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ABSTRACT This paper aims to reduce the power consumption of electrocardiography based wearable
healthcare devices, by introducing power reduction approaches and considerations at system level design,
where we have the highest potential to influence power. It focuses, in particular, on algorithm design and
implementation, data acquisition, and transmission under constrained resources. A thorough investigation
of the suitability of nine existing algorithms for on-sensor QRS feature detection is conducted, with respect
to metrics such as sensitivity, positive predictivity, power consumption, parameter choice and time delay.
Optimisation of data acquisition on CPU-based IoT systems is performed, and the current consumption is
reduced by a factor of 3 using a combination of direct memory access (DMA) list approach and low-level
register manipulations for task delegation. The acquisition data rate, sampling rate, buffer and batch size
are also optimised. To reduce the power consumption by data transmission, the effect of on-sensor versus
off-sensor processing is investigated. While focusing on CPU-based systems with experiments performed
on a generic low-power wearable platform, the design optimisation and considerations proposed in this
work could be extended to custom designs and allow further investigation into QRS detection algorithm
optimisation for wearable devices.

INDEX TERMS Bluetooth low energy, direct memory access, Internet of Things, on-chip processing,
QRS detection, wearable sensors.

I. INTRODUCTION

N RECENT years, an increasing amount of effort has been

devoted to developing real-time wearable cardiac moni-
toring devices, as they offer greater mobility and enable
early detection of cardiovascular diseases as compared to
traditional ambulatory Holter monitors. Through constant
monitoring, these wearable devices can detect cardiac rhythm
disorders before the disease deteriorates, allowing treatment
at the pre-clinical stage which not only increases the chance
of complete recovery but also curbs mounting healthcare
expenditure. Currently, the detection of cardiac diseases

relies on identifying, extracting and analysing the features
of each heartbeat event from the person’s electrocardiogram
(ECQG) signal.

There are three main events in typical ECG signals: the P
wave, the QRS complex, and the T events, the duration and
frequency of which suggest cardiac conditions. Compared to
P and T events, the automatic detection of the QRS complex
is found to be comparatively easier and more reliable, and
therefore carries greater clinical significance [1]. As a result,
extensive algorithms on QRS detection have been developed
and enhanced, with the focus being improving the detection
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accuracy and the robustness against commonly experienced
noises such as power line interference [2], baseline drift [3],
electrode noise and motion artefacts [3], [4]. Multimodal
fusion techniques were developed to optimise the accuracy
in case discontinuous or noisy data [5]. In [6], convolu-
tional neural network based machine learning techniques
were proposed to optimise the QRS detection accuracy. A
dynamic plosion index based algorithm which doesn’t require
a manual threshold and can automatically adapt to input sig-
nal characteristics is presented in [7]. All the above works
focus on improving accuracy of QRS detection in a noisy set-
ting. However, numerical efficiency and power consumption
are of secondary concern, as these algorithms are mostly
designed for hospital settings, with high-speed processors
and power supply readily available.

However, as the idea of remote and proactive health-
care gains popularity, emerging wearable technology is being
actively employed in the health industry for self-monitoring
of medical conditions. Unlike clinical equipment, wearable
platforms are constrained by computational capability, and
ultimately by power and battery capacity. Keeping the power
consumption as low as possible would extend the battery
life of a wearable device and thus enable longer continuous
monitoring, thereby avoiding interruptions in ECG data col-
lection and patient care. Although there are several attempts
at developing low complexity QRS detection algorithms,
there is very little attention to reducing system level power
for embedded wearable applications. In [8], a lightweight
min-max technique is proposed for complexity reduction. An
algorithm combining matched filtering and Hilbert transform
is proposed in [9] for QRS detection. In [10], a lightweight
fast fourier transform (FFT) based algorithm is proposed for
wearable smartvest application. Reference [11] presents a
modular low complexity algorithm for real-time embedded
systems. Except [11], none of the other techniques presents
an embedded implementation and there is little focus on
embedded power reduction techniques.

