
Received 26 July 2020; revised 7 October 2020; accepted 28 October 2020. Date of publication 9 November 2020; date of current version 25 January 2021.

Digital Object Identifier 10.1109/OJCAS.2020.3035402

MOSDA: On-Chip Memory Optimized Sparse
Deep Neural Network Accelerator With Efficient

Index Matching
HONGJIE XU (Student Member, IEEE), JUN SHIOMI (Member, IEEE),

AND HIDETOSHI ONODERA (Fellow, IEEE)
Department of Communications and Computer Engineering, Kyoto University, Kyoto 606-8501, Japan

This article was recommended by Associate Editor X. Zhang.

CORRESPONDING AUTHOR: H. XU (e-mail: xuhongjie@vlsi.kuee.kyoto-u.ac.jp)

This work was supported in part by the Doctoral Program for World-Leading Innovative and Smart Education, Ministry of Education, Culture,
Sports, Science and Technology and in part by the VLSI Design and Education Center, the University of Tokyo in collaboration

with Cadence Design Systems, Inc., Synopsys, Inc., and Mentor Graphics, Inc.

ABSTRACT The irregular data access pattern caused by sparsity brings great challenges to efficient
processing accelerators. Focusing on the index-matching property in DNN, this article aims to decompose
sparse DNN processing into easy-to-handle processing tasks to maintain the utilization of process-
ing elements. According to the proposed sparse processing dataflow, this article proposes an efficient
general-purpose hardware accelerator called MOSDA, which can be effectively applied for operations of
convolutional layers, fully-connected layers, and matrix multiplications. Compared to the state-of-art CNN
accelerators, MOSDA achieves 1.1× better throughput and 2.1× better energy efficiency than Eyeriss v2
in sparse Alexnet in our case study.

INDEX TERMS Sparsity, DNN, machine learning, hardware accelerator.

I. INTRODUCTION

IN RECENT years, the prediction accuracy of Deep
Neural Network (DNN) has been steadily increasing with

the improvement of network structure [1]. As a result,
DNN has been widely used in all aspects of life such as
image processing and language modeling. Therefore, many
endpoint terminals integrate Application-Specific Integrated
Circuits (ASICs) to perform local real-time inference [2]–[4].
However, high-precision prediction is often accompanied by
an increase in computational complexity [5], [6].
As DNN networks become deeper and more complex,

the required computing power and energy consumption are
also increasing [7]–[9]. Since most endpoint devices are
battery-powered, energy-efficient ASICs which are able to
process DNN is highly required. The matrix operation,
which consists of convolution (CONV) operations and matrix
multiplications, consumes more than 90% of the energy in
DNN [8]. Therefore, many studies have focused on design-
ing low-energy but high-throughput accelerators for matrix
operations [10]–[18]. Reference [8] proposes a key property

called data reuse to describe the number of accesses to the
same data during the processing. Exploiting data reuse has
achieved great success to reduce expensive memory accesses
in DNN processing. Previous works [11]–[13] exploit data
reuse in the dataflow which describes the sequence of data
movement in the memory hierarchy and the sequence of
operation executions in arithmetic logic units (ALUs).
In order to adopt limited computing resources of endpoint

devices, many studies utilize pruning techniques to reduce
the total amount of parameters in DNNs [19]–[23]. Since
DNN processing often uses Rectified Linear Unit (ReLU),
this means that many pixels in feature maps are also be
zeroed. As a result, the matrices involved in DNN pro-
cessing are often sparse [24]. Focusing on the sparsity of
DNN processing, previous hardware accelerators transmit
only non-zero data to the processing elements (PEs), thereby
translating the sparsity into energy reduction of the data
movement [13], [25], [26]. Once non-zero data are loaded
into PEs, hardware implementations are expected to fulfill
data into all available ALUs by index matching [18]. Index

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

144 VOLUME 2, 2021

HTTPS://ORCID.ORG/0000-0001-9947-7789
HTTPS://ORCID.ORG/0000-0001-5198-0668

FIGURE 1. High dimensional convolutions in dense DNN:
N × Ci × Co × Ho × Wo × Hw × Ww multiplication operations are required in total.

matching is to match the coordinate of the weight and the
coordinate of the input feature map (ifmap) pixel for each
operation to determine whether there is a meaningful oper-
ation that produces a non-zero product term. However, the
irregular distribution of non-zero data leads to a large match-
ing overhead in parallel processing since accelerators have
to match multiple coordinates in parallel [9].
Index matching does not affect parallel-processing

performance in dense DNN, since all processing dependen-
cies between ifmaps and weights are clear at the design
time. In sparse DNN, index matching becomes critical to
decide the parallel-processing hardware complexity due to
the data irregularity. The index matching comes to be com-
plicated in the parallel processing task, which should check
all loaded weight coordinates and ifmap pixel coordinates
with each other to find out meaningful operations that lead
to non-zero products. For example, Eyeriss v2 [13] enhances
throughput by utilizing multiple scratchpad memories with a
pipeline architecture inside PEs to detect meaningful opera-
tions. Fetching just right amount of input data with a simple
logic to guarantee high PE utilization is important, since the
number of non-zero products is unknown in sparse DNN pro-
cessing. In order to detect meaningful operations quickly in
sparse DNN processing, it is required to find out the property
to help us understand how many meaningful operations are
among input feature map (ifmap) pixels and weights, thereby
guiding us to design a simple sparse processing architecture.
We view meaningful operations as multiplications that both
corresponding ifmap pixels and weights are non-zeros.
To address the challenge of high PE utilization, this article

makes the following contributions:

1) This article first describes the property called matching
type for index matching in DNN processing, which
helps to predict the number of meaningful operations
efficiently, thereby enhancing PE utilization in sparse
DNN processing. We utilize PE utilization to refer to
the average ratio of multipliers that process meaningful
operations in the PE.

2) Based on the proposed property, this article first
introduces a sparse DNN accelerator called Memory
Optimized Sparse DNN Accelerator (MOSDA). This

TABLE 1. DNN shapes.

article makes a hardware evaluation of the proposed
sparse accelerator to compare with state-of-the-art
DNN accelerators in both dense and sparse DNN
processing.

The rest of this article is organized as follows. Section II
discusses properties in DNN processing. Section III intro-
duces the proposed DNN processing dataflow which is
able to process both dense and sparse DNNs. Section IV
introduces the hardware realization of the proposed process-
ing dataflow. Section V discusses the simulation results to
show the superiority of the proposed hardware realization.
Section VI concludes this article.

