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ABSTRACT ConvAix is an application-specific instruction-set processor (ASIP) that enables the energy-
efficient processing of convolutional neural networks (CNNs) while retaining substantial flexibility through
its instruction-set architecture (ISA) based design. By utilizing a combination of data-level parallelism
(DLP), instruction-level parallelism (ILP), and subword parallelism, the proposed design offers sufficient
processing power for the execution of state-of-the-art CNNs in real-time. ConvAix’s arithmetic logic
units (ALUs) are C-programmable, thereby offering the degree of flexibility required to implement many
different convolution layer types, e.g., depthwise-separable convolutions and residual blocks, as well
as fully-connected and pooling layers. It comprises a total of 256ALUs and leverages low-precision
computations down to 4 bits. Furthermore, it exploits sparsity in feature maps and weights via zero-
guarding of redundant computations to maximize its energy efficiency. The processor was implemented
in a modern 28 nm CMOS technology operating at 1V supply voltage with a resulting clock frequency of
513MHz. The final design offers a precision-dependent peak throughput between 263GOP/s (int16) and
1.1 TOP/s (int4), while consuming between 972mW and 340mW of power, resulting in effective energy-
efficiencies ranging from 176GOP/s/W to 2 TOP/s/W. Well-known CNNs, such as AlexNet, MobileNet,
and ResNet-18, are simulated based on the placed and routed netlist, achieving between 233 (AlexNet)
and 69 (ResNet-18) frames-per-second for a batch-size of 1, including times for off-chip transfers.

INDEX TERMS Application-specific instruction-set processor (ASIP), convolutional neural network
(CNN), very large instruction word (VLIW), quantization, low-precision computing, instruction-set archi-
tecture (ISA), deep learning, machine learning, processor architecture, subword parallel.

I. INTRODUCTION

CONVOLUTIONAL neural networks (CNNs) are
nowadays widely used for tasks such as image

classification [1]–[4], object detection [5]–[7], semantic
segmentation [8]–[10], face detection [11], and many
more. This is primarily due to their excellent algorithmic
performance paired with the ability to train them without
the need for a human expert who handcrafts features,
as previously done in classical machine learning [12].
While training a CNN is usually done offline, e.g., in
the cloud, the execution (also referred to as inference)
often happens on the mobile device itself, either due to
latency constraints or because no data-link is available. Due
to the limited energy and power budget of such mobile
devices, e.g., smartphones and drones, energy efficiency

is of paramount importance for their usability. However,
well-known CNNs for image classification require on the
order of several GOP just to process a single frame, e.g.,
AlexNet requires 1.4GOP [1] and ResNet-18 requires
3.62GOP [3]. This combination of high computing power
and energy efficient processing is not easily realized via
off-the-self general-purpose processors [13]. Instead, highly
optimized application-specific accelerators are required.
Previous work mostly evolves around application-specific

integrated circuits (ASICs) [14]–[18] and field-programmable
gate arrays (FPGAs) [19]–[21], while fewer research has
been conducted regarding the design of more flexible
accelerators, e.g., by offering programmability through an
instruction-set architecture (ISA) [22]–[24]. While ASICs
can offer the desired energy-efficiency gains, they often
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come at the expense of being hardwired solutions with
very limited to no flexibility. Accelerators based on FPGAs
offer a high throughput and large flexibility which, how-
ever, is paid for by smaller energy efficiencies compared to
ASICs. To achieve the required efficiency gains, many dif-
ferent techniques like quantization [25]–[27], pruning [28],
[29], compression [30], [31], and dataflow optimization [32],
[33] can be incorporated. Eyeriss [14] is a well-known
ASIC comprised of a 2-D processing array with 16×16-bit
multipliers that utilizes a specific dataflow scheme named
row stationary to maximize local data reuse. In addition,
data compression via run-length encoding is used to mini-
mize the total off-chip transfer size and multiplications are
zero-guarded, i.e., only if both operands are non-zero the
computation is actually executed. NullHop [18] is another
ASIC that aims at maximally exploiting the inputs’ sparsity
by skipping multiplications in case of zero-valued operands.
It also utilizes 16×16-bit multipliers and minimizes off-
chip transfers by using a custom compression scheme based
on non-zero value lists and sparsity maps. Both of these
ASICs do not make use of aggressive quantization (e.g.,
8 bits and below), but still achieve high throughputs and
energy efficiencies, which are paid for by their lack of flex-
ibility. Envision [22] promises to improve upon that aspect
by using an ISA and by employing aggressive quantiza-
tion, i.e., reducing the multipliers’ wordwidth on a per-layer
basis and employing a technique called dynamic-voltage-
accuracy-scaling (DVAS) that reduces the supply voltage
while keeping the clock frequency constant. Envision is com-
prised of an application-specific instruction-set processor
(ASIP) with tightly integrated 2-D processing array that fea-
tures aforementioned dynamic-precision multipliers, which
have zero-guarding capabilities as well. Although it offers
increased flexibility through its ISA, the underlying computa-
tions must be rigidly scheduled onto its 2-D processing array.
Also, no mentioning of extended pooling support, e.g., for
average pooling, and no support for fully-connected (FC) lay-
ers or depthwise-separable (DW) convolutions is found. The
deep-learning specific instruction-set processor (DSIP) [23]
is another ASIP that focuses especially on the aspect of scal-
ability by making use of a master-slave architecture which
allows to chain together multiple core instances to scale its
overall processing power. However, DSIP does not make
use of aggressive quantization and there is no mentioning
of, e.g., support for FC layers or DW convolutions.
In this article, we extend our work on the ConvAix ASIP

from [34], striving to improve upon several limitations in
existing programmable architectures. Instead of relying on a
single large 2-D processing array, ConvAix utilizes several
smaller single-instruction multiple-data (SIMD) processing
lanes that are fully accessible via primitives in the C-
code. Compared to [34], the following improvements are
presented:

1) State-of-the-art range-based quantization with per-
layer wordwidths is employed.

