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ABSTRACT This article addresses new applications of the generalized Mittag-Leffler input stability to
the fractional-order electrical circuits. We consider the fractional-order electrical circuits in the context of
the generalized Caputo-Liouville derivative. We propose the Lyapunov characterizations of the fractional
differential equations. A new numerical discretization, including the fractional differential equations rep-
resented by the generalized Caputo derivative, has been successfully applied to the fractional electrical
circuits. To support the results, we have proposed the graphics generated by our numerical discretiza-
tion. The graphics of the solutions have been analyzed and interpreted in the context of generalized
Mittag-Leffler input stability and the generalized Mittag-Leffler stability. The generalized Mittag-Leffler
input stability is a new stability notion for the fractional differential equations recently introduced in the
literature.

INDEX TERMS Generalized Caputo-Liouville operators, fractional order electrical circuits, generalized
Mittag-Leffler input stability.

I. INTRODUCTION

FRACTIONAL calculus is a new arena focusing in
many domains, like physics [16], [19], [23], [35], [37],

mechanics [23], fluid models [27], science and engineer-
ing [16], [24], mathematical modeling in biology [36],
mathematical physics [16], [17], [20], [30], mathematical
modeling [3], [31], [32], [33] and others [25], [29], [35].
The existence of many fractional operators constitutes the
primary importance of this field. There exist fractional oper-
ators with singular kernels and fractional operators with
no singular kernels. The Caputo and the Riemann-Liouville
derivatives [18] were the first derivatives introduced in this
field. These derivatives find many applications and continue
to attract many researchers. Later, to correct the incon-
venience of the Riemann-Liouville derivative, regarding it
unphysical initial condition, the Caputo-Fabrizio operator [2]
and the Atnagana-Baleanu operator [1] have been proposed.
For the applications of the fractional operators with exponen-
tial kernel and the Mittag-Leffler kernel, we advise readers
to check the following works [3], [4]. These recent years,
modeling electrical circuits using fractional operators have
been introduced in the literature. The motivations of these

introductions are due to the fact the fractional operators
describe more realistically the real-world problems, and
another reason is the fractional operators take into account
the memory effect. In other words, the next behaviors of
the model are explained by the past behavior of the model.
Presently, the deterministic RL, RC, LC, and RLC electrical
circuits have their fractional versions, and all the fractional
operators have been utilized in the mathematical modeling
of these circuits [7], [9], [21].
The literature of fractional order electrical circuits is rich.

We recall some of them. In [5], Elwakil proposes a study
on the electrical circuits in the context of the fractional-
order derivative; he experiments the numerical simulations
of these models in the context of fractional order oper-
ators. In [6], Petras introduces in fractional calculus the
fractional-order Chua’s electrical circuit where the elements
are electrical components. In [7], Sarafraz and Tavazoei pro-
pose an investigation on the realization of fractional-order
functions by passive electrical networks constituted by the
fractional capacitor and the RLC components. In [8], Rawdan
offers a stability analysis of the RLβCα system in the context
of the fractional operator. In [9], Gomez et al. have proposed
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work on the RLC electrical circuit with Caputo derivative
and have suggested the analytical solutions of the considered
models. In [10], Sarafraz and Tavazoei investigate on RLC
circuit by studying the passive realization of the fractional
impedances. In [11], Barbosa et al. in conference article
propose work concerning the fractional Van der Pol oscil-
lator represented by a fractional operator with singularity
as the Riemann-Liouville derivative, the Caputo operator.
In [12], Mitkowski and Skruch, in their article, study the
super-capacitors represented by fractional operators with RC
components. In [13], Calik and Sirin analyze the charge
variation in the LC circuit represented by fractional deriva-
tive as the Caputo-Liouville derivative. In [21], Sene and
Gomez-Aguilar have proposed the analytical solution of the
fractional-order RL, RC, LC, and RLC electrical circuits
by considering different types of fractional operators. For
more investigations related to electrical circuits in context of
fractional order derivative see in [48], [49], [50], [51], [52].
The stability analysis of the fractional differential equa-

tions occupies an essential place in control theory. In
the context of fractional calculus, there exist many sta-
bility notions as asymptotic stability, global asymptotic
stability, local stability, Mittag-Leffler stability, fractional
input stability, Mittag-Leffler input stability, and others. The
Mittag-Leffler stability of the equilibrium points of the frac-
tional differential equations is one of the most important
stability notions in fractional calculus, recently introduced
in the literature. The Mittag-Leffler stability has received
many investigations in these recent years. We cite some of
them. In [39], [40], Li et al. have introduced in fractional
calculus the Mittag-Leffler stability and have presented as
well its Lyapunov characterization. In [38], Ren et al. have
proposed the Mittag-Leffler stability and its generalization
of the fractional-order gene regulatory networks. In [41],
Wyrwas et al. have discussed and analyzed the Mittag-Leffler
stability of the fractional difference equations. Modeling the
electrical circuits with the recent and new fractional operators
has been addressed in this article. We mainly consider the
fractional-order RL, RC, LC, and RLC electrical circuits rep-
resented by the generalized Caputo-Liouville derivative. The
main objective is to analyze the generalized Mittag-Leffler
input stability of the considered fractional-order electrical
circuits. The numerical discretization of the fractional-order
differential equations represents an important part of frac-
tional calculus, due to the fact many models used in fractional
calculus are complex and determining the analytical solutions
are not simple problems. There exist many investigations
related to the numerical schemes of the fractional differ-
ential equations. In [44], Deng and Li give a review of
the existing numerical schemes for the fractional differen-
tial equations. In [45], Li and Zeng present the difference
methods for fractional differential equations. In [24], Sene
proposes the numerical scheme of the fractional diffusion
equations. For more investigations related to the numerical
schemes, see in the following paper and book [46], [47]. For
novelty, we offer a novel numerical scheme to approach the