II. BACKGROUND
A. DNN PROCESSING
DNN generates classification results by performing feature
extraction from raw input data. DNN improves model accu-
racy by very deep hierarchy of layers in the network. CNN
is commonly applied to analyzing image recognitions. As
primary layers in CNN, CONV layers use a group of filters
to extract high-level features which are called output feature
maps (ofmaps) from ifmaps. As shown in Fig. 1, traditional
CNNs often have multi-channel 2-dimensional (2D) ifmaps
and multi-channel 2D weights to enhance prediction accu-
racy [27]. Given the convolution shapes in Tab. 1, the CONV
operation with multiple batches can be expressed as:

O[z][u][x][y] = B[u] +
Ci∑

k=1

Ww∑

i=1

Hw∑

j=1

I[z][k][Ux+ i][Uy+ j]

× W[u][k][i][j],

1 ≤ z ≤ N, 1 ≤ u ≤ Co, 1 ≤ x ≤ Wo

1 ≤ y ≤ Ho,

Ho = (Hi − Hw + U)/U

Wo = (Wi −Ww + U)/U, (1)

where O, B, W and I indicate the matrices of ofmaps, biases,
weights and ifmaps, respectively [8].
Other primitive operations in DNN can also be represented

by Eq. (1). In order to convert the high-level extraction
features from CONV layers into the classification results,
Fully-Connected (FC) layer is used between CONV layer
and the output layer [1]. Recent CNN has developed depth-
wise separable convolution [6] to diminish CONV channels
to save energy. Pointwise convolution acts as the operations

VOLUME 2, 2021 145

XU et al.: MOSDA: ON-CHIP MEMORY OPTIMIZED SPARSE DEEP NEURAL NETWORK ACCELERATOR WITH EFFICIENT INDEX MATCHING

TABLE 2. Relations between CONV and other primitive operations in DNN.

with Hw = Ww = 1 with Eq. (1). In mathematics, the opera-
tions in FC layers and Multilayer Perceptron (MLP) [1] can
be represented by Eq. (1) with Hi = Wi = Hw = Ww = 1.
The depthwise convolution consists of the 2D CONV pro-
cessing with multiple ifmap channels and the same number
of ofmap channels. In this case, the accumulation pattern is
different from naive convolution operations. We thus need to
utilize another dimension to describe the channel in depth-
wise convolution which will be represented by the following
equation.

O[z][d][x][y] = B[z][d] +
Ww∑

i=1

Hw∑

j=1

I[z][d][Ux+ i][Uy+ j]

× W[d][i][j]

1 ≤ z ≤ N, 1 ≤ d ≤ D, 1 ≤ x ≤ Wo

1 ≤ y ≤ Ho

Ho = (Hi − Hw + U)/U

Wo = (Wi −Ww + U)/U (2)

The relationship is summarized in Tab. 2. Since stride U
does not affect the key characteristics of convolution, we
default all U in DNN processing to 1 in the rest of this
article.
The sparsity of weights and ifmaps can be utilized by

gating or skipping operations, thereby improving energy effi-
ciency. In order to further enhance throughput by sparsity,
a complex control logic is usually inevitable according to
the irregularity of weights and ifmaps in sparse DNN. For
achieving high PE utilization, we will propose a method
that aims to directly infer the number of operations from
the number of loaded non-zero ifmap pixels and the number
of loaded non-zero weights so that we can easily arrange
weights and ifmap pixels required for massively parallel pro-
cessing. We fetch just the right amount of input data, thereby
maximizing PE utilization with a simple control logic. We
focus on the data dependency between ifmaps and weights
to evaluate its impact on the number of required operations
for sparse DNN.

B. MOTIVATIONAL EXAMPLE
In this section, we review a sparse matrix multiplication
shown in Fig. 2. The shape of the matrix multiplication is
Ci = Co = 2. Suppose we have only 2 multipliers avail-
able, two possible processing dataflows, Dataflow A and
Dataflow B, are shown in Figs. 2 (A) and (B), respectively.
Dataflow A uses 2 multipliers to generate product terms
to the same ofmap pixel in each step. Dataflow B uses 2
multipliers to generate product terms from the same ifmap

FIGURE 2. Sparse Matrix Multiplication with Ci = Co = 2,
N = Hw = Ww = Hi = Wi = Ho = Wo = 1. Two possible processing dataflows with 2
multipliers are introduced.

pixel in each step. According to the definition given in [28],
Dataflow A is an ifmap-stationary dataflow. Dataflow B is
an ofmap-stationary dataflow. Both dataflows require two
steps to complete the processing when matrices are dense.
For a sparse matrix operation shown in Fig. 2, all required

data have been loaded into the on-chip buffer, and each buffer
can only hold one data for initialization. We observe that
the number of multiplications processed in a single step in
different dataflows is not the same.
Dataflow A performs two multiplications which have the

same Co coordinate in parallel. In the first step, one multi-
plication is required since the non-zero ifmap pixel i2 should
multiply with one non-zero weight w12, while there are two
non-zero weights available. In the second step, one multipli-
cation is required since the non-zero ifmap pixel i2 should
multiply with one non-zero weight w22. In Dataflow A, it is
difficult to infer the number of multiplications required until
we fetch non-zero data into multipliers. It is hard to fulfill all
multipliers without additional control logic in Dataflow A.
Dataflow B performs two multiplications which share the

Ci coordinate. Since i1 is zero, there is no required operation
in the first step of dataflow B. As a result, the first step can
be skipped once we notice i1 is zero. In the second step, two
multiplications between one ifmap pixel i2 and two weights
w12, w22 are processed.
In Dataflow B, we can easily infer the number of opera-

tions required by the non-zero ifmap amount times non-zero
weight amount. As a result, Dataflow B requires less hard-
ware control effort to maximize PE utilization in our case
study.

C. SUBTASKS IN DNN PROCESSING
In order to compare different dataflows in sparse DNNs,
we further clarify essential differences among processing
dataflows. The number of operations for most existing DNN
computing tasks ranges from millions [29] to billions [30]. It
is difficult for acceleration hardware to realize fully parallel
processing in such a scale. Therefore, we have to face a sit-
uation where the number of operations that can be processed
within PEs is much smaller than the total number of oper-
ations. Under the situation of limited processing resources,
it is required to decompose an entire processing task into
subtasks to adapt the number of multipliers in a PE, which is

146 VOLUME 2, 2021

FIGURE 3. Three types of processing dependency. Type (a): one w is processed
with one i . Type (b): all ws are processed with all i . Type (c): The processing
dependency between ws and is is diverse.

the same as tiling level in a PE defined in [31]. Each tiling
level has a loop corresponding to each dimension in the
original processing task. The tiling level in a PE contains
the operation space and the associated dataspaces within
registers in a PE [31]. One PE usually consists of multiple
multipliers and registers. A subtask in a PE refers to the
dimensions of processing that can be processed within data
in one PE. Each subtask can be completed within a PE once
data loaded into the registers inside. In DNN processing, a
subtask refers to the processing task in the dimensions of
N, Ci, Co, Ho, Hw, Wo, Ww, or the multi dimensions such
as (Ho,Hw) and (Hw,Ww).

