
Received 25 February 2020; revised 14 May 2020 and 16 June 2020; accepted 30 June 2020. Date of publication 7 July 2020; date of current version
26 August 2020. This article was recommended by Guest Editor X. Zhang.

Digital Object Identifier 10.1109/OJCAS.2020.3007334

Power Efficient Tiny Yolo CNN Using Reduced
Hardware Resources Based on Booth Multiplier

and WALLACE Tree Adders
FASIH UD DIN FARRUKH (Graduate Student Member, IEEE), CHUN ZHANG (Member, IEEE),

YANCAO JIANG, ZHONGHAN ZHANG, ZIQIANG WANG (Member, IEEE),
ZHIHUA WANG (Fellow, IEEE), AND HANJUN JIANG (Senior Member, IEEE)

Institute of Microelectronics, Tsinghua University, Beijing 100084, China
Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China

CORRESPONDING AUTHOR: H. JIANG (e-mail: jianghanjun@tsinghua.edu.cn)

This work was supported by National Science Technology Major Project under Grant 2016ZX01012101.

ABSTRACT Convolutional Neural Network (CNN) has attained high accuracy and it has been widely
employed in image recognition tasks. In recent times, deep learning-based modern applications are evolving
and it poses a challenge in research and development of hardware implementation. Therefore, hardware
optimization for efficient accelerator design of CNN remains a challenging task. A key component of the
accelerator design is a processing element (PE) that implements the convolution operation. To reduce the
amount of hardware resources and power consumption, this article provides a new processing element
design as an alternate solution for hardware implementation. Modified BOOTH encoding (MBE) multiplier
and WALLACE tree-based adders are proposed to replace bulky MAC units and typical adder tree
respectively. The proposed CNN accelerator design is tested on Zynq-706 FPGA board which achieves
a throughput of 87.03 GOP/s for Tiny-YOLO-v2 architecture. The proposed design allows to reduce
hardware costs by 24.5% achieving a power efficiency of 61.64 GOP/s/W that outperforms the previous
designs.

INDEX TERMS Convolutional neural network, booth encoding multiplier, WALLACE tree adders, FPGA,
adder tree, object detection.

I. INTRODUCTION

DEEP learning evolves from machine learning and it
is quickly becoming an essential part of daily life.

A deep convolutional neural network is a part of deep learn-
ing and it facilitates to resolve many complex image-related
tasks [1]–[3]. It has been successfully applied in a wide
range of applications that include classification, speech
processing and recognition, and object detection [4]–[6].
Moreover, deep learning is also becoming a potential solution
for many industrial applications. These applications include
autonomous vehicles, smart robots and camera technologies,
and surveillance [7]–[10]. GPUs, FPGAs, and ASICs are
used to implement the CNN accelerator design. GPUs have

the advantage of design flexibility, but are energy ineffi-
cient and usually require a long execution time. The ASICs
consume less power than the GPUs, but the flexibility is
sacrificed, and the implementation cycle is quite long in
consideration of the chip fabrication. In comparison with
GPUs and ASICs, FPGAs have a good trade-off in terms of
design flexibility, the implementation cycle, and the power
consumption. FPGAs can be reconfigured depending on
the application requirement. The FPGA designs can also
be easily converted to ASIC designs. In recent times, the
benefits of FPGAs in energy-efficiency, reconfigurable archi-
tecture, and customizable features draw the attention of many
researchers to put their focus on FPGA based accelerator