solutions of the new fractional-order electrical circuits. The
discretization is based on the discretization of the fractional
Riemann-Liouville integral and Volterra equation. To support
our results, we represent graphically the solutions generated
by the proposed numerical scheme. And we analyze the
behaviors of the solutions in the context of the generalized
Mittag-Leffler input stability. Note that there exist two meth-
ods to focus on the generalized Mittag-Leffler input stability,
the trajectories, and the Lyapunov direct method. The impor-
tance of the Lyapunov direct approach can be explained by
the fact the analytical solutions of the fractional differential
equations are not all time trivial, and the Lyapunov functions
give alternative ways to study the stability notions.

II. BASIC DEFINITIONS OF FRACTIONAL OPERATORS
In this section, we recall the generalized fractional derivatives
operators utilized in fractional calculus, namely the fractional
integral in Riemann-Liouville sense, the general form of
the Caputo-Liouville derivative, and its associated Laplace
transform.
Definition 1 [14], [15]: The generalization of the

Riemann-Liouville integral of order α with κ > 0 of a
continuous function k : [0,+∞[ −→ R is described by the
following relationship

(
Iα,κk

)
(t) = 1

�(α)

∫ t

0

(
tκ − sκ

κ

)α−1

k(s)
ds

s1−κ
, (1)

where the function �(· · ·) represents the Gamma function,
for all t > 0, and 0 < α < 1.
Definition 2 [14], [15]: The generalization of the

Riemann-Liouville fractional operator of order α with κ > 0
of a continuous function k : [0,+∞[ −→ R is described by
the following relationship

(
Dα,κk

)
(t) =

(
t1−κ d

dt

)(
I1−α,κk

)
(t), (2)

where the function �(· · ·) denotes the Gamma function, for
all t > 0, and 0 < α < 1.
Definition 3 [15]: The generalization of the Caputo-

Liouville fractional operator of order α with κ > 0 of a
continuous function k : [0,+∞[ −→ R is described by the
following relationship

(
Dα,κ
c k

)
(t) = 1

�(1 − α)

∫ t

0

(
tκ − sκ

κ

)−α

k′(s)ds, (3)

where the function �(· · ·) denotes the Gamma Euler func-
tion, for all t > 0, and the fractional order satisfies
0 < α < 1.

We will use the Laplace transform to solve the fractional
differential equations. We define the Laplace transform of
the Caputo-Liouville generalized operator in the following
definition [14], [15].
Definition 4 [15]: The Laplace transform of the Caputo-

Liouville generalized fractional operator of a continuous
function k : [0,+∞[ −→ R is represented as the form

Lκ

{(
Dα,κ
c k

)
(t)

} = sαLκ {k(t)} − sα−1k(0), (4)
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with the Laplace transform of the function k : [0,+∞[ −→
R expressed as the following description

Lρ{k(t)}(s) =
∫ ∞

0
e−s

tρ
κ k(t)

dt

t1−κ
. (5)

Definition 5 [14], [15]: The Laplace transform of the
Riemann-Liouville generalized fractional operator of an
function k : [0,+∞[ −→ R is given by the relationship

Lρ

{(
Dα,κk

)
(t)

} = sαLρ{k(t)} −
(
I1−α,κk

)
(0). (6)

Definition 6 [15], [25]: In the following expression, we
give the definition of the Mittag-Leffler function with two
parameter, we have the following expression

Eα,β(z) =
∞∑

k=0

zk

�(αk + β)
, (7)

with α > 0, β ∈ R and z ∈ C. The exponential function is
obtained when the orders satisfy the condition represented
by α = β = 1.

III. GENERALIZED MITTAG-LEFFLER INPUT STABILITY
THEORY
In this section, we recall the theory related to the generalized
Mittag-Leffler input stability of the fractional differential
equations. We consider the class of the fractional differential
equations defined by

Dα,κ
c z = f (t, z, u), (8)

with the initial condition defined by the expression

z(0) = z0 = ξ. (9)

where z ∈ R
n. The function f : [0,+∞[ ×R

n ×R
m −→ R

n

is supposed to be locally Lipschitz and continuous. This
assumption ensures the existence of the solution of the
fractional differential equation defined by Eq. (8). For sim-
plification in the rest of this article the solution starting at
the initial condition z0 and with the input u will be repre-
sented by the function z(t) = z(t, z0, u). The function u is
called exogenous input, and its role is to take into account
all not declared phenomena, error terms in confectioning the
differential equations, or disturbances. It is also be called the
perturbation term. As we will notice, the solution of the frac-
tional differential equation defined by Eq. (8) depends on
the values of the input u.

