
Received 9 August 2020; revised 1 November 2020 and 11 December 2020; accepted 21 December 2020. Date of current version 28 January 2021.

Digital Object Identifier 10.1109/OJCAS.2020.3047007

Channel Estimation for Advanced 5G/6G Use Cases
on a Vector Digital Signal Processor

STEFAN A. DAMJANCEVIC 1 (Graduate Student Member, IEEE), EMIL MATUS1, DMITRY UTYANSKY2,
PIETER VAN DER WOLF3, AND GERHARD P. FETTWEIS 1,4 (Fellow, IEEE)

1Vodafone Chair Mobile Communication Systems, TU Dresden, 01187 Dresden, Germany

2Solutions Group, Synopsys Inc., 197022 St. Petersburg, Russia

3Solutions Group, Synopsys Inc., 5656 AE Eindhoven, The Netherlands

4Barkhausen Institut, TU Dresden, 01069 Dresden, Germany

This article was recommended by Associate Editor C. Studer.

CORRESPONDING AUTHOR: S. A. DAMJANCEVIC (e-mail: stefan.damjancevic@tu-dresden.de)

This work was supported in part by Synopsys Inc., under the Industry—University Cooperation Project “Efficient
Implementation of 5G Baseband Kernels on a Vector Processor.”

ABSTRACT As we target implementations of very high-end 3GPP 5th Generation New Radio (5G NR)
specifications and look towards the future, it becomes apparent that the stringent execution deadlines
in physical layer (PHY) procedures are hard to satisfy using traditional algorithms optimised for high
throughput. Hence, if the designer adheres to the same throughput efficient algorithm and simply scales
up the hardware (HW), the device effectively becomes overprovisioned, costing more than it would if the
designer opted for a latency efficient algorithm. However, latency efficient algorithms cost more operations
per transmitted data item, and therefore consume more power compared to throughput efficient algorithms.
Consequently, if the designer opts for latency efficient algorithms, the implementation would be power
inefficient for all but the latency-critical use cases. We identify the use-cases where these problems
occur in the channel estimation (CE) PHY procedure and propose a software (SW) implementation
that can dynamically switch between latency and throughput efficient algorithms and thereby avoid both
unnecessary HW overprovisioning and excess power consumption. In this article we demonstrate this with
an example implementation of CE for the 5G NR high-end and quantify the benefits of this approach.

INDEX TERMS 5G, 6G, channel estimation, interpolation, workloads, HW, SW, requirements, MPSoC
mapping, SIMD, VLIW, vector processor, DSP, implementation, latency, throughput, trade-off.

I. INTRODUCTION

WHEN implementing physical layer algorithms the
designer starts with having to make a couple of deci-

sions, for which a set of questions can ease the decision
making process.
First, what kind of mathematical operations are used in

the targeted algorithm? It is essential to get the idea of what
kind of software (SW) and hardware (HW) support is needed
and if parallel processing or some form of a repeating pattern
in processing can be exploited.
Second question: in addition to no dependencies on adja-

cent data items, can the same operation be applied to

multiple data? If the answer is yes, which is true for many
physical layer algorithms including channel estimation (CE),
then the algorithm is suitable for specific type of fine-
grained parallel processing called vector processing. In SW
this means single instruction, multiple data (SIMD) style
parallel processing is possible, and in HW algorithm imple-
mentations the designers will have more freedom to exploit
parallelism in design of functional units and control of the
data processing pipeline that can simplify the design. If an
algorithm can be structured as a many iteration loop with
its data items independent between the loop iterations, then
such an algorithm is well suited for vector processing.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 2, 2021 265

HTTPS://ORCID.ORG/0000-0002-4666-2427
HTTPS://ORCID.ORG/0000-0003-4622-1311

DAMJANCEVIC et al.: CHANNEL ESTIMATION FOR ADVANCED 5G/6G USE CASES ON VECTOR DIGITAL SIGNAL PROCESSOR

The third question, after deciding if vector processing can
be used is: do you want to implement the algorithm in SW
or in HW? Technically, everything can be done in SW or
everything in HW, but there are some benefits and drawbacks
to both. SW is flexible, easy to maintain and update, and is
friendly to HW reuse by running different SW kernels1 in a
time multiplexed fashion on the same processor. Other times
when we want to opt for a SW implementation is when we
expect the kernel functionality to change over time or when for
the same functionality there are changing conditions, e.g., CE
under different channel conditions. From another perspective
the processors on which this SW would run have a larger
footprint compared to a specific dedicated kernel HW, hence,
they are more expensive per unit and probably not as energy
efficient as the dedicated HW kernel for the specific task.
By implementing a kernel as a well optimised HW module,
the kernel could save power, cost per unit and potentially
have higher throughput relative to a processor. But, if you
end up needing to implement multiple algorithms for the
same functionality with many parameters as the case is in
CE, then the resulting HW would be large, configurable, and
resembling a processor in terms of layout, size and power
consumption, defeating the purpose of implementing them in
HW to begin with. Updating HW ismuch harder than updating
SW, so you may decide to avoid HW implementations when
the algorithm that should do the job is changing over time,
or the algorithm for the job is not fixed. CE is a big territory,
where most vendors keep secrets on how they do CE. There
are many algorithms suitable for CE [1], [2], [3], [4], [5], [6],
[7], [8]. These vary vastly in complexity and channel estimate
(Ĥ) quality for particular channel conditions. Interestingly, a
more compute intensive algorithm does not produce a better
quality Ĥ in all channel conditions [2], nor does a better
quality Ĥ facilitate good quality transmission in all channel
conditions [9]. Therefore, a good CE scheme uses a multitude
of algorithms, to deliver a high quality of service (QoS) to
the user. In addition, the new communication standard 3GPP
5th Generation New Radio (5G NR) requires a plethora of
dynamic SW defined transmission configurations [10, Sec. 7]
that strain the need for flexibility. With the above in mind, it
is highly beneficial to implement the CE vector processing
kernel in SW.
The fourth question, after deciding for a SW implementa-

tion: what resources are required to meet the throughput
and deadline2 requirements of targeted use cases? This
article tackles this question in depth. Section II defines
use cases and their processing requirements based on the
latest 5G NR specifications. From these we draw conclu-
sions about future industry trend, particularly on the binding
kernel deadlines and how traditional algorithms optimised

1. In computer science terminology: a self-contained code or operation
sequence that fully capture the functionality of an algorithm.

2. Simplified: throughout this article we abbreviate the term execution
deadline with deadline and when we say that the latency exceeds the dead-
line we are referring to the execution time being longer than that which
the deadline permits.

for high throughput, although necessary in many cases, are
not optimal in high-end cases due to the risk of overprovi-
sioning. The core contribution of this article is identifying
such a case among processing steps within CE, as well as
dealing with the challenge of efficiently mapping such a
kernel onto a vector digital signal processor (vDSP) with a
very long instruction word (VLIW) and SIMD architecture.
For a further discussion on VLIW and SIMD vDSP engines
in mobile communications and multi-standard support we
would like to point the reader towards [11]. Alternatively,
the CE scheme can also be performed in SW on a graph-
ics processing unit (GPU), but in this article we show that
a single core vDSP is sufficient to get the CE job done
efficiently without losing determinism in scheduling and
memory accesses on the one hand, and a lower power con-
sumption and footprint compared to a standard GPU on
the other hand. Section IV introduces the processing stages
within CE along with MATLAB simulations and mathe-
matical formalism to support it. Section V covers the idea
of latency and throughput trading, algorithmic optimisations,
pseudo code, vectorisation and other implementation aspects
considered. Next, Section VI demonstrates the impact of
throughput and latency trading in SW, with supporting cycle
counts and latency measurements3 of the implemented algo-
rithm variants. Last, in Section VII we validate the presented
numbers against theoretical bounds and show that the results
are indeed representative. The conclusion is in Section VIII.

II. PROBLEM DEFINITION
As we are writing this article the development of modems
and 3GPP standard specification for 5G NR is in full swing.
The giants Huawei’s HiSilicon, Qualcomm and Samsung are
reporting 7.5Gb/s [12], 7.5Gb/s [13] and 7.3Gb/s [14] as
downlink peak data rates, respectively. However with the data
rates ever increasing we see a new challenge. The contribu-
tions of this article are twofold: First, we believe that with
consistently growing data rates, a new creeping threat is going
to be latency, to an extent that the desired rate will be less of
a problem than stringent deadlines. Second, we provide the
reader with a methodology to overcome numerous challenges
when implementing these high-end cases on machines with
two levels of parallelism, namely a SIMD vDSP with a VLIW
architecture, such that the vDSP is fully utilised.

