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ABSTRACT Extreme learning machine (ELM) has shown to be an effective and low-power approach
for real-time electrocardiography (ECG) anomaly detection. However, prior ELM inference chips are
noise-prone and lacking in reconfigurability. In this article, we present an arbitrarily reconfigurable ELM
inference engine fabricated in 40-nm CMOS technology for robust ECG anomaly detection. By combining
Adaptive boosting (Adaboost) and Eigenspace denoising with ELM (AE-ELM), robust classification
under noisy conditions is achieved and saves the number of required multiplications by 95.9%. For
chip implementation, a reconfigurable VLSI architecture is designed to support arbitrary complexity of
AE-ELM, accounting for dynamic change in application requirements. On the other hand, we propose
to construct the input weight matrix of ELM as a Bernoulli random matrix, which further reduces the
number of multiplications by 55.2%. For real-time detection, parallel computing is exploited to reduce the
latency by up to 86.8%. Overall, the 0.21-mm2 AE-ELM inference engine shows its robustness against
noisy signals and achieves 1.83x AEE compared with the state-of-the-art ELM design.

INDEX TERMS Adaptive boosting (Adaboost), eigenspace denoising, electrocardiography (ECG) anomaly
detection, extreme learning machine (ELM), reconfigurable chip design.

I. INTRODUCTION

WITH ubiquitous wearable biomedical sensors, recent
years have witnessed the emergence of long-term

healthcare monitoring systems for improving people’s quality
of life. Electrocardiography (ECG) anomaly detection is par-
ticularly crucial since abnormal ECGs are the most common
risk factor associated with mortality [1], which necessitates
a long-term monitoring system for proactive prevention [2].
On the other hand, edge computing is gaining attention in
the machine learning community, for it can analyze and
detect streaming ECG signals on devices in real-time with-
out sending data to the cloud. However, due to limited
resources available on edge devices, a lightweight monitoring
system that can achieve high area-energy efficiency (AEE)
is indispensable.

Extreme learning machine (ELM), a single-hidden-layer
feed-forward neural network, is emerging as a lightweight
classifier in the field of edge computing [3]. The input
weights of ELM are randomly assigned, and its output
weights are determined by an analytic solution. Compared
with gradient-based algorithms that tune model weights iter-
atively, ELM is a tuning-free model and tends to provide
good generalization performance with a faster training speed
and lower energy consumption [4]–[6]. Therefore, ELM
is a promising model that can be deployed in the ECG
monitoring system for anomaly detection on edge.
Recently, several ELM chip designs have been proposed

for various applications. In [7], the ELM engine targets on
neural decoding for the brain-computer interface that needs
to achieve low latency and low power consumption. The
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FIGURE 1. ELM-based monitoring systems for ECG anomaly detection. (a) Prior
ELM chips cannot provide arbitrary reconfigurability [9] and are not a complete ELM
design [7], [8]. (b) The proposed ELM inference chip achieves robust classification
and is arbitrarily reconfigurable.

authors of [8] further investigate the design space trade-off
among the speed, power, and accuracy of the ELM engine.
The ELM chip presented in [9] incorporates the implemen-
tation of the physical unclonable function (PUF) for the
privacy of Internet of things (IoT). All these prior works
are indeed excellent chip designs. However, two major chal-
lenges need to be addressed when applying an ELM engine
to the ECG motoring system:
1) Robust classification under noisy conditions: In ECG

monitoring systems, providing an accurate detection
for patients is vital. However, ELM is subject to mea-
surement noises in ECG signals, leading to a potential
drop in accuracy. Although prior works [7]–[9] can
tackle this issue by greatly increasing the num-
ber of hidden neurons in ELM, this causes addi-
tional computation overheads from input/output weight
multiplications of ELM.

2) Arbitrarily reconfigurable and end-to-end ELM design:
Since there exist different kinds of heart diseases [10],
an ELM engine is desirable to show reconfigurability
for requirements of various ECG anomaly detections.
In [9], the ELM engine only supports an input dimen-
sion fixed at 128, and thus it cannot process ECG
signals with a longer duration. On the other hand, the
chips of [7] and [8] only implement the input stage of
ELM while the output stage is executed off-chip on an
FPGA, as shown in Fig. 1(a). An end-to-end ELM chip
is more efficient to reduce the overall energy overhead
caused by data transmission.

In this article, we present an arbitrarily reconfigurable
ELM inference engine for robust ECG anomaly detection,
as shown in Fig. 1(b). The main contributions of this article
are summarized as follows:
1) Adaptive boosting (Adaboost) with Eigenspace denois-

ing ELM (AE-ELM) for robust classification: We pro-
pose to incorporate Adaboost and eigenspace denoising
into ELM to handle measurement noises in ECG

signals. With the eigenspace transformation matrix
obtained from principal component analysis (PCA),
AE-ELM transforms ECG signals onto a cleaner
eigenspace with a lower dimension. Learning in this
eigenspace improves the performance of AE-ELM
and with less computation. Compared with a single
ELM model, AE-ELM shows its robustness under
different noisy cases and averagely saves 95.9% of
multiplications required in ELM computation.

2) A reconfigurable and optimized architecture design
for the proposed AE-ELM inference engine: The
proposed engine is reconfigurable in the dimension
of eigenspace and the number of ELM classifiers
for AE-ELM. With reconfigurability, we demonstrate
that the AE-ELM engine can switch between differ-
ent modes to achieve a trade-off between AEE and
performance. For the implementation details, we pro-
pose to construct the input weight matrix of ELM
as a Bernoulli random matrix. This further saves the
number of multiplications by 55.2% without accuracy
drop. For real-time detection, parallel computing is
exploited in the eigenspace denoising and ELM out-
put weight multiplications, which reduces the overall
latency by 86.8%. Moreover, since both eigenspace
denoising and ELM output weight multiplications are
involved in matrix multiplications, we implement them
in a hardware-sharing manner to reduce the number
of multipliers.