The generalized Mittag-Leffler input stability aims to take
into account the following properties: the solution of the
Eq. (8) is bounded when the input is bounded and when
the input converges, the solution of the differential equa-
tion converges too. This properties can be rewritten using
comparison functions, that is

‖z(t)‖ ≤ β
(‖ξ‖, tκ) + γ (‖u‖). (10)

Note that the function β should be expressed by using the
Mittag-Leffler function which belongs to the class KL func-
tions [25], [26]. That is when we fix the first argument, the

function β decreases according to time, when tκ tends to
infinity. And when we fix the time, the function β is zero at
z = 0 and converge to infinity as z tends to infinity. We sum-
marize in the following sentence: β(s, .) is non increasing
function and tends to zero as its arguments tend to infinity
and β(., tκ ) is an increasing positive definite function.
The function γ belongs to a class K∞ function [25], [26],

that is γ (0) = 0 and γ tends to infinity when the s tends to
infinity.
We can observe these two functions describe as well the

properties contained in the generalized Mittag-Leffler input
stability. We notice when the input converges to zero, the
function γ converges to zero, which in particular implies the
state z admits as upper bound the function β(., tκ ). Thus,
the state z will converge as well because the function β(s, .)
is non increasing function and tends to zero as its arguments
tend to infinity. The described property is called converging
input converging state (CICS) for the rest of this article. The
same explanation is obtained when the input u is bounded.
In other words, bounded input generates a bounded state,
and we will represent it as the following abbreviation BIBS
property. Another important remark is when the input is
null, then when Eq. (8) admits z = 0 as a trivial equilib-
rium point this point is automatically global asymptotically
stable [25], [26], that is

‖z(t)‖ ≤ β
(‖ξ‖, tκ)

. (11)

We summarize the generalized Mittag-Leffler input stability
notion in the following definition.
Definition 7: The fractional-order differential equation (8)

described by the Caputo fractional derivative is said to be
generalized Mittag-Leffler input stable if, there exists a class
γ ∈ K∞ function such that for any initial condition ‖z0‖ =
‖ξ‖, its solution satisfies the following condition

‖z(t)‖ ≤
[
m(‖ξ‖)Eα

(
−η

(
tκ

κ

)α)]b
+ γ (‖u‖), (12)

where the constant b > 0, η > 0 and m is locally Lipschitz
with the condition m(0) = 0.

The Mittag-Leffler input stability can be extended with
the Caputo derivative, see in [25]. It also can be defined
using the Riemann-Liouville fractional derivative see in [28].
The first term of Eq. (12) depends on the used frac-
tional operator. For the Caputo derivative the first term
can be represented as β(‖ξ‖, t) = [m(‖ξ‖)Eα(−ηtα)]b.
We notice Eq. (12) is a generalization of the Mittag-
Leffler input stability described by Caputo derivative, see
in [22]. In the context of the Riemann-Liouville frac-
tional derivative, the first term of Eq. (12) take the form
β(‖ξ‖, t) = [m(‖ξ‖)tα−1Eα,α(−ηtα)]b. We can notice the
Mittag-Leffler function is multiplied by a function tα−1. In
conclusion, the definition of the Mittag-Leffler input stability
depends on the used fractional operator and can be extended
with all types of fractional operators.
For an understanding of this new stability notion, we

illustrate it by a simple linear example. Let the function
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f (t, z, u) = Cz+Bu, where C ∈ R
n×n is Hurwitz matrix and

B ∈ R
n×m, then we obtain the following

Dα,κ
c z = Cz+ Bu. (13)

The first procedure is to get the analytical solution of the
fractional differential equation. Utilizing the Laplace trans-
form to both sides of Eq. (13) we obtain the following
relationship

sα z̃(s) − z̃(0) = Cz̃(s) + Bũ(s),
(
sαI − C

)
z̃(s) = ξ + Bũ(s),

(
sαI − C

)−1
ξ + (

sαI − C
)−1

Bũ(s) = z̃(s). (14)

The inverse of the Laplace transform gives the solution of the
fractional differential equation (13) described by the relation

z(t) = ξEα

(
−C

(
tκ

κ

)α)
+ g(t, u) (15)

where

g(t, u) =
∫ t

0

(
sκ − tκ

κ

)α−1

Eα,α

(
−C

(
tκ

κ

)α)
Bu(s)ds.

The second step in the procedure is to apply the Euclidean
norm to both sides of Eq. (15), we follow the sketch
described in the following lines

‖z(t)‖ ≤ ‖ξ‖
∥∥
∥∥Eα

(
−C

(
tκ

κ

)α)∥∥
∥∥ + ‖B‖‖u‖‖I‖, (16)

where

I =
∫ t

0

(
sκ − tκ

κ

)α−1

Eα,α

(
−C

(
tκ

κ

)α)
ds.