III. LATENCY, THROUGHPUT, AND TRENDS IN 5G NR
As we show below (see Fig. 1) the state-of-the-art (SotA)
data rates are impressive and on track to reach the full
potential of active 5G NR specifications. In this section
we introduce to the reader active and planned standard
specification and how the constraints put on by the stan-
dard impact latency and throughput requirements of the CE
kernel, as well as force a fresh way of thinking into their
implementation.

3. The latency within a processing step is calculated by measuring the
number of cycles it takes data to propagate from the input of the kernel till
the last data item of the associated OFDM symbol is processed and then
dividing that number with the allocated clock frequency.

266 VOLUME 2, 2021

FIGURE 1. Calculated Throughput and Deadlines of the Channel Estimation Kernel
Assuming 16-bit real + 16-bit imaginary Data Precision for all 3GPP Specified and
Under Study Use Cases per Carrier Component Bandwidth Configuration.

A. 3GPP SPECIFICATION: DATA RATES AND LATENCY
The active 3GPP 5G NR specifications cover two frequency
ranges: frequency range 1 (FR1) (0.41GHz−7.125 GHz) [15]
and frequency range 2 (FR2) (24.25GHz− 52.6GHz) [16].
5G NR in FR1 overlaps with 3GPP 4th Generation Long
Term Evolution (4G LTE) and other legacy standards. From
specifications [15], [16] the duration of 14 Orthogonal
Frequency Division Multiplexing (OFDM) symbols or trans-
mission time interval (TTI)4 and therefore associated use
case deadlines of FR2 go down 16×, whilst the throughput
per carrier component5,6,7 per ms goes up 11× compared
to the high-end of 4G LTE. Additionally, as per conclusions
of the 86th 3GPP radio access network technical specifica-
tion group meeting [17], 3GPP is studying a new frequency
range frequency range 3 (FR3) (52.6 GHz − 71 GHz) for
use in future 3GPP Release 17 (R17) of 5G NR. The ini-
tial report [18] of the mentioned study envisions even higher
throughput and shorter TTI and therefore shorter deadlines in
R17 FR3 compared to FR2 (24.25GHz−52.6 GHz). Hence,
the need to balance throughput and latency aligns with 3GPP
specification development on the way towards 6G.
From the TTI duration we can calculate the latency bud-

get. As stated in [19], [20] the deadline for digital baseband
physical layer is constrained by the hybrid automatic repeat

4. Simplified: in this article we use the term TTI to refer to a data packet
consisting of 14 OFDM symbols. In a more advanced understanding there
are exceptions to this rule and a TTI can be longer or shorter than 14
OFDM symbols with several data packets (in the sense of a transport block
code words) multiplexed within a TTI.

5. 3GPP terminology for a communication channel identified by allocated
bandwidth (BW) and numerology, depending on the device class it can
support a different number of carrier components. Carrier components
consist of several resource blocks (RBs).

6. Numerology is a 3GPP term for OFDM symbol’s subcarrier frequency
spacing.

7. A resource block (RB) is a unit in 3GPP terminology representing a
grid section onto which quadrature amplitude modulation (QAM) symbols
are mapped; 1 data item of that grid is called a resource element (RE),
1RB = 12 subcarriers×14 OFDM symbols=168 RE, with some exceptions
to the rule.

request (HARQ) media access control layer (MAC-L) pro-
cedure, which is 3 TTIs long. As a rule of thumb we assume
up to 1/3 of the 3 TTI budget to be associated with CE,
whilst the other 2/3 are reserved for other processing steps
(see Section IV-B), e.g., synchronisation, waveform demod-
ulation, decoding, etc.8 Since we are interested to showcase
intricacies of implementing channel estimation the next step
is to determine the amount of data that needs to be pro-
cessed for the mentioned use cases under the TTI imposed
deadline. Per RB (see note7), the kernel needs to output
Ĥ9 data items, for every RE, hence to get the processing
load per TTI we need to multiply the number of bits per
RE, number of REs per RB, number of RBs per carrier
component, and number of supported carrier components.
In Fig. 1 we show the calculated throughput and associ-
ated deadlines per carrier component with 16-bit real +
16-bit imaginary precision for REs. We can observe the
deadline halving by two with every row in Fig. 1, reaching
as low as 62.5 μs in the FR2 corner. This contraction of
the deadline is due to the inverse relationship between the
duration of OFDM symbols and their subcarrier frequency
spacing, which increases by two with every row in Fig. 1.
Specifications allow two mechanisms for extending the total
number of carrier components: carrier aggregation (CA)
up to 4× 400MHz [21] and multiple-input, multiple-output
(MIMO) up to 8 spatial data layers10 [10]. Carrier aggrega-
tion utilises the excess available frequency spectrum, whilst
MIMO provides additional carrier components on a separate
link.
Reaching 6G we cannot rule out the simultaneous use of

both carrier aggregation and MIMO in high-end use cases,
therefore we include both in our further consideration. As
of writing this article the FR3 study item use cases are not
yet part of the active specifications, so in Fig. 1 we select
the highlighted high-end FR2 use case for demonstration of
an example use case where deadlines are endangered when
using the throughput efficient algorithm. This way the exam-
ined case is both standard compliant and foreshadowing of
the challenges to come in future 3GPP specification instal-
ments. In Table 1 we list other use cases for comparison
with the selected high-end FR2. These use cases are used to
illustrate the decline of excess unused (free) latency budget
of CE in Fig. 2.

8. No reference for this rule of thumb, the actual timing budget distribu-
tion is vendor specific and kept private. We use this value as a first order
approximation of the upper bound, so that we can be sure if the latency
problem exists for the bounded value, it will certainly exist for more con-
servative deadline estimates too. Hence, further use of deadline is referring
to this bound.

9. Important to note that Ĥ does not represent user data that has been
transferred via the communication system, but rather the change that the
pilots have undergone during communication with a goal of reverting the
change in the equalisation process.

10. Simplified: a link, not to be confused with massive MIMO which is a
method of generating a link via constructive and deconstructive interference
of radio waves from multiple antennas.

VOLUME 2, 2021 267

DAMJANCEVIC et al.: CHANNEL ESTIMATION FOR ADVANCED 5G/6G USE CASES ON VECTOR DIGITAL SIGNAL PROCESSOR

TABLE 1. Compared use cases.

FIGURE 2. Latency Distribution in CE Assuming a 1 GHz Budget.

B. LATENCY BUDGET DISTRIBUTION IN CHANNEL
ESTIMATION
CE in 4G LTE and in 5G NR works by transmitting
predefined data items on predefined RE locations within
RBs, called reference signal (RS) in 3GPP terminology or
pilots in the broader communications community. These
predefined RE are coded with 2-bit quadrature phase shift
keying (QPSK) in 5G NR11 on the transmitter (Tx) side [10,
Sec. 7.4.1.5], but measured with a higher resolution, e.g.,
32-bit on the receiver (Rx) side, to precisely identify changes
that the pilots within RBs have been subject to whilst in the
channel between Tx and Rx. For non-pilot REs the Ĥ is gen-
erated from the observed changes to the pilot REs by a series
of interpolations or extrapolations [2], [3], [22], [23]. The
latency budget of one TTI duration is divided among several
processing steps and buffer wait times within the CE kernel.
For an example algorithm sequence (see Section IV-C) the
latency budget can be written as

tbudget = twait + tCM + tCR + tRR + tfree. (1)

tbudget is the total size of the latency budget in seconds
and it is fixed to the TTI duration for that use case. twait
depends on the pilot layout and the interpolation algorithm,
e.g., the modem may have to wait for a couple of future pilots
carrying OFDM symbols of the RBs before processing the
current Ĥ. Depending on which interpolation algorithm the
designer wants to use, e.g., use more future pilots, this wait
time can increase. tbudget and twait represent the structural
latency of the system. tCM , tCR, tRR are the time spent on
CE steps channel measurement (CM), column reconstruction
(CR) and row reconstruction (RR). Time spent on processing
depends on the algorithms in these steps, as well as the

11. There can be between 4 and 24 pilots per RB.

HW and the SW used to implement them. tCM , tCR, tRR
represent the implementation latency. tfree is the leftover time
till deadline.