FIGURE 1. Basic structure of a convolutional layer.

2) The original ISA is extended from a 4-slot VLIW to
an 8-slot VLIW pipeline to further foster ILP.

3) Subword parallelism [35] is leveraged to increase both
throughput and energy efficiency at the same time.

4) Each multiplier unit is zero-guarded to exploit sparsity
in the feature maps.

5) New CNN architectures, e.g., MobileNet [4] and
ResNet [3], are benchmarked to showcase the ASIP’s
flexibility.

The dataflow can be optimized via ConvAix’s software pro-
grammability, i.e., by using CNN-specific loop tiling factors
that minimize off-chip transfers. The main intent of this
article is to present novel insights into both the feasibility
and achievable efficiency & performance of a programmable
processor compared to less flexible designs. To demonstrate
said flexibility, highly optimized software kernels not only
for regular convolutions, but also for DW convolutions, resid-
ual blocks, and FC layers are implemented. These kernels
have almost no limitations, e.g., arbitrary filter sizes, channel
dimensions, etc., can be used with the only limitation being
the on-chip memory’s size.
The outline for the rest of this article is as follows.

Section II introduces the basics of CNN processing and
possible efficiency enhancing opportunities. Section III
describes the ConvAix ASIP’s instruction pipeline and arith-
metic units in more detail. In Section IV, first a brief
overview of the convolutional layer’s software implemen-
tation is given, followed by an analysis of the placed and
routed processor. Section V starts by investigating both its
performance and efficiency using a synthetic CNN bench-
mark at first. Afterwards, the well-known CNNs AlexNet [1],
MobileNet [4], ResNet-18 [3], and VGG16 [2] are simulated
to obtain application-specific results. Section VI concludes
this article.

II. CNN PROCESSING BACKGROUND
CNNs are composed of multiple consecutive layers that can
have different types, e.g., convolutional layers, FC layers,
pooling layers, etc. Usually, the majority of them are of the
convolutional and pooling type, while only the last one is
of the FC type, e.g., to generate per-class probabilities in
case of a classification task. Fig. 1 depicts the basic concept

4 VOLUME 2, 2021



TABLE 1. Convolutional layer dimensions.

of the convolutional layer: It consumes a 3-D input tensor,1

often jointly referred to as input feature maps (IFMaps), and
convolves it with a number of filter kernels to generate a 3-D
output tensor, the so called output feature maps (OFMaps). In
this article, the different feature map and kernel dimensions
are denoted according to the scheme introduced in [32],
which is summarized in Table 1. In addition to denoting the
pure dimensions, Table 1 also denotes tiling and unrolling
factors used later on in the software implementation.
The computations involved in this convolution are con-

cisely defined using a sum of products (SOP) representation
as follows:

O
[
co, yo, xo

] =
Nif∑

ci=0

Nky∑

ky=0

Nkx∑

kx=0

W
[
co, ci, ky, kx

]

× I
[
ci, yos, xos

]+ B[co] (1)

where I represents the IFMaps of dimension Nif x Niy x Nix,
O the OFMaps of dimension Nof x Noy x Nox, and W
the filter weights of dimension Nof x Nif x Nky x Nkx.
Furthermore, s denotes the stride of the convolution, co
the output channel number, while yo and xo denote the
pixel’s spatial position within its respective OFMap. It is
common practice to reduce the OFMaps’ spatial dimension
by using strided convolutions (s > 1) and/or by applying,
e.g., max-pooling or average-pooling at the layer’s output.
More recent CNNs like MobileNet [4] make use of DW
convolutions that split the regular 3-D convolution across
both spatial (height, width) and channel dimensions, referred
to as depthwise and pointwise convolution respectively. In
doing so, the overall number of parameters (filter weights)
and computations is reduced, leading to a smaller memory
footprint and less computational requirements for the CNN.
Reference [3] introduces ResNet, a specific CNN topology
that makes use of residual blocks that enable the training of
very deep CNNs. The basic concept is to have two paths
within each residual block, one that calculates a regular
convolution, and a second path that preserves a residual
representation of the input, thereby allowing for easier back-
propagation of the gradients during training. At the output,
both paths are joined via an element-wise addition. A flex-
ible processing architecture should be capable of handling
such variations in the convolutional layer, which is why both
MobileNet and ResNet are implemented and benchmarked
in this article. Since the convolutional layers constitute the

1. In case of batch-processing, each input-tensor gets a fourth dimension
with size equal to the batch-size.

FIGURE 2. Asymmetric (a) and symmetric (b) integer-only quantization.

majority of computations found in modern CNNs (usually
well above 90%), the optimization focus is set on them
hereafter. Nevertheless, a well-rounded accelerator also pos-
sesses the ability of computing, e.g., FC and pooling layers
efficiently.