Each subtask corresponds to a specific processing hard-
ware implementation. It is the subtask in the process-
ing dataflow that determines the hardware performance.
Therefore, when we compare different processing dataflows,
we should concentrate on the properties of the subtask in
the PE.

D. PROCESSING DEPENDENCY IN DNN
In dense DNN processing, it is simple to infer the number of
operations required since the processing dependency between
ifmaps and weights is clear at the design time. In sparse
DNN, inferring the number of operations becomes critical
for the processing speed and the hardware complexity. From
the perspective of parallel processing hardware design, the
processing dependency can be divided into three categories
as shown in Fig. 3.
Type (a) [o− o] in Fig. 3 refers that one ifmap pixel should

be processed with only one weight in the processing task.
If there are x non-zero ifmap pixels and y non-zero weights
in sparse processing task, we can only infer that there are
at most x or y operations required to be processed in the
task. Therefore, a [o− o] sparse processing task requires a
complex hardware effort to maximize PE utilization.
Type (b) [a− a] in Fig. 3 refers that all n ifmap pixels

should be processed with all m weights in the processing
task. If there are x non-zero ifmap pixels and y non-zero
weights, we can easily infer that there are xy operations
required to be processed in the task. As a result, the number
of operations can be easily inferred if the sparse processing
task follows [a− a] type.

Type (c) [s− s] in Fig. 3 describes all the other cases
of the processing dependency. Type [s− s] refers that there
are some ifmap pixels required to be multiplied with some

TABLE 3. Matching types of typical subtasks in DNN.

weights in the processing task. The number of operations
required for one ifmap pixel (or one weight) varies. As a
result, in a sparse [s− s] processing task, it is difficult to
infer the overall required operations just by the number of
non-zero data. Therefore, a [s− s] sparse processing task
requires dedicated hardware to maximize PE utilization.
We refer the processing dependency of weights and ifmap

pixels in a certain processing task as matching type. In
Dataflow A of Fig. 2, each ifmap pixel multiplies with
only the matched weight in each subtask, which means that
the matching type in the subtask of Dataflow A is [o− o].
In Dataflow B of Fig. 2, all ifmap pixels are multiplied
with all weights in each subtask which means the match-
ing type in the subtask of Dataflow B is [a− a]. Therefore,
the hardware implementation of Dataflow A requires spe-
cial hardware to maximize PE utilization without redundant
data movement. On the other hand, the processing with [s-s]
matching type can be found, for example, in the parallel
processing with 4 multipliers. The parallel processing task
of all four multiplications simultaneously in Fig. 2 belongs
to the [s-s] matching type, which could lead to a complex
index matching effort.
In [a− a] matching type, the number of required opera-

tions required in the processing task can be simply expressed
by the number of non-zero ifmap pixels times the number
of non-zero weights regardless of sparsity. Therefore, we are
able to fetch just the right amount of input data to enhance
PE utilization with a simple control logic. As a result, keep-
ing the matching type of the PE subtask being [a− a] is the
key to enhance PE utilization.
If we generalize the discussion from matrix multiplications

to operations in DNN, matching types in different subtasks
are summarized in Tab. 3. For convolution operations, the
matching type of the corner ifmap pixels changes according
to the chosen padding type. Since the central ifmap pix-
els usually dominate in number, we utilize matching type
of the central ifmap pixels to represent the matching type
of all ifmap pixels. Therefore, we view the matching type
of convolution between ifmap pixels and weights as [a− a].
Available [a− a] matching type refers to simple hardware
workloads to process the subtask in parallel. In actual hard-
ware accelerators, the chosen subtask for PEs is usually the
combination of multi dimensions to maintain the throughput

VOLUME 2, 2021 147

XU et al.: MOSDA: ON-CHIP MEMORY OPTIMIZED SPARSE DEEP NEURAL NETWORK ACCELERATOR WITH EFFICIENT INDEX MATCHING

TABLE 4. Processing dimension of subtasks in typical accelerators.

of the accelerators. In the case where the subtask contains
both [a− a] subtask and [o− o] subtask, the matching type
would be [s− s]. Once the subtask for DNN processing is
determined, the matching type of the target subtask is fixed
and will not change with sparsity.

E. RELATED WORK
Tab. 4 introduces several typical state-of-the-art DNN
accelerators. Different accelerators utilize different subtask
processing strategies. This also leads to a difference in data-
fetching strategies. The subtask adapted by Eyeriss v2 [13]
loads data into registers in a PE as much as possible.
Although this increases the theoretically available data reuse
in PE subtask, it also makes its control logic complicated
due to its [s− s] matching type which requires a multi-stage
pipeline architecture for each PE to enhance PE utilization.
EIE [25], and Cnvlutin [14] have the processing dimension
of (Ci,Co) in a PE, which leads to the [s− s] matching
type. OuterSPACE [18] utilizes outer product to replace
the conventional inner product sequence to process matrix
multiplications while keeping the matching type as [a− a]
in (Co,Ho) processing dimension. As a result, OuterSPACE
achieves fast and efficient data scheduling. However, Outer
SPACE can only handle matrix multiplication, but not other
processing targets, such as convolution. In the next section,
we propose a sparse DNN processing dataflow that fully con-
siders the processing properties based on the dataflow in [32]
derived for dense DNN processing. The proposed sparse
processing dataflow shows efficiency when facing different
processing targets (CONV, FC, and Matrix Multiplications)
from our experiment result.

III. DNN PROCESSING DATAFLOW
In this section, we propose a sparse DNN processing
dataflow based on the matching type discussed in the
previous section. The key idea of the proposed dataflow
is to ensure that the matching type of the subtasks loaded
into PEs is always [a− a].

One batch of the convolution operation requires Ci ×Co ×
Ho ×Wo ×Hw ×Ww times multiplications in total. Additions
of the same order of magnitude are also required for mul-
tiplication results. As shown in Fig. 1, each ofmap pixel
contains Ci × Hw × Ww product terms, each product term
needs to occupy one memory space in sequential processing.
If we utilize fully parallel processing, we are able to merge
Ci × Hw × Ww product terms into one partial sum (psum)
before accessing the memory to reduce the memory capacity

FIGURE 4. Requirements of sparse DNN processing dataflow. First, processing
dataflow should guarantee the matching type of the subtask in the PE is [a − a] for
sparse DNN processing. Second, the dataflow should exploit data reuse and space
reuse as much as possible.