The proposed AE-ELM inference engine is fabricated in
40-nm CMOS technology. Based on the measurement results,
the AE-ELM engine can be flexibly configured to achieve
higher accuracy by 11.1% or to achieve 1.83x AEE while
providing comparable performance compared with the prior
state-of-the-art ELM design.
The rest of this article is organized as follows. In

Section II, we review preliminaries of ELM and related
works about ELM hardware implementation. Section III
presents the details and analysis of the proposed AE-ELM. In
Section IV, we describe the hardware architecture and opti-
mizations of the AE-ELM inference engine. Section V shows
the chip implementation, measurement results, and compari-
son with prior ELM designs. Finally, we conclude this article
in Section VI.

II. PRELIMINARIES
A. EXTREME LEARNING MACHINE (ELM)
The network structure of an ELM model is depicted in
Fig. 2. The training dataset with N training samples can be
denoted as {(xi, ti)}Ni=1, where xi = [xi1, xi2, . . . xin]T ∈ R

n

is the ith input feature vector with n dimensions, and
ti = [ti1, ti2, . . . tim]T∈ R

m is the ith label vector for an
m-class classification task. Given the target matrix T ∈ R

N×m
consisting of all ti, the activation function g(x), and the num-
ber of hidden neurons L, the training algorithm of ELM is
composed of the following steps:
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FIGURE 2. Network structure of an ELM model, whose input weights and biases are
randomly assigned, and output weights are determined by the Moore-Penrose pseudo
inverse.

Step 1: Randomly assign input weights ai =
[a1i, a2i, . . . , ani]T ∈ R

n between input neu-
rons and the ith hidden neuron and a bias of the
ith hidden neuron bi, where i = 1, 2, . . . ,L.

Step 2: Compute the hidden layer output matrix H ∈
R
N×L as

H =

⎡
⎢⎢⎣
g(a1 · x1 + b1) · · · g(aL · x1 · +bL)

...
...

g(a1 · xN + b1) · · · g(aL · xN + bL)

⎤
⎥⎥⎦
N×L

.

(1)

Step 3: The loss function of ELM is expressed as

1

2
‖β‖2 + 1

2ξ
‖Hβ − T‖2, (2)

where ξ is a regularization parameter to improve
the stability and generalization performance of
ELM [5]. The optimization of ELM is equiva-
lent to solve the problem of ridge regression.
Therefore, to minimize (2), the output weight
matrix β ∈ R

L×m is determined as

β =
(
HTH + ξI

)−1
HTT, (3)

where I is an identity matrix with dimension L.
In this work, an ECG signal is fed in as an input feature

vector. Next, we summarize the details of ELM classification
for each input signal as the following steps:
Step 1: Compute the input weight multiplication and bias

addition as

z = [x 1]A, (4)

where A is the input weight matrix consisting of
all ai, which is defined as

A =
[
a1 a2 . . . aL
b1 b2 . . . bL

]
. (5)

Step 2: Compute the activation function as

h = g(z). (6)

Step 3: Compute the output weight multiplication as

y = hβ. (7)

In (4)-(7), x ∈ R
n is the input feature vector, z ∈ R

1×L is
the input vector of the hidden layer, h ∈ R

1×L is the output
vector of the hidden layer, and y ∈ R

1×m is the output vector
of ELM. For classification, if yi is the largest element of y,
then the ith class is the prediction.

B. ADABOOST-BASED ELM (A-ELM) [11]
Although ELM provides an efficient approach for clas-
sification problems, the instability issue caused by the
randomly assigned input weights and biases should be fur-
ther addressed. Adaboost algorithm, a well-known ensemble
method, sequentially trains a collection of base classifiers for
the same task. By utilizing a cost-sensitive training algorithm,
the Adaboost algorithm improves the overall performance
and stability of the classification system.
In [11], Adaboost-based ELM (A-ELM) is proposed

to sequentially train a collection of ELMs while adjust-
ing the weights over the training set after each ELM is
learned. Specifically, the training data for the ith ELM model
may have different weights in the cost function, which is
expressed as

1

2

∥∥β i
∥∥2 + 1

2ξi

∥∥Wi
(
Hiβ i − Ti

)∥∥2
. (8)

Wi ∈ R
N×N consists of the instance weights of training

data for the ith ELM model and is a diagonal matrix of
dimension N × N defined as

Wi =

⎡
⎢⎢⎣
w1 0 ... 0
0 w2 ... 0
... ... ... ...

