/20% train/test splitting of
the dataset, and then computed the average PLCC, SROCC,
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FIGURE 6. Violin plots for the GroupShuffle (80%/20%) cross-validation PLCC
performance on VQA-ODV dataset.

TABLE 3. Average of GroupShuffle cross validation (80%/20%) performance on
VQA-ODV.

Metric | PLCC+ SROCCT RMSE |
PSNR (Proj.) 0.572  0.619 9.825
PSNR (VP-Collage) 0.647  0.686 9.122
S-PSNR 0.625  0.667 9.346
WS-PSNR 0.598  0.645 9.598
MS-SSIM (Proj.) 0.750  0.775 7.935
MS-SSIM (VP-Collage) | 0.764  0.791 7.758
VMAF 0.747  0.767 7.963
VMAF (VP-Collage) 0.781  0.798 7.515
Ours (RFR, Proj.) 0.817 0.829 6.872
Ours (RFR, VP-Collage) | 0.827 0.826 6.738
Ours (RFR, VP) 0.868 0.868 5.937

and RMSE of the models. The group selection ensures that
there is no overlap between content in the training and test
sets. The hyper-parameters used for the RF regression are the
same ones found on the fixed train/test experiments above.
Table 3 shows the average PLCC, SROCC, and RMSE results
for the cross-validation experiments, and Fig. 6 depicts the
distribution of the correlation scores through a violin plot.
Larger sections of the violin plots depict a higher probability
of achieving these correlation scores, while narrower sections
depict a lower probability.
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TABLE 4. Objective metrics performance on VR-VQA48. Our method is trained on
VQA-ODV and tested on VR-VQ48.

TABLE 5. Training performance of the different regression methods trained on
VQA-ODV.

Metric ‘ PLCC 1t SROCC?T RMSE | Metric ‘ PLCC 1t SROCC?T RMSE |
PSNR (Proj.) 0.499 0.508 10.732 Ours (SVR, Proj.). 0.771 0.796 7.523
PSNR (VP-Collage) 0.613 0.612 9.843 Ours (SVR, VP-Collage) 0.792 0.815 7.241
S-PSNR 0.569 0.595 10.183 Ours (SVR, VP) (Overfitting) 1.000 1.000 0.080
CPP-PSNR 0.567 0.595 10.198 Ours (GB, Proj.). 0.986 0.820 7.689
WS-PSNR 0.548 0.562 8.804
. Ours (GB, VP-Collage) 0.983 0.979 2.240
MS-SSIM (Proj.) 0.759 0.751 8.490 Ours (GB. VP) 0.999 0.999 0.470
MS-SSIM (VP-Collage) 0.843 0.829 7.634 > ’ . :
VMAF (Proj.) 0.783 0.771 7.712 Ours (RFR, Proj.). 0.945 0.820 7.689
OV-PSNR[PSNR] [18] 0.837  0.890 6.749 us EEEE’ \V’E;C"Hage) 0970 00T 5o
OV-PSNRJ[S-PSNR] [18] 0.818 0.775 7.123 ’ : ) :
OV-PSNR[CPP-PSNR] [18] 0.837 0.787 5.181
OV-PSNR[WS-PSNR] [18] 0.838 0.790 5.157 TABLE 6. Performance of our proposal using SFFS on fixed train/test VQA-ODV
dataset.
Ours (SVR, Proj.). 0.795 0.775 7.898
Ours (SVR, VP-Collage) 0.876 0.855 6.981 Selected features (RFR, Proj.) | PLCCT SROCCt RMSE |
Ours (SVR, VP) (overfitting) 0.699 0.775 9.559 GMSD 0.808 0.770 6.890
; GMSD, R-TI 0.874 0.878 5.831
Ours (GB, Proj.). 0.787 0.780 8.238 GMSD, R-TI, PSNR-HVS 0885  0.879 5.726
Ours (GB, VP-Collage) 0.891 0.881 6.031 GMSD, R-TI, PSNR-HVS, PSNR-HVS-M | 0.891  0.909 5.507
Ours (GB, VP) 0.949 0.940 5.724
Selected features (RFR, VP-Collage) \ PLCC 1+ SROCC1T RMSE |
Ours (RFR, Proj.) 0.837 0.820 7.689 PSNR-HVS-M 0.841 0.826 6.470
Olll'S (RFR, VP-COllage) 0.925 0.900 5.429 PSNR-HVS-M, R-TI 0:888 0:869 5:586
Ours (RFR, VP) 0.956 0.949 5.161 PSNR-HVS-M, R-TI, GMSD 0.911 0.901 5.372
PSNR-HVS-M, R-TI, GMSD, T-GMSD 0.916 0.901 5.392
Selected features (RFR, VP) | PLCCT SROCCt RMSE |
) ) ) . PSNR-HVS-M 0.877 0.874 5.695
Discussion: Table 3 further validates our previously con- PSNR-HVS-M, R-TI 0.921 0.934 5.221
: - : : . PSNR-HVS-M, R-TI, GMSD 0.946 0.943 4.924
clusions from the fixed train/test dataset settings, namely: PSNR.HVS.M. RTL GMSD, T-GMSD 0,046 0.910 Lor1