Assuming an allocated frequency budget of 1 GHz for the
vDSP CE procedure and an optimised implementation (see
Section VII) of the traditional high throughput algorithms
for CE, in Fig. 2 we show the latency budget distribution
among CE processing steps of Table 1 use cases.
From Fig. 2 we can observe two things: first, tfree gets

smaller and eventually becomes negative in the high-end FR2
case; and second, the order of magnitude difference between
the pilot dependent twait and the implementation specific
tCM, tCR, tRR is decreasing as you move from 4G LTE
towards advanced 5G NR FR2 use cases. Negative tfree
means that the deadline is broken and cannot be achieved
for the given implementation without allocating more HW
resources, optimising the SW more or changing the algo-
rithms. As we note in Section VII the code is well optimised
reaching the asymptotic bound for the vDSP, so optimising
the SW further is off the table. Scaling up the HW can be
costly, so best avoid if possible. This leaves investigating
the algorithms as the preferred option. Further, the second
observation of the above Fig. 2, indicates that the struc-
tural wait time twait due to pilot layout and OFDM symbol
duration does not dominate the budget of the high-end FR2,
rather row reconstruction, which depends on the implemen-
tation solely, is the biggest spender in the latency budget
and reducing it could save the budget deficit. Therefore, the
best spot to start the investigation is the algorithm of row
reconstruction processing step.

C. SPECIFICATION TRAJECTORY TOWARDS 6G
As we saw in Fig. 1 the specifications are evolving on a path
from low rate - high latency towards high rate - low latency
use cases. Rather than a revolutionary jump from 4G LTE
to 5G NR New Radio (NR), we see that the industry and its
specification body are taking incremental evolutionary steps
in terms of rate and latency. Based on the observation we can
predict a similar gradual change on the trajectory into 6G,
with new use cases for handsets appearing in the bottom right
high rate - low latency corner of the throughput-deadline
graphs.
Another intuitive way of viewing why the latency con-

straint of the channel estimation kernel is becoming stricter
as we move towards newer standards is considering the
change of the channel coherence time.12 With new frequency
ranges (see Section III-A) and operation in the upper
mmWave spectrum, the channel coherence time is becoming
ever shorter [24]. The channel measurement is valid for a
shorter interval compared to lower GHz operation of older
standards and therefore the measurement and its subsequent
processing steps within channel estimation have to be done

12. A period during which the channel instance can be considered highly
correlated. In practice this would mean that another channel measurement
is not needed in this period.

268 VOLUME 2, 2021

faster, i.e., within a shorter deadline. Similarly, we can expect
throughput requirements to go up in parallel, higher subcar-
rier spacing and therefore shorter OFDM symbols on the one
hand and higher overall number of subcarriers per OFDM
symbol through spatial layers and carrier aggregation on the
other hand, increase the overall number of data items that
need to be processed in a given time period.

IV. CHANNEL ESTIMATION
This section describes the 5G NR CE in formal mathematical
language, followed by a MATLAB simulation. We use the
simulation to identify the suitable algorithm for implementa-
tion on the vDSP, based on the channel quality requirement
for the FR2 high-end use case and estimation error of the
candidate algorithms. Mathematical analysis complements
the simulation and helps us understand the origin of the
estimation error.

A. CHANNEL MODEL
We use measurement based channel models [25, Sec. 7.7]
for the 0.5 - 100 GHz frequency range and assume a separate
channel for every Tx - Rx antenna pair. Channel’s Doppler
spread per multipath component parameter is set to 10Hz and
the delay spread of multipath components parameter is set to
300 ns, to reflect observations from [26, Fig. 3]. Namely, the
delay spread of multipath components in mmWave channels
is well observable, whilst Doppler spreading of individual
multipath components is rather small and clustered. In addi-
tion, the effects of thermal noise from the devices’ circuitry
and low power spurious spectral emissions are modelled as
an additive white Gaussian noise (AWGN) complex number
sequence w(n) with zero mean and variance σ 2

w. One such
channel is assumed constant in both time and frequency
over one RE of the 5G NR RB (due to scalable subcarrier
spacing and symbol samples’ duration of the 5G waveform).
Channels are considered time and frequency variant between
two different REs. Assuming all REs of all RBs in trans-
mission form a resource grid (RG) of size N ×M REs, the
relationship between the Tx and Rx RG can be expressed in
matrix form via Hadamard-Schur product13 and addition as:

Y = H0 ◦ X +W, (2)

where Y ∈ C
N×M is the Rx RG, X ∈ C

N×M is the Tx
RG, H0 ∈ C

N×M is the channel frequency response in the
RG form, and W ∈ C

N×M is the independent identically
distributed (i.i.d.) AWGN sequence w with zero mean and
variance σ 2

w. If we were to depict REs (data items) with
k ∈ {1, 2, . . . ,N} representing the row, i.e., subcarrier index
and l ∈ {1, 2, . . . ,M} representing the column, i.e., OFDM
symbol index, (2) becomes:

Y(k, l) = H0(k, l) · X(k, l)+W(k, l). (3)

As mentioned in Section III-A for channel measurement
purposes the standard imbues the Tx RG of every antenna

13. Corresponding to MATLAB’s “.*” operation.

port with a pseudo random reference signal on certain l
and k indices coded with QPSK. In 5G NR there can be
anywhere between 4 and 24 pilots per RB in a variety of
patterns [10, Tabs. 7.4.1.1.2-1/5]. The channel [25, Sec. 7.7]
model under high-end FR2 conditions exhibits moderate
time and frequency selectivity14 with a dominant line-of-
sight (LOS) cluster in the channel impulse response (h0),
which matches other observations from literature of mmWave
channels [24], [27], [28], [29], [30]. For our MATLAB simu-
lations we have selected a pattern15 that can perform well in
moderate selectivity, however in practice the pilot layout is
dynamically assigned by the base station based on a vendor
specific control algorithm. The dynamic allocation schedules
different pilot layouts among different antenna ports, limit-
ing interference and helping identify the Tx - Rx antenna
pairs on the Rx side. Within the RG we denote the row
pilot index with kp ∈ {kp1, kp2, . . . , kpK} and the column
pilot index with lp ∈ {lp1, lp2, . . . , lpL}. Boldface kp and lp
are vectors of all row and column pilot indices, respectively.
kp and lp as well as pilot values are taken to be known and
shared between the Tx and Rx devices. Additionally, like
in 4G LTE, pilot locations between consecutive columns lpi
and lp(i+1) can be configured to alternate between different
subsets of kp such that:

kp =
⋃

s

kps , (4)

where kps are all possible subsets of kp of size S ≤ K.
The duration of h0 is met with a cyclic guard interval

called cyclic prefix, which scales with h0 regardless of many
different modes of operation in 5G NR devices. Furthermore
its duration in samples can be used as the upper bound of
sparsity when estimating h0 [6], [7].

B. DOWNLINK RECEIVER
Figure 3 shows the digital baseband physical layer downlink
Rx system, made up of a series of intertwined processing
steps that can be divided into six blocks: synchronisa-
tion, waveform demodulation, channel equalisation, resource
demapping, decoding and the highlighted CE. As mentioned
in Section III-A the latency budget is constrained by the
HARQ procedure and leaves the CE with one TTI duration
deadline to work with.