required by the accelerator. The previous work refers to the
processing property as space reuse [32]. Hence, this article
notices that there are three processing properties that affect
the hardware performance in DNN processing, which are the
data reuse, the space reuse and the matching type.
In order to exploit three processing properties, as shown

in Fig. 4, the sparse DNN processing dataflow follows two
requirements. First, the processing dataflow for sparse DNN
processing should guarantee all subtasks in the PE should be
with the matching type [a− a]. Second, in order to further
optimize the data movement in the hardware implementation
for the dataflow, data reuse and space reuse should also
be exploited as much as possible to reduce the number of
memory accesses and memory capacity.
The dataflow in [32] for dense DNN processing satisfies

both two requirements. In the dataflow, the subtask stored
in the PE is 2D CONV, where matching type is [a− a]. In
each clock cycle, the registers fetch multiple ifmap pixels in
the same column to multiply with all weights in 2D CONV
to exploit data reuse of ifmaps and weights. If we keep the
subtask scope within 2D CONV, there are also product terms
in the subtask that can be accumulated. In other words, there
is also space reuse available in 2D CONV. Therefore, related
product terms are added to reduce the required capacity of
the on-chip memories.
This article first introduces a sparse DNN processing

dataflow as an expansion of the dense dataflow in [32]. The
proposed sparse processing dataflow does parallel processing
within the (Co,Ho,Wo,Hw,Ww) dimensions to guarantee
the matching type as [a − a] in the PE. Under the tar-
get dimension, we further scale the processing range in the
(Co,Ho,Wo) dimensions to match various sizes of process-
ing tasks with a fixed number of multipliers inside a PE.
The processing dataflow guarantees that the subtask in the
PE is always [a− a] matching type.

Fig. 5 introduces a processing example in one PE with 8
multipliers following the proposed processing dataflow. The

148 VOLUME 2, 2021

FIGURE 5. The subtasks loaded into the registers always belong to [a − a] matching type. Only non-zero ifmap pixels and weights are loaded into a PE.

target convolution consists of three 3 × 3 weight matrices
for 3 different ofmap channels and a 4 × 4 ifmap matrix.
Different ofmap channels contain different number of non-
zero weights a, b, c, and d. First, all non-zero weights,
ifmap pixels and the index coordinates in 2D CONV are
stored in the COO format [33]. In addition, we store the
ofmap channel coordinates I, II, and III in the weight register.
The 8 multipliers are arranged as 2×4, where each set of
4 multipliers in the same row shares the same weight and
each set of 2 multipliers in the same column shares the same
ifmap pixel. Two weights are combined into one weight
group (WG) and four ifmap pixels are combined into one
ifmap group (IG). Once the data are loaded into registers,
MOSDA fetches two weights in one WG and 4 non-zero
ifmap pixels in one IG to fulfill all 8 multipliers per clock
cycle. We adopt ifmap stationary here to exploit data reuse
and space reuse. As shown in the right bottom of Fig. 5,
(WG0 / IG0), (WG1 / IG0), (WG0 / IG1), and (WG1 / IG1)
are processed sequentially.
When the product term is generated, we also compute

the index information of the product term in the COO for-
mat. The ofmap channel of the product term is the same
as the ofmap channel of the weight. Product terms in the
same row share the same ofmap channel coordinate. We
add product terms according to indexes of product terms in
the spatial addition stage. By utilizing indexes of product
terms, the spatial addition part shown in the right bottom of
Fig. 5 merges product terms with the same indexes through a
crossbar. For example, since there are two product terms that
have the same index (1,1) in the first step (WG0 / IG0), two
product terms are merged into one under the spatial addi-
tion stage. We store psum results from the spatial addition
stage into registers and wait for the temporal addition. Psum
results stored in registers are not always necessary for the

FIGURE 6. MOSDA architecture overview. The subtasks loaded into the registers
always belong to [a − a] matching type. All PEs share one global buffer for all kinds of
data.

following accumulation. For example, corner product terms
with the index (−1, 1) in Fig. 5 is unnecessary because the
index coordinates are out of the range of the output matrix.
In order to avoid the energy loss by useless multiplications,
the registers at the beginning of the temporal addition stage
shield the useless product terms. The temporal addition part
shown in the right above of Fig. 5 aims to further accumu-
late psums that can be accumulated between different clocks
according to crossbars and the psum register.
Through the proposed dataflow, MOSDA can utilize the

potential data reuse and space reuse of 2D CONV while
ensuring the matching type as [a−a]. Therefore, the method
can ensure the PE utilization while reducing the required
memory access and memory capacity.

IV. MOSDA ARCHITECTURE
A. ARCHITECTURE OVERVIEW
A MOSDA architecture overview is shown in Fig. 6. All
ifmap pixels and weights are stored in the off-chip memory.
On-chip buffers store data which can be accessed in the near
future to exploit data reuse and space reuse.

VOLUME 2, 2021 149

XU et al.: MOSDA: ON-CHIP MEMORY OPTIMIZED SPARSE DEEP NEURAL NETWORK ACCELERATOR WITH EFFICIENT INDEX MATCHING

TABLE 5. MOSDA design parameters.

MOSDA architecture can be scaled across a number of
dimensions. Table 5 introduces key parameters of MOSDA
in this article. MOSDA consists of 16 PEs, each with a 16
multiplier array. 16 multipliers in one PE can be arranged
as 16 rows × 1 column for processing of FC layers or 2
rows × 8 columns for other cases. Each row shares the
same weight, and each column shares the same ifmap pixel.
We store ifmap pixels and weights in 8 bit. Product terms
generated by multiplications are accumulated in 24 bit. When
the accumulation is finished, 24-bit psums are converted back
to 8-bit ofmap pixels and sent off-chip without coordinate
information. We do not use the COO format to store data
in the off-chip memory, since MOSDA is also intended for
dense DNN processing. Memories carry an 8-bit overhead to
encode the coordinate information for each value, which are
able to process operations with 16 × 16 matrix in parallel.
In the setup, if the sparsity is less than 50%, the data stored
under the COO format will take more storage space than the
data stored without the COO format. All data are transmitted
in the COO format on-chip in this article.

B. PARALLEL PROCESSING IN ONE PE
We exploit data reuse and space reuse, thereby reducing the
cost of data movement within the PE. We utilize a three-stage
pipeline architecture to reduce the critical path of the PE.

1) PARALLEL MULTIPLICATIONS

The main function of the first stage in the pipeline is parallel
data fetching and multiplications. In order to exploit the data
reuse and space reuse as much as possible, the dataflow
further processes DNN ifmap channel by ifmap channel in
the Ci dimension as an outer loop. In order to guarantee
the matching type as [a-a], the dataflow processes the task
ofmap channel by ofmap channel in the Co dimension as an
inner loop. If non-zero data inside one channel is not enough
to fulfill multipliers, MOSDA will fetch data from multiple
ofmap channels into one PE to maintain high PE utilization.
Fig. 5 is a case study that loads data for 3 ofmap channels,
since the number of operations is less than the number of
multipliers within one ofmap channel. This ensures that PE
utilization is not degraded because enough data is loaded
into the PE.
For parallel processing of FC layers, 16 multipliers are

configured into 16 × 1. All 16 multipliers share the same

ifmap pixel, and each multiplier has a unique weight. For
parallel processing of other cases such as convolutions,
multipliers are configured into 2 × 8. 2 multipliers in one
same column share the same ifmap pixel, and 8 multipliers
in one same row share the same weight. Once multiplications
are finished, MOSDA requires a crossbar logic to transmit
psums from multipliers to spatial adders as shown in Fig. 6.