i) considering viewports (“VP-Collage” and “VP” modes)
instead of the projection domain improves the performance
of objective quality metrics; ii) considering features on indi-
vidual viewpors (“VP” mode) allows the model to further
weight the different views based on the importance of those
regions to the final quality of the 360 video. Moreover,
Figure 6 shows that besides having a better average, our
method also provide a higher density on the high PLCC
values.

C. VQA-ODV X VR-VQA48: CROSS DATASET
VALIDATION

To demonstrate the perfomance of our proposal in more than
one dataset, Table 4 shows the results of the performance
of our model trained on the ERP sequences of VQA-ODV
and tested on public available VR-VQA48 dataset [43]. VR-
VQAA48 is composed of 12 original omnidirectional video
sequences (YUV 4:2:0 format at the resolution of 4096 x
2048) and 36 corresponding impaired sequences by encoding
each original sequence with 3 different bitrate settings. 48
subjects rated raw subjective quality scores for all the 48
sequences. MOS and DMOS values are available for the
sequences per subject. We consider the final quality score
of each sequence as the average DMOS. As in the previous
setups, we also use the uniform viewport sampling with a
40-degree of field-of-view. In total, the model is trained on
the 180 ERP sequences of and tested on the 36 distorted
sequences of VR-VQAA48. Also, from the previous tables,
Table 4 also add the results of the method proposed by [18]
as reported in the original work.

346

Discussion: The results in Table 4 confirm our previous
conclusions, showing that our method is also robust across
different datasets. Of course, if the distortions included in a
new dataset are not well modeled by the individual features
of our model, we would not expect to achieve good results
on that dataset. That does not seem the case for the VR-
VQAA48 dataset. Table 5 brings the training performance,
further validating that RFR is the best regression method
among the tested ones.

V. ABLATION STUDIES

In this section we provide additional experiments that
allow us to better understand the influence of viewport
sampling (Section V-B); the importance of different indi-
vidual features (Section V-A); and the influence of different
temporal pooling methods (Section V-C).

A. FEATURES SELECTION

To study the importance of each feature for our model we
performed additional experiments based on the Sequential
Forward Feature Selection (SFFS) method. In such a method,
we start with an empty set of features (M = m;lm =
1,...,f), and for each step we select the next previously still
not selected feature (m*) that maximize a specific metric.
We focus on minimizing PLCC in our experiments. Table 6
shows the results for 1 to 4 selected features on the fixed
train/test setup. As can be seen in Table 6, we can improve
even further our results with just a subset of the initially
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TABLE 7. Individual objective metrics performance on VQA-ODV (mean temporal pooling). Tropical and Uniform metrics are computed on VP-Collage frames.

| Proj. (ERP) | Tropical (30deg) | Uniform (30deg) | Tropical (40deg) | Uniform (40deg) |  Uniform (50deg)
Metric ‘ LCC 1T SROCC 1 ‘ LCC 1T  SROCC 1 ‘ LCC T  SROCC 1t ‘ LCC 1T SROCC 1 ‘ LCC 1T  SROCC 1t ‘ LCC 1T  SROCC 1
PSNR 0.571 0.602 0.606 0.639 0.652 0.687 0.621 0.650 0.648 0.678 0.646 0.676
PSNR-HVS 0.642 0.678 0.648 0.696 0.659 0.695 0.637 0.667 0.710 0.740 0.710 0.743
PSNR-HVS-M 0.703 0.728 0.673 0.694 0.692 0.725 0.677 0.703 0.751 0.777 0.748 0.775
SSIM 0.572 0.605 0.584 0.622 0.631 0.668 0.594 0.630 0.695 0.727 0.691 0.723
MS-SSIM 0.747 0.769 0.718 0.749 0.741 0.769 0.727 0.756 0.757 0.785 0.748 0.775
GMSD 0.734 0.752 0.694 0.719 0.722 0.748 0.703 0.726 0.783 0.806 0.779 0.801
VIFP 0.652 0.715 0.633 0.674 0.654 0.717 0.629 0.639 0.644 0.673 0.644 0.676
SA 0.499 0.532 0.508 0.540 0.564 0.595 0.522 0.552 0.665 0.701 0.662 0.694
b . Proj.
B Topical30
07 1 = Uniform30 (Vive)
E Uniform40 (Vive)
06 B Uniform50 (Vive)
05 1
0.4 1
03 4
0.2 4
014
0.0 -

PSNR

PSNRHVS
PSNRHVSM

FIGURE 7. Performance (PLCC) of individual objective viewport metrics.

proposed features. By having a subset of features, however,
it is possible that the model does not generalize as well
to other distortion types. More experiments, with datasets
including other distortions type, should be performed in the
future. One of the main issues that prevented us for per-
forming such experiments is the lack of availability of such
datasets, which we see as an important future work for the
research community.