C. ESTIMATION STEPS
CE of a channel described in Section IV-A can be performed
in multiple stages as shown in Fig. 4. The procedure is not
standardised by 3GPP, however the community [2], [3], [22],
[23] points towards an organisation in two parts: estimation at
pilot and non-pilot RG indices, whilst keeping the algorithms
within those two parts vendor specific. CE is done after
synchronisation and waveform demodulation, and conversion

14. Simplified: how fast do the channel values change across the time
and frequency axis.

15. Illustrated in Fig. 7 bottom left, see [10, Tab. 7.4.1.1.2-4] for a list
of possible patterns.

VOLUME 2, 2021 269

DAMJANCEVIC et al.: CHANNEL ESTIMATION FOR ADVANCED 5G/6G USE CASES ON VECTOR DIGITAL SIGNAL PROCESSOR

FIGURE 3. 3GPP Downlink Receiver DBB PHY System Diagram.

of OFDM symbols from time to the frequency domain via
discrete Fourier transform (DFT), hence we are estimating
H0 and not h0, see Fig. 3.
Channel measurement is the first step of CE which com-

pares the values of the sent pseudo random pilot sequence
with the received values of the pilot sequence at pilot loca-
tions kps and lp of the RG. Observing the change in pilot
values between Tx and Rx gives us an indication of the
channel for the observed Tx - Rx antenna pair. There are
two main approaches to this stage: least squares or Linear
Minimum Mean Square Error16 [1]. The former is more
optimal in the computational sense, since it has a substan-
tially lower computational complexity and the output can be
further filtered in the next stage to improve quality in the
error reduction sense [23]. The least squares measurement
can be described as:

Hm = Y
(
kps , lp

) ◦ X(
kps , lp

)� |X(
kps, lp

)|◦2, (5)

where Hm ∈ C
S×L is the channel measurement, · is the

complex conjugate in the Hadamard-Schur sense, � is the
Hadamard-Schur division, | · | is the complex modulus in
the Hadamard-Schur sense, and (·)◦2 is the square in the
Hadamard-Schur sense. Evaluating (5) we get:

Hm = H0
(
kps , lp

)+W(
kps, lp

)� X
(
kps, lp

)

= H0
(
kps , lp

)+ V, (6)

where V ∈ C
S×L is an i.i.d. complex AWGN sequence matrix

with zero mean and variance σ 2
v . σ 2

v is defined as:

σ 2
v = σ 2

w

∣∣∣∣
1

p

∣∣∣∣
2

, (7)

where |p|2 is the power per QPSK coded pilot tone. We can
also define the error matrix e for the channel estimate at

16. In literature Linear Minimum Mean Square Error can be also found
under Winner filtering.

pilot locations as:

e = H0
(
kps, lp

)−Hm = −V = ev. (8)

Next stage is optional and involves low pass filtering
of Hm, across rows and columns to reduce ev, formally
written as:

Hm,f = FS ·Hm · FL, (9)

where Hm,f ∈ C
S×L is the 2D filtered Hm, and FS ∈ C

S×S
and FL ∈ C

L×L are the filtering matrices. Selecting proper
filter coefficients of the noise suppressing filters is a key step,
since it will introduce a new error eH0,f , which represents
the loss of information about the channel frequency response
(H0), whilst reducing ev. We represent the error of Hm,f

compared to the true H0 value as:

ef = H0
(
kps , lp

)−Hm,f = eH0,f + ev,f , (10)

where eH0,f and ev,f are the newly introduced information
loss error17 and reduced AWGN error, respectively. These
two error components propagate and vary throughout the
rest of the CE stages. For the purpose of this work we do
not perform filtering, i.e., matrices FS and FL are identity
matrices, since the high-end use cases are scheduled by the
base station if the reported 1/σ 2

v is high, i.e., good channel
conditions and therefore ev is small and we can avoid intro-
ducing eH0,f . With this stage done, we have completed the
estimation of the channel at pilot indices and can start the
estimation at non-pilot indices.
Symmetry reconstruction is an optional step, which has

the purpose to simplify following processing steps. If the
pilot layout is alternating between different subsets of kp
as per (4), then Hm,f (ks, lp) for a fixed ks maps to sev-
eral subcarrier indices k depending on the OFDM symbol

17. Sometimes referred to as the channel model mismatch.

270 VOLUME 2, 2021

FIGURE 4. Deconstructing Channel Estimation into Stages.

lp. This means that the processing down the line would
need to be lp specific, which can limit possible algorith-
mic and parallelism choices. Symmetry reconstruction avoids
this limiting inconvenience by interpolating additional ele-
ments into the Hm,f matrix. In the newly created matrix
Hm,f ,t ∈ C

K×L every row maps to one and only one sub-
carrier index. Since the interpolation is column specific, the
resulting Hm,f ,t is formally expressed as a concatenation of
individually interpolated columns:

Hm,f ,t =
[
Hm,f ,t1 ,Hm,f ,t2 , . . . ,Hm,f ,tL

]
,

Hm,f ,tl = Tl ·Hm,fl , (11)

where Tl ∈ C
K×S is the interpolation matrix for the lth col-

umn of Hm,f resulting in the lth column of Hm,f ,t. Note
that vendor specific algorithms for this stage can be more
or less sophisticated and that the weights in the interpo-
lation matrix Tl can also be a function of Hm,f values
surrounding the lth column, e.g., up to l − 2 and l + 1 as
is the case in [23]. For the vDSP implementation we have
selected a symmetric 5G NR pilot layout where kps = kp,
i.e., S = K and therefore the symmetrisation step is omit-
ted. In our MATLAB simulations of CE for the channel
in [25, Sec. 7.7] classic methods like linear interpolation
(linear) and spline piecewise cubic Hermite interpolation
(pchip) between neighbouring columns of Hm,f show about
3× improvement in quality of the final Ĥ for non-symmetric
pilot patterns compared to not using this stage. When not
using this stage, Tl is defined as a set of K × K identity
matrices.
Column reconstruction is a stage which interpolates

columns of Hm,f ,t, such that the size of columns after
interpolation matches the column size of the RG, i.e.,
K → N:

Hm,f ,t,c = C ·Hm,f ,t, (12)

where C ∈ C
N×K is the column interpolation matrix, and

Hm,f ,t,c ∈ C
N×L is the result. The error at this stage can be

represented as:

em,f ,t,c = H0
(
:, lp

)−Hm,f ,t,c = eH0,f ,y,c + ev,f ,t,c, (13)

where H0
(
:, lp

)
represents all row entries of lp columns.

Here we note that H0 has an underlying structure that can

FIGURE 5. Column Reconstruction Stage Algorithms: MSE Comparison for
[25, Sec. 7.7] TDL-C, 300 ns Delay Spread and 10 Hz Doppler Shift.

be exploited when choosing an interpolation algorithm for
this stage with the aim to generate a higher quality chan-
nel estimate. Namely, columns of Hm,f ,t can be interpolated
with one of the Pursuit algorithms [31] or Fourier inter-
polation [1], due to the relation between H0 and h0 and
known bound of sparsity for the h0. In our MATLAB sim-
ulation we compared 4 interpolation methods: linear, pchip,
Fourier and Matching Pursuit, as shown in Fig. 5. In Fig. 5
the x-axis is 1/σ 2

v or Signal-to-Noise-Ratio (SNR) in dB
and the y-axis is the Mean Square Error (MSE) of (13). σ 2

v
is the noise variance of V from (7). In high SNR condi-
tions in which we expect the FR2 high-end to be scheduled
we see that linear outperforms other methods. Interestingly,
Fourier and Pursuit interpolations show good quality in low
SNR conditions, where their filtering properties reduce the
impact of ev,f ,t,c. However those same filtering properties
increase eH0,f ,y,c which dominates the high SNR conditions,
where filtering destroys part of the channel information. Due
to observations and use-case requirements we proceed with
linear implementation as the column reconstruction step.

The final step in Ĥ is the row reconstruction (RR), for
which we define the row interpolation matrix R ∈ C

L×M
and mathematically express the interpolation as:

Ĥ = Hm,f ,t,c,r = Hm,f ,t,c · R, (14)

where Hm,f ,t,c,r ∈ C
N×M is the interpolated matrix and the

final channel estimate Ĥ matching the size of the RG. We
define the error as:

e = em,f ,t,c,r = H0 − Ĥ = eH0,f ,y,c,r + ev,f ,t,c,r, (15)

where eH0,f ,y,c,r and ev,f ,t,c,r are the propagated errors
from (10). Based on the MATLAB simulation Fig. 6 shows
measured (15) as MSE on the y-axis and 1/σ 2

v as SNR in dB
on the x-axis. We can see a slightly higher (about 1.5×) over-
all MSE of linear and pchip interpolation in Fig. 6 compared
to their MSE in Fig. 5 due to an extra interpolation step,
where small changes of H0 between pilot carrying OFDM

VOLUME 2, 2021 271

DAMJANCEVIC et al.: CHANNEL ESTIMATION FOR ADVANCED 5G/6G USE CASES ON VECTOR DIGITAL SIGNAL PROCESSOR

FIGURE 6. Row Reconstruction Stage Algorithms: MSE Comparison for
[25, Sec. 7.7] TDL-C, 300 ns Delay Spread and 10 Hz Doppler Shift.