The second term I is bounded when the matrix C is stable or
verify Matignon criterion, therefore we can rewrite Eq. (16)
as the following form

‖z(t)‖ ≤ ‖ξ‖
∥∥∥∥Eα

(
−C

(
tκ

κ

)α)∥∥∥∥ + ‖B‖‖u‖ε, (17)

where ε is the upper bound of the integral part I. We con-
sider the function β(‖ξ‖, tκ ) = ‖ξ‖‖Eα(−C( t

κ

κ
)α)‖, we can

observe when the constant ‖ξ‖ is fixed, then the function
β is a nonincreasing function and converges to zero when
the time t tends to infinity. The second, when we fix the
time, the function β is a positive definite function. Thus, we
can conclude the function β belongs to the class KL func-
tions. Let’s γ (‖u‖) = ‖B‖‖u‖ε is clearly a class K function.
Finally, we conclude that when the matrix C satisfies the
Matignon criterion, the fractional differential equation (13)
is generalized Mittag-Leffler input stable. Thus, Eq. (17)
satisfies the BIBS and the CICS properties. For example,
according to the above procedure, it is straightforward to
observe the fractional differential equation described by

Dα,κ
c z = −3z+ u, (18)

is generalized Mittag-Leffler input stable. One and famous
remark to take into account is, when BIBS property is not

verified, then the fractional differential equation will not
be generalized Mittag-Leffler input stable. For example, we
consider the fractional differential equation defined by

Dα,κ
c z = −3z+ zu, (19)

does not satisfy the BIBS property, for example, when we
consider a constant exogenous input u = 4, then Eq. (19)
can be rewritten as the following form

Dα,κ
c z = z, (20)

which explodes when the time tends to infinity. These two
examples explain clearly what is the generalized Mittag-
Leffler input stability. Since the introduction of this new
stability notion, its Lyapunov characterizations have been
introduced. We have two methods to characterize the gen-
eralized Mittag-Leffler input stability in terms of Lyapunov
functions. We recall them in the following lemmas.
Lemma 1 [28]: Assume the existence of positive function

W : R+×R
n −→ R continuous and differentiable, and three

functions belonging to a class K∞ functions, there are �1,
�2, and �3, obeying to the following relationships:

1) ‖z‖a ≤ W(t, z) ≤ �1(‖z‖).
2) If for any ‖z‖ ≥ �2((|u|)) =⇒ Dα,κ

c W(t, z) ≤
−�3((‖z‖)).

where a is non-negative constant. Then the fractional equa-
tion (8) under Caputo-Liouville derivative is generalized
Mittag-Leffler input stable.
But the utilization of the Lemma 1 is not all time

possible. Alternatively, another Lyapunov characterization
was proposed to solve this issue; we recall this second
characterization in the following Lemma.
Lemma 2 [28]: Assume the existence of positive function

W : R+ ×R
n −→ R continuous and differentiable, and two

functions belonging to a class K∞ of functions, there are
the functions �1, the function ζ , satisfying the following
assumptions:

1) ‖z‖a ≤ W(t, z) ≤ �1(‖z‖).
2) Dα,κ

c W(t, z) ≤ −kW(z, t) + ζ(‖u‖).
where a and k are non negative constants. Then fractional
equation (8) under generalized Caputo-Liouville derivative
is generalized Mittag-Leffler input stable.
Note that for quadratic functions the following identity

will have much importance in the use of the Lyapunov
functions, we have [25], [28], [41], [43]

Dα,κ
c z2 ≤ zDα,κ

c z. (21)

The illustrations of these two Lemmas will be done when
we investigate on the generalized Mittag-Leffler input sta-
bility of the RL, LC, RC, and RLC electrical circuits. Note
that the use of the Lyapunov function comes from the incon-
veniences to get the analytical solutions of many classes of
fractional differential equations. The inconvenience of these
two lemmas are the construction of the Lyapunov functions,
which are not trivial in many circumstances.
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IV. APPLICATIONS TO THE FRACTIONAL-ORDER RL,
RC, LC AND RLC ELECTRICAL CIRCUITS
The generalized Mittag-Leffler input stability is a new sta-
bility notion and can be applied in the electrical circuits,
due to the fact the RL, RC, LC, and RLC electrical circuits
can be expressed like Eq. (14). In this section, we apply the
generalized Mittag-Leffler input stability and the generalized
Mittag-Leffler stability to the fractional-order RL, RC, LC,
and RLC electrical circuits using Lyapunov direct method. In
other words, we construct an appropriate Lyapunov function
for a considered fractional differential equation. We begin
this section by the fractional-order RL circuit represented by
the equation

Dα,κ
c z = −R

L
z+ u, (22)

where R denotes the resistance, and L is the inductance. Here
z measures the intensity across the inductor into the electri-
cal circuit. We will use two methods; the first will permit to
prove the generalized Mittag-Leffler input stability using the
characterization in Lemma 1. The method particularly called
θ -method. The second method will consist of proving the
generalized Mittag-Leffler stability using Lemma 2. We will
first experiment with the θ -method. Let’s the Lyapunov can-
didate function defined by V(z) = z2/2. Applying Lemma 1,
and calculating the generalized Caputo-Liouville derivative
of the Lyapunov function along the trajectories, we get the
following form

Dα,κ
c V(z) ≤ zDα,κ

t z,

= z

[
−R

L
z+ u

]
,

= −R

L
z2 + zu,

≤ −R

L
(1 − θ)z2 − R

L
θz2 + zu, (23)

where θ ∈ (0, 1). From Eq. (24), we have the following
relationship

−R

L
θz2 + zu ≤ 0 =⇒ Dα,κ

t V(z) ≤ −R

L
(1 − θ)z2.