A. QUANTIZATION AND PRUNING
Among the different efficiency enhancing techniques for
CNNs, quantization is probably the most common and impor-
tant one. As stated in [36], multiplications, which build the
foundation of CNN processing, cost over 18 times more
energy per operation if 32-bit floating-point is used instead
of 8-bit fixed-point arithmetic. Research on quantization has
been conducted regarding the use of specialized number
formats, e.g., by using logarithmic quantization [37] or by
quantizing CNNs to single bits [38]. The use of such highly
specialized number formats does, however, stand in contrast
to the initial goal of flexibility. Because of this, a very effi-
cient quantization scheme using integer-only arithmetic, as
proposed in [26], is used here as well. The method proposed
in [26] decomposes a floating-point number xf into a quan-
tized integer value xq and its corresponding scale S and
zero-point Z as follows:

xf = S
(
xq − Z

)
(2)

Given the limited range of the values found in CNNs, i.e.,
weights are usually close to zero and feature maps do not
exceed a certain upper bound, it is possible to determine an
appropriate scale and zero-point offline based on the mini-
mum (xf ,min) and maximum (xf ,max) values observed during
a calibration run. This quantization method thereby allows
to optimally utilize the underlying machine wordwidth.
Although the authors of [26] make use of an asymmetric
scheme, meaning that the effectively covered range of quan-
tized values can contain more positive than negative values
or vice versa, there is also the option of using a symmetric
scheme. Fig. 2 visualizes the differences in both schemes,
where Nbit refers to the number of bits available for each
integer value.
While asymmetric quantization maps xf to an unsigned

integer range, thereby allowing to tailor the covered range

VOLUME 2, 2021 5



BYTYN et al.: ConvAix: APPLICATION-SPECIFIC INSTRUCTION-SET PROCESSOR FOR EFFICIENT ACCELERATION OF CNNs

TABLE 2. Average wordwidths after quantization.

very closely to the expected range, its symmetric sibling
uses signed two’s complement numbers and can only tai-
lor its range in a more coarse manner. However, one
big disadvantage of the asymmetric scheme is that simple
multiply-accumulate (MAC) operations, as depicted in (1),
require an additional accumulation of the IFMaps in case of
Z �= 0. This is not the case for the symmetric quantization,
i.e., Z = 0, making it the choice for this work. The SOP cal-
culated during convolution, as depicted in (1), can therefore
be rewritten as follows:

SOOq =
N∑

i=0

(
SWWq,i

)(
SIIq,i

)

Oq = SWSI
SO︸ ︷︷ ︸
M

N∑

i=0

Wq,iIq,i with M = 2−nM0 (3)

As can be seen in (3), a small overhead due to quantization
remains in the form of an output scale-adaptation, i.e., mul-
tiplying the SOP with M, which is a floating-point value. In
practice, M is usually much smaller than 1 and the multi-
plication is realized by decomposing it into a multiplicative
value 1 > M0 ≥ 0.5 and a right-shift by n [26], which are
both easily realized using integer-only arithmetic.
While in [26] a uniform wordwidth is assigned to all

layers, the authors of [39] assign individual wordwidths to
both weights and feature maps on a per-layer basis. We adopt
their method for this work and quantize the selected CNNs
to a per-layer wordwidth between 4 and 8 bits using the
symmetric scheme.2 Additionally, we mildly prune the dif-
ferent CNNs using the automated gradual pruner (AGP) [29]
before quantization is applied. For this purpose, the Distiller
framework [40] is used. The average wordwidths assigned
to each CNN are summarized in Table 2. Table 3 depicts
the resulting top-1 and top-5 accuracies of the quantized
and pruned networks for the well-known ImageNet classifi-
cation task, together with the average sparsities found both
in their weights and activations (IFMaps). Since quantizing
MobileNet has proven to be more difficult than the other
CNNs, a uniform wordwidth of 8 bits for all layers is used
here. Furthermore, VGG16 was not pruned due to its large
size and the corresponding long expected runtime of the
AGP algorithm.

III. ASIP ARCHITECTURE
Fig. 3(a) depicts the pipeline of the ConvAix ASIP. Since
CNNs require a large degree of parallelism, ConvAix lever-
ages instruction-level parallelism (ILP), in the form of

2. Each layer is processed using 8-bit integer arithmetic. Quantized values
of layers with fewer than 8 bits are filled with zeros at their MSBs.

TABLE 3. Pruning and quantization results.

an 8-slot VLIW instruction-set, and data-level parallelism
(DLP), by implementing SIMD vector operations. The degree
of DLP, i.e., the number of elements in a vector, is denoted
by Nvsize and it is fixed to Nvsize = 16 hereafter as this yields
the best trade-off for our design in terms of area, energy, and
runtime according to several parameter studies that we have
conducted. For implementing the subsequently described
processor architecture, we use the Synopsys ASIP Designer
toolsuite [41].
The first two slots (S0 & S1) are reserved for control

and scalar operations, e.g., instructions that set up zero-
overhead hardware loops or calculate pointer addresses using
the address generation units (AGUs). Additionally, in slot S0
instructions that trigger the integrated direct memory access
(DMA) controller can be issued. Slots S2 and S3 contain both
scalar and vector load/store instructions in addition to spe-
cialized load-instructions accessing the dedicated line buffer
(LBuf) module. More specialized vector instructions, e.g.,
used for calculating activation functions like the rectified lin-
ear unit (ReLU), are housed in S2. The following slots S4 to
S7 comprise the vector arithmetic logic units (VALUs) capa-
ble of executing various operations, e.g., element-wise vector
addition, multiplication, fused MAC, etc. The 9-stage instruc-
tion pipeline consists of an instruction fetch (IF), instruction
decode (ID), 6 execute (E1..E6), and a writeback (WB) stage.
All VALUs are deliberately placed in the later execute stages
in order to allow fused VLIW instructions that combine a
dual vector-load, e.g., filter weights and IFMaps, with sub-
sequent vector MAC operations, resulting in a hazard-free
schedule that enables a maximum utilization of the VALUs.
The ASIP’s program code is located in a dedicated single-
port 32KB SRAM, named program memory (PM), while
data is stored in a bank of 16x8KB dual-port SRAMs, named
data memory (DM). A sophisticated memory controller, in
which the DMA is also integrated, arbitrates accesses to the
on-chip memories and handles seamless movement of data
to and from off-chip DRAM memory. It also minimizes any
stall-cycles introduced due to structural hazards, e.g., port
conflicts. The off-chip interface itself is realized according to
the AXI specification [42] and has a design-time configurable
bus-width, which is set to 256 bits here. Two elementary
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FIGURE 3. Pipeline overview of the proposed ConvAix ASIP (a), high-level structure of the vector register file (b), and schematic of the line buffer unit (c).