symbols are not captured linked to the information loss error
eH0,f ,y,c,r. An interesting observation is also that linear and
pchip interpolation perform similarly over the whole SNR
range. This can be attributed to both methods being poly-
nomial in nature, i.e., of first and third degree, respectively.
In terms of quality linear slightly outperforms the compu-
tationally more complex pchip. We owe this fact due to a
properly sampled channel with a good pilot configuration
selected for the simulated channel on the one hand, and to
pchip having a higher degree interpolation polynomial than
the actual data would require on the other.
To sum up, for high-end use cases the algorithm choice

in each processing step is favourable in terms of computa-
tional complexity: filtering after channel measurement can
be omitted and linear is sufficient to get a good quality Ĥ in
both column reconstruction and row reconstruction steps. In
Fig. 7 we show a simplified processing graph with selected
algorithms of key steps and an illustration of how these pro-
cessing steps populate Ĥ of a single RB. You may notice
that there are no pilots at the edges of the RG and these
values have to be either extrapolated18 or interpolated with
pilots from the previous or future TTIs provided they exist.
If we follow the steps described in this section we will

surely estimate the channel, it is just a matter of how good
that estimate will be. The question “Where is the threshold
which says this much MSE is good enough for the system?”
has no easy answer and requires fine tuning based on channel
conditions and noise, quality of other kernels in the system,
modulation code rate schemes and acceptable codeword bit
error rates based on applications. Reference [9] examines
the impact of channel estimate MSE on the performance of
a simple system and from it we can take that in low SNR
MSE value is less important whilst in high SNR MSE value
is more important. Hence, if we would imagine a “good
enough” line on the MSE vs SNR graph, it would be falling

18. We use linear extrapolation as an extension of linear interpolation.

FIGURE 7. Channel Estimate Generation and Output of Key Steps Illustrated on a
Resource Block.

with rising SNR, but it’s gradient and offset would change
based on environmental and system parameters.

V. IMPLEMENTATION ASPECTS
A. LATENCY AND THROUGHPUT TRADING
Latency and throughput trading is a known and widely used
concept in computer science. In stream/data flow process-
ing [32] and computing in general context switching of
tasks/kernels has an overhead cost. Therefore waiting for a
quantity of data to reach a threshold (batch) before process-
ing that data is incentivised. This waiting period introduces
some latency to increase throughput. Even further back in
1959, IBM 7030 Stretch used pipelining for the first time
with a 4-stage pipeline, therefore trading some latency, logic,
and memory for 100× throughput gain [33]. More recently
however, with new applications and the end of Moore’s
law, the trend has been going the other way around, giv-
ing up some throughput for lower latency. This is not as
easy as just reverting the changes since the throughput
requirements have been increasing as well. Examples are
big data in finance [34], data queuing in data centres [35]
and packet routing on a network-on-chip [36]. The concept
is widely used and with this work we explore its application
to high-end CE.

B. ALGORITHM OPTIMISATION
Since the interest of this article is the RR step, let us
develop the throughput and latency efficient versions of
linear interpolation from the starting equation:

Ĥ(k, l) = Ĥ
(
k, lpi

)+ Ĥ
(
k, lp(i+1)

)− Ĥ(
k, lpi

)

lp(i+1) − lpi · (l− lpi
)
,

(16)

where Ĥ
(
k, lpi

)
is Hm,f ,y,c of (12), row index k ∈

{1, 2, . . . ,N}, and column index l ∈ {lpi + 1, lpi +
2, . . . , lp(i+1) − 1}. We see that there are many operations
per data item, i.e., a division (div), 3× subtraction (sub), a
multiplication (mpy), an addition (add) and at least 2× fixed
point type cast (cast).

First, let us bind (16) to a local reference frame of a single
block between two known columns such that lpi = 0 is the

272 VOLUME 2, 2021

time index of the left known column and lp(i+1) = Rps is the
time index of the right known column, where Rps is the row
pilot spacing for that block. This removes two subs from
the second term of (16). Consequently, the column index
changes to l ∈ 1, 2, . . . ,Rps − 1. Next, we notice that Rps
is small in general, in our demo case Rps = 9, so there are
not many data items to process along the time axis and we
could use a preloaded look-up table (LUT) and potentially
remove some operations from (16) and as a byproduct also
save some memory bandwidth. Division and multiplication
are commutative, so we can reorder the operations and get:

Ĥ(k, l) = Ĥ(k, 0)+
(
Ĥ

(
k,Rps

)− Ĥ(k, 0)
)
· l

Rps

= Ĥ(k, 0)+
(
Ĥ

(
k,Rps

)− Ĥ(k, 0)
)
· x(l), (17)

where x is the LUT. This removes div and replaces it with
a LUT. This leaves us with a sub, a mpy, an add and a cast
per data item. Next step is to define (17) recursively as:

Ĥ(k, l) = Ĥ(k, l− 1)+
(
Ĥ

(
k,Rps

)− Ĥ(k, 0)
)
· ẋ(l), (18)

where ẋ is a new LUT. Equations (17) and (18) have same
number of operations per data item, but (18) is a stepping
stone to the final equation. If we were to unwind (18) all
the way, we could express it as:

Ĥ(k, l) = Ĥ(k, 0)+
l∑

i=1

(
Ĥ

(
k,Rps

)− Ĥ(k, 0)
)
· ẋ(i), (19)

which opens up the possibility to use the multiply-accumulate
(mac) operation efficiently. Even though it is also possible
to replace mpy and add of (17) with a mac operation, it
would require reloading/resetting of the accumulator (ACC)
register for every k and l, which does not reduce the overall
number of operations needed.
Equation (19) is an arithmetic progression with a com-

mon difference for a fixed k. This situation is ideal for mac
operations since the ACC register only needs to be set once
per k and due to the recursion all the other updates to the
ACC register happen via mac. It may seem that for every l
the sum has to be recalculated, but due to the recursion all
terms but the last, i.e., all but i = l are already computed
in the previous l− 1 steps and that value is available in the
ACC. Notice that the subtraction Ĥ

(
k,Rps

)− Ĥ(k, 0) needs
to be computed only once per k. In (19) we have a mac
and a cast for l �= 1 and an extra cast and sub when l = 1
to preload the ACC register and a regular data register with
Ĥ(k, 0) and Ĥ

(
k,Rps

) − Ĥ(k, 0), respectively. This means
that per data item (19) has 4 operations when l = 1 and 2
in other cases; compared to (17) which has 4 operations per
data item regardless of the indices. Further, because of the
common difference between neighbouring terms in the sum
and a fixed Rps for the whole segment of the RG, the size
of ẋ can be reduced to a single entry:

ẋ(1) = · · · = ẋ(i) = · · · = ẋ
(
Rps − 1

) = ẋ = 1

Rps
. (20)

The next question is do we process column-by-column19

or row-by-row20? To minimise latency a column-by-column
approach would be preferable since the channel estimate for
older OFDM symbols in the block would be available as
soon as their respective column is processed. The drawback
of using (19) is that the accumulation happens along the row,
so the accumulation value of individual rows needs to be
preserved until the very last element in the row is processed.
Column-by-column processing would require us to preserve
K number of ACC states.21 The usual register file holds just
a handful of ACC registers, making it highly impractical
for (19) to be processed column-by-column without driving
up the HW cost22 or lowering throughput,23 both of which
we are trying to avoid. Equation (17) does not have this limi-
tation, and can be processed column-by-column to minimise
latency. If latency is not an issue we can continue using (19)
to optimise the total operation count per data item, and if
latency is an issue we need to use (17) to meet the deadline
and avoid overprovisioning our devices.
We call (19) the high throughput variant, and (17) the low

latency variant. Equation (19) requires row-by-row process-
ing and therefore latency can be an issue despite its low
operation count per data item. Adversely, (17) has lower
latency due to its column-by-column processing even though
it has more operations per data item. When there is only one
column to process (17) and (19) have identical operational
complexity and latency. It is worth noting that the throughput
gain or latency reduction of one algorithm variant over the
other scales linearly with the number of columns to process
and number of data items per column. These two equations
showcase the throughput-latency trade-off that exists when
implementing linear interpolation.