A typical wearable ECG device consists of three main
functional blocks — sensing front-end for the acquisition of
digitised ECG signals, a processing unit for feature extrac-
tion, and wireless transmitter for uploading the data [12].
The solutions presented in this paper applies to a typical
Internet of Things (IoT) embedded wearable sensor with
a highly integrated 2-chip solution. Here, a chipset such
as TI ADS1292R which integrates a variable gain ampli-
fier (VGA), analog to digital converter (ADC) and a serial
interface could be used for biomedical data acquisition. Also,
a System-on-Chip (SoC), such as Nordic Semiconductor
nRF 52 series which integrates a Bluetooth transceiver
and a micro-controller could be used for biomedical data
processing and wireless transmission. This paper investi-
gates power consumption at data acquisition, processing, and
transmission stages on the IoT wearable sensor, and pro-
poses techniques and design recommendations to reduce the
system power consumption. The paper approaches this issue
on system design level for potentially higher influence on
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power consumption [13]. The data acquisition and transmis-
sion design choices allow for better power-delay balancing.
Adopting power-efficient data processing (i.e., QRS detec-
tion) algorithm design and implementation allows for generic
power reduction while largely meeting the performance
requirements for wearable applications. The techniques intro-
duced in this paper has broader relevance for wearable ECG
devices, whether CPU-based or custom designed [14], [15].
In the case of a fully custom hardware implementation of
biomedical processing in the data acquisition chip itself,
the power consumption of various algorithms reported in
Table 4 gives an indication of the comparative computational
complexity and power consumed in a fully hardware mode.

At the data acquisition stage, traditional direct memory
access (DMA) and DMA list based solutions are imple-
mented and compared in terms of power consumption.
The influences of Serial Peripheral Interface (SPI) clock
frequency, ECG signal sampling rate and DMA buffer list
size are taken into consideration. Based on the results
and analysis, an optimal way to acquire data over SPI is
proposed. At the data processing (i.e., QRS detection) stage,
the performance-power consumption trade-off analysis is
conducted for nine popular QRS peak detection algorithms,
which is critical in evaluating their performance and suit-
ability for battery-operated devices. Parameter choices and
time delay (i.e., suitability for real-time applications) are also
considered. Such trade-off analysis is crucial, as the majority
of existing QRS detection algorithms were designed for hos-
pital settings where power consumption is not an important
factor, whereas reasonable compromises in QRS detection
performance with respect to power need to be made prior to
their deployment on wearable devices. This analysis would
help in optimising a QRS detection algorithm for wear-
able devices. The essentiality of on-board QRS detection
for power reduction is also experimentally illustrated.

The paper is organised as elaborated below. Followed by
the introduction, literature related to general QRS detection
methodology, types of noises affecting ECG recordings, and
selected QRS detection algorithms are presented. Section II
discusses the methodology used for this work. Section III
discusses the optimisations used for data acquisition. The
next two sections present the optimisation for data process-
ing, transmission, and experimental results of this paper. In
particular, Section IV discusses comparison and optimisation
for data processing. Section V details the data transmission
stage while comparing the results of on-board processing and
raw data transmission over Bluetooth Low Energy (BLE).
This paper concludes with Section VI which discusses poten-
tial future work proposed to encourage further contributions
in this field.

Il. METHODOLOGY

This section presents the evaluation metrics for QRS
detection algorithms and elaborates on how these met-
rics are measured in this study, both quantitatively and
qualitatively.
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FIGURE 1. Block Diagram of the Hardware Platform.

A. EVALUATION METRICS

As this paper examines the power consumption of data
acquisition, processing (i.e., QRS detection) on chip with
respect to the performance of feature extraction and trans-
mission, it is essential to define several common metrics
and benchmarks so that a fair and reasonable comparison
study/trade-off analysis could take place.

In this work, metrics for algorithm evaluation are cho-
sen to be 1) power consumption, 2) sensitivity of QRS
peaks, 3) positive predictivity of QRS peaks, 4) parame-
ter choice (i.e., versatility), 5) time delay. While metrics
2-4 are good qualitative and quantitative representations of
algorithm performance, metrics 1 and 5 examines the suit-
ability of an algorithm on wearable platforms which calls for
low power consumption and real-time response. Using them
together would allow a thorough trade-off analysis among
the nine algorithms selected.