0 ... 0 wN

⎤
⎥⎥⎦
N×N

, (9)

where wj, j = 1, 2, . . . ,N is the weights for the jth data in
the loss function. For the first ELM model in A-ELM, the
weights of the training data are all initialized to 1/N. The
weight of each data is increased (or decreased) each time
the previously trained ELM classifies the data wrongly (or
correctly). This indicates that the subsequent classifier would
focus more on those misclassified samples to improve the
overall performance. For the ith ELM model in A-ELM, the
ridge regression problem of solving the output weight β i
in (3) is replaced with the solution of the weighted ridge
regression problem, which is expressed as

β i =
(
Hi

TWiHi + ξiI
)−1

Hi
TWiT. (10)

Then, the ensembled weight of each ELM classifier ci, i =
1, 2, . . . ,C, where C is the number of ELM classifiers, is
determined by the training accuracy of the ith ELM classifier.
An ELM model with higher training accuracy has a larger
ensembled weight so that its results are more significant to
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TABLE 1. Comparison of accuracy and computational complexity among different
frameworks.

the ensemble output. In the inference stage, the output vector
of the A-ELM is computed as

yAdaboost =
C∑
i=1

ciyi. (11)

C. COMPARISON WITH PRIOR WORKS
In this work, applying ELM models for ECG anomaly detec-
tion can achieve the goal of extreme low-energy consumption
for edge devices. However, due to hardware nonidealities
in sensors, ECG signals are easily contaminated by thermal
noises, which can be modeled as white Gaussian noises [12].
Although ELM may mitigate the negative impacts of noises
by considering the regularization in optimization, a sin-
gle ELM model still suffers from performance degradation
under noisy conditions due to its sensitivity to the quality of
data [13]. Therefore, the noise issue is elevating to a dom-
inant concern for deploying ELM models to the real-world
ECG monitoring system. A-ELM applies a cost-sensitive
training algorithm to make ELM models focus on those eas-
ily misclassified (noisy) samples for robust classification.
However, as discussed in Section III-B3, A-ELM uses more
ELM classifiers but only restores the performance to a cer-
tain level, which is not enough for accurate detection and
results in high computational complexity. The reason is that
A-ELM falls short in finding a cleaner space for learning.
In this article, we propose the framework of Adaboost with
Eigenspace denoising ELM (AE-ELM). AE-ELM exploits
PCA to transform data into a cleaner space before train-
ing ELM models with the Adaboost algorithm. Learning in
a cleaner space can achieve higher performance and reduce
the computational complexity to reach a certain level of accu-
racy, which will be elaborated in Section III-B. Therefore,
compared with prior works, AE-ELM achieves higher accu-
racy with lower computational costs under noisy conditions,
as summarized in Table 1.

D. RELATED WORKS FOR ELM HARDWARE
IMPLEMENTATION
With the emergence of ELM, the needs for its hardware
design and implementation are increasing. Several works
exploit the parallel computing capability provided by GPU
to speed up ELM [14]–[16]. However, the huge power con-
sumption caused by GPU is unaffordable for embedded
devices. FPGA implementations are recent entrant into this
area due to its reconfigurability. In [17], [18], they pro-
pose an efficient decomposition method to accelerate the

FIGURE 3. The proposed framework of Adaboost with Eigenspace denoising ELM
(AE-ELM). (a) In the off-line training stage, training dataset is used to construct the
eigenspace transformation matrix ψ by PCA and train AE-ELM with the Adaboost
algorithm. (b) In the on-line inference stage, the received signal is first transformed to
eigenspace by ψ and then classified by AE-ELM.

computation of the pseudo-inverse for the hidden layer out-
put matrix. In [19], the properties of random networks and
hard-limiter activation functions are exploited to implement
ELM on FPGA. For SoC design, [20] efficiently implements
online sequential ELM for real-time applications. However,
most works target optimizations of the training process of
ELM. In this work, instead, we focus on implementing an
ELM inference engine to efficiently perform ECG anomaly
detection on resource-constrained devices. Compared with
these platforms, ASIC designs provide higher energy effi-
ciency, higher performance, and smaller area costs due to
customized hardware design for ELM [7]–[9]. Therefore,
to efficiently perform long-term monitoring in wearable
devices with limited resources, we choose to implement the
proposed AE-ELM engine on an ASIC, which is discussed
in Section IV.

III. PROPOSED ADABOOST WITH EIGENSPACE
DENOISING ELM (AE-ELM)
In this section, we first present the framework of the
proposed AE-ELM. Next, we apply two datasets for ECG
anomaly detection to evaluate the effectiveness of AE-ELM
in terms of performance and computational complexity. With
the combination of eigenspace denoising and Adaboost,
we demonstrate that AE-ELM achieves robust classification
and reduces the number of required multiplications under
noisy conditions. Finally, the requirement of an arbitrarily
reconfigurable AE-ELM engine is described.

A. PROPOSED FRAMEWORK OF AE-ELM
As illustrated in Fig. 3, AE-ELM consists of two stages:
1) off-line training and 2) on-line inference. In the off-line
training stage, we utilize the training dataset to obtain the
eigenspace transformation matrix by using PCA. After trans-
forming all of the training data, we train AE-ELM with
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the Adaboost algorithm. In the on-line inference stage, the
received signal is first transformed onto a cleaner space by
utilizing the eigenspace transformation matrix obtained from
the first stage. Then, the transformed signal is analyzed by
AE-ELM with the Adaboost algorithm.