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

76 VOLUME 1, 2020

HTTPS://ORCID.ORG/0000-0002-0178-8130
HTTPS://ORCID.ORG/0000-0001-9791-4500
HTTPS://ORCID.ORG/0000-0001-6567-0759
HTTPS://ORCID.ORG/0000-0003-4911-0748

design. However, it remains a challenge to develop a hard-
ware design of CNN accelerator for energy and area efficient
systems.
FPGA becomes a suitable candidate as compared to GPU

to implement the CNN accelerator [11]–[15]. However,
FPGA has a limited number of hardware resources like MAC
units and on-chip memories. Therefore, there is a need to
find an efficient method to overcome these problems. Over
the years, optimizing the CNN design on FPGA has been
presented by many researchers [16]–[18]. Limited MAC units
on FPGA caused a problem to perform convolution [14]. If
a direct hardware mapping of CNN on FPGA is required,
DSP blocks became the bottleneck [19]. To implement
convolution on FPGA, multi-operand adders are equally
important as much as MACs. Consider the direct hard-
ware mapping on FPGA, 69% of the logic is consumed
in first convolution layer by multi-operand adders [20]. To
overcome the limitations of MACs, an optimization strat-
egy based on the WALLACE tree multiplier was proposed
as an alternate solution to power and area hungry MAC
units [21]. Time-multiplexed serialization and approximate
computing techniques were employed to counter multi-
operand adders (MOAs) but failed to achieve expected
results [20]. WALLACE tree adders provided an alternate
solution to MOAs [22].
The CNN structure typically contains multiple operations.

However, convolution is the most expensive computation
engine of CNN in order to implement on hardware like
FPGA. Its complexity can be determined by the fact that
more than 90% of the computational time is consumed by
convolution [23]. Convolution process is based on the 3-D
multiplication and addition of input feature maps (or chan-
nels) Nc with Nk convolution kernels Kx×Ky and it can be
represented as (1) [22]:

O(n, u, v) =
Nc∑

i

Kx∑

x

Ky∑

y

I(i, s× u+ x, s× v+ y)

× W(n, i, x, y) (1)

The output feature map is obtained after convolution (dot-
product) of the input feature map with the kernel weights and
multipliers are used to perform this task. After multiplica-
tion, the outputs are given to the next stage of the adder tree
to perform the addition on intermediate results. The pseu-
docode for the convolutional layer is shown in code 1. From
pseudocode 1, it is evident that convolution consists of four
levels of loops that slide along both kernel and feature maps.
Therefore, it resulted in large design space to find a solution
to implement parallelism, sequencing of computations, and
divide the large data into smaller data sets to accommodate
into built-in memory. Loop optimization techniques such as
loop unrolling, tiling, and interchange helped to handle these
problems [18].
The basic entity of the CNN accelerator is a processing

element (PE) that performs the convolution task. In this work,
a modified Booth encoding (MBE) algorithm is proposed

FIGURE 1. System Architecture.

Code 1 The Pseudocode for a Convolutional Layer
1 for(r = 0; r < R; r + +) {
2 for(c = 0; c < C; c+ +) {

}
——————————−→ Loop-4

3 for (no = 0; no < M; no+ +) { ———————-−→ Loop-3
4 for (ni = 0; ni < N; ni+ +) { ———————-−→ Loop-2
5 for (x = 0; x < K; x+ +) {
6 for (y = 0; y < K; y+ +) {

}
—————-−→ Loop-1

out_fmap[no][r][c] + = weight[no][ni][x][y]*
in_fmap[ni][S*r + x][S*c + y];

}}}}}}

and implemented to perform multiplication. Similarly, a deep
binary adder tree is replaced by the WALLACE tree-based
adders. The key benefits to achieve from proposed design are
high power efficiency and low hardware cost. Therefore, the
proposed PE based on MBE multiplier with WALLACE tree
adders has the advantage of low power consumption with
the reduced hardware overhead. The main contributions of
this work are summarized as follows:

1. Due to constraints of computational resources,
optimization for CNN accelerator design is performed
based on uniform loop unrolling and tiling for convo-
lution layers.

2. Replacing the MAC unit with an MBE multiplier to
overcome the problem of bulky MACs. The different
designs of MBE are implemented:

a. With a sign extension logic in the generation of
partial products.

b. To overcome the challenge of sign extension,
sign extension elimination is applied. As a result,
a correction vector is generated and it helps to
save hardware resources that are occupied by sign
extension logic.

c. WALLACE reduction using carry-save
adders (CSAs) are designed to reduce the
partial products.