B. POWER CONSUMPTION MEASUREMENT

To measure the power consumption, a hardware platform
is set up to simulate the typical wearable wireless ECG
device architecture, as shown in Fig. 1. An ECG simulator
works as an ECG signals source, and Texas Instruments’
ADS1292R breakout board acts as an analog front-end
which filters and digitises the ECG signals. We opted for
ADS1292R as it supports two channel ECG acquisition
along with bio-impedance for respiratory rate estimation.
Nordic Semiconductor’s nRF52 Development Kit nRF52-
DK acquires digitised ECG data from the analog front-end
via SPI, extracts the QRS complexes and transmits use-
ful data over BLE. The only serial interface supported by
ADS1292R is SPI and therefore this interface was chosen for
data. SPI DMA and SPI DMA List are mechanisms whereby
the SPI transfer is controlled by a DMA controller instead
of the host CPU in nRF52832. The nRF52- DK houses an
nRF52832 SoC which is built around 64 MHz ARM Cortex-
MA4F CPU with 512 KB Flash and 64 KB RAM and has
and integrated BLE 5.0 transceiver. The reason for choos-
ing nRF52832 was its high level of integration with BLE
and MCU into a single chipset along with the availability
of a floating-point unit which helps in the implementing
complex signal processing techniques. The BLE receiver in
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Fig. 1, is an additional board containing the same Nordic
Semiconductor’s nRF512832 SoC.

The power consumed by the nRF52832 SoC is measured
using Nordic Semiconductor’s Power Profiler Kit (PPK)
nRF6707 which plugs directly onto the nRF52-DK. The PPK
measures current from 1 pA to 70 mA and gives a detailed
picture of the current profile. The PPK provides the real-
time current measurement results on a desktop application
with a resolution down to 13 ws. In this paper, all current
measurements refer to the average current consumption of
the nRF52832 SoC only when supplied with 2.85 V. The
experimental measurement setup is illustrated in Fig. 2.

C. SENSITIVITY & POSITIVE PREDICTIVITY
MEASUREMENT
The performance of a QRS detection algorithm is mea-
sured quantitatively by two metrics: sensitivity and positive
predictivity. Sensitivity measures the percentage of correct
QRS detections among all QRS complex in the database,
calculated as Sensitivity = TP/(TP + FN), where TP rep-
resents the number of true positives and FN the number
of false negatives. Positive predictivity, on the other hand,
measures the percentage of correct QRS detections among
all QRS complex reported by the algorithm. It is calculated
as Positive Predictivity = TP/(TP + FP), where FP denotes
the number of false positives (i.e., normal ECG data points
incorrectly classified as QRS complex by the algorithm).
This paper uses MIT-BIT Arrhythmia Database [16] from
PhysioNet [17], which is a collection of 48 two-channel
Holter ECG recordings, each 30 minutes long, with a sam-
pling frequency of 360 SPS and a resolution of 11 bits.
Artefacts that commonly exist in clinical settings, as well
as arrhythmia with significant variation in ECG features are
represented in the excerpts, so as to best emulate the practical
scenarios. Manual annotations are done for all recordings.
To obtain numerical values for these two metrics, each
QRS detection algorithm is implemented in MATLAB in
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real-time, and tested against MIT-BIH database. The average
values of sensitivity and positive predictivity of all record-
ings are calculated and taken as the quantitative performance
indicator of the algorithm.

D. VERSATILITY & TIME DELAY APPRAISAL

A closer look at QRS detection algorithms reveals that some
parameters such as threshold ratio are almost always deter-
mined empirically, based on the algorithm performance in
a particular database. This poses questions on whether the
algorithm itself is indeed able to perform well in another
database or a real-life scenario of notably different charac-
teristics. By analysing how the parameters are determined
and how much influence they have on the performance of a
particular algorithm, the versatility of that algorithm could
be inferred.

Time delay determines whether an algorithm is suitable for
real-time application on an SoC, and is calculated by study-
ing each individual QRS detection algorithm. For example,
an algorithm with a higher-order FIR filter implies a larger
time delay, and a decision rule involving more knowledge
of future values results in longer lag time.

lll. DATA ACQUISITION OPTIMISATION

The data acquisition stage continuously senses, collects and
digitises ECG waves on the human body, and then passes
the data to the processing stage via communication proto-
cols such as Serial Peripheral Interface (SPI). This section
explores the optimal dynamic memory access (DMA) SPI
implementation, acquisition frequency, and buffer size, as
well as their influence on power consumption.