1) OFF-LINE TRAINING

To enhance the learnability for classification by information
extraction and noise mitigation, PCA serves as an effec-
tive tool [21], [22]. PCA exploits the property that the
intrinsic dimension of a dataset is much smaller than the
input data dimension. Therefore, the dataset can be trans-
formed onto a lower-dimensional space while retaining as
much as possible of the variation presented in the train-
ing dataset. Compared with other methods used in ELM
for noise removal [23]–[25], PCA is a more lightweight and
effective method in our cases. Moreover, it can be imple-
mented in a hardware-sharing manner with ELM output
weight multiplications, as discussed in Section IV.
In the off-line training stage, a training dataset with N

training data {xi}Ni=1, where xi = [xi1, xi2, . . . xin]T ∈ R
n is

given. The first step of PCA is to compute the covariance
matrix

∑ ∈ R
n×n of the training dataset. After that, a matrix

U ∈ R
n×n, whose ith column is the ith eigenvector of

∑

corresponding to the ith largest eigenvalue, is obtained. By
selecting the first S eigenvectors associated with the first S
largest eigenvalues of U, the most significant information of
the dataset is preserved, and the remaining eigenvectors are
regarded as noises. matrix ψ ∈ R

n×S is expressed as

ψ = U(:, :S), (12)

where S is the dimension of transformed data. For an ECG
signal x, the transformed signal s of x is computed as

s = ψTx. (13)

To train AE-ELM, we first transform the whole training
set with the eigenspace transformation matrix ψ by (13).
Then, AE-ELM is trained to obtain the corresponding output
weights and the ensembled weight of each ELM classifier
by using the Adaboost algorithm [11].

2) ON-LINE INFERENCE

With the precomputed transformation matrix ψ , we directly
perform eigenspace denoising on received ECG signals in
the on-line inference stage. Next, each ELM classifier of
AE-ELM takes the transformed signal and computes the
output vector by (7). To determine the final prediction,
the weighted summed output vector based on the ensem-
ble weights is generated. Finally, the class with the largest
value (the highest vote) is selected as the prediction.

B. EVALUATION OF THE AE-ELM FRAMEWORK
1) EXPERIMENTAL SETTINGS FOR DIFFERENT
DATASETS

We apply ECG-based atrial fibrillation (AF) detection to
validate the effectiveness of AE-ELM. Two different AF

TABLE 2. Experimental setups.

datasets from National Taiwan University Hospital (NTUH)
and MIT-BIH [26] are used to demonstrate the necessity of
reconfigurability for the AE-ELM engine. Both datasets con-
tain raw ECG signals, which are labeled as AF or non-AF
by experts for binary classification. In the NTUH dataset,
raw ECG signals were recorded from the intensive care
unit (ICU) of stroke with a sampling frequency of 512 Hz.
We select 512 samples (1 second) as the input dimension. For
each class, 2500 training data and 1000 testing data are used.
In the MIT-BIH dataset, raw ECG signals were recorded
with a sampling frequency of 360 Hz. Likewise, we use
360 samples (1 second) as the input dimension. For each
class, there are 1600 training data and 650 testing data. All
signals are detrended by the baseline removal algorithm and
are normalized into the range of [−1, 1].

To simulate the noisy conditions caused by thermal noises
from ECG sensors, we inject additional white Gaussian
noises into the detrended ECG signals. We use the signal-
to-noise-ratio (SNR) to measure the level of noise. There
are three different noisy cases in the experiments, includ-
ing SNR=10dB, SNR=15dB, and SNR=20dB. Lower SNR
indicates that the signals are corrupted by more intense
noises. Moreover, due to the randomness of white Gaussian
noises and input weights of ELM, we conduct over 50 inde-
pendent trials for each of the experiments to obtain the
averaged simulation results. The experimental setup is
summarized in Table 2.
We compare the proposed AE-ELM with a single ELM

model and A-ELM. The input weights of all ELM classifiers
are sampled from Bernoulli random distribution for efficient
hardware implementation. We select the sigmoid function as
the activation function for all ELM models. The number of
hidden neurons in the single ELM model is set as 2,000
and 1,600 for the NTUH dataset and the MIT-BIH dataset,
respectively, where the performance is saturated. For ELM
classifiers in both A-ELM and AE-ELM, we heuristically set
the number of hidden neurons as 200. As for the dimension
of transformed signals by PCA in AE-ELM, we follow the
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FIGURE 4. Comparison of the classification accuracy among a single ELM model, A-ELM, and AE-ELM in (a) the NTUH dataset and (b) the MIT-BIH dataset where SNR is 10dB,
15dB, and 20dB, respectively.

TABLE 3. Parameters settings for different ELM models.

criterion that the percentage of cumulative variance reaches
75%. The criterion ensures that AE-ELM achieves the best
trade-off between accuracy and computational complexity in
both datasets. To decide the regularization parameter in (2),
we implement 5-fold cross-validation and find the best set-
tings. The detailed search range for the parameter settings
is summarized in Table 3. To compare the performance and
computational complexity of these frameworks, we evalu-
ate the classification accuracy and calculate the number of
required multiplications in the on-line inference stage.

2) ANALYSIS OF THE ACCURACY

We first evaluate the improvement of classification accuracy
provided by the framework of AE-ELM. Fig. 4(a) presents

the comparison of accuracy over the NTUH dataset under
different noisy cases. The dashed lines indicate the highest
accuracy achieved by the single ELM model. When SNR
decreases from 20dB to 10dB, the performance of the single
ELMmodel degrades by 4% due to its sensitivity to the quality
of data [13]. Fig. 4(a) also shows the accuracy of A-ELM and
AE-ELM over the increasing number of ELM classifiers. The
accuracy increases when we incorporate more ELM models.
However, the accuracy of A-ELM with 20 ELM models still
drops by 4.6% when SNR is decreased from 20dB and 10dB.
As for the proposed AE-ELM with 20 ELM models, its
performance is superior to the other two frameworks and
only slightly degrades by 0.6%. This improvement mainly
benefits from eigenspace denoising by PCA. Moreover, to
achieve the same accuracy level provided by the single ELM
model, A-ELM needs 19, 16, and 17 classifiers when SNR
is 10dB, 15dB, and 20dB, respectively. On the other hand,
AE-ELM only needs 3, 4, and 5 classifiers.
Fig. 4(b) shows the comparison of classification accu-