scalar data types are supported by the ASIP: 16-bit short
integers (stored in register file R with space for 32 entries),
and 32-bit long integers (stored in register file Rl contain-
ing 16 entries). Vectors can be either 16×16 bits (stored in
VR of size 24) or 16x48 bits (stored in VRl containing 16
entries). To reduce the complexity of the port-multiplexing in
the vector register files, only the load/store and vector move
instructions have full access to all entries. The VALUs, on the
other hand, only have access to smaller segments, as illus-
trated in Fig. 3(b). Additionally, the ASIP comprises several
smaller special-purpose registers, e.g., used for storing the
stack-pointer (SP), vector masks (VG), etc. These are not all
shown here for brevity.

A. LINE BUFFER
The LBuf module is depicted in Fig. 3(c) and was designed
with the goal of being able to efficiently load IFMap rows
during CNN processing. While performing a convolution,
it often happens that the same pixels within one row are
repeatedly required in subsequent steps. Furthermore, espe-
cially in case of strided convolutions, the on-chip SRAM
memory can quickly become a bottleneck since each com-
putational step requires a vector of non-adjacently stored
IFMap pixels. This scenario is illustrated in Fig. 5, where a
3x3 convolutional filter kernel w (blue) is convolved with an
IFMap (yellow), stored in row-major fashion, using a stride
s = 2. Each overlap between a weight (in blue) and a yellow
square marks a required input pixel. The proposed LBuf unit
uses an internal buffer with size for 4Nvsize = 64 elements
with an additional pre-fetch buffer containing 16 elements. It
is user-configurable in the C-code and immediately starts to
pre-fetch an IFMap row once it is activated. For this purpose,
it is directly coupled to the memory controller and is capable

of simultaneously accessing both ports of the on-chip SRAM.
Once initialized, it allows for easy access to both unstrided
and strided versions of the desired IFMap row, in which the
supported strides are limited to s ∈ {1, ..4}. After each load,
the internally saved row is left-shifted by a user-specified
number of pixels, which can be between 0 and 3. This fea-
ture can be used, e.g., to implement dilated convolutions
without any overhead. Depending on the user-settings, e.g.,
the maximum row-length and the left-shift count, the LBuf
unit automatically fetches additional IFMap pixels once its
pre-fetch buffer is depleted.

B. VECTOR ALUS
Each of the slots S4..S7 contains one VALU, in which each
VALU itself is comprised of several parallel instantiated
multipliers, as depicted in Fig. 4(a). Especially in CNN pro-
cessing, a very large degree of local data reuse is possible,
e.g., by performing calculations on multiple output channels
in parallel while maximally reusing the available IFMaps.
ConvAix supports this by leveraging SIMD parallelism in
two dimensions as follows: Each VALU contains 4 separate
vector lanes (the rows of multipliers and adders in Fig. 4(a)),
i.e., the first dimension, whereas each row contains 16 pro-
cessing units in itself (the individual multipliers and adders in
Fig. 4(a)), thereby constituting the second dimension. Based
on the vector-type operands op1 and op2,3 fetched from VR
in the E3 stage, the individual lanes’ vector operands are
created via a software-configurable broadcast network that
allows to select arbitrary elements from the input vectors
(op1, op2) and use them to compose the lane-wise input

3. It is also possible to load a scalar value from R and to directly extend
it to a vector, which then forms one of the VALU’s operands.
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FIGURE 4. High-level schematic of a VALU as instantiated in each of the slots S4.S7 (a), and schematic of a multiplier unit (b).

FIGURE 5. Unrolled steps of strided convolution, exemplary depicted for a 3x3 filter
and a stride of 2.

FIGURE 6. Operand broadcasting to lane-wise inputs.

vectors op1_1..op1_4 and op2_1..op2_4. Fig. 6 schemati-
cally depicts this for the first operand op1. In addition, it is
possible to use the originally fetched operands without fur-
ther modification, i.e., passing them to each lane-wise input
vector.
The 16×16-bit multiplier units are two-stage pipelined

(stages E4 and E5) to achieve the target frequency, whereas
the following accumulators are non-pipelined. To provide
sufficient headroom in case of accumulating large channel
counts, the accumulators are 48-bit wide. Their operands
op3_1..op3_4 are fetched from fixed positions within the
wide vector register file VRl, thereby avoiding the need to
encode individual indices and circumventing the necessity
of additional ports in VRl. Furthermore, operand bypass-
ing within each VALU is fully implemented to avoid data
hazards as much as possible, e.g., via allowing to directly
forward a multiplication result from E5 to E3, as depicted
in Fig. 4(a) (for brevity, only a few exemplary bypasses are
shown in this figure). While most of the four VALUs are

homogeneous, i.e., they are all instantiated based on the
same template, slight modifications are added to the first
one in S4: Because the range-based quantization accumu-
lates lower precision multiplication results, i.e., 16×16-bit
multiplications, in higher precision registers (48 bits), it is
necessary to have a limited number of multipliers with larger
wordwidth, which are used to adapt the output-scales of the
accumulated results, as depicted in (3). Since it is possible to
execute the right-shift by n before multiplying with M0 and
because we have empirically found that n is always large
enough to shift the 48-bit values into a 32-bit range,4 a lim-
ited number of 32x32-bit multipliers are necessary. These
are instantiated only in the first lane of the first VALU, i.e.,
16 out of 256 multipliers have double the wordwidth. In
addition to fused MAC operations, each VALU is capable
of executing, e.g., additions/subtractions, bit-wise shifts, and
logical operations (AND, XOR, etc.). These operations are,
however, not instantiated in multiple lanes like the multipliers
and accumulators are.