The nRF52832 SoC is utilised as a CPU-based wearable
device that acquires digitised ECG data from ADS1292R via
SPI, with the former being SPI master and latter the slave.
Upon initialising both devices and configuring ADS1292R to
data streaming mode, the slave device will pull down its Data
Ready pin every time a new conversion data is available,
i.e., every sample interval of ADS1292R. The corresponding
pin on the master device (i.e., nRF52832 SoC) acts as an
interrupt source. Every time the Data Ready pin transitions
to low, the SoC has to acquire 9 bytes of data (24 status
bits + 24 bits x 2 channels) from ADS1292R via SPI.

In the DMA approach, once the SoC detects a falling edge
on the interrupt pin, the interrupt handler will be invoked
and the SoC will initiate reading of 9 bytes from ADS1292R
via SPI. The SPI data transfer task is delegated to a DMA
module on the SoC, which receives and stores SPI data into
a DMA buffer in its RAM. The CPU itself is put into sleep
mode during SPI data transfer. However, CPU has to incre-
ment the DMA buffer pointer and then initiate data transfer
every time interrupt occurs to avoid overwriting previous
data. Note that in this approach, the master CPU wakes up
every time a new sample is available.

In the DMA list approach, every time the SPI data trans-
fer is initiated, DMA automatically increments its DMA
buffer pointer by 9 bytes, and the CPU doesn’t have to do it
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TABLE 1. Current consumption by DMA and DMA list approach at different sampling
rates.

Sampling Rate

Approach
125 SPS 250 SPS 500 SPS 1000 SPS
DMA 20.6 pA 38.5 vA 71.6 pA 86.1 uA
DMA List 8.3 nA 12.9 pA 21.7 pA 38.0 pA
TABLE 2. Current consumption at different SPI data rates.
1 Mbps 2 Mbps 4 Mbps 8 Mbps
43.6 p)A 266 hMA 173 pA 129 pA

manually. Besides, the SoC provides programmable periph-
eral interconnect (PPI) which enables peripherals to interact
autonomously with each other using tasks and events inde-
pendent of the CPU. Using the capability, PPI is employed
to connect the interrupt event to the SPI data transfer task.
Since SPI data transfer is now automatically initiated every
time the interrupt occurs due to PPI, and the SPI DMA
automatically increments its DMA buffer pointer every time
due to the DMA list feature, and there is no involvement
of the CPU. The CPU itself remains in sleep mode during
this, and wakes up for DMA buffer pointer reset only upon a
counter interrupt when a pre-defined amount of data has been
collected. This approach is efficiently implemented using
GPIOTE, SPIM, PPI and TIMER modules of the nRF52832
SoC.

Table 1 demonstrates the current measurements of data
acquisition by the two approaches at different sampling rates
with a fixed DMA buffer list size of 1000 samples and SPI
data rate of 8 Mbps.

Based on the observations from Table 1, data acquisition
by the DMA list approach consumes less than half the current
consumed by DMA approach, due to task delegation and
more efficient CPU utilisation. Therefore, it is intuitive to
conclude that the DMA list approach is a power-efficient
means for data acquisition via SPIL.

The influence of SPI data rate on power consumption with
fixed DMA buffer list size of 1000 samples is investigated
as demonstrated in Table 2.

From Table 2, it is evident that higher data rates result in
efficient data acquisition, primarily due to the reduced time
spent in data acquisition. Thus, the maximum possible data
rate of 8 Mbps is chosen for the rest of the experiments.

To examine the influence of sampling rate and DMA
buffer list size on power consumption, current measurements
with respect to different DMA buffer list sizes and sampling
rates are summarised in Table 3 with 8 Mbps SPI data rate
employing DMA list approach.

According to Table 3, there is no significant influence on
power consumption due to changes in DMA buffer list size,
possibly because there is no data processing involved at this
stage after acquisition of these samples. No signal processing
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TABLE 3. Current consumption at different DMA buffer list sizes and sampling rates.