2) PARALLEL ADDITIONS

One of the key issues in sparse DNN processing architecture
is high area/power overhead of accumulation due to irregular
output data [34], [35]. In this article, we reduce the psum
overhead by reducing psum register access by reserving a
spatial redundant addition network. Fig. 6 introduces the
psum accumulation logic in MOSDA, which is decomposed
into a spatial addition stage and a temporal accumulation
stage. The spatial addition stage aims to merge possible prod-
uct terms into one psum within one clock cycle. We compare
the indexes of all product terms with each other in the spatial
addition stage, and merge corresponding product terms with
the same index. The temporal accumulation stage further
accumulates psums among different clock cycles. Both stages
are controlled by coordinate information in index logics.
We merge the psums corresponding to the same ofmap

pixel under the same step through a spatial addition network,
thereby reducing the required psum register accesses. Due
to the irregular output issue, a 16 × 16 crossbar is required
between 16 product terms and 16 adders.
In the next temporal accumulation stage, we write merged

psums into psum registers according to the coordinate index.
Through the coordinate from the spatial addition stage, first
we read the corresponding psums in the registers. Next, we
add the read psums to the psums from the spatial addition
stage and store them in psum registers. Once all the oper-
ations in the current ofmap channel have been completed,
we write the psums back to the global buffer. Considering
the worst case, we need to write 16 psums into 64 psum
registers at the same time. Although this will cause a large
area overhead, it ensures the MOSDA processing speed.
In order to limit register accesses by generated psums,

we make the spatial addition and send psum results to psum
registers. Considering the space reuse existed under different
clock cycles, we continue to do the temporal accumulation
for product terms stored in psum registers to reduce the
required accesses to the global buffer.

C. DATA TRANSMISSION AMONG PES
Due to the scale limitation of the all-to-all transmission
network, the psum register capacity cannot be too large, thus
limiting exploiting the data reuse in a single PE. We ensure
that psum results of different PEs do not need to undergo
further accumulation operations since they belong to dif-
ferent ofmap channels. The number of ALUs for a single
PE is limited by its crossbar structure and cannot be large.
MOSDA can increase the number of PEs for achieving higher
throughput. As the number of PEs increases, throughput and

150 VOLUME 2, 2021

TABLE 6. MOSDA specifications.

power consumption will increase linearly. We use 16 PEs in
this article as our case study. Different PEs are responsible
for processing calculation tasks of different ofmap channels,
thereby improving overall processing speed. Please note that
a single PE may be responsible for multiple ofmap channels
if the number of operations corresponding to a single ofmap
channel is small compare to the number of multipliers in a
PE, which ensures to maintain high PE utilization.
The global buffer provides the required non-zero weights

and ifmap pixels to each PE sequentially. After data fetching
finishes, PEs do processing in parallel. Once processing tasks
in PEs are completed, each PE sequentially restores their
respective psum results back to the global buffer.
MOSDA is able to switch the data transmission mode

from sparse mode to dense mode to save energy overhead
due to coordinate information. When MOSDA is initial-
ized, information such as the size of the processing task
and whether it is sparse is stored in the on-chip logic con-
trol. In the dense mode, MOSDA no longer activates the
COO format converter or stores the coordinate information
of ifmap pixels and weights in the global buffer.

V. EXPERIMENTAL RESULTS
In this section, we verify the efficiency of MOSDA with
16 PEs by post-layout cycle-accurate gate-level simulations
under a 65-nm Silicon-on-Thin-Box (SOTB) process with
a 1.2 V supply voltage. The bandwidth between the global
buffer and PEs transmit 48 words once for weights and ifmap
pixels, or 24 words once for psums. The specifications are
summarized in Tab. 6. The peak throughput of MOSDA is
defined as the total throughput of processing elements, which
consists of 256 multipliers and 512 adders in total. Tab. 7
summarizes the energy of major logic components in a 1.2 V
supply voltage. All energy values except for on-chip SRAM
are based on the average values for one operation during
overall post-layout simulations. All hardware components
are built in the fixed-point representation. More specifically,
the energy cost of multipliers is collected by one multiplier,
which has 8-bit inputs and one 16-bit output. The energy
cost of adders is collected by one 16-bit adder for psum
accumulations. The energy cost of the crossbars is evaluated
by transmitting one 16-bit data through crossbars. The energy
consumption of the access to the global buffer is collected
from SRAM model in CACTI Ver. 7.0 [36] under a 65-nm
process with a 1.2 V supply voltage.

TABLE 7. Related energy consumption in convolution operations.

FIGURE 7. (A) MOSDA area breakdown. (B) Area breakdown in one PE.

FIGURE 8. Decomposition method of 1-dimensional convolution when stride is
larger than 1: In the case study, sizes of the ifmap pixel, the weight and the stride are
5, 3, and 2, respectively. When the stride is 2, the matching type will be [s − s].
Therefore, the convolution is decomposed into two smaller convolutions (a) and (b)
with matching types almost [a − a].

MOSDA logic part is evaluated from the post-layout
simulations. The data transmission Network-on-Chip (NoC)
consists of transmission logics between weight FIFO and
multipliers, logics between ifmap FIFO and multipliers, and
a crossbar between multipliers and spatial adders. The area
cost consumed by the crossbar is 85% of the total NoC area
cost. The area of the psum register consists of both regis-
ter cells and the crossbars to fetch data into registers. The
energy and area of MOSDA buffer part are collected from
CACTI model. Based on the code tracing logs, we calcu-
late the access activities of the global buffer. Combining the
activities and the physical SRAM data in Tab. 7, this article
simulates the energy consumption of the overall MOSDA
performance.
MOSDA core area is 12 mm2, which consists of a 192

KB on-chip SRAM buffer and the 16 PEs. The overall logic
gate count is 3066k NAND-2 gates. Fig. 7 (A) introduces
the area breakdown in MOSDA. The global buffer accounts
for 46.6% of the total core area. The control logic for data
transmission between the global buffer and PEs consumes
3.7% of the total core area. The COO format convertor is
included in the area breakdown of the control logic. The PE
composed of multipliers and registers accounts for 49.7% of

VOLUME 2, 2021 151

XU et al.: MOSDA: ON-CHIP MEMORY OPTIMIZED SPARSE DEEP NEURAL NETWORK ACCELERATOR WITH EFFICIENT INDEX MATCHING

FIGURE 9. (a) Normalized time consumption in dense and sparse benchmarks including Alexnet and Matrix Multiplications. (b) Normalized energy consumption in dense and
sparse benchmarks including Alexnet and Matrix Multiplications.