3. WALLACE tree-based adders are proposed to replace
the MOAs that consume most of the logic and area.

The proposed architecture is implemented and tested for
object detection task and achieves the power efficiency of
61.64 GOP/s/W. The LUTs consumption of proposed PE
unit is reduced by 29.5%, power consumption is improved to
22.1%, and the overall system’s hardware reduction attained
by 24.5% that outperforms the previous approaches.

VOLUME 1, 2020 77

FARRUKH et al.: POWER EFFICIENT TINY YOLO CNN USING REDUCED HARDWARE RESOURCES BASED

Code 2 The Pseudocode for a Proposed Accelerator Design
1 for (r = 0; r < R; r+ = Tr) {
2 for (c = 0; c < C; c+ = Tc) {
3 for (no = 0; no < M; no+ = Tm) {
4 for (ni = 0; ni < N; ni+ = Tn) {
5 for (x = 0; x < K; x+ +) { On-Chip data computation
6 for (y = 0; y < K; y+ +) {
7 for (nrr = r; nrr < min(r + Tr,R); nrr + +) {
8 for (ncc = c; ncc < min(c+ Tc,C); ncc+ +) {
9 for (noo = no; noo < min(no+ Tm,M); noo+ +) {
10 for (nii = ni; nii < min(ni+ Tn,N); nii+ +) {

out_fmap[noo][nrr][ncc] + = weight[noo][nii][x][y]*
in_fmap[nii][S*nrr + x][S*ncc + y];

}}}}}}}}}}

The rest of the paper is organized as follows. In Section II,
the proposed CNN accelerator design overview, memory
organization, and prior works on multipliers are presented.
The proposed PE unit based on MBE multiplier with
WALLACE tree-based adders is described in Section III.
Experimental results and discussion are in Section IV
followed by a conclusion in Section V.

II. SYSTEM ARCHITECTURE AND OVERVIEW
The accelerator design for the inference phase of CNN con-
sists of computation engine, on-chip memory buffers, and
off-chip memory. Computation engine contains processing
elements (PEs) and it is the main core of the CNN accel-
erator to perform convolution task. The required data for
PEs are stored to on-chip memories after fetching from the
external memory.

A. ACCELERATOR DESIGN OVERVIEW
The system architecture of the CNN accelerator is shown
in Fig. 1. A CNN accelerator design on FPGA consists
of several major components like computation engine, on-
chip buffers, interconnects, memory controllers, and off-chip
memory. The data need to be processed are stored in exter-
nal memory. There are limitations of on-chip memory and
therefore, data is first stored in on-chip buffers and then
transferred to the PEs. In this work, optimization is per-
formed for a computation engine of accelerator design and
an optimized PE is implemented and used for a proposed
design.

B. PROCESSING ELEMENT
The main computation part of CNN accelerator design is
PE. In PE, convolution is performed on the input feature map
with the shifted window of K×K kernel to generate one pixel
in an output feature map. For CNN accelerator design, there
are many potential solutions that can be explored to reduce
the hardware implementation cost. Loop transformation tech-
niques like loop unrolling, loop tiling, and loop interchange
are used to optimize the computation of convolution layer
to efficiently use the FPGA hardware resources [18].
Due to limited resources on FPGA, the whole convolu-

tion cannot be performed at once. Therefore, an idea of
loop unrolling is employed to increase the utilization of
FPGA computational resources. With the idea of loop tiling,

FIGURE 2. The computation engine of CNN.

convolution is cut into slices and each slice performing
the convolution [14], [18]. Therefore, it helps in effectively
using the limited on-chip memory because FPGA has a lim-
ited memory to store the data. Loop interchange determines
the computation order of the four loops as shown in pseu-
docode 1. There are two types of loop interchange technique
called inter-tile and intra-tile. Inter-tile loop order determines
that how data moves from external memory to on-chip and
intra-tile tells how data moves from on-chip buffers to PEs.
The pseudocode of the proposed accelerator design is shown
in code 2. Similarly, tile sizes for pseudocode 2 are given
below:

0 < Tn× Tm ≤ (# of PEs)
0 < Tm ≤ M
0 < Tn ≤ N
0 < Tr ≤ R
0 < Tc ≤ C

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(2)

where M = Number of output feature maps; N = Number of
input feature maps; R = Row, C = Column, <Tm,Tn> =
Unroll factor. The generated hardware using the pseu-
docode 2 is shown in Fig. 2.
The data reuse principle is applied for input feature map

and kernel weights are updated online. Because of the lim-
ited hardware resources on FPGA, <Tm,Tn> = <16, 16>

unroll factor is adopted. The computation engine is imple-
mented in a tree-shaped poly structure and 16 inputs are
coming from the input feature map and kernel weights.
To unroll the loop Tm, 16 poly structures are duplicated.
The total number of PEs in proposed accelerator design
are 16. The processing element is shown in Fig. 3 and it
can be observed that 16 inputs from input feature map and
kernel weights are convolved to produce output. Therefore,
a total of 16 multipliers and 15 adders are utilized to perform
convolution operation in each processing element.
To implement hardware on FPGA, the performance of

two different approaches of implementation can be 90% dif-
ferent from each other [18]. CNN accelerator design may
require hundreds to thousands of hardware MAC units on
FPGA. It creates a problem considering the computation cost

78 VOLUME 1, 2020

FIGURE 3. Hardware mapping of processing element for convolution layers.

FIGURE 4. (a) Convolution graph (b) On-chip memory organization (Tn = Tm = 16).

on FPGA because MAC units are limited in number and also
consume area and power [24].
Similarly, there is another bottleneck in convolution is the

use of a deep binary adder tree to perform the addition.
If we are going to implement the full hardware mapping
of the convolution layer, it requires NcKxKy − 1 binary
adders on FPGA after the multiplication phase as represented
in (1). The complexity of the adder tree can be realized
such that only the first layer of AlexNet consumes 69%
of resources [20]. Therefore, an optimization is required to
replace the MAC units and adder tree structure. The main
objectives are to reduce the amount of hardware resources

TABLE 1. Comparison of required number of PEs and on-chip data storage.

and make system energy efficient. In this design, multipliers
are going to be replaced by a modified Booth encoding algo-
rithm. Similarly, a typical binary adder tree is replaced by
WALLACE tree-based adders.

C. MEMORY ORGANIZATION
The convolution graph is shown in Fig. 4 (a). The input
feature maps N are convolved by a shifting window of K×K
kernel weights to generate one pixel in an output feature map.
The stride of the sliding window is S which is normally
smaller than K. M output feature maps will form the set
of input feature maps for the next layer. Therefore, memory
structure is designed based on the sizes of input feature maps,
output feature maps, and the number of kernel weights.
The convolution operation requires frequent switching

of different input features and convolution kernels, which
results in great data access pressure. To lower the cost of
data access from external memory, increase data reuse, and
to adjust the dataflow between the adjacent levels of memory
hierarchy, loop unrolling, loop tiling and loop interchange
are applied to customize the computation and communica-
tion patterns of the accelerator with three levels of memory
hierarchy. As a result, the number of computational units
that can be used simultaneously on an on-chip calculation
is significantly increased, at the cost of only increasing the
amount of data that is stored on-chip each time. Table 1
shows the comparison before and after the optimizations
applied.
From (2) unroll factor is selected as <Tm,Tn> =