Sampling DMA Buffer List Size

Rate 500 1000 1500 2000
125 SPS 85uA  83uA  S8OpA 82 pA
250 SPS 133 pA  129pA 127 pA 139 pA
500 SPS 219 pA 217 pA 219 pA 226 pA
1000 SPS 372 uA 380 pA  382pA 381 pA

algorithms were running on the CPU, for the power num-
bers reported in Tables 1, 2, and 3. It is intuitive to say that
processing the whole DMA buffer after data acquisition will
result in higher current consumption at lower DMA buffer
list sizes. On the other hand, a higher buffer list size will
result in considerable RAM usage besides an increased delay
in the processing outcome. Therefore, with the above con-
siderations, a buffer size of 1000 samples x9 bytes/sample
is chosen.

It could also be observed that there is a non-linear increase
in current consumption due to data acquisition when the
sampling rate increases, due to the frequent engagement of
the peripherals and CPU. But lowering the sampling rate
will result in loss of data which may influence the accuracy
of QRS detection algorithms.

IV. COMPARISON AND OPTIMISATION OF DATA
PROCESSING

Nine QRS detection algorithms based on amplitude thresh-
olding & first derivative, first & second derivative,
Okada, Pan-Tompkins, Hamilton-Tompkins, Hilbert trans-
form, mathematical morphology, linear prediction, and digi-
tal filters have been reproduced using MATLAB to the best
of our understanding and implemented on nRF52832 SoC,
which helps in obtaining the relative performance and power
consumption at different sampling rates for each of the nine
algorithms. Together with parameter choice and time delay,
they are summarised in Table 4, which will be scrutinised
in detail in later sections.

A. DISCUSSIONS ON CHOICE OF SAMPLING RATE

To visualise how the sampling rate of ECG signals could pos-
sibly influence the sensitivity of QRS detection algorithms
in general, the sensitivity measurements of each algorithm
presented in Table 4 are summarised into the two-line charts
below in Fig. 3.

From observation, most of the algorithm line graphs peak
at 250 SPS, indicating that the number of QRS peaks cor-
rectly identified by them reaches its maximum when the
ECG data is being sampled at 250 SPS. There are exceptions
when algorithms based on amplitude thresholding & first
derivative, first & second derivative, and linear prediction
are employed. While the algorithm based on the first & sec-
ond derivative has the best sensitivity at 500 SPS, the rest
two works best at 1000 SPS.
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TABLE 4. Measurements summary of different QRS detection algorithms.

Sam- . +ve
lin Sensi- Predi- Curr-
Algorithm % & tivity .. ent Parameter ~ Delay
ate (%) ctivity (uA)
(SPS) @ "
Amplitude 125 8.7 902 152
Thresh-
olding & 250 874 89.5 274 5 5
First 500 881 889 505
Derivative
[3] 1000 88.2 82.5 95.7
. 125 71.2 93.4 10.0 .
First & primary
Second 250 91.6 97.3 185 g, 5
Derivative 500 96.3 942 3.9  secondary
[1] [18] B
1000 95.8 88.8 58.7
125 93.1 99.7 23.1
Okada 250 954 997 432
M = 6) B, M 12
[19] 500 884  97.8 841
1000 78.9 95.0 161.0
125 96.3 94.5 37.3
Pan-
250 99.2 99.7 60.2
Tompkins B, N 2;\‘/ /_'2—
[20] 500 98.1 99.1 182.9
1000 98.2 95.6 474.0
125 94.6 94.7 40.0
Hamilton-
250 99.4 99.7 86.4
Tompkins B, N 2;\1, /;
[21] 500 98.7 99.2 2035
1000 96.3 95.7 527.4
125 98.5 99.1 30.1
Hilbert 250 989 987 554 P Kaiser
Transform Window M/2
[22] [23] 500 98.9 97.2 108.0  Size (M)
1000 98.7 91.5 210.5
. 125 97.4 91.7 39.7
Mathematical 8
- 250 98.2 99.1 77.3 ’
Morphol structure 32
?zgz] 500 97.3 96.3  150.5  clement
1000 96.1 87.8 2959
125 96.6 90.0 21.0
Linear 250 983 961 426 5.
Prediction B, N N2
[25] 500 98.5 984 1132
1000 98.6 97.3 311.7
125 92.1 87.7 53.1
Digital 250 998 979 1044
Filters ’ ' 4B dﬁlt‘er 45
[26] 500 99.4 99.3 2064  orders
1000 99.3 96.8 401.3

3 = Threshold Ratio, M = Filter Window Size,
N = Moving Average Window Size

Sensitivity is not the sole indicator of a particular algo-
rithm’s QRS detection performance. Before we proceed to
analyse further, the effect of sampling rate on the positive
predictivity of each of the nine algorithms is presented as.
Fig. 4 visualises such a comparison, in a similar way.