TABLE 8. Multiplier array utilization of MOSDA benchmarked with alexnet, and MobilNet that has batch size of 1 and matrix multiplications.

the total core area. Fig. 7 (B) introduces the reason for PE
area overhead. In order to ensure all generated product-terms
stored in registers in time, the psum register inside the PE
requires 16 read-write ports, which consume 42.8% of the
PE area. The accumulation overhead is the cost to handle the
irregular output of sparse DNN processing. Simultaneously,
the NoC (Crossbars) requires 22.1% of the PE area and the
index logic requires 16.7%. Both parts require a complex
data transmission logic to handle the unpredictable product
terms generated from multipliers.
We simulate the energy consumption of MOSDA under

various benchmarks including convolution layers, FC layers,
and matrix multiplications. The benchmarks are introduced in
Tab. 8, which consist of convolution layers and FC layers in
Alexnet [37], sparse Alexnet [23], MobileNet [6] with width
multiplier of 1.0 and input size of 224 × 224, correspond-
ing sparse Mobilenet with data from ImageNet dataset [38],
and two matrix multiplications by multiplying with itself in
SNAP [39]. The stride U of conv1 in Alexnet is 4. As a
result, the matching type between weights and ifmap pixels
in conv1 comes to be [s−s] since not all weights are required
to multiply with all ifmap pixels. To solve this issue, Fig. 8
introduces a decomposition method to convert the CONV
into multiple smaller CONVs as shown in Figs. 8 (a) and
(b). Small CONVs are all [a − a] matching types (except
the corner data). According to the decomposition method,
we are able to process convolution layer with stride more
than 1 with [a− a] matching type.

Tab. 8 also introduces the average PE utilization in various
benchmarks. PE utilization is the average ratio of multipliers
that handle meaningful multiplications when PE is required

to process operations. Note that the active rate of multipliers
under data transmission time among memories is not taken
into account. The key idea of MOSDA is to keep the match-
ing type in the PE subtask always as [a−a]. The corner data
in convolution processing does not have the matching type
[a-a], which is the main reason for the PE utilization loss.
As a result, the PE utilization of FC layer in Alexnet and
matrix multiplications are as high as 99.96% and 99.99%,
respectively. In CONV processing, although we assume that
the matching type in convolution processing is [a− a], the
actual situation is that the corner data of the ifmaps in the
convolution operation does not need to be multiplied by all
weights. Therefore, this assumption led to a slight decrease
of PE utilization in the sparse convolution processing, but
still maintained at 90.01% and 92.34% for sparse Alexnet
and sparse MobileNet, respectively.
Following the matching type of [a − a], MOSDA keeps

PEs always busy without redundant data fetching. Fig. 9
(a) shows the throughput comparison between MOSDA
architecture from the dense mode to the sparse mode
and a state-of-the-art dense processing architecture from
Reference [32]. Benchmarks include Alexnet and Matrix
Multiplications. The time consumption consists of process-
ing time by multipliers, and data transmission time from the
global buffer to registers in PEs. In order to make a fair
comparison, both architectures consist of the same number
of multipliers and the same on-chip bandwidth between the
global buffer and PEs. Meanwhile, the sparse mode achieves
7.0×, 11.4×, and 265.9× less time consumption than the
dense mode in Alexnet conv3, Alexnet FC1 and Wiki-Vote
Matrix Multiplication, respectively. The processing time is

152 VOLUME 2, 2021

TABLE 9. Comparison with the state-of-the-art DNN accelerators.

FIGURE 10. (a) Normalized time consumption in dense and sparse benchmarks including typical layers in MobileNet. (b) Normalized energy consumption in dense and sparse
benchmarks including typical layers in MobileNet.

dramatically decreased with high PE utilization. Among
all layers in dense Alexnet, data transmission between the
global buffer and PEs consumes 38.1% of the on-chip time
consumption. As we expected in sparse Alexnet, data trans-
mission between the global buffer and PEs comes to be
62.2% of the on-chip time consumption, which infers that
the time consumed by data transmission between the global
buffer and PEs is hard to be reduced despite matching types
inside the PE. The sparse mode achieves 5.3× better over-
all time reduction against the dense mode when processing
Alexnet. The throughput of MOSDA dense mode is the same
as the architecture in [32], since the number of multipliers
and the on-chip bandwidth is set to be the same.
Fig. 9 (b) introduces the energy efficiency under various

benchmarks. By considering sparsity, energy consumption
is also reduced. The sparse mode achieves 2.6×, 11.2×,
and 285.1× less energy consumption than the dense mode
in Alexnet CONV3, Alexnet FC1, and Wiki-Vote Matrix
Multiplication, respectively. Through the matching type
[a− a], MOSDA avoids redundant data movement from the
global buffer to PEs. According to the post-layout simulation,
the sparse mode’s energy efficiency is 1507.8 inferences/J
for sparse Alexnet. The sparse mode achieves 2.4× better
overall energy reduction against the dense mode, which is
624.1 inferences/J. Fig. 11 shows the on-chip energy break-
down when processing all layers in sparse Alexnet. 42.6%
of the energy is consumed in the access to the psum reg-
ister due to its complex read-write logic. The global buffer
consumes 30.9% of the energy. Crossbars to transmit data
inside the PE lead to 9.3% energy overhead. The control

logic including the COO format convertor consumes 3.7%
of the overall energy consumption. Leakage in MOSDA con-
sumes 1.0% of the overall energy consumption. As a cost
to ensure [a − a] matching type, reuse among ifmap chan-
nels is hard to be utilized by PEs, which brings an additional
number of global buffer accesses. Comparing with the archi-
tecture in [32], MOSDA requires additional on-chip memory
to store the coordinate information and the crossbar over-
head for irregular data access pattern. Therefore, the dense
mode of MOSDA suffers 1.4× larger energy overhead than
the architecture in [32] in Alexnet.
Fig. 10 (a) shows MOSDA throughput enhancement from

the dense mode to the sparse mode in several layers in
MobileNet. The sparse mode achieves 1.2×, 1.2× and 1.5×
less time consumption than the dense mode in MobileNet
pointwise conv layer 2, pointwise conv layer 13, and point-
wise conv layer 14, respectively. The data transmission
time between the global buffer and PEs dominates the
time consumption. Among all layers in dense MobileNet,
data transmission between the global buffer and PEs con-
sumes 83.0% of the on-chip time consumption. In sparse
MobileNet, data transmission between the global buffer and
PEs comes to be 95.5% of the on-chip time consumption.
The sparse mode achieves 1.3× better overall time reduction
against the dense mode when processing MobileNet.
Fig. 10 (b) introduces the energy efficiency of the sparse

mode under various benchmarks. By considering data reuse
and space reuse, energy consumption has also been reduced.
The sparse mode achieves 1.2×, 1.2× and 1.4× less energy
consumption than the dense mode in MobileNet pointwise