C. MULTIPLIER UNITS
Fig. 4(b) depicts the individual subword-parallel multiplier
units. Instead of computing a single 16×16-bit (int16)
multiplication, they can be configured at runtime to alter-
natively execute two 8x8-bit (int8) or four 4x4-bit (int4)
multiplications using the same input words.5 The subsequent
accumulator units are also implemented with the same sub-
word parallelism which, however, is not depicted here in
detail for reasons of brevity. Based on the high sparsity
found in CNNs, the multiplier’s inputs are zero-guarded,
i.e., if at least one of the two respective multiplicands is
zero, the corresponding pipeline registers are disabled via
clock-gating to prevent the multiplier cells from switching.
Furthermore, the output is fed into a runtime configurable
shifter used to back-shift the result into a desired range,
which is then fed into a rounding unit implementing the
round-to-nearest even scheme in order to minimize any

4. Even if n was not large enough, it is always possible to trade-off some
precision in the last few digits by performing a larger right-shift in order
to end up in a 32-bit range.

5. Synopsys DesignWare [43] is used for implementation.
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FIGURE 7. VLIW instruction encoding.

rounding bias inflicted otherwise. In practice, this config-
urable shifter is used together with lower-precision arithmetic
modes (int8, int4) to ensure that no saturation in the accumu-
lator registers occurs. Considering their wordwidth of 48-bit
in total, this effectively leaves 24-bit per subword in case
of the int8 mode and 12-bit per subword for the int4 mode
to accumulate results. Taking into consideration the doubled
wordwidth of the multiplier’s output, 8 bits (int8) and 4 bits
(int4) are left as accumulator headroom respectively, which
is not always sufficient. The multipliers can then be con-
figured to perform a larger back-shift, thereby preventing
saturation at the cost of some increased rounding-noise in
the least-significant digits. Based on offline experiments, it
is - in our experience - always possible to find a suitable
setting for the int8 mode, while quantization to 4-bit proves
more difficult and might require expensive re-training of the
CNN.

D. INSTRUCTION-SET ARCHITECTURE
As initially mentioned, the presented ASIP comprises an
8-slot VLIW instruction-set which adds to the flexibil-
ity of the core. Each of the per-slot instruction words is
32-bit wide, resulting in 256-bit wide VLIW instructions.
Since especially the vector instructions (S4..S7) are only uti-
lized in the application-specific parts of the overall program
code, filling up each VLIW instruction with nops would
quickly crowd the available program memory. Instead, we
dynamically decode each VLIW instruction based on its
length and contained slot-types. As illustrated in Fig. 7,
each 32-bit instruction starts with a continue-bit, indicating
whether another slot follows, and its slot-type is encoded as
well, making it possible to, e.g., have a VLIW instruction
containing only vector instructions.
This flexibility in the ISA together with the VALUs’

configurability allows to seamlessly create computa-
tional kernels, as exemplary depicted for a 1-D con-
volution in Listing 1. At the innermost loop-level
(lines 20-25), 1 LBuf load, 1 vector load, and a vector
MAC operation are executed. These can efficiently be com-
bined into a single VLIW instruction that is repeatedly
executed by means of a zero-overhead loop, as exemplary
depicted in Fig. 8. Depending on the structure of the final
program code, very high VALU utilization rates can be
realized this way.

IV. IMPLEMENTATION
In the following, the implementation both from a software
perspective, i.e., the structure of the computational kernels,

Listing 1. Code example of a rudimentary 4-channel 1-D convolution demonstrating
the ASIP’s programmability.

FIGURE 8. VLIW instruction for innermost loop body in Listing 1.

as well as the physical implementation using a modern 28 nm
CMOS technology are presented. It is important to keep in
mind that both software and hardware development were
conducted interdependently to find a good trade-off between
achieving even higher efficiencies and throughputs, i.e., via
introducing more specialized instructions, and maintaining
a sufficient degree of flexibility in the final instruction-
set. Aforementioned flexibility is showcased by not only
implementing one type of convolutional layer, but by imple-
menting different kernels like DW convolution and residual
blocks too.

A. SOFTWARE
As mentioned earlier, each computational kernel is writ-
ten in the C-language and compiled to efficient machine
code using a retargetable compiler included in the ASIP
Designer toolsuite that was used here [41]. While regular
constructs in the code, e.g., loops, branches, and pointer
arithmetic, are automatically mapped to the corresponding
instructions, using the VALUs and specialized units like the
LBuf requires more fine-tuning in some instances. This is
demonstrated in Listing 1 by the use of some processor-
specific primitives, e.g., lbuf_set_stride and lbuf_read_sl.
Furthermore, it is often desirable to perform manual code
optimization, e.g., by unrolling certain loops or by optimiz-
ing memory access patterns and pointer arithmetic in such
a way that less overhead6 is generated by the compiler. It is

6. The term overhead here refers to any processing cycles spent that do
not contribute to the final computational result, e.g., convolution.
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FIGURE 9. Circular buffer storing IFMap rows for a filter kernel of size 3x3 and a
stride of 2.