<16, 16>. Therefore, after selecting this unroll factor, the
PEs can be implemented simultaneously from 1 to Tn × Tm
as shown in Table 1. The computation engine is imple-
mented in a tree-shaped poly structure as discussed in
the previous section and shown in Fig. 2. In Table 1,
consider Win = ((Tr − 1)S + K)((Tc − 1)S + K)Tn and
Wweight = Tn × Tm × K × K are the buffer sizes of memory
accesses to input feature maps and kernel weights respec-
tively. With specific tile size selection <Tm,Tn,Tr,Tc>, the
number of memory accesses is changed from 2 × N × K
× K to Win +Wweight.
In FPGA, block RAM (BRAM) comes as a single port or

dual port. It means that one value can be accessed at a sin-
gle clock cycle. However, it is not feasible for a design like
CNN. In our proposed system, multi-dimensional memory
mapping is designed to facilitate the access of multiple
data simultaneously. Fig. 4 (b) shows the memory orga-
nization and it consists of input buffers, output buffers, and
weight buffers. Each buffer set contains independent buffer
banks. The number of input buffer banks is equal to Tn and

VOLUME 1, 2020 79

FARRUKH et al.: POWER EFFICIENT TINY YOLO CNN USING REDUCED HARDWARE RESOURCES BASED

FIGURE 5. The parallel structure of proposed CNN accelerator design and a PE unit.

output buffer banks are equal to Tm as shown in Fig. 4 (b).
The weight buffers contain multiple memories in a group
and the data is arranged according to computation required
to be performed as depicted in Fig. 2.
FPGA receives data from external DDR memory on the

AXI interface. DMA is controlling the flow of data between
external memory and on-chip memories. The commands
from the processing system (PS) are issued to the pro-
grammable logic (PL) using the AXI-Lite interface and the
internal controller is controlling the flow of data depending
on the commands which are received. In order to exchange
data effectively, Ping-Pong memory mode is applied for input
and output buffers. The data flow and parallel structure of
CNN accelerator design is represented in Fig. 5. It can be
observed that PE is taking the parallel inputs from feature
maps and kernel weights buffers to perform the convolution.
Furthermore, three stages of pipelining are implemented in
each PE unit to optimize the calculation order.

D. ACTIVATION FUNCTION AND POOLING LAYER
In CNN architecture before the pooling layer, activation func-
tion is applied to transform the input. The purpose of the
activation function is to introduce non-linearity. Many acti-
vation functions are used in CNN architecture like Sigmoid,
Tanh etc. However, in this accelerator design, Leaky ReLU
is applied. The benefit of leaky ReLU is that it can help to
prevent the neurons from dying during training.
The pooling layer is employed to reduce the dimensions

of feature maps. It helps to reduce the computations in the
network and also discard the unnecessary information. Max-
pooling and average-pooling are typical pooling functions.
In this proposed design, max-pooling is used as shown in
Fig. 5.

E. BATCH NORMALIZATION
It is known that batch normalization offers many differ-
ent improvements. For example, it can help in speeding
up the training time. It has been observed that the batch

normalization improves the accuracy of the network over
that of the one without using the batch normalization, for
typical YOLO networks. However, it is not necessary to
use the batch normalization for a small network like tiny-
YOLO-v2 to speed-up the feedforward path [25]. Therefore,
in the proposed accelerator design, batch normalization is not
implemented.

F. PRIOR WORKS ON MULTIPLIER DESIGN
Convolution is multiplication or dot-product of input feature
maps and kernel weights. To implement the convolution,
MAC is necessary to perform multiplication. However, the
MAC unit has a problem with consuming area and power. It
contains a multiplier and accumulator, and each multiplier on
FPGA or ASIC costs a large number of logic gates and high
power [26]. To implement parallel multipliers, it consists
of three operations such as partial product generation, par-
tial product reduction, and final addition by carry propagate
adder (CPA) [27].
To multiply two L bit numbers a and b, the partial products

can be generated either by using an ANDing operation or
by implementing a modified Booth encoding algorithm [28].
The first method generates partial product PPL by ANDing
each bit bL of the multiplier with all the bits of the mul-
tiplicand a. Fig. 6 shows the generation of partial products
using ANDing operation.
After the generation of partial products, there is a need to

reduce the PPs efficiently. Considering a L1 ×L2 multiplier,
different techniques are used to reduce L1 layers of the partial
products to two layers for their final addition using any CPA.
WALLACE reduction is one of the most commonly

adopted schemes to reduce layers of partial products.