Applying the Euclidean norm, we arrive at the following,
when ‖z‖ ≥ Lθ‖u‖

R then Dα,κ
t V(z) ≤ −R

L (1 − θ)z2. Under
Lemma 1, we conclude the fractional-order RL electrical
circuit described by Eq. (22) is generalized Mittag-Leffler
input stable. To see this conclusion, more precisely, the read-
ers can follow the following procedure. Let λ = R

2L (1 − θ),
thus we obtain the following

‖z‖ ≥ Lθ‖u‖/R =⇒ Dα,κV(z) = −λV(x) − m(t), (24)

where m is a positive and continuous function. Applying the
Laplace transform, we obtain the following relationship

‖z‖ ≥ Lθ‖u‖
R

=⇒ sαṼ(s) − sαV(0) = −λṼ(s) − m̃(s),

‖z‖ ≥ Lθ‖u‖
R

=⇒ Ṽ(s) = − V(0)

sα + λ
− m̃(s)

sα + λ
. (25)

Applying the inverse of the Laplace transform to the left hand
of Eq. (25), we get the following relationship by neglecting
the negative term we get

‖z‖ ≥ Lθ‖u‖
R

=⇒ za(t) ≤ V(t) ≤ V(0)Eα

(
−λ

(
tκ

κ

)α)
,

‖z‖ ≥ Lθ‖u‖
R

=⇒ za(t) ≤ V(0)Eα

(
−λ

(
tκ

κ

)α)
, (26)

where a is a positive constant number, Eq. (26) is another
representation of the generalized Mittag-Leffler input stabil-
ity of the fractional-order RL electrical circuit. The second
Lemma can be utilized using the following procedure; we
have that

Dα,κ
c V(z) ≤ −R

L
z2 + zu,

= −R

L
z2 + z2

2
+ u2

2
,

= −
[
R

L
− 1

2

]
z2 + u2

2
. (27)

Under the condition, R
L > 1

2 , then using Lemma 2, the
fractional-order RL electrical circuit is generalized Mittag-
Leffler input stable. We observe from Eq. (27), the exogenous
input u = 0, the Lyapunov characterization is given by

Dα,κ
c V(z) ≤ −R

L
z2, (28)

which corresponds to the Lyapunov characterization of the
generalized Mittag-Leffler stability of the trivial equilib-
rium point z = 0. The same procedure can be applied for
the fractional-order RC electrical circuit. We continue our
investigations with the fractional-order RC electrical circuit
represented by the equation

Dα,κ
c z = − 1

RC
z+ u, (29)

where C denotes the capacitance, and R is the resistance.
Here z measures the voltage across the capacitor.We consider
the Lyapunov candidate function defined by V(z) = z2/2.
We apply the identity (21) again, and we calculate the gen-
eralized Caputo derivative to the Lyapunov function along
the trajectories of (29), we get the following form

Dα,κ
c V(z) ≤ zDα,κ

t z,

= z

[
− 1

RC
z+ u

]
,

= − 1

RC
z2 + zu,

≤ − 1

RC
(1 − θ)z2 − 1

RC
θz2 + zu. (30)

Using Eq. (30), we have the following relationship

− 1

RC
θz2 + zu ≤ 0 =⇒ Dα,κ

t V(z) ≤ − 1

RC
(1 − θ)z2.

We apply the Euclidean norm, we arrive at the following,
when ‖z‖ ≥ RCθ‖u‖ then Dα,κ

t V(z) ≤ − 1
RC (1−θ)z2. Under
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Lemma 2, we conclude the fractional-order RC electrical
circuit described by Eq. (29) is generalized Mittag-Leffler
input stable. To see this conclusion, readers can follow the
following procedure. Let λ = 1

2RC (1 − θ), thus we obtain

‖z‖ ≥ RCθ‖u‖ =⇒ Dα,κV(z) = −λV(x) − m(t), (31)

where m is a positive and continuous function. Applying the
Laplace transform, we obtain the following relationship

‖z‖ ≥ RCθ‖u‖ =⇒ sαṼ(s) − sαV(0) = −λṼ(s) − m̃(s),

‖z‖ ≥ RCθ‖u‖ =⇒ Ṽ(s) = − V(0)

sα + λ
− m̃(s)

sα + λ
. (32)

Applying the inverse of the Laplace transform to the left hand
of Eq. (32), we get the following relationship by neglecting
the negative term we get

‖z‖ ≥ RCθ‖u‖ =⇒ za(t) ≤ V(t) ≤ V(0)Eα

(
−λ

(
tκ

κ

)α)
,

‖z‖ ≥ RCθ‖u‖ =⇒ za(t) ≤ V(0)Eα

(
−λ

(
tκ

κ

)α)
, (33)

where a is a positive constant number, Eq. (33) is another
representation of the generalized Mittag-Leffler input stabil-
ity of the fractional-order RC electrical circuit. We continue
with the fractional order LC circuit, but we use the trajectory
to prove the generalized Mittag-Leffler input stability. Let’s
the fractional-order LC electrical circuit defined by