clearly not possible to describe all these optimization steps
in detail here, just like it is not possible to dissect the entire
code for each computational kernel. In general, each CNN
layer that was implemented uses the same base function
(hereafter also referred to as wrapper) which comprises the
code required to move data to/from off-chip memory and to
perform basic calculations, e.g., determining on-chip buffer
sizes, setting up pointers, etc. This wrapper function is con-
figurable via a struct that stores relevant parameters, e.g., the
layer dimensions as introduced in Table 1, pointers to the
off-chip data (IFMaps, OFMaps, weights), arithmetic con-
figuration (backshift, arithmetic precision), etc. Embedded
into this dataflow management wrapper are calls to highly
optimized kernels that work exclusively on the on-chip data
fetched using the surrounding wrapper. We include kernels
for regular convolutions using arbitrary filter sizes as well as
kernels optimized for certain filter sizes (1x1, 3x3, 5x5, 7x7,
11x11). Furthermore, separate kernels for the depthwise and
pointwise parts of DW convolution are available. Subsequent
CNN modules, e.g., activation, pooling, and element-wise
addition with a residual, are fused with the preceding kernel
to maximize data reuse within the on-chip memories. Each
computational kernel usually consists of a few hundred lines
of C-code, while the wrapper consumes roughly 700 lines
of code. The resulting machine code also usually consumes
a few hundred instructions per kernel. Algorithm 1 depicts
the overall dataflow scheme of a regular convolution, in
which the inner computational kernel resides in lines 11-23,
while the remaining code belongs to the wrapper. Since no
hardware caches are used, the programmer is responsible for
managing all storage on his own, as evident by the necessity
to explicitly trigger DMA transfers in the code. To maxi-
mally exploit the available on-chip storage, circular buffers
are used for storing IFMaps and OFMaps. Since we first
calculate one entire row of multiple OFMap or partial sum
(PSum) channels, depending on the selected loop tiling fac-
tors Tif and Tof , the IFMaps used in that step can partially be
reused once the filter kernels are vertically shifted to com-
pute the next row. Fig. 9 depicts the implemented buffer
structure.
Another advantage of this setup is that computations and

DMA transfers can be interleaved by marking parts of the

Algorithm 1: Convolutional Layer as Implemented on
the ConvAix ASIP
Input: CNN parameters: Nkx/ky,Nif ,Nof , etc.

Tiling & unrolling parameters: Tof , Tif ,Pox,Pof
Configuration flags: is_resid_conv, apply_actfunc,
pooling_active

1 N′of =
⌈
Nof
Tof

⌉
, N′if =

⌈
Nif
Tif

⌉

2 for tof = 0; tof < N′of ; tof ← tof + 1 do
3 for tif = 0; tif < N′if ; tif ← tif + 1 do
4 DMA_Load_Filters()
5 DMA_Load_IFMaps_Initial()
6 DMA_Load_PSums_Initial()
7 for yo = 0; yo < Noy; yo ← yo + 1 do
8 DMA_Load_IFMaps_Next()
9 DMA_Load_PSums_Next()

10 DMA_Load_Residual()
11 for co = tof · Tof ; co < (tof + 1) · Tof ;

co ← co + Pof do
12 for xo = 0; xo < Nox; xo ← xo + Pox do
13 SRAM_Load_PSum()
14 for ky = 0; ky < Nky; ky ← ky + 1 do
15 LBuf_Setup()
16 for ci = tif · Tif ; ci < (tif + 1) · Tif ;

ci ← ci + Tif do
17 for

kx = 0; kx < Nkx; kx ← kx + 1
do

18 LBuf_Load()
19 MAC(Pox · Pof per cycle)
20 if tif + 1 == N′if then
21 if is_resid_conv then

Add_Residual(); if apply_actfunc
then Apply_Actfunc();

22 SRAM_Store_OFMap_or_PSum()
23 if pooling_active then Apply_Pooling();

DMA_Store_OFMap_or_PSum_Row()

buffers as valid, i.e., these can be used to perform computa-
tions, while other parts are currently used to load new data.
The same scheme is applied to loading residuals and storing
the OFMaps/PSums. As indicated in line 19 of Algorithm 1,
at the innermost loop level Pof = 16 OFMap channels are
unrolled (each channel is assigned to a single lane of the
total 4 lanes per VALU). Each OFMap channel in itself is
then also unrolled along its x-dimension with an unrolling
factor of Pox = 16, which is exactly the vector element count
of each lane in the VALUs. Similar to the example shown
in Listing 1, these multiple vector MAC operations together
with the filter load and LBuf access are fused into a single
VLIW instruction that is iterated over via a zero-overhead
hardware loop.
To utilize the subword-parallel processing abilities of

ConvAix, only comparatively small changes to the existing
code are necessary. Since the entire architecture is already
designed with this use-case in mind, a C-code primitive
can be used to switch between the different modes (int16,
int8, and int4). This mode-flag is stored in a global con-
figuration register to which all functional units within the
processor have access. For example, in case the int8-mode

10 VOLUME 2, 2021



FIGURE 10. IFMaps, OFMaps, and weights packed into vectors in case of
subword-parallel processing using the int8-mode.

is activated, the VALUs automatically treat each 16-bit
word as two separate 8-bit words, i.e., performing all arith-
metic and logic operations on the individual subwords and
re-combining them into a 16-bit word in the end. Also,
instructions used, e.g., to broadcast scalar values into vec-
tors, to shift and saturate the accumulator registers, etc.,
access the same mode-flag and behave accordingly. Using the
int8-mode, instead of calculating Pof = 16 output channels
in parallel, Pof = 32 channels are calculated (the int4-mode
calculates 64 output channels in parallel). The only neces-
sary change in Algorithm 1 is to add another loop within
the innermost body that iterates over the subword channels
(this loop is unrolled). Of course, additional complexity is
added to the data pre-processing, i.e., correctly packing the
CNN’s weights and biases into 16-bit words, but this is done
offline once. Also, the IFMaps for the very first layer must
be correctly packed, e.g., for the int8-mode two pixels at
the same spatial position (x & y coordinate) in two adja-
cent channels are packed into a single word. If the channel
count is not a multiple of 2 (int8) or 4 (int4), the remaining
subword-channels are zero-padded. The broadcast network
of the VALUs is then used to extract the individual single-
channel IFMap rows for subsequent processing. Fig. 10
exemplary depicts this process and the packing scheme for
the int8-mode.