racy in the MIT-BIH dataset. We observe that the simulation
results of the MIT-BIH dataset show similar trends to those
of the NTUH dataset. When SNR decreases from 20dB to
10dB, the performance of the single ELM model and A-ELM
with 20 ELM models decreases by 6% and 4.9%, respec-
tively. As for AE-ELM with 20 classifiers, its performance
slightly degrades by 0.6%. Moreover, AE-ELM only needs
2, 3, and 5 classifiers to reach the same accuracy level pro-
vided by the single ELM model when SNR is 10dB, 15dB,
and 20dB, respectively. However, A-ELM needs 15, 12, and
11 classifiers, which implies more hardware costs. Although
we only demonstrate the cases where L is fixed for two
datasets, the simulations with different settings of L show
consistent results.
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TABLE 4. The number of required multiplications of A-ELM and AE-ELM to achieve the same accuracy provided by the single ELM model in (a) the NTUH dataset and (b) the
MIT-BIH dataset where SNR is 10dB, 15dB, and 20dB, respectively.

3) ANALYSIS OF THE COMPUTATIONAL COMPLEXITY

We analyze the computational complexity of the single ELM
model, A-ELM, and AE-ELM in terms of the number of
required multiplications in the on-line inference stage. For
the single ELM model, the required multiplications are n×L
for the input weight multiplications and L × m for output
weight multiplications, where n, L, m are the number of input
dimensions, hidden neurons, and classes, respectively. Since
A-ELM needs to compute output vectors of C ELM classi-
fiers, the number of multiplications of A-ELM is C times
as many as that of the single ELM model. On the other
hand, AE-ELM has the overheads of matrix multiplications
for the eigenspace denoising in (13). Therefore, the num-
ber of required multiplications of A-ELM and AE-ELM are
(n×L+L×m)×C and n×S+ (S×L+L×m)×C, respec-
tively, where S is the dimension of transformed signals, and
C is the number of ELM classifiers.

Table 4 presents the number of required multiplications of
A-ELM and AE-ELM to achieve the same accuracy provided
by the single ELM model. Compared with A-ELM, AE-ELM
uses much fewer ELM classifiers due to information extrac-
tion and noise mitigation by eigenspace denoising. This
indicates that AE-ELM requires much fewer multiplications
than A-ELM. On the other hand, compared with the sin-
gle ELM model, AE-ELM achieves about 95.6% and 96.5%
savings of the required multiplications on the NTUH dataset
and the MIT-BIH dataset, respectively. The average saving
of the number of multiplications is 95.9% over different
SNR levels. These results show that the proposed AE-ELM
achieves a robust classification under noisy conditions while
reducing the computational complexity.

C. ARBITRARY RECONFIGURABILITY OF PROPOSED
AE-ELM ENGINE
Under different scenarios and applications, we can observe
that AE-ELM needs to adapt to different parameter set-
tings to provide comparable performance with the single
ELM model, as shown in Table 5. The dimension of input
data n depends on the sampling frequency and the dura-
tion of ECG signals in different applications, which are
512 and 360 for the NTUH and MIT-BIH datasets, respec-
tively. The range of the dimension of transformed data S
is highly correlated to the quality of data in different

TABLE 5. Parameter settings of AE-ELM in NTUH and MIT-BIH datasets to provide
the same performance as the single ELM model under different noisy conditions.

TABLE 6. Configured parameters for the proposed AE-ELM inference engine.

scenarios, which are 32-36 for the NTUH dataset and
17-21 for the MIT-BIH dataset. Moreover, to achieve higher
accuracy, the number of hidden neurons L and ELM clas-
sifiers C in AE-ELM should increase. Hence, designing
an arbitrarily reconfigurable AE-ELM inference engine is
necessary.
In this work, the AE-ELM inference engine is designed

to arbitrarily support parameter configurations shown in
Table 6. The engine can process up to 1024-dimension input
ECG signals. The dimension of transformed data by PCA can
be reduced to less than 32, which can retain 75% of the
cumulative variance of most input signals from the NTUH
and MIT-BIH datasets. For AE-ELM, the maximum num-
ber of hidden neurons and ELM classifiers are set as 256
and 8, respectively. Although both NTUH and MIT-BIH
datasets are binary classification tasks, ECG signals may
exist in various types of cardiac abnormalities [27], [28].
Therefore, a multi-class classification scheme with up to
10 classes is used in this work to meet various requirements
of applications (datasets).

IV. ARCHITECTURE AND OPTIMIZATION
In this section, we present the system architecture of
the proposed arbitrarily reconfigurable AE-ELM inference
engine, as depicted in Fig. 5. Fig. 6 illustrates the architec-
tural mapping of each execution stage in the on-line inference
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FIGURE 5. System architecture of the proposed arbitrarily reconfigurable AE-ELM
inference engine.

stage. The hardware optimization for the AE-ELM engine
is described as follows.