Of the nine algorithms, five peaks at 250 SPS, two peaks
at 125 SPS, and the other two peaks at 500 SPS. Among
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FIGURE 4. Positive Predictivity vs Sampling Rate of Different QRS Detection
Algorithms.

the four algorithms whose best positive predictivity does not
occur at 250 SPS, three of them demonstrate the second-
best positive predictivity values at 250 SPS. Besides, six out
of the nine algorithms have the best or second-best positive
predictivity at 500 SPS, while only three have it at 125 SPS.
The algorithm based on linear prediction is the only one that
has the second-best positive predictivity at 1000 SPS.

Based on the measurements summarised in Table 4, power
consumption surges as the sampling rate increases. Coupled
with the observations from Fig. 3 and 4, sampling at
1000 SPS should almost always be avoided, as it has a
low performance at significant power consumption.

QRS detection performances are comparable at 250 SPS
and 500 SPS, with slightly better detection results observed
at 250 SPS. Besides, sampling at 250 SPS consumes
much less power as compared to the case at 500 SPS,
which makes 250 SPS a more favourable sampling rate for
implementation.

One would expect the QRS detection techniques to
have higher detection performance at a higher sampling
rate. There are two reasons for the reduction in detection
performance at a higher sampling rate. Firstly, the various
parameters in these algorithms are optimised by the respec-
tive authors with 360 Hz MIT-BIH database. These algorithm
parameters have to be re-worked based on the sampling
rate used for optimal performance. This study was focused
on analysing the power efficiency of techniques presented,
and therefore re-working the algorithm parameters, such as
threshold values and filter parameters are considered out
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of scope for this work. Secondly, the accuracy numbers
are calculated using MIT-BIH database re-sampled at dif-
ferent frequencies. Since this database is originally sampled
at 360Hz, re-sampling it to higher speed doesn’t add any
new information in the data.

At 125 SPS, power consumption is at the lowest and most
ideal scenario. However, choosing such a low sampling rate
risks having an insufficient amount of data for an accurate
ECG signal representation, which could potentially compro-
mise an algorithm’s QRS detection performance. Therefore,
other than for systems designed for non-critical usage and
with power consumption as its major constraint, sampling at
125 SPS is not recommended. The power numbers given in
Table 4 excludes the power consumed by the data acquisition
chip, ADS1292R. Due to the integration of multiple com-
ponents and its implementation characteristics, ADS1292R
consumed roughly the same current at different sampling
rates.

B. DISCUSSIONS ON OPTIMISATION OF QRS
DETECTION ALGORITHMS

Based on the comparative study done previously, sampling
at 250 SPS delivers the most ideal QRS detection results at a
reasonably low cost of current consumption, among the four
sampling rates examined. Therefore, in this comparison, the
characteristics of each individual algorithm is studied with
the sampling rate fixed at 250 SPS.

From Table 4, it is observed that the QRS detection
algorithm based on Hamilton-Tompkins method, which is
an improved version of Pan-Tompkins’, achieves sensitivity
and positive predictivity of over 99%, ranking first in terms
of feature extraction performance at 250 SPS among all
nine algorithms. Its performance indicator values are slightly
higher than its predecessor’s, but so does the current con-
sumption. The delay introduced by these two algorithms,
though, is relatively high as compared to their counterparts.

It is also observed that both Hilbert transform based
algorithm and linear prediction based algorithms manage
to deliver reasonably good detection measurements (consid-
ering non-representative strange abnormalities exists in the
MIT-BIH database at times), with lower current consump-
tion. One characteristic that the two algorithms share is that
they both collect data into segments of certain lengths and
only conduct data processing by batches, as opposed to the
implementation of other algorithms which processes by data
points. It could be possible that processing by batch would
be more power-efficient, but this needs further investigation.