VOLUME 2, 2021 153

XU et al.: MOSDA: ON-CHIP MEMORY OPTIMIZED SPARSE DEEP NEURAL NETWORK ACCELERATOR WITH EFFICIENT INDEX MATCHING

FIGURE 11. On-chip energy breakdown in sparse Alexnet.

conv layer 2, pointwise conv layer 13, and pointwise
conv layer 14, respectively. The sparse mode’s energy effi-
ciency is 5173.9 inferences/J for sparse MobileNet, which
achieves 1.2× better overall energy reduction against the
dense mode as 4206.4 inferences/J when processing dense
MobileNet. The dense mode of MOSDA suffers 1.1× larger
energy overhead than the architecture in Reference [32] in
MobileNet.
Three state-of-the-art DNN accelerators [13], [18], [25]

are compared with MOSDA in Tab. 9. EIE [25] and
OuterSPACE [18] are specialized accelerators designed for
FC layers and matrix multiplications. Eyeriss v2 [13] is
an energy-efficient sparse CNN accelerator which is able
to process both FC layers and CONV layers. In order
to exploit more data reuse with PEs, Eyeriss v2 has the
[s − s] matching type in its scratchpad memories in each
PE. The evaluation results on several sparse neural networks
are introduced in Tab. 9. Based on the gate-level simula-
tion of sparse Alexnet, the average throughput of MOSDA
based [a− a] dataflow when processing the sparse Alexnet
is 315.3 inferences/second on average, which achieves 1.1×
better improvement with 256 multipliers than the [s − s]
dataflow with 384 multipliers. That is because the matching
type [a − a] allows MOSDA to skip zero data more effi-
ciently, thereby enhancing throughput. Similarly, although
MOSDA suffers from a large accumulation overhead, it still
achieves 1507.8 inferences/J, which has 2.1× better energy
efficiency than the [s − s] processing dataflow in sparse
Alexnet. The reason is divided into two parts. First, MOSDA
does not store many weights within registers in each PE,
which reduces the access energy to each register. Second,
[a − a] processing dataflow guarantees all loaded data in
registers generate meaningful results, thereby reducing the
number of data movement. We further utilize sparse Resnet-
50 [41] and sparse MobileNet v2 [42] with width multiplier
of 1.0 and input size of 224×224 with data from ImageNet
dataset to prove the effectiveness of MOSDA. According
to post-layout simulations, MOSDA achieves 493.1 infer-
ences/second and 839.9 inferences/second when processing
Resnet-50 and MobileNet v2, respectively. MOSDA achieves
2764.4 inferences/J and 5574.6 inferences/J when processing
Resnet-50 and MobileNet v2, respectively.
This article mainly focuses on the sparsity within one

frame, which is also called spatial sparsity. Besides the

spatial sparsity, there is also temporal sparsity among
frames [43]. If data rarely change over time, data is regarded
as temporarily sparse. A large number of data movement is
able to be reduced by utilizing temporal sparsity. MOSDA
is also available for the temporal sparsity since the matching
type over frames is also [a-a].

VI. CONCLUSION
This article proposes the processing property as the matching
type for the PE utilization issue in sparse DNN process-
ing. Focusing on three processing properties as the date
reuse, the space reuse and the matching type, this article
proposes an efficient general-purpose hardware accelerator
called MOSDA, which speeds up the processing by skipping
zero data without complex control logic in the sparse DNN
processing. According to our case study, MOSDA outper-
forms the state-of-the-art CNN accelerator with 1.1× time
reduction and 2.1× energy reduction in sparse Alexnet.

REFERENCES
[1] L. Yann, B. Yoshua, and H. Geoffrey, “Deep learning,” Nature,

vol. 521, no. 1, pp. 436–444, May 2015.
[2] K. Vissers, “Versal: The Xilinx adaptive compute acceleration platform

(ACAP),” in Proc. ACM/SIGDA Int. Symp. Field Programmable Gate
Arrays, New York, NY, USA, 2019, p. 83.

[3] Intel. (2019). Neural Compute Stick 2. [Online]. Available:
https://software.intel.com/en-us/articles/OpenVINO-RelNotes

[4] Google. (2019). Edge TPU. [Online]. Available:
https://cloud.google.com/edge-tpu/

[5] D. Silver et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 484, pp. 484–489, Jan. 2016.

[6] A. G. Howard et al., “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” 2017. [Online]. Available:
arXiv:1704.04861.

[7] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 1–9.

[8] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing
of deep neural networks: A tutorial and survey,” Proc. IEEE, vol. 105,
no. 12, pp. 2295–2329, Dec. 2017.

[9] B. L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and
hardware acceleration for neural networks: A comprehensive survey,”
Proc. IEEE, vol. 108, no. 4, pp. 485–532, Apr. 2020.

[10] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “UNPU:
A 50.6TOPS/W unified deep neural network accelerator with 1b-to-
16b fully-variable weight bit-precision,” Proc. IEEE Int. Solid-State
Circuits Conf. (ISSCC), 2018, pp. 218–220.

[11] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proc. ACM/IEEE 44th Annu. Int. Symp. Comput.
Arch. (ISCA), Jun. 2017, pp. 1–12.

[12] B. Moons and M. Verhelst, “An energy-efficient precision-scalable
convnet processor in 40-nm CMOS,” IEEE J. Solid-State Circuits,
vol. 52, no. 4, pp. 903–914, Apr. 2017.

[13] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A
flexible accelerator for emerging deep neural networks on mobile
devices,” IEEE Trans. Emerg. Sel. Topics Circuits Syst., vol. 9, no. 2,
pp. 292–308, Jun. 2019.

[14] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Arch.
(ISCA), Jun. 2016, pp. 1–13.

[15] Z. Du et al., “ShiDianNao: Shifting vision processing closer to the
sensor,” in Proc. ACM/IEEE 42nd Annu. Int. Symp. Comput. Arch.
(ISCA), Jun. 2015, pp. 92–104.

[16] S. Yin et al., “A 1.06-to-5.09 TOPS/W reconfigurable hybrid-neural-
network processor for deep learning applications,” in Proc. Symp. VLSI
Circuits, 2017, pp. C26–C27.

[17] M. Cho and D. Brand, “MEC: Memory-efficient convolution for deep
neural network,” 2017. [Online]. Available: arXiv:1706.06873.

154 VOLUME 2, 2021

[18] S. Pal et al., “A 7.3 M output non-zeros/J sparse matrix-matrix mul-
tiplication accelerator using memory reconfiguration in 40 nm,” in
Proc. Symp. VLSI Technol., Jun. 2019, pp. C150–C151.