C. PSEUDO CODE AND LATENCY SCALING
The high throughput pseudo code can be seen in Alg. 1. The
low latency pseudo code can be seen in Alg. 2. Algorithm 2
can be expanded with an additional parameterised loop
to scale and trade-off latency with memory accesses and
throughput on a fine scale by processing additional data
items along the time axis, as seen in Alg. 3. SW switch T
determines the number of extra data items processed along
the time axis and if set to non-zero value, the code block
would reduce the number of memory accesses24 and subs
T×, and increase the latency by the same factor. If fine tun-
ing is not needed or the least latency is required, the go-to
solution would remain Alg. 2, due to a lower loop control
overhead. We show measurements of Alg. 1 and Alg. 2 in
Section VI.

19. Loop over k is the nested loop, loop over l is the outer loop.
20. Loop over l is the nested loop, loop over k is the outer loop.
21. Up to a total of 8.4k ACC register states for FR2 high-end.
22. Via additional ACC registers or memory interfaces.
23. ACC register contents can be spilt to memory, but the processor

stalls induced by the congestion of the load/store unit and additional
cast operations needed would make the algorithmic gains on throughput
pointless.

24. Loads from memory in the particular case.

VOLUME 2, 2021 273

DAMJANCEVIC et al.: CHANNEL ESTIMATION FOR ADVANCED 5G/6G USE CASES ON VECTOR DIGITAL SIGNAL PROCESSOR

Algorithm 1: RR Block High Throughput Variant (19)

input: Known columns Ĥ(:, 0), Ĥ
(
:,Rps

)
and LUT ẋ

output: Interpolated block Ĥ(:, :)
// Data registers v1,v2
// ACC register w1

1 for k← 0 to N − 1 do
2 v1 = sub(Ĥ

(
k,Rps

)
,Ĥ(k, 0));

3 w1 = cast(Ĥ(k, 0));
4 for l← 1 to Rps − 1 do
5 w1 = mac(w1, v1, ẋ);
6 v2 = cast(w1);
7 Ĥ(k, l) = v2;
8 end
9 end

Algorithm 2: RR Block Low Latency Variant (17)

input: Known columns Ĥ(:, 0), Ĥ
(
:,Rps

)
and LUT x

output: Interpolated block Ĥ(:, :)
// Data registers v1,v2
// ACC register w1

1 for l← 1 to Rps − 1 do
2 for k← 0 to N − 1 do
3 v1 = sub(Ĥ

(
k,Rps

)
,Ĥ(k, 0));

4 w1 = mpy(v1, x(l));
5 v2 = cast(w1);
6 v2 = add(v2, Ĥ(k, 0));
7 Ĥ(k, l) = v2;
8 end
9 end

Algorithm 3: RR Block (17) Parameterised

input: Known columns Ĥ(:, 0), Ĥ
(
:,Rps

)
and LUT x

output: Interpolated block Ĥ(:, :)
// Data registers v1,v2
// ACC register w1

1 for l← 1 to Rps − 1 do
2 for k← 0 to N − 1 do
3 v1 = sub(Ĥ

(
k,Rps

)
,Ĥ(k, 0));

4 for t← 0 to T do
5 w1 = mpy(v1, x(l+ t));
6 v2 = cast(w1);
7 v2 = add(v2, Ĥ(k, 0));
8 Ĥ(k, l+ t) = v2;
9 end

10 end
11 l += T;
12 end

D. IMPLEMENTATION PLATFORM
The implementation platform of choice is a programmable
512-bit SIMD style vDSP with a VLIW architecture,
designed using the ASIP Designer tool suite [37]. The tools
come equipped with a C-compiler and debugging/profiling
environment to provide accurate cycle measurements. The
vDSP is designed to support complex fixed point precision

arithmetic with 16-complex-bit (16-bit real, 16-bit imagi-
nary) resolution per data item and 40-complex-bit ACC,
meaning the vDSP can operate on 16×16-complex-bit data
items per issued instruction. On a general vDSP like the
one we used in our implementation, data types, i.e., reso-
lution per data item, are configurable as well, however our
decision to use 16-complex-bit resolution is based on the
previous study [20] which concludes that 16-complex-bit
resolution is sufficient to satisfy the 3GPP error vector mag-
nitude requirements for transferred data in another physical
layer kernel. The device supports two levels of parallelism:
SIMD style data level parallelism for vector processing (VP)
and multiple VLIW issue slots that provide instruction level
parallelism. VLIW instruction parallelism enables perform-
ing several vector operations in parallel, using specific issue
slots to access memory and others to perform scalar or vec-
tor operations. Each VLIW issue slot has a specific set of
functional units associated with it, and effectively enables
completion of kernel processing in fewer cycles compared
to a device with a single issue slot. More on the VLIW
configuration in Section VII.

E. VECTOR PROCESSING
As mentioned earlier, a vectorisable algorithm can be written
as a loop with the data processed per loop iteration being
independent of the data in other loop iterations. The RR
processing step operates on data structured in a matrix pat-
tern of REs with two axes (time and frequency), which is
favourable in terms of VP since it allows another loop to be
nested in the existing loop structure as we have seen in the
pseudo codes of Section V-C. The more loops the designer
has to work with the more flexible the implementation gets.
The biggest trick is to decide and pick the correct loop

to vectorise and in case the loops are mutually independent
which nesting order of loops to use. This will impact your
data reading and storing pattern and number of vector oper-
ations needed, which in turn has an effect on the latency
and throughput of the kernel, and to an extent power con-
sumption through number of vector operations and number
of memory accesses [19], [20]. In Section V-C we have
seen the effect of loop ordering on latency, throughput, and
memory accesses. SIMD style vectorisation exaggerates this
effect by working with bigger data batches per instruction.
In RR the two main options for vectorisation are vec-

torising along the time or the frequency axis. In Fig. 8 we
show the vectorisation options for the RR stage, with RE for
interpolation pattern shaded. Since the data is incoming per
OFDM symbol column-wise in any transmission, processing
a data vector across the time axis would require to wait for
several OFDM symbols before fully loading the vector for
processing. This makes the time axis unfavourable for long
vector machines since it would introduce excess latency that
is already critical. For example, a 16 data item vector, like the
one we use, would load data from two different TTIs, which
breaks the combined CE latency budget. Coarsely, a short
vector machine would not have these latency limitations as

274 VOLUME 2, 2021

FIGURE 8. Options for Vectorising the Row Reconstruction Stage. Illustrated on a
Resource Block: Short and Long Vector Machines.

TABLE 2. Normalised processing load and delay.

long as the number of data items loaded per vector is smaller
than the Rps spacing between known columns, giving it more
flexibility, at a cost of lower throughput per SIMD opera-
tion compared to long vector machines. This flexibility can
be used to potentially explore a different algorithm variant,
but since we are also constrained by the use-case through-
put requirement, we opt to use the long vector machine and
vectorise along the frequency axis.

VI. RESULTS
In this section we show the measurements of the imple-
mented high throughput and low latency algorithm variants.

A. CYCLE MEASUREMENTS
Table 1 holds the normalised processing load and delay in
cycles per 12 data points or RB OFDM symbol processed.25

We define processing load as the number of cycles needed to
process a set of data items. We define delay as the number
of cycles it takes a set of data items to pass through the
kernel. It follows that scaling these numbers with the amount
of RBs in a transmission gives us the number of cycles
needed and corresponding delay per OFDM symbol of the
particular use case. Scaling further with clock frequency
gives us their processing time and delay towards the total
size of the latency budget. For the purpose of measuring
implementation efficiency we also show the processing load
in cycles per 16 data points or vector length worth of data.
We see that Alg. 1 per OFDM symbol basis takes fewer

cycles to interpolate compared to Alg. 2, primarily due to one
less operation in the inner loop, however latency of Alg. 1
scales with the number of symbols to process. Alg. 2 is not so
cycle efficient, but its delay is fixed and smaller than that of

25. One column of a RB, i.e., 12 subcarriers × 1 OFDM symbol.

TABLE 3. High throughput and low latency high-end FR2 vDSP implementation.

FIGURE 9. CE Latency Distribution Assuming an Allocated 1 GHz for the FR2
High-End.