Compared to the current consumed by the detection algo-
rithm based on amplitude thresholding & first derivative,
the one based on first & second derivative is observed to
draw less current, despite having a slightly more complicated
enhancement stage. This is likely due to its less complicated
QRS detection stage where only one conditional statement is
required for each iteration. The same applies to algorithms
based on Pan-Tompkins and Hamilton-Tompkins methods.
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FIGURE 5. Data Format for ECG Signal Samples.

The latter has a detection stage involving more compre-
hensive conditional statements, and thereby drawing higher
current.

V. OPTIMISATION OF DATA TRANSMISSION

The data is wirelessly transmitted over BLE as it is a low
energy wireless protocol. The hardware platform acts as
GAP (Generic Access Profile) peripheral and GATT (Generic
Attribute Profile) server whereas the BLE receiver is a GAP
central and GATT client. To enable transmission of large
amounts of data efficiently, a custom Nordic UART Service
(NUS) is used. NUS is provided by Nordic Semiconductor
and emulates a UART / serial port over BLE. NUS allows
up to 244 bytes of useful data to be transmitted in a sin-
gle packet over BLE. The PHY is set to 2 Mbps and the
connection interval to 400 ms. The ECG data is acquired
using SPI at a data rate of 8 Mbps, a sampling rate of
250 SPS and DMA buffer list size of 1000 employing DMA
list approach. The ECG data is processed and/or sent every
4 seconds (= 1000 samples/250 SPS).

Firstly, the off-board processing case is simulated where
the processing is performed only after receiving the data
wirelessly. The whole ECG signals are sent directly over
BLE without being processed, i.e., without running any QRS
detection algorithm. Each ECG signal sample is a signed
24-bit number, so an ECG sample value along with a single
byte header takes four bytes in a BLE packet as shown
in Fig. 5. One BLE packet of 244 bytes contains 61 such
samples. Thus, it takes 17 BLE packets with 16 packets of
244 bytes and the last packet of 96 bytes size to transmit
1000 samples of the ECG signal.

In the second scenario, ECG data is processed using Pan-
Tompkins algorithm to detect peaks of the R waves and
eventually the RR interval averages. In this case, only the RR
interval averages are transmitted. Pan-Tompkins algorithm is
chosen out of all the QRS detection algorithms as it achieves
excellent performance without drawing considerable current
at 250 SPS. In Pan-Tompkins algorithm, two RR interval
averages are maintained; one is the average of the eight
most recent beats and the other is the average of the eight
most recent beats having RR intervals that fall within certain
limits [20]. The data packet in this case consists of a single
byte header and two bytes each of the two RR interval
averages as shown in Fig. 6. Thus, it takes a single BLE
packet of only 5 bytes of data to transmit the processed
outcome.

Power overhead of these two transmission approaches with
respect to BLE is given in Table 5.
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O0x7E || 0xXX | 0xXX || 0xXX | 0xXX
1 Byte | MSB LSB , MSB LSB
Header | RR Average 1 RR Average 2

FIGURE 6. Data Format for RR Interval Averages.

TABLE 5. Current consumption and time taken with respect to BLE.

. Time
Scenario Current
Processing ~ Transmission Total
No BLE 60.2 pA 25.9 ms 0 259 ms
ECG signal sent  91.9 pA 0 259 ms 259 ms
RR interval sent  73.1 pA 25.9 ms 20ms 279 ms

Based on the values in Table 5, it takes 25.9 ms to process
1000 samples of ECG signals using Pan-Tompkins algorithm
while consuming just 60.2 pA of current. Transmitting only
the RR interval averages over BLE results in slight increase
in the current consumption and time. On the contrary,
when all the 1000 samples of ECG signals are transmitted
over BLE, it consumes a considerable amount of current.
Therefore, it is evident that on-sensor processing results
in improved power efficiency of wearable sensor designs.
The BLE transmission power is automatically controlled
by the default firmware of nrf52 chipset. The transmit-
ter and receiver boards were placed approximately one
meter apart during the measurement. The power difference
between transmission of ECG signal and RR interval would
potentially be even greater for a higher BLE transmission
power.