1) WALLACE TREE MULTIPLIER

In previous work [21], the WALLACE tree
multiplier (WTM) was proposed to replace the MAC
unit as shown in Fig. 7. In this design, the input fea-
ture map and kernel weights are coming as an input to

80 VOLUME 1, 2020

FIGURE 6. Generation of partial products using ANDing operation.

FIGURE 7. WALLACE tree multiplier (WM) for CNN accelerator.

this multiplier. To generate the PPs, ANDing operation
is performed as shown in Fig. 6. After generating the
partial products, the WALLACE tree reduction is applied
to produce the final product. To further simplify the
design, combinational logic is used to implement the full
adders (FA) and half adder (HA) which are based on the
CSA technique depicted in Fig. 7.
For a L × L multiplier, L numbers of PPs are gen-

erated. For example, 16 number of partial products are
generated for a 16-bit multiplier. Therefore, it consumes
an effective hardware and there are six FA adder delays
in its path [21]. Reducing the number of PPs is another
optimization technique. There is a need to replace the
WALLACE tree multiplier with a multiplier that generates
less number of PPs. MBE is such a multiplier design that
further reduces the number of PPs and as a result, con-
sumes fewer hardware resources compared to the WALLACE
tree multiplier. Therefore, the modified Booth encoding
multiplier is proposed and implemented to replace the
WALLACE tree multiplier.

2) MODIFIED BOOTH ENCODING MULTIPLIER (RADIX-4)

Consider A and B are k-bit and l-bit two’s complement
integers respectively:

A = −ak−1 · 2k−1 +
k−2∑

i=0

ai · 2i (3)

B = −bl−1 · 2l−1 +
l−2∑

j=0

bj · 2j (4)

Interestingly, the Booth encoding algorithm can be used
for two’s complement as well as unsigned multipliers [29]. It

TABLE 2. Radix-4 modified booth encoding and partial-product selection (j = 2α).

TABLE 3. Radix-4 modified booth encoding partial-product generation.

is to note that firstly “0” value is set for b−1 and appended to
the rightmost of B. Consider a multiplier for two’s comple-
ment, l should be even otherwise B is one-bit sign-extended
to ensure l is even. Similarly for unsigned, B is zero-extended
with one “0” for odd values of l to make it even and if it
is already even, B is zero-extended with two “0”s.
Since it is Booth encoded algorithm and B is encoded

from a group of three bits to two bits. For each
j ∈ {0, 2, 4, . . . , l− 2}, bj+1, bj and bj−1 are encoded to b′

α

which is a signed digit. α considered here is α = j/2 and
b′
α = −2bj+1 + bj + bj−1. Each PP is calculated by multipli-
cation of multiplier A and b′

α . The final product is computed
as follows:

P =
l/2−1∑

α=0

Pα · 22α =
l/2−1∑

α=0

A · b′
α · 22α (5)

Final Booth encoding and PP selection are summarized
in [30, Tab. 2].
The multiplicand A is copied if the partial product is +A

after doing encoding. Since each PP is generated using a pair
of 2 bits of the multiplier, the PP is shifted by two places
to the left. For a PP to be +2A, there will be a left shift of
one bit for multiplicand before selection. For the encoded
digit of the multiplier that is −A, the two’s complement of
the multiplicand is copied. For the last encoded of −2A,
the two’s complement of the PP is further shifted left by
one-bit position. PP generation is shown in Table 3 for each
selection. It is noted that there will be k + 1 bits in the PP
to compensate the left shift of A and if A is not shifted then
the extra bit will be sign extension. The value “0” is set
for correction bit Eα to perform addition or value “1” for
compensation of two’s complement. It is placed in the LSB
position of the PP.
Each PP is sign-extended and there is a need to eliminate

the sign extension logic. Sign extension logic is performed
by inverting the sign bit, a value “1” is added to the same

VOLUME 1, 2020 81

FARRUKH et al.: POWER EFFICIENT TINY YOLO CNN USING REDUCED HARDWARE RESOURCES BASED

TABLE 4. Radix-4 modified booth partial-product matrix, k = l = 6.