Alg. 1 as long as there are at least 2 columns to interpolate,
which is always the case as per active specifications.
When we take into the account the use case data loads,

we get the values shown in Table 3. Through implementing
a different variant of the same algorithm we have manged
to reduce the latency by a noteworthy 83%, irrespective of
the allocated frequency.
Finally, putting these numbers into perspective of the

whole CE kernel, as shown in Fig. 9, we can see that the tar-
geted FR2 high-end use case becomes possible also for the
FR2 high-end on the same machine configuration, without
the need for additional HW resources.
To summarise, there exists a trade-off between throughput

and latency, which can be used to the designer’s advantage.
It is favourable to process across the frequency axis as fast
as possible to reduce latency of CE for an individual OFDM
symbol, likewise it is favourable to process across the time
axis as fast as possible to increase throughput, when latency
is not critical.
With the end of Moore’s law, rising data rates and shorter

deadlines of 6G and beyond, we can expect that these
algorithmic optimisations become ever more impactful on
communication systems as a whole.

VII. VALIDATION
Often the question when optimising a piece of SW is when
is the code “good enough” and you should stop optimising
it. Sometimes, comparison with other implementations, e.g.,
implementations of channel estimation for FR2 high-end, are
impossible since these are developed within a closed setting
of R&D departments of private companies. Other times the
work is pioneering or is within a niche and hence there is a
literature gap. In all these cases a good measure of efficiency
is measuring how well is your processor utilised. For a given
vDSP, the SW implementation is well optimised if you are
close in cycle counts to one of the various bounds of the

VOLUME 2, 2021 275

DAMJANCEVIC et al.: CHANNEL ESTIMATION FOR ADVANCED 5G/6G USE CASES ON VECTOR DIGITAL SIGNAL PROCESSOR

vDSP. For example, the vDSP has a memory bound defined
by the maximum number of memory accesses that it can
perform per cycle. An algorithm implementation is memory
bound if it fully utilises this memory access capacity of
the vDSP. Another vDSP bound would be the scheduling
bound for functional units on different VLIW issue slots.
This bound counts how many cycles you would need if you
could have a perfect schedule on the disassembly level and it
can be estimated by scheduling the assembly level code “by
hand” for a few loop iterations. There are other bounds too,
but they are practically hard to calculate, like the compiler
bound - which requires you to know your compiler in depth.
Assuming that the correct vectorisation axis and loop order
were selected and there is no further optimisation possible
on the algorithm level, one could consider calculating the
memory interface bound and/or the VLIW scheduling bound.
Our vDSP has a load unit and a load-store unit available

at different VLIW issue slots, meaning we can do a load +
store or load + load per cycle. The algorithms need 2 loads
and 1 store per output data item. If we were bounded by
the memory interface functional units only we would need
at least 3 cycles to process 2 output data vectors, i.e., we
could expect 1.5 cycles between two vector stores. Similarly,
if we were to try and schedule the algorithm on the appro-
priate VLIW slots by hand we would get around 1.8 cycles
between two vector stores, a number lower than the memory
bound due to the finite availability of computational func-
tional units. If we compare now these values with Table 2,
we can see that we are approaching 95% of the VLIW bound
for Alg. 1 code and 71% of the VLIW bound for Alg. 2,
which we deem sufficiently optimised.

VIII. CONCLUSION
Both the SIMD parallelism and instruction-level parallelism
of a VLIW-style vDSP can be effectively utilised for CE.
As we have seen, there is usually some trade-off involved
when implementing an algorithm. If you optimise to have
the highest throughput, i.e., kernel complete in least amount
of processor clock ticks, it may turn out that this solution has
a large number of memory reads/writes or that it breaks the
associated kernel deadline, and if you want to reduce latency
you would possibly pay it with more operations. That said,
if done right, the vDSP is a powerful platform to provide the
required flexibility with high-performance implementations
of algorithms that allow data parallelism to be exploited.

ACKNOWLEDGMENT
The authors would like to thank Dr. Yankin Tanurhan and
the Synopsys team for their guidance, support, sponsorship
and initiation of the Industry - University cooperation within
the “Efficient Implementation of 5G Baseband Kernels on a
Vector Processor” project.

REFERENCES
[1] J.-J. van de Beek, O. Edfors, M. Sandell, S. K. Wilson, and

P. O. Borjesson, “On channel estimation in OFDM systems,” in Proc.
IEEE 45th Veh. Technol. Conf. Countdown Wireless 21st Century,
vol. 2, 1995, pp. 815–819.

[2] S. Coleri, M. Ergen, A. Puri, and A. Bahai, “Channel estimation tech-
niques based on pilot arrangement in OFDM systems,” IEEE Trans.
Broadcast., vol. 48, no. 3, pp. 223–229, Sep. 2002.

[3] Y. Shen and E. C. Martínez. (2006). Freescale Semiconductor
Application Note AN 3059 Rev.0,1/2006 Channel Estimation in
OFDM Systems. [Online]. Available: https://pdfs.semanticscholar.org/
f3fa/327521f2dcbeb87d81a17b8bcc216d108cbb.pdf

[4] C. Studer, A. Burg, and H. Bolcskei, “Soft-output sphere decoding:
Algorithms and VLSI implementation,” IEEE J. Sel. Areas Commun.,
vol. 26, no. 2, pp. 290–300, Feb. 2008.

[5] P. Maechler, P. Greisen, B. Sporrer, S. Steiner, N. Felber, and A. Burg,
“Implementation of greedy algorithms for LTE sparse channel estima-
tion,” in Proc. Conf. Rec. 44th Asilomar Conf. Signals Syst. Comput.,
Nov. 2010, pp. 400–405.

[6] R. Ferdian, Y. Hou, and M. Okada, “A low-complexity hardware
implementation of compressed sensing-based channel estimation for
ISDB-T system,” IEEE Trans. Broadcast., vol. 63, no. 1, pp. 92–102,
Mar. 2017.

[7] F. Gomez-Cuba and A. J. Goldsmith, “Sparse mmWave OFDM chan-
nel estimation using compressed sensing,” in Proc. IEEE Int. Conf.
Communications (ICC), 2019, pp. 1–7.

[8] M. Simko, D. Wu, C. Mehlfuehrer, J. Eilert, and D. Liu,
“Implementation aspects of channel estimation for 3GPP LTE ter-
minals,” in Proc. 17th Eur. Wireless Sustain. Wireless Technol., 2011,
pp. 1–5.

[9] X. Tang, M.-S. Alouini, and A. J. Goldsmith, “Effect of channel
estimation error on M-QAM BER performance in Rayleigh fading,”
IEEE Trans. Commun., vol. 47, no. 12, pp. 1856–1864, Dec. 1999.

[10] NR; Physical Channels and Modulation V15.6.0, 3GPP Standard TS
38.211, 2020. [Online]. Available: https://bit.ly/2xO4Qrt

[11] K. van Berkel, F. Heinle, P. P. E. Meuwissen, K. Moerman,
and M. Weiss, “Vector processing as an enabler for software-
defined radio in handheld devices,” EURASIP J. Adv. Signal Process.,
vol. 2005, no. 16, pp. 2613–2625, Sep. 2005. [Online]. Available:
https://doi.org/10.1155/ASP.2005.2613

[12] HiSilicon. (Jul. 2020). Balong, Official Product Page. [Online].
Available: http://www.hisilicon.com/en/Products/ProductList/Balong

[13] Qualcomm. (Jul. 2020). Snapdragon X60, Official Product Page.
[Online]. Available: https://www.qualcomm.com/products/snapdragon-
x60-5g-modem

[14] Samsung. (Jul. 2020). Exynos 5123, Official Product Page. [Online].
Available: https://www.samsung.com/semiconductor/minisite/exynos/
products/modemrf/exynos-modem-5123/

[15] NR; User Equipment (UE) Radio Transmission and Reception Range 1
Standalone V16.3.0, 3GPP Standard TS 38.101-1, Apr. 2020. [Online].
Available: https://bit.ly/2LUtz5K

[16] NR; User Equipment (UE) Radio Transmission and Reception Range 2
Standalone V16.3.1, 3GPP Standard TS 38.101-2, Apr. 2020. [Online].
Available: https://bit.ly/3gnnevt

[17] Study on Supporting NR From 52.6 GHz to 71 GHz, 3GPP Standard
RP-193259, Dec. 2019. [Online]. Available: https://bit.ly/2BAysxV

[18] Study on Supporting NR From 52.6 GHz to 71 GHz V0.0.1, 3GPP
Standard TR 38.808, Jun. 2020. [Online]. Available: https://bit.ly/
3itcwFO

[19] S. A. Damjancevic, E. Matus, D. Utyansky, P. van der Wolf, and
G. P. Fettweis, “From challenges to hardware requirements for wireless
communications reaching 6G,” in Multi-Processor System-on-Chip 2,
L. Andrade and F. Rousseau, Eds. London, U.K.: ISTE Ltd., 2020,
ch. 1.