A. SYSTEM ARCHITECTURE
The AE-ELM engine primarily consists of an input buffer,
a system controller, two on-chip memories, 10 process-
ing elements (PE), a computation unit for input weight
multiplications of ELM, an output buffer, and a compara-
tor. To support up to 1024-dimension input signals, the input
buffer comprises 1024 registers, which are divided into 8 sets
of 128 shift registers. The bit width of each input regis-
ter is an 8-bit fixed-point representation with 1 signed-bit,
5 integer-bits, and 2 fraction-bits. The system controller is
carefully designed to control the memory read/write and
the data flow based on the configured parameters. The pre-
computed eigenspace transformation matrix ψ and the output
weights β of each ELM classifier are stored into the ψ
matrix memory and the output weight memory, respectively.
Each element in these two memories is represented as an
8-bit fixed-point. Hence, to support the maximum number
of n = 1024 and S = 32, the ψ matrix memory occupies
32 KB of memory storage. The output weight memory occu-
pies 20 KB of memory storage to support S = 256, C = 8,
and m = 10. PEs are designed in a hardware-sharing manner
to compute the matrix multiplications of transforming input
signals with (13) and computing ELM outputs with (7). To
efficiently obtain the hidden layer output matrix of each ELM
classifier, we design a computation unit dedicated to the input
layer of ELM. The classification results from each ELM clas-
sifier are temporarily stored in the output buffer. After the
engine obtains all results, the comparator is used to deter-
mine the final prediction with the pre-computed ensembled
weights of each ELM classifier.

In the on-line inference stage, the execution flow of the
proposed engine consists of four stages, including config-
uration and data acquisition, eigenspace denoising, ELM
computation, and final prediction. In the following, we
introduce their corresponding architectural mapping in the
proposed engine.

B. ARCHITECTURAL MAPPING OF EACH EXECUTION
STAGE
1) CONFIGURATION AND DATA ACQUISITION

Fig. 6(a) shows the architectural mapping of configuration
and data acquisition. In the configuration stage, the parame-
ters presented in Table 6 are configured into the registers of
the system controller. The eigenspace transformation matrix
ψ and output weights β of all ELM classifiers are transferred
into the chip and stored in the ψ matrix memory and the out-
put weight memory, respectively. In this design, we utilize
the random Bernoulli matrix, whose elements are +1 or −1,
and a linear feedback shift register (LFSR) to generate ran-
dom input weights of each ELM classifier, which will be
further discussed in Section IV-C. Hence, the seed for the
LFSR and the ensemble weights of each ELM classifier are
also transferred to be stored in the registers of the system
controller. After finishing the configuration, the engine starts
to collect n samples of the input signal. Since parallel com-
puting is exploited to reduce the number of classification
cycles in the eigenspace denoising stage, the engine would
parallelly store the first n

8 samples of the input signal in the
first shift register set in the input buffer. For the following
input samples, each shift register set stores n

8 samples. For
example, if the dimension of input data is 512, which is the
case in the NTUH dataset, the system controller will control
the input buffer to store 64 samples in each shift register set.
For those samples whose n values cannot be divided by 8,
they should be padded with 0s to the nearest number that is
divisible by 8.

2) EIGENSPACE DENOISING

After the signal acquisition, the engine transforms the input
data by the eigenspace transformation matrix ψ to miti-
gate noises and reduce the data dimension, as shown in
Fig. 6(b). Note that we parallelly store the data in the input
buffer; therefore, 8 samples are transferred to the 8 out of
10 PEs in each clock cycle. Once PEs obtain those samples,
the system controller loads 8 elements of the eigenspace
transformation matrix from the ψ matrix memory for PEs
to compute the matrix multiplications. For those samples
padded with 0s, the corresponding elements in ψ are also
filled with 0s. The S transformed samples are stored in the
buffer of the computation unit for the ELM input layer. The
size of the buffer is implemented by 32 registers to sup-
port the maximum number of S. With the design of parallel
computing, the engine reduces the latency in the stage of
eigenspace denoising from n× S to n

8 × S.
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FIGURE 6. Architectural mapping of each execution stage. (a) Configuration and data acquisition. (b) Eigenspace denoising. (c) ELM computation. (d) Final prediction.

3) ELM COMPUTATION

After completing eigenspace denoising, the engine begins
to compute the output vector of each ELM classifier, as
illustrated in Fig. 6(c). The hidden layer output matrix
of each ELM classifier is computed nodes by nodes. In
each cycle, the LFSR generates random input weights of
ELM between the input layer of ELM and the ith hidden
node, where i = 1, 2, . . . ,L. The output of the ith hid-
den node is obtained by using arithmetic units (AU), an
adder tree, and a sigmoid operator. Upon obtaining the out-
put of the ith hidden node, the engine transfers the output
to the PEs. At the same time, the system controller feeds
the output weights β between the ith hidden node and all
output nodes of ELM from the output weight memory to
m PEs, which concurrently compute the output probabilities
of each class. After the outputs from L hidden nodes are
accumulated and stored in the output buffer, the compara-
tor determines the class associated with the largest value
among m classes. Then, the ensembled weight of the ELM
classifier is accumulated to the corresponding register in

the output buffer, which collects votes from each ELM
classifier.
In this stage, m PEs concurrently compute the outputs

of m output nodes so that the latency to obtain all outputs
of an ELM classifier is reduced from L × m to L. After
computing all outputs of one ELM classifier, the engine
continues the above execution flow and reuses the same
hardware components to obtain the outputs of other ELM
classifiers. Overall, the engine spends L×C of cycles in the
ELM computation stage.

4) FINAL PREDICTION

The engine determines the final prediction after collecting all
votes from C ELM classifiers. As shown in Fig. 6(d), the
predicted label is obtained by comparing the accumulated
results in the output buffer. After the class associated with
the largest value (the highest vote) is outputted, the engine
starts to collect another input signal or be reconfigured with
a new set of parameters if needed.
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FIGURE 7. Optimization techniques for the proposed AE-ELM engine. (a) Parallel
computing for latency reduction. (b) Bernoulli random matrix and LFSR for input
weights of ELM.