Dα,κ
c z = − 1√

LC
z+ u, (34)

where C denotes the capacitance, and L represents the induc-
tance. Here z measures the intensity across the inductor. For
simplification, we replace in Eq. (13) the matrix Cr = − 1√

LC
and B = 1, we obtain the following analytical solution

z(t) = ξEα

(
− 1√

LC

(
tκ

κ

)α)
+ g(t, u). (35)

where

g(t, u) =
∫ t

0

(
sκ − tκ

κ

)α−1

Eα,α

(
− 1√

LC

(
tκ

κ

)α)
u(s)ds.

The second step in the procedure consists of applying the
Euclidean norm to both sides of Eq. (35), we follow the
sketch described in the following lines

‖z(t)‖ ≤ ‖ξ‖
∥∥∥∥Eα

(
− 1√

LC

(
tκ

κ

)α)∥∥∥∥ + ‖u‖‖I‖, (36)

where

I =
∫ t

0

(
sκ − tκ

κ

)α−1

Eα,α

(
− 1√

LC

(
tκ

κ

)α)
ds.

The second term of the integral is bounded when the matrix
− 1√

LC
is stable or satisfies the Matignon criterion. Therefore,

we can rewrite Eq. (36) as the following form

‖z(t)‖ ≤ ‖ξ‖
∥∥
∥∥Eα

(
− 1√

LC

(
tκ

κ

)α)∥∥
∥∥ + ‖u‖ε, (37)

where ε is the upper bound of the integral part of Eq. (36).
Let the function β(‖ξ‖, tκ ) = ‖ξ‖‖Eα(− 1√

LC
( t

κ

κ
)α)‖. Thus,

we can conclude the function β belongs to a class KL
functions. Let γ (‖u‖) = ‖u‖ε is clearly a class K∞ func-
tions. Finally, we conclude that when the matrix Cr satisfies
Matignon criterion, then the fractional-order LC electri-
cal circuit equation (34) is generalized Mittag-Leffler input
stable.
We finish this section by providing conditions under which

the fractional-order RLC electrical circuit is generalized
Mittag-Leffler input stable. Let’s the fractional differential
equation defined by the equation

Dα,κ
c z1 = z2

L
,

Dα,κ
c z2 = − z1

C
− R

L
z2 + u, (38)

Let’s the Lyapunov candidate function defined by V(z) =
1
2 z

2
1 + 1

2 z
2
2. The Caputo-Liouville generalized derivative of

the Lyapunov candidate function along the trajectories gives

Dα,κ
c V(z) ≤ zDα,κ

t z,

≤ z1z2
L

− z1z2
C

− R

L
z22 + z2u. (39)

The first assumption is when the values L = C, the Lyapunov
characterization in Eq. (39) can be represented by the
following inequality

Dα,κ
c V(z) ≤ −R

L
z22 + z2u,

≤ −
[
R

L
− 1

2

]
z22 + u2

2
. (40)

Using Lemma 2, we observe when R
L > 1

2 and, in addition
L = C, then the fractional-order RLC electrical circuit (38)
is generalized Mittag-Leffler input stable.
In our last example, we consider more complex lin-

ear fractional differential equation defined by the following
equation

Dα,κ
c

⎛

⎝
z1
z2
z3

⎞

⎠ = A

⎛

⎝
z1
z2
z3

⎞

⎠ + B

(
u1
u2

)
, (41)

where the matrix A is given by the following form

A =
⎛

⎜
⎝

−R1+R2
L1

R2
L1

0
R2
L2

−R2+R3
L2

R3
L2

0 R3
L3

R3
L2

⎞

⎟
⎠, (42)

the matrix B is given by the following form

B =
⎛

⎜
⎝

1
L1

0
0 0
0 1

L3

⎞

⎟
⎠, (43)

and the exogenous input is represented by the form

u =
(
e1
e2

)
. (44)
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FIGURE 1. Circuit diagram.

The diagram of the circuit is represented in Figure 1 and
can be found in [53]. To do not lost generality, we suppose
the values of the resistances R1,R2, and R3 are given, and
the matrix A satisfies the Matignon criterion. We consider
L2 and L2 are constants. For more simplification, we pose
u = (u1, u2) and z = (z1, z2, z3). Thus, Eq. (41) can be
written as the following form

Dα,κ
c z = Az+ Bu. (45)

Let the Lyapunov candidate function defined by V(z) =
zTPz, where ATP + PA = −Q and P is positive, sym-
metric, square definite matrix. Applying Caputo generalized
fractional derivative along the trajectory of Eq. (45), we have

Dα,κ
c V(z) ≤ zTPDα,κ

c z,

= [Az+ Bu]TPz+ zTP[Az+ Bu],

= zT
(
ATP+ PA

)
z+ 2uTBTz,

≤ −λmin(Q)‖z‖2 + 2λmax(P)‖u‖‖B‖‖z‖, (46)
where λmin(Q) is minimum eigenvalue of the matrix Q and
λmax(P) is maximum eigenvalue of the matrix P. We set
θ ∈ (0, 1) and k = 2λmax(P)‖B‖

λmin(Q)−θ
and γ (r) = kr. Thus, if

‖z‖ ≥ γ (‖u‖), then
Dα,κ
c V ≤ −θ‖z‖2.