A plethora of works have been reported in literature
regarding development wireless wearable sensors for health
monitoring [27], [28], [29], [30], [31]. One of the main focus
in existing works is to accurately record and display the data.
In [27], a wearable sensor which can record seismocardio-
gram, single lead ECG is developed. TI ADS1291 and an
accelerometer was used for collecting single lead ECG and
activity data and an ATMEL micro-controller was used for
data processing. There was no support for wireless trans-
mission. The work focused on data collection and accuracy
of recording and didn’t report any power optimisation tech-
niques. A low-power wearable ECG monitoring system for
remote patient monitoring is reported in [28]. A TI ADS1246
chip is used as the ECG frontend and a Freescale MC13224
is used for Zigbee wireless transmission. A number of design
optimisations including data compression is implemented for
power reduction. The authors report a power consumption
of 12 mW and 160 hours of lifetime for the sensor dur-
ing continuous operation. In [29], a low power wrist worn
ECG monitor is proposed. This design uses discrete op-
amps for data acquisition, an ADX362 accelerometer and a
TI CC2650 for BLE transmission. The system was optimised
for low power by directing sensor data over BLE advertise-
ment channel. For continuous ECG transmission at 128Hz,
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the system consumes an average current of 9 mA which is
way higher than what is measured in our work. A portable
tele-ECG monitoring system is proposed in [30]. The design
uses discrete op-amps for data acquisition and filtering and a
TI CC2650 SoC for BLE transmission. The work focuses on
establishing the accuracy of the measured data and reports a
power consumption of 1.85 mA at 250 Hz sampling. In [31],
an integrated wearable sensor platform for neonatal moni-
toring is reported. The work uses a graphene based flexible
material for electrodes. A TI MSP430 micro-controller for
data conversion and processing and TI CC2564 for BLE
transmission. The design reports a battery life of 8 hours
using a 600 mAH battery. It can be seen that the main focus
in existing works is to accurately record and display the data.
Compared to the existing literature on the topic which focus
on overall system design and data accuracy, this work dis-
cussed and established several power optimisation strategies
for IoT embedded wearable sensors.

VI. CONCLUSION

This paper investigates techniques and algorithms to reduce
the power consumption of wearable ECG devices. We
explore potential optimisations in the data acquisition, pro-
cessing, and transmission stages. An ECG data acquisition
using the DMA list approach is proposed, which reduces
the current consumed during ECG data acquisition over SPI
by a factor of three over the traditional DMA approach at
250 SPS. By comparison studies, it is noted that the higher
SPI data rate results in more energy-efficient data transfer.
Also, the non-linear increase in current consumption with
increasing ECG signal sampling rate is affirmed. Besides,
it is noted that the DMA buffer list size has no significant
effect on power consumption.

The paper also conducts a thorough comparative study
of nine selected QRS detection algorithms. The algorithms
are implemented and compared with respect to sensitiv-
ity, positive predictivity, current consumption, parameter
choice, delay, and potential deficiencies. Pan-Tompkins and
Hamilton-Tompkins algorithms for QRS classification are
found to have the best detection performance at a relatively
low power consumption.

It is also noted that current consumption decreases at lower
sampling rates. However, too low a sampling rate leads to
insufficient ECG signal representation, which has a negative
impact on the detection performance, as observed. A sam-
pling rate of 250 SPS offers a good compromise between
power consumption and QRS detection performance. It is
also observed that algorithms that perform batch processing
on a segment of data consume less power than those that per-
form feature detection at each data point, and that algorithms
with a more complicated detection stage generally require
higher power than those with more complex enhancement
stage.

Finally, the effect of wireless transmission with and with-
out data processing is studied. As expected, sending raw
ECG signals over BLE is less efficient than sending the
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processed data. Transmitting the RR interval averages over
BLE results in lesser current consumption as compared to
transmitting raw ECG signals. It consumes only 73.1 pA to
process 1000 samples of ECG signal at 250 SPS with SPI
data rate of 8 Mbps and transmit the RR interval averages
over BLE every 4 seconds.

The influence of benchmarks on the detection performance
measurements of QRS detection algorithms remains
unknown in this project, as MIT-BIH database is mainly
used for performance evaluation. Further research needs to
be conducted to investigate whether the relative performance
of QRS detection algorithms would vary with respect to
benchmarks.

The BLE parameters can be fine-tuned to achieve the best
performance and efficiency. Further work can be done in
compressing the data prior to transmission [32] to improve
power efficiency and performance at the data transmission
stage.
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