B. SYNTHESIS & PLACE AND ROUTE
To obtain accurate performance, power, and area results for
the proposed ASIP, we implemented the design using a mod-
ern 28 nm CMOS standard cell library provided by TSMC.
The supply voltage is set to 1.0V and the library used in this
article is characterized for a typical process corner, operating
at a temperature of 25 °C. Logic synthesis was performed
using Synopsys Design Compiler P-2019.03, while place and
route (PnR) was executed using Cadence Innovus 18.10.
Fig. 11(a) shows the final layout of the ASIP, while Table 4
summarizes the relevant figures achieved after PnR. The
processor occupies an area of 3.53mm2 (including SRAM
macros), while running at a clock frequency of 513MHz.
As can be seen in the area breakdown in Fig. 11(b), both
the SRAMs and the VALUs consume slightly over a third
of the total area respectively.

TABLE 4. ConvAix implementation summary.

V. RESULTS AND DISCUSSION
The different CNNs selected as benchmarks in this article are
simulated using the post-layout, fully back-annotated netlist
of the processor. Based on these very accurate simulations,
switching activity is recorded and the average power con-
sumption is estimated using Synopsys PrimeTime PX. Only
for VGG16 we use switching activity obtained via RTL sim-
ulation that is subsequently annotated to the final post-layout
netlist and propagated using zero-delay simulation.7 All
DRAM memory accesses are accurately traced in our test-
bench and the VALU utilization, i.e., the portion of time
that the VALUs are performing computations, is calculated
based on the ideal latency8 and the actual measured latency,
which includes times for DRAM accesses, stall cycles, con-
trol overhead, etc. Furthermore, the results for each CNN
layer stated hereafter always include subsequent pooling lay-
ers, i.e., the time and energy spent for executing any existing
pooling operation is included in ConvAix’s final results.

A. SYNTHETIC CNN BENCHMARK
To explore the ASIP’s maximum and minimum poten-
tial power consumption and its dependency on the IFMap
sparsity, a synthetic CNN layer with the following config-
uration was created: Nif = Nof = 256, Nkx = Nky = 3,
Nix = Niy = 16, stride 1. Since the aim of this experiment
is to stress the VALUs, the weights were randomly drawn
from a normal distribution N (0, 1), while the inputs were
drawn uniformly from the range [0, 15]. In a post-processing
step, the IFMaps were randomly sparsified to emulate dif-
ferent degrees of IFMap sparsity found in actual CNNs.
Fig. 12 depicts the resulting power consumption and energy
efficiency values using the three different arithmetic modes.
The maximum power of 972mW is consumed using the
int16 mode at 0% sparsity, resulting in an effective energy
efficiency of 176GOP/s/W (the VALU utilization is 65%
here). If the int4 mode is used and 90% of the IFMaps
are sparse, a scenario often encountered in the last few lay-
ers of a CNN, only 340mW of power is consumed and an

7. Based on empirical studies that we conducted using our design, we
determined that these results are 10-15% over-optimistic regarding power.

8. The ideal latency is calculated based on each layer’s number of MAC
operations divided by the accelerator’s peak throughput.
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FIGURE 11. Layout view of the ConvAix ASIP after PnR (a), area breakdown (w/o filler cells) (b), and power breakdown for running all convolutional layers of AlexNet (c).

FIGURE 12. Power consumption and energy efficiency for different arithmetic
modes and varying degrees of IFMap sparsity.

energy efficiency of 2 TOP/s/W is achieved. In summary, for
all arithmetic modes a spread in the power consumption of
over 2.5× is observed.

B. ALEXNET
Fig. 11(c) breaks down the ASIP’s power consumption in
case it runs all convolutional layers of AlexNet. Over half
of the entire power is consumed by the VALUs, while the
SRAMs constitute the second largest consumer with 16% of
the total power. Table 5 gives a detail summary of execut-
ing all individual layers of AlexNet on the ConvAix ASIP,
using a batch-size of 1 since real-time processing is the
goal here. In total, executing all convolutional layers takes
4.29ms at an average power consumption of 601mW and
a resulting energy efficiency of 520GOP/s/W. On average,
the VALUs are utilized 59% of the time and a total off-
chip transfer size of 4.25MByte is required, which results
to 0.0063Byte/MAC. Based on these results, it is possible to
run AlexNet at 232.5 frames/s, which is significantly faster
than the performances achieved by comparable accelerators.
Processing the FC layers of AlexNet, however, takes an addi-
tional 8.18ms, which is an inherent bottleneck of this CNN
topology that can only be resolved by a massively increased
memory bandwidth.

C. MOBILENET, RESNET-18 AND VGG16
Fig. 13 and Fig. 14 depict the per-layer latency, aver-
age power consumption, and energy efficiency of running

TABLE 5. Detailed results for AlexNet (batch size 1).