From Lemma 1, we conclude the fractional differential
equation (45) is generalized Mittag-Leffler input stable. In
conclusion, the necessary and sufficient condition for the
generalized Mittag-Leffler input stability of fractional dif-
ferential equation (45) is the matrix A should satisfy the
Matignon criterion given by | arg(λ(A))| > απ/2 and the
input u should be bounded and convergent.

V. NUMERICAL DISCRETIZATION AND THE FIGURES
WITH INTERPRETATIONS OF THE FRACTIONAL-ORDER
CIRCUITS
In this section, we propose a novel numerical discretization
of the fractional-order differential equations described by
the generalized Caputo-Liouville derivative. To support our
results, we aim the graphical representations. This issue will
help us to avoid the problem of getting the analytical solu-
tions of the electrical circuits. The generalized Mittag-Leffler
input stability and the generalized Mittag-Leffler stability
will be illustrated by the convergence of the solutions to the

trivial equilibrium points. The first remark is to observe the
resolution of the fractional differential equation in terms of
the generalized Riemann-Liouville integral can be obtained
as the following form

z(t) = ξ + Iα,κ f (t, z, u). (47)

The second step is to evaluate the above Eq. (47) at the point
tn and by simple manipulation, and neglecting the eventual
typo errors in writing the expression, we get the following
relationship

z(tn) = ξ + Iα,κ f (tn, z, u). (48)

The main idea in the rest of the discretization is the use the
discretization of the generalized Riemann-Liouville integral
I = Iα,κ f (tn, z, u) given by the following expression

I = 1

�(α)

n−1∑

j=0

∫ tj+1

tj

(
tκn − sκ

κ

)α−1

f (s, z(s), u(s))
ds

s1−κ
,

= κ1−α

�(α)

n−1∑

j=0

∫ tj+1

tj

s1−κ

(
tκn − sκ

)1−α
f
(
s, zj, uj

)
ds,

= κ1−α

�(α)

n−1∑

j=0

f
(
s, zj, uj

) ∫ tj+1

tj

s1−κ

(
tκn − sκ

)1−α
ds,

= κ1−α

α�(α)

n−1∑

j=0

[(
tκn − tκj

)α −
(
tκn − tκj+1

)α]
f
(
tj, zj, uj

)
. (49)

Using the grid point tn = (nh)1/κ , where h denotes a constant
step-size. After simple calculations, we arrive at

Iα,κ f (tn, z, u) = hα
n∑

j=1

cn−jf
(
tj, zj

)
, (50)

where cn−j = ((n − j + 1)α − (n − j)α)/ κ1−α

�(1+α)
and cn =

((n+ 1)α − (n)α)/ κ1−α

�(1+α)
. The next step is to use the first-

order interpolant polynomial of the function f (τ ) given by
the following expression

f (τ ) = f
(
tj+1, zj+1

) + τ − tj+1

h

[
f
(
tj+1, zj+1

) − f
(
tj, zj

)]
.

(51)

The numerical discretization of the generalized fractional
integral will be given after recursive calculations by the
following relationship

Iα,κ f (tn, z, u) = hα

⎡

⎣c̄(α)
n f (0) +

n∑

j=1

c(α)
n−jf

(
tj, zj, uj

)
⎤

⎦, (52)

where the parameters in the previous equation are described
as the following form

c̄(α)
n = (n− 1)α − nα(n− α − 1)

κα−1�(2 + α)
, (53)
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and when the indices follow the following natural values
n = 1, 2, . . . , the previous parameter is expressed by

c(α)
0 = 1

κα−1�(2 + α)

and c(α)
n = (n− 1)α+1 − 2nα+1 + (n+ 1)α+1

κα−1�(2 + α)
. (54)

Now replacing Eq. (52) into Eq. (48) we obtain the following
implicit discretization, that is

z(tn) = ξ + hα

⎡

⎣c̄(α)
n f (0) +

n∑

j=1

c(α)
n−jf

(
tj, zj, uj

)
⎤

⎦. (55)

Let’s the approximate solution z(tn) of the Eq. (8), and we
suppose zn is the exact solution of the Eq. (8). The error
estimation exists in the numerical discretization. Thus the
residual function with κ = 1 for the implicit discretization
is given by the following function

|z(tn) − zn| = O
(
hmin{α+1,2}). (56)

The implicit discretization converges as well when the
parameter h converge to 0. Another remark is the stabil-
ity of the numerical discretization follows from the fact the
functions f is Lipschitz continuous, which is assumed at the
beginning of this article. The above discretization will be
adapted in the context of the fractional-order RL, LC, RC,
and RLC electrical circuits. Before continuing the resolution,
we will fix the values of the parameters.
Let’s the fractional-order RL electrical circuit defined by

the following equations

Dα,κ
c z = −R

L
z+ u, (57)

where the input u is given by the function u = E0
L . The

function f (t, z, u) = −R
L z + u and z(0) = ξ = 1. The dis-

cretized form of the fractional-order RL electrical circuit can
be expressed in the following form

z(tn) = ξ + hα

⎡

⎣c̄(α)
n f (0) +

n∑

j=1

c(α)
n−jf

(
tj, zj, uj

)
⎤

⎦, (58)

where

f
(
tj, zj, uj

) = −R

L
zj + E0

L
. (59)