B. INFLUENCE OF VIEWPORT SAMPLING
When considering a viewport-based metric for 360-degree
videos there are (in theory) infinite ways on how to sam-
ple the viewports on the sphere. To better understand the
visual quality of objective metrics computed in the pro-
jection domain against the same metrics computed in the
viewports, we report here a study on objective quality met-
rics on the VQA-ODV dataset. For that, we computed the
following objective metrics in both the projection and view-
port domains: PSNR, PSNR-HVS, PSNR-HVSM, SSIM,
MSSSIM, GMSD, Spatial activity, and Temporal activity.
In the viewport domain, we consider different field-of-views
and viewports sampling patterns. In both cases (projection
and viewport domains) the features are computed individ-
ually for each frame and then pooled with an average
method.

For the following experiments, we have chosen the uni-
Sform and tropical sampling methods shown in Fig. 3 [6] with
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FoVs of 30, 40, and 50 degrees. In total, there are 16 and
25 viewports for the tropical and uniform sampling methos,
respectively. Finally, we compute the Pearson and Spearman
Correlation Coefficient between the DMOS and the fitted
4-parameter logistic regression, given by Equation (26).

Table 7 shows the LCC and SROCC performance of
the different viewport sampling and field-of-views com-
pared with the same metrics computed in the frame
domain. Fig. 7 plots the LCC values performance. From
those results, we can conclude that the wuniform sampling
with 40-deg sampling is the one with the best overall
performance.

C. INFLUENCE OF TEMPORAL POOLING
Different temporal poolings might also result in different
performance [39]. To better understand the performance of
our method when using different temporal pooling methods,
we also performed an experiment on the same architec-
ture of Figure 1 when only changing the temporal pooling
method. Despite our proposed temporal pooling method, we
also tested:

a) Arithmetic mean: The sample mean of frame-level
scores:

1 N
0= ﬁ;qn. 7
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TABLE 8. Temporal pooling performance on VQA-ODV fixed train/test sets (Ours
(RFR, VP)).

Temporal pooling | PLCC 1 | SROCC 1 | RMSE |

Minkowski4 0.900 0.881 5.798
Minkowski2 0.910 0.903 5.361
Mean 0.918 0.908 5.364
Percentile 0.919 0.905 5.415
HVS (Ours) 0.929 0.917 4.561

b) Minkowski mean: The L, Minkowski summation of

time-varying quality is defined as:
1 p 1/p

0= quﬁ

n=1

(28)

c) Percentile: Percentile pooling is based on observed
phenomenon that perceptual quality is heavily affected
by the “worst” parts of the content. Many prior works
have studied and justified (or challenged) percentile pool-
ing [15]-[18], [20]. The k-th percentile pooling is expressed:

Qz; Z qn

(29)
|P¢k% } neP s,

Table 8 shows the performance of our method (VP) using
the different pooling methods on the VQA-ODV dataset. For
the percentile method, we use k = 10 (i.e., we used only the
10% worst scores of the frames. For the Minkowski mean
we report the results on both p = 2 and p = 4. From the
results, we can conclude that our proposal performs better
with our HVS-based pooling proposed in Section III.

VI. CONCLUSION

We propose the use of viewport-based multi-metrics fusion
for 360-degree VQA and discuss the lessons learned by
implementing and evaluating such an approach on two
publicly available 360 video datasets. The computation of
features in viewports implies that our metric can be applied
on a variety of projections, and our experiments demonstrate
that the MMF approach is capable of achieving state-of-the-
art results while requiring much less training data than deep
learning techniques.

As future work, we plan: (i) to consider color and
visual attention; (ii) to consider fixation in our current tem-
poral pooling; and (iii) extend our proposed method to
no-reference video quality assessment. Finally, it is important
to highlight that although our method achieves impressive
performance on the available 360 videos quality datasets,
there is still need in the immersive media community to
produce more challenging datasets, considering different
distortions, projections, and HMD devices. Overall, our
proposed method can also be easily adaptable to new projec-
tion types and other individual objective metrics that better
maps the distortions on specific 360 video processing con-
texts as well, which is also another interesting future work
direction.
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