[19] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and
connections for efficient neural network,” in Proc. Adv. Neural Inf.
Process. Syst.. 2015, pp. 1135–1143.

[20] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5MB model size,” 2016. [Online]. Available:
arXiv:1602.07360.

[21] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep con-
volutional neural networks,” J. Emerg. Technol. Comput. Syst., vol. 13,
no. 3, p. 32, Feb. 2017.

[22] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient convo-
lutional neural networks using energy-aware pruning,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2017, pp. 6071–6079.

[23] T. Zhang et al., “A systematic DNN weight pruning framework
using alternating direction method of multipliers,” in Computer
Vision—ECCV 2018. Cham, Switzerland: Springer Int. Publ., 2018,
pp. 191–207.

[24] G. Venkatesh, E. Nurvitadhi, and D. Marr, “Accelerating deep convo-
lutional networks using low-precision and sparsity,” in Proc. IEEE Int.
Conf. Acoust. Speech Signal Process. (ICASSP), 2017, pp. 2861–2865.

[25] S. Han et al., “EIE: Efficient inference engine on compressed deep
neural network,” in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput.
Arch. (ISCA), Jun. 2016, pp. 243–254.

[26] O. Moreira et al., “Neuronflow: A hybrid neuromorphic—Dataflow
processor architecture for AI workloads,” in Proc. 2nd IEEE Int. Conf.
Artif. Intell. Circuits Syst. (AICAS), 2020, pp. 1–5.

[27] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” Sep. 2014. [Online]. Available:
arXiv 1409.1556.

[28] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional neu-
ral networks,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[29] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[31] A. Parashar et al., “Timeloop: A systematic approach to DNN
accelerator evaluation,” in Proc. IEEE Int. Symp. Performance
Anal. Syst. Softw. (ISPASS). Madison, WI, USA, Mar. 2019,
pp. 304–315. [Online]. Available: https://doi.ieeecomputersociety.org/
10.1109/ISPASS.2019.00042

[32] H. Xu, J. Shiomi, and H. Onodera, “On-chip memory optimized CNN
accelerator with efficient partial-sum accumulation,” in Proc. Great
Lakes Symp. VLSI, Beijing, China, 2020, pp. 21–26.

[33] Y. Saad, SPARSKIT: A Basic Tool Kit for Sparse Matrix
Computations—Version 2, Natl. Aeronautics Space Admin. NASA,
Washington, DC, USA, 1994.

[34] A. Parashar et al., “SCNN: An accelerator for compressed-sparse
convolutional neural networks,” ACM SIGARCH Comput. Archit.
News, vol. 45, no. 2, pp. 27–40, Jun. 2017. [Online]. Available:
https://doi.org/10.1145/3140659.3080254

[35] Z. Yuan et al., “STICKER: An energy-efficient multi-sparsity compat-
ible accelerator for convolutional neural networks in 65-nm CMOS,”
IEEE J. Solid-State Circuits, vol. 55, no. 2, pp. 465–477, Feb. 2020.

[36] S. J. E. Wilton and N. P. Jouppi, “CACTI: An enhanced cache access
and cycle time model,” IEEE J. Solid-State Circuits, vol. 31, no. 5,
pp. 677–688, May 1996.

[37] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classi-
fication with deep convolutional neural networks,” in Advances in
Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds. Red Hook, NY, USA: Curran
Associates, Inc., 2012, pp. 1097–1105.

[38] O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vis. (IJCV), vol. 115, no. 3, pp. 211–252,
2015.

[39] J. Leskovec and R. Sosič, “SNAP: A general-purpose network analysis
and graph-mining library,” ACM Trans. Intell. Syst. Technol., vol. 8,
no. 1, p. 1, 2016.

[40] M. Zhu and S. Gupta, “To prune, or not to prune: Exploring the
efficacy of pruning for model compression,” 2018. [Online]. Available:
arXiv:1710.01878.

[41] T. Gale, E. Elsen, and S. Hooker, “The state of sparsity in deep neural
networks,” 2019. [Online]. Available: http://arxiv.org/abs/1902.09574.

[42] E. Elsen, M. Dukhan, T. Gale, and K. Simonyan, “Fast
sparse convnets,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR). Los Alamitos, CA,
USA, Jun. 2020, pp. 14617–14626. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/CVPR42600.2020.01464

[43] A. Yousefzadeh et al., “Asynchronous spiking neurons, the natural
key to exploit temporal sparsity,” IEEE J. Emerg. Sel. Topics Circuits
Syst., vol. 9, no. 4, pp. 668–678, Dec. 2019.

HONGJIE XU (Student Member, IEEE) received
the B.E. degree in microelectronics from the
University of Electronic Science and Technology
of China, Chengdu, China, in 2016, and the
M.E. degree in informatics from Kyoto University,
Kyoto, Japan, in 2019, where he is currently
pursing the Ph.D. degree with the Department
of Communications and Computer Engineering,
Graduate School of Informatics. Since 2019, he
has been a Research Assistant with Doctoral
Program for World-Leading Innovative and Smart

Education, Ministry of Education, Culture, Sports, Science and Technology.
His research interest includes energy-efficient VLSI system design.

JUN SHIOMI (Member, IEEE) received the B.E.
degree in electrical and electronics engineering,
the M.E. degree in communications and computer
engineering, and the Ph.D. degree in informat-
ics from Kyoto University, Kyoto, Japan, in 2014,
2016, and 2017, respectively. From 2016 to 2017,
he was a Research Fellow with the Japan Society
for the Promotion of Science. Since 2017, he has
been an Assistant Professor with the Department
of Communications and Computer Engineering,
Graduate School of Informatics, Kyoto University.

His research interests include modeling and computer-aided design for
low-power and low-voltage system-on-chips.

HIDETOSHI ONODERA (Fellow, IEEE) received
the B.E., M.E., and Dr.Eng. degrees in electronic
engineering from Kyoto University, Kyoto, Japan,
in 1978, 1980, and 1984, respectively. In 1983,
he joined the Department of Electronics, Kyoto
University, where he is currently a Professor with
the Department of Communications and Computer
Engineering, Graduate School of Informatics. His
research interests include design technologies for
digital, analog, RF LSIs, with particular emphasis
on low-power design, design for manufacturabil-

ity, and design for dependability. He served as the Program Chair and
the General Chair of ICCAD and ASPDAC. He was the Chairman of the
IPSJ SIG-SLDM (System LSI Design Methodology), the IEICE Technical
Group on VLSI Design Technologies, the IEEE SSCS Kansai Chapter, and
the IEEE CASS Kansai Chapter. He has served as the Editor-in-Chief for
IEICE Transactions on Electronics and IPSJ Transactions on System LSI
Design Methodology. He is an IEICE Fellow and a member of the Science
Council of Japan.

VOLUME 2, 2021 155

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