MobileNet and ResNet-18 on the ConvAix ASIP, while the
overall results are summarized in Table 6. Executing the con-
volutional layers of these CNNs takes 14.6ms (ResNet-18)
and 14.2ms (MobileNet), or an equivalent 68.5 frames/s
and 70.4 frames/s, respectively. Due to its depthwise con-
volution, which does not offer the opportunity of sharing
weights as in the regular convolution, MobileNet only
achieves a reduced VALU utilization of 15% vs. 47%
for ResNet-18. Furthermore, based on this reduced VALU
utilization, MobileNet achieves a lower energy efficiency
of 256GOP/s/W compared to 512GOP/s/W in case of
ResNet-18. At the same time though, it consumes less aver-
age power (313mW vs. 486mW), which ultimately leads to a
higher processing efficiency of 16.0 frames/s/mJ compared to
9.7 frames/s/mJ for ResNet-18. Additionally, MobileNet only
requires 12.3MByte of DRAM accesses, while ResNet-18
consumes 20.7MByte in total. In Fig. 14, some drops in the
power consumption and energy efficiency are observed for
the downsample layers of ResNet-18. These are explained
by the layers’ low computation-to-memory ratio, resulting
from using 1x1 filter kernels and strided convolutions that
cause one stall cycle each time the LBuf unit is reset. The
slight drop in the last layers of both CNNs is explained
by the relatively small feature map sizes (7x7), resulting
in a sub-optimal usage of the MAC-units in each VALU.
VGG16 shows by far the highest VALU utilization rate at
69%, which is founded especially in its large feature map
dimensionality that allows to spend more time in the inner-
most loop body (see Algorithm 1), thereby avoiding some
control flow overhead introduced in the outer loops. Based
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FIGURE 13. Results for convolutional layers of MobileNet. Stated values depict the combined depthwise and pointwise convolution.

FIGURE 14. Results for convolutional layers of ResNet-18. Entries with a D suffix are downsample layers.

TABLE 6. Comparison to other state-of-the-art accelerators.

on this comparatively high utilization, it also achieves the
highest energy efficiency at 677GOP/s/W.9

D. COMPARISON TO STATE OF THE ART
Table 6 compares ConvAix with other existing accelera-
tors known from literature. Since the CNN model used
to benchmark each accelerator has a huge impact on the
resulting figures, as evident, e.g., by the large discrepancies
between AlexNet and VGG16 for Eyeriss [14], we present
performance values for each CNN separately. While previous
architectures are often specifically tailored towards a certain
type of CNN, ConvAix supports a wide spectrum of differ-
ent CNNs. In addition, only very few limitations in terms of,
e.g., feature map sizes or channel counts apply to ConvAix,
while other designs are often limited to a maximum number

9. Based on RTL switching activity, which is 10-15% over-optimistic.

of channels (Eyeriss, NullHop, WRA), have no support for
DW convolutions (all but one), offer limited pooling kernel
sizes, etc. To gain this kind of flexibility, a price in the
form of additional silicon area must be paid which, how-
ever, does not result in a decreased area efficiency compared
to other accelerators. More importantly, our fully software-
programmable ASIP achieves energy efficiencies of over
500GOP/s/W, which is comparable to those of other hard-
wired solutions, e.g., Eyeriss [14]. Furthermore, even though
no off-chip compression is used in this work, ConvAix
achieves the second lowest total DRAM transfer count for
AlexNet and the lowest for VGG16. This is due to the use of
8-bit computations and the ability to fine-tune the dataflow
in software, thereby allowing to optimally tile loops and
maximize data reuse. FPGA based accelerators, such as [21]
and [20] that both use Winograd decomposition to optimize
the convolution, offer good flexibility and lowest processing
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times in our comparison. This speed comes together with
an increased power consumption and resulting lower energy
efficiency compared to ConvAix and others. Although energy
efficiency on its own is one relevant metric to look at, it
is also important to consider the achieved performance (in
frames per second) per energy spent. The reason being that
high energy efficiencies can be obtained by using very low
processing speeds and maximally reducing the power con-
sumption by using aggressive dynamic voltage and frequency
scaling (DVFS). Especially the FPGA accelerators perform
good in this metric as they offer high processing speeds.
Amongst the remaining competitors, ConvAix outperforms
most of them regarding the processing efficiency with the
only exception being NullHop [18].
Finally, as seen in this comparison ConvAix offers sev-

eral advantages over existing ASIP solutions: compared to
Envision [22] and DSIP [23], ConvAix shows improved pro-
cessing speeds and efficiencies for all investigated CNNs,
while exhibiting similar and sometimes even higher energy
efficiencies. Furthermore, existing ASIPs have less flexibility
than ConvAix, e.g., both Envision and DSIP are not capa-
ble of executing DW convolutions. In addition, these other
ASIPs require more off-chip transfers, even though they use
similar (DSIP) or even lower (Envision) arithmetic precision.

VI. CONCLUSION
In this article, a fully software-programmable, yet highly
energy efficient ASIP for the acceleration of CNN inference
was introduced and subsequently implemented in a modern
28 nm CMOS technology down to the placed and routed
design. By exploiting several different levels of parallelism,
i.e., ILP, DLP, and subword parallelism, the necessary com-
putational abilities to execute modern CNNs, like ResNet-18
and MobileNet, at real-time speeds were demonstrated. To
achieve the best possible energy efficiency and performance,
algorithm-level optimizations, e.g., quantization and pruning,
were applied to the benchmark CNNs in a first step. These
optimized CNNs were executed using 8-bit integer arith-
metic to leverage the subword-parallel VALUs of the ASIP,
ultimately leading to energy efficiencies and performance
figures on the same level as those achieved by less flexible
solutions. However, although it is advisable to use afore-
mentioned optimization techniques, our proposed design in
no way depends on them since it is always possible to use
a higher-precision mode, i.e., 16-bit computations. Finally,
compared to other known accelerators the ConvAix ASIP
offers increased flexibility via its ISA-based architecture.
This was proven by implementing and benchmarking not a
single CNN topology but four different ones, which exhibit
diverse dataflow patterns and computational requirements.
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