To analyze the generalized Mittag-Leffler input stability of
the fractional-order RL electrical circuit, we fix the order
to α = 0.95. We suppose R = 50�, L = 100H, and we
compute in Figure 2, the solutions with three different val-
ues of the exogenous inputs E0 = 0 (yellow line), E0 = 5
(red line) and E0 = 10 (blue line). We notice all the tra-
jectories converge to the trivial equilibrium point, but this
convergence is conditioned by the converge of the exoge-
nous input. Thus we note clearly by observing the Figure 2
the fractional-order RL electrical circuit respects as well the
property BIBS. This is the generalized Mittag-Leffler sta-
bility of the electrical circuit model (57). Finally, we can

FIGURE 2. Dynamics of the solutions of RL electrical circuit.

FIGURE 3. Dynamics of the solutions of RC electrical circuit.

conclude the fractional-order RL electrical circuit is gener-
alized Mittag-Leffler stable. Furthermore, with E0 = 0, we
also observe the trivial equilibrium z = 0 is generalized
Mittag-Leffler stable.
Let’s the fractional-order RC electrical circuit defined by

the following fractional differential equation

Dα,κ
c z = − 1

RC
z+ u, (60)

where the input u is given by the function u = E0
RC . The

function f (t, z, u) = − 1
RC z + u and z(0) = ξ = 0. The

discretized form of the fractional-order RC electrical circuit
(60) can be expressed in the following form

z(tn) = ξ + hα

⎡

⎣c̄(α)
n f (0) +

n∑

j=1

c(α)
n−j

(
− 1

RC
zj + E0

RC

)
⎤

⎦. (61)

We fix the order α = 0.95. We assume R = 0.8�, C = 0.5F,
and we consider in Figure 3, the graphical representations
with different values of the inputs which are E0 = 1 (yellow
line), E0 = 5 (red line) and E0 = 10 (blue line). We notice
all the solutions converge to a constant number γ (u) = E0.
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FIGURE 4. Dynamics of the solutions of LC electrical circuit.

Let’s the fractional-order LC electrical circuit defined by
the following fractional differential equation

Dα,κ
c z = − 1√

LC
z+ u, (62)

where the input u is given by the function u = E0
L . The

function f (t, z, u) = − 1√
LC
z + u and z(0) = ξ = 0. The

discretized form of the fractional-order LC electrical circuit
(62) can be expressed in the following form

z(tn) = ξ + hα

⎡

⎣c̄(α)
n f (0) +

n∑

j=1

c(α)
n−j

(
− 1√

LC
zj + E0

L

)⎤

⎦.

(63)

We fix the order α = 0.95. We assume L = 100mH,
C = 0.15F, and we consider in Figure 4, the graphical
representations with different values of the inputs which are
E0 = 1 (yellow line), E0 = 5 (red line) and E0 = 10 (blue
line). We notice all the solutions increase and converge to
the constant number γ (u) = E0C when the time tends to
infinity.
We finish by the fractional-order RLC circuit under gen-

eralized Caputo-Liouville derivative defined by the double
fractional differential equations

Dα,κ
c z1 = z1

L
,

Dα,κ
c z2 = − z1

C
− R

L
z2 + u, (64)

where the input u is given by the function u = E0
RC .

Here we consider two different functions f (t, z, u) = z1
L

and g(t, z, u) = − z1
C − R

L z2 + u. Using the numerical
discretizations, we obtain the following schemes

z1(tn) = ξ1 + hα

⎡

⎣c̄(α)
n f (0) +

n∑

j=1

c(α)
n−j

(
1

L
z1j

)
⎤

⎦,

z2(tn) = ξ1 + hα

⎡

⎣̄c(α)
n g(0) +

n∑

j=1

c(α)
n−j

(
− z1j
C

− Rz2j
L

+ uj

)⎤

⎦.

FIGURE 5. Dynamics of the solutions of RLC electrical circuit.

We fix the order to α = 0.95. We assume R = 1,
L = 0.45mH, C = 0.45F, and we consider in Figure 5, the
graphical representation with the value of the input given by
E0 = 0. We depict the solution in two dimensional space.

The trajectories oscillate around the equilibrium point,
but for a long time, we observe these oscillations converge
to zero. We conclude finally, the trivial equilibrium of the
fractional-order the RLC electrical circuit (64) is generalized
Mittag-Leffler stable.

VI. CONCLUSION
This article has focussed on the generalized Mittag-Leffler
input stability and the numerical discretization of the
fractional-order electrical circuits. The generalized Mittag-
Leffler input stability has been provided using the trajectory
method and by constructing the adequate Lyapunov func-
tion. The generalized Caputo-Liouville fractional operator
was used in the investigations. To support the results of this
article, the graphical representations have been proposed.
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