[20] S. A. Damjancevic, E. Matus, D. Utyansky, P. van der Wolf, and
G. Fettweis, “Towards GFDM for handsets—Efficient and scalable
implementation on a vector DSP,” in Proc. IEEE 90th Veh. Technol.
Conf. (VTC-Fall), 2019, pp. 1–7.

[21] NR; User Equipment (UE) Radio Transmission and Reception Range 2
Standalone V15.4.0, 3GPP Standard TS 38.101-2, Jan. 2019. [Online].
Available: https://bit.ly/2SfjQIc

[22] F. Weng, C. Yin, and T. Luo, “Channel estimation for the downlink of
3GPP-LTE systems,” in Proc. 2nd IEEE Int. Conf. Netw. Infrastruct.
Digit. Content, 2010, pp. 1042–1046.

[23] H. Lime, “Cross-subframe channel estimation for low-complexity
devices in LTE,” M.S. thesis, KTH Royal Inst. Technol., Sch. Electr.
Eng., Stockholm, Sweden, 2017.

276 VOLUME 2, 2021

[24] T. Bogale, X. Wang, and L. Le, “Chapter 9—mmWave communi-
cation enabling techniques for 5G wireless systems: A link level
perspective,” in mmWave Massive MIMO, S. Mumtaz, J. Rodriguez,
and L. Dai, Eds. San Diego, CA, USA: Academic, 2017, pp. 195–225.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
B9780128044186000091

[25] Study on Channel Model for Frequencies From 0.5 to 100 GHz
V15.0.0, 3GPP Standard TR 38.901, Jun. 2018. [Online]. Available:
https://bit.ly/323kf4g

[26] C. Gustafson, K. Haneda, S. Wyne, and F. Tufvesson, “On mm-Wave
multipath clustering and channel modeling,” IEEE Trans. Antennas
Propag., vol. 62, no. 3, pp. 1445–1455, Mar. 2014.

[27] X. Song, S. Haghighatshoar, and G. Caire, “Efficient beam align-
ment for millimeter wave single-carrier systems with hybrid MIMO
transceivers,” IEEE Trans. Wireless Commun., vol. 18, no. 3,
pp. 1518–1533, Mar. 2019.

[28] M. R. Akdeniz et al., “Millimeter wave channel modeling and cellular
capacity evaluation,” IEEE J. Sel. Areas Commun., vol. 32, no. 6,
pp. 1164–1179, Jun. 2014.

[29] P. Schniter and A. Sayeed, “Channel estimation and precoder design
for millimeter-wave communications: The sparse way,” in Proc. 48th
Asilomar Conf. Signals Syst. Comput., 2014, pp. 273–277.

[30] T. S. Rappaport et al., “Millimeter wave mobile communications for
5G cellular: It will work!” IEEE Access, vol. 1, pp. 335–349, 2013.

[31] M. F. Duarte and Y. C. Eldar, “Structured compressed sensing: From
theory to applications,” IEEE Trans. Signal Process., vol. 59, no. 9,
pp. 4053–4085, Sep. 2011.

[32] J. Carreira and J. Li, Optimizing Latency and Throughput Trade-
Offs in a Stream Processing System, Adv. Topics Comput.
Syst. Course, Univ. California, Berkeley, CA, USA, 2014.
[Online]. Available: https://people.eecs.berkeley.edu/kubitron/courses/
cs262a-F14/projects/reports/project11_report_ver3.pdf

[33] I. Pantazi-Mytarelli, “The history and use of pipelining computer
architecture: MIPS pipelining implementation,” in Proc. IEEE Long
Island Syst. Appl. Technol. Conf. (LISAT), 2013, pp. 1–7.

[34] X. Tian, R. Han, L. Wang, G. Lu, and J. Zhan, “Latency critical
big data computing in finance,” J. Finan. Data Sci., vol. 1, no. 1,
pp. 33–41, 2015.

[35] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and
M. Yasuda, “Less is more: Trading a little bandwidth for ultra-low
latency in the data center,” in Proc. 9th USENIX Symp. Netw. Syst.
Design Implement. (NSDI), 2012, pp. 253–266.

[36] E. Nilsson, “Exploring trade-offs between latency and throughput in
the nostrum network on chip,” Ph.D. dissertation, KTH Royal Inst.
Technol., Sch. Inf. Commun. Technol., Stockholm, Sweden, 2006.

[37] Synopsys, Inc. ASIP Designer Website. Accessed: Aug. 9, 2020.
[Online]. Available: https://www.synopsys.com/asip

STEFAN A. DAMJANCEVIC (Graduate Student Member, IEEE) received
the Dipl.-Ing. degree in electrical engineering form the University of Novi
Sad and the M.Sc. degree in electrical engineering form TU Dresden.
He is currently pursuing the Ph.D. degree under the supervision of
Prof. G. P. Fettweis. He is a Junior Scientist with the Signal Processing
Hardware Group, Vodafone Chair Mobile Communications Systems, TU
Dresden. He is an alumni of the German Academic Exchange Service
and the Gustav Stresemann Institute. His research is on the implemen-
tation aspects of 5G and beyond physical layer algorithms and modem
architectures.

EMIL MATUS received the M.S. and Ph.D. degrees in electrical engineer-
ing from TU Kosice, Slovakia, where he focused on the wavelet transform
and image compression research. He has been a Senior Scientist with
Vodafone Chair for Mobile Communications Systems, TU Dresden since
2003, where he is leading Signal Processing Hardware Research Group.
His current research interests include wireless physical layer algorithms
and communications signal processing hardware architectures. His group
introduced several generations of the signal-processing MPSoC architec-
ture called “Tomahawk,” which received the DAC/ISSCC Student Design
Award in 2009, the CoolSilicon Cool Award in 2014, and the HIPEAC
Award in 2017.

DMITRY UTYANSKY received the M.S. degree in computer science from
State Electrotechnical University “LETI,” Saint Petersburg, Russia, in 1994.
He is a Senior Staff Software Engineer with Synopsys Corporation, St.
Petersburg, where he is engaged in digital signal processing algorithms
exploration and design and benchmarking of Synopsys DSP architec-
tures. He was subsequently involved in various research and development
projects in DSP, audio and image processing, and communications. His
current interests include algorithms for linear algebra and its applications
in RADARs and AI, and utilizing vector processors.

PIETER VAN DER WOLF received the M.Sc. and Ph.D. degrees in elec-
trical engineering from the Delft University of Technology. He is a Principal
Product Architect with Synopsys. He was an Associate Professor with the
Delft University of Technology before joining Philips Research in 1996. In
2006, he joined NXP Semiconductors when it was spun out of Philips
Electronics. In 2009, he joined Virage Logic, which was subsequently
acquired by Synopsys. He has worked on a broad range of topics, includ-
ing (multi-)processor architectures and system design methodologies, with
a focus on DSP applications.

GERHARD P. FETTWEIS (Fellow, IEEE) received the Ph.D. degree under
supervision of Prof. H. Meyr’s from RWTH Aachen in 1990. He has been a
Vodafone Chair Professor with TU Dresden since 1994, and has been heads
the Barkhausen Institute since 2018. After one year with IBM Research, San
Jose, CA, USA, he moved to TCSI Inc., Berkeley, CA, USA. He coordinates
the 5G Lab Germany, and has coordinated two German Science Foundation
(DFG) centers at TU Dresden, namely cfaed and HAEC. In Dresden, his
team has spun-out seventeen start-ups, and setup funded projects in volume
of close to EUR 1/2 billion. In 2019, he was elected into the DFG Senate.
His research focusses on wireless transmission and chip design for wire-
less/IoT platforms, with 20 companies from Asia/Europe/U.S. sponsoring
his research. He also serves on the board of National Instruments Corp, and
advises other companies. He is a Co-Chair the IEEE 5G/Future Networks
Initiative, and has helped organizing IEEE conferences, most notably as a
TPC Chair of ICC 2009 and TTM 2012, and as a General Chair of VTC
Spring 2013 and DATE 2014. He is a member of the German Academy of
Sciences (Leopoldina), the German Academy of Engineering (acatech), and
received multiple IEEE recognitions as well has the VDE ring of honor.

VOLUME 2, 2021 277

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