Overall, for classifying one input signal, the AE-ELM
engine needs to spend n cycles to acquire the signal, n

8 × S
cycles to compute eigenspace denoising, and L × C cycles
to obtain output vectors for C ELM classifiers. As discussed
above, we exploit parallel computing in the engine to reduce
the overall latency for real-time detection. With the paral-
lelization, the reduction of the number of cycles can be
computed by

1 − # of cycles w/ parallel computing

# of cycles w/o parallel computing

= 1 − n+ n
8 × S+ L× C

n+ n× S+ L× m× C
. (14)

If we set all the configured parameters to the maximum
numbers, which are n = 1024, S = 32, L = 256, C = 8,

m = 10, then the overall latency is reduced by 86.8%, as
shown in Fig. 7(a).

C. OPTIMIZATION FOR COMPUTATION UNIT OF ELM
INPUT LAYER
In this work, we assign different input weight matrices Ai
to the ith ELM model, where i = 1, 2, . . . ,C, to further
increase the diversity among ELM classifiers. With dif-
ferent input weight matrices, the obtained output weights
β for different ELM models are more diverse so that
the Adaboost algorithm can achieve more accurate results.
However, computing the input weight multiplications causes
additional S× L× C multiplications, which account for the
highest proportion in the overall required multiplications
of AE-ELM. To reduce the computational complexity of
input weight multiplications, we propose to construct the
input weight matrices as random Bernoulli matrices whose
input weights are either 1 or −1 rather than using a uni-
form distribution. By doing so, we can complete the input
weight multiplications with only adders and multiplexers.
The reduction of the number of required multiplications can
be computed by

S× L× C

n× S+ S× L× C + L× m× C
, (15)

FIGURE 8. (a) The architectural design of the computation unit for ELM input layer.
(b) The bit from the LFSR random pattern controls the multiplication with 1 or −1.

where n× S, S× L×C, L×m×C represent the number of
multiplications in eigenspace denoising, input weighting, and
output weighting, respectively. If we set all the configured
parameters to the maximum numbers, which are n = 1024,

S = 32, L = 256, C = 8, m = 10, then the number of
required multiplications for AE-ELM computation is reduced
by 55.2%.
If all random Bernoulli matrices for C ELM models are

stored in the engine, then (S + 1) × L × C bits of memory
(+1 for the bias of a hidden node) is required. To further
reduce the memory overhead caused by the random Bernoulli
matrices, we utilize the LFSR in the proposed architec-
ture to generate pseudo-random patterns for binary input
weights. Therefore, the engine only needs S+1 bits memory
for storing the seed of LFSR, which saves the memory
storage by 99.9%. Moreover, Fig. 7(b) shows that there
is no significant difference between the accuracy achieved
by using a Bernoulli random matrix generated by LFSR
and a uniformly distributed matrix sampled from the range
of [−1, 1].
Fig. 8(a) illustrates the architectural design of the com-

putation unit for computing input weight multiplications of
ELM. In each cycle, the LFSR generates a pseudo-random
pattern as the ith column vector of the input weight matrix
in (5) for the ith hidden node. Each bit in the random pattern
controls the multiplexer in the AU to perform multiplication
with 1 or −1, as shown in Fig. 8(b). On the other hand,
we implement the sigmoid function with a piece-wise linear
approximation of a nonlinear function (PLAN) method [29]
to reduce hardware resources.

V. CHIP IMPLEMENTATION AND MEASUREMENT
RESULTS
A. CHIP IMPLEMENTATION
The AE-ELM inference engine is fabricated with the TSMC
40-nm 1P9M CMOS process using a standard cell-based
design flow. The chip occupies a 1.025×1.025 mm2 die area
and 0.46×0.46 mm2 core area excluded on-chip memories.
To reduce the high leakage power of on-chip memories, this
chip is synthesized with high-threshold-voltage (HVT) stan-
dard cells only. For testability, one scan chain is inserted and
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FIGURE 9. Testing environment of the chip, which shows (a) the back of this board
for wiring the supply voltages and I/O and (b) the front of this board for placing the
chip.

FIGURE 10. Chip micrograph and summary.

achieves 98.7% of fault coverage with 4% of area overheads.
The on-chip memories storing the eigenspace transformation
matrix ψ and output weights β of ELMs are implemented
by single-port SRAM hard macros. For the layout design
of this engine, the SRAM macros are first placed with soft
blocks. Then, other standard cells are placed and routed. We
apply the 8-bit fixed-point as the data format of input sig-
nals and 4-bit for predicted output classes. Overall, the chip
has 48 pins including 25 power pads. The I/O domain has
a constant supply voltage of 3.3 V. Both logic and memory
domains are operated at a nominal supply voltage of 0.9 V.

B. MEASUREMENT RESULTS
The testing environment of the AE-ELM chip is shown
in Fig. 9. An SB-48 test board is used. Fig. 9(a) shows
the back of this board for wiring the supply voltages
and I/O. Fig. 9(b) shows the front of this board for
placing the chip. This board is tested by the Advantest
V93000 PS1600 system-on-chip (SoC) series. With the
setting of SmarTest provided by V93000, we test the
functionality and performance of this chip automatically.
The micrograph and the summary of the chip are shown

in Fig. 10. Fig. 11 shows its shmoo plot. We observe that the
chip is well-functioned from 0.6V to 1.0V with correspond-
ing clock frequencies from 70 MHz to 195 MHz. As shown

FIGURE 11. Shmoo plot of the proposed AE-ELM chip.

FIGURE 12. Power consumption and clock frequency at different core voltages.

in Fig. 12, the power consumption of the AE-ELM infer-
ence engine under different supply voltages is also measured.
At room temperature, the chip can operate at a maximum
clock frequency of 195 MHz with a power consumption of
27.8 mW. The measured minimum energy point (MEP) is
located at the clock frequency of 70 MHz with the power
consumption of 2.94 mW under 0.6 V of the supply voltage.
Under the nominal supply voltage of 0.9V, the chip can be
operated at the clock frequency of 185 MHz with the power
consumption of 18.5 mW, which is used for the comparisons.

C. COMPARISONS WITH PRIOR DESIGNS IN
TERMS OF AEE
In this work, the NTUH dataset is applied to evaluate the
proposed AE-ELM chip. Table 7 shows the comparison with
prior ELM engines [7]–[9] and an SVM engine related to
our work [30]. To make a fair comparison, we normalize
their energy consumption and area to the 40 nm process and
the supply voltage of 0.9 V. We consider the performance
in terms of AEE, which is defined as

AEE = 1

Energy Efficiency × Area(
Classification/µJ × mm2

)
. (16)

AEE describes the relationship between the classification
capability and the normalized energy consumption along
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TABLE 7. Comparison with published machine learning engines.

with the silicon cost. For a comparison of AEE, our AE-ELM
chip is operated in a high-efficiency mode, where the param-
eters are configured into lower values (S = 16, L = 128,
C = 4), to achieve higher AEE while providing comparable
performance.
In [30], they presented an SVM engine for ECG anomaly

detection. Similar to our work, PCA is applied for feature
dimension reduction to lower the complexity of the SVM
engine. However, as shown in Table 7, since the SVM engine
needs much more computations for feature extraction and
multiplying support vectors, the energy consumption for each
classification is about hundreds of microjoules, which is sig-
nificantly larger than other ELM engines. For [7]–[9], they
all utilize the mismatches in current mirrors to efficiently
perform random matrix multiplication in the input layer of
ELM. However, the current mirrors need to be implemented
with numerous capacitances at the expense of a large area,
as shown in Table 7. This also indicates that the randomness
of the first layer of ELM in those works originates from the
fabrication mismatch, which is hard to be extended to an
ensembled design to achieve higher performance. Despite
the high AEE achieved by [7], [8], they only implement the
input layer of ELM in the mixed-signal chip, and the output
layer of ELM is realized off-chip on an FPGA. For practical
applications, this causes another energy overhead for trans-
ferring data from the chip to the FPGA. Moreover, another
drawback of the analog ELM design is that they easily

suffer from performance degradation due to temperature
dependence.
In this article, the proposed scheme is aimed at provid-

ing accurate and robust ECG anomaly detection. Therefore,
we adopt a fully digital design to implement the proposed
AE-ELM chip. In [9], the authors also implement an end-
to-end ELM chip. However, the input weight matrix in
their design is represented in multiple bits so that additional
multipliers are required for the input weight multiplications
of ELM. Compared with [9], we utilize the random Bernoulli
matrix as the input weight matrix to replace multipliers with
multiplexers and implement the LFSR to save the memory
for the storage of input weights. Hence, the proposed
AE-ELM chip in the high-efficiency mode provides 1.83x
AEE compared with [9].

D. ARBITRARY RECONFIGURABILITY OF THE
PROPOSED AE-ELM CHIP FOR HIGH PRECISION
In [7], [8], their chip designs do not support the configura-
tion of the number of output classes since the output stage of
ELM is executed off-chip on an FPGA. This indicates that
multi-class classification tasks cannot be handled in their
designs. The chip of [9] only supports a fixed input dimen-
sion of 128, preventing the engine from processing longer
ECG signals. In this work, to meet different requirements
of applications, the proposed chip is designed to support
various parameters of AE-ELM, including the dimension of
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FIGURE 13. The comparison of accuracy between the state-of-the-art ELM chip [9]
and our proposed AE-ELM chip in the high-efficiency and high-accuracy modes.

transformed data by PCA and the number of ELM classifiers.
Therefore, on top of the high-efficiency mode, we can oper-
ate the proposed AE-ELM engine in a high-accuracy mode,
where the configured parameters are set as the maximums
(S = 32, L = 256, C = 8), to achieve higher accuracy. To
compare the performance with [9], which also implements
an end-to-end ELM chip, the parameters of [9] are set as the
maximums that their engine can support (L = 1024, C = 1).

As shown in Fig. 13, the proposed AE-ELM inference
engine in the high-efficiency mode achieves comparable
performance with [9] under noisy conditions while achiev-
ing 1.83x higher AEE. Moreover, the AE-ELM chip in the
high-accuracy mode achieves higher accuracy by 11.1% on
average. Although the boosted performance is at the cost
of lower AEE, it is noteworthy that our AE-ELM chip
can be reconfigured into other parameter settings to realize
a trade-off between AEE and performance.

VI. CONCLUSION
This article presents an arbitrarily reconfigurable ELM infer-
ence engine fabricated in 40-nm CMOS. We propose to
incorporate Adaboost and Eigenspace denoising with ELM
(AE-ELM) to mitigate measurement noises and reduce the
number of required multiplications by 95.9%. At the archi-
tecture level, the AE-ELM chip can be flexibly configured to
achieve higher accuracy by 11.1% or to achieve 1.83x AEE
while providing comparable performance compared with the
prior state-of-the-art ELM design. Overall, the 0.21-mm2

ELM inference engine offers flexible configuration and
achieves robust classification under noisy conditions, making
it suitable for a wide range of applications in ECG anomaly
detection.
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