FIGURE 8. The MBE Multiplier.

column, and PP is extended by constant “1”s. Now to elimi-
nate the sign extension logic, all these “1”s are added offline
to form a correction vector (CV) [28]. The number of “1”s
can be reduced by pre-adding the constants [30]. The sim-
plified PP matrix is shown in Table 4 considering a 6 × 6
multiplier [31], [32]. In Table 4, the conventional modified
booth encoding algorithm generates L/2 + 1 number of PP
rows rather than L/2 because of extra correction bits which
are placed at the least significant bit position of each partial
product row for negative encoding as shown in Table 3.

III. PROCESSING ELEMENT BASED ON MBE
MULTIPLIER AND WALLACE TREE ADDERS
A new processing element based on MBE multiplier to
replace MAC unit and WALLACE tree adders as an alternate
solution for deep binary adder tree is proposed. The hard-
ware cost is reduced and high power efficiency is achieved
with the proposed methods.

A. MBE DESIGN FOR MULTIPLICATION
It is discussed that multiplication consists of three major
steps: 1) encoding and generating partial products; 2) reduc-
ing the partial products by reduction schemes (e.g., Wallace
tree [33], [34]) to final two rows; and 3) adding the remain-
ing two rows of partial products by using a carry propagate

TABLE 5. Height of WALLACE tree using (4:2) with parallel inputs.

adder to obtain the final product. In this proposed design,
the focus is on the first two-step to reduce hardware cost,
delay, and power consumption of proposed multiplier [35].
The MBE technique is widely applied in parallel multipliers
because it can reduce the number of PP rows to half and
thus reducing the size and enhancing the speed of reduction
tree [35]–[37]. The MBE multiplier block diagram is shown
in Fig. 8. Without error correction bits, the number of PPs
with sign extension logic will be L/2 and a simple accu-
mulation process can be used to generate the final product.
However, this technique costs more hardware resources and
power. The sign extension elimination logic is implemented
in our proposed design as described in Table 3. However, the
sign extension elimination generates one extra PP and num-
ber of PPs changes from L/2 to L/2+1 due to error correction
bits (as a CV) due to negation. Applying the WALLACE tree
reduction scheme after the generation of PPs with MBE can
further improve the multiplier delay [38]. The final product
is generated after the CPA.
Three MBE multiplier designs are implemented in this

work to replace the MAC units in CNN accelerator design
as shown in Fig. 9. Fig. 9 (a) shows the MBE multiplier
with sign extension is called hereafter as BMS and Fig. 9 (b)
shows the MBE multiplier with sign extension elimination
technique using a correction vector (BMSE). Fig. 9 (c) shows
the MBE multiplier and WALLACE tree for PPs reduc-
tion along with the sign extension elimination technique are
named as BMSEW. Therefore, an efficient BMSE multiplier
is selected for proposed PE unit considering power and
hardware consumption. It also consumes fewer logic gates
because no sign extension hardware is implemented in this
multiplier design.

B. ADDERS BASED ON WALLACE TREE REDUCTION
WALLACE tree is mostly used in multiplier architectures.
The objective is to reduce the layers of PPs generated during
multiplication. Carry save addition is applied in WALLACE
to avoid the carry propagation delay in its path. The PPs are

82 VOLUME 1, 2020

FIGURE 9. Multiplier designs replacing MAC unit (a) MBE multiplier with sign extension (BMS) (b) MBE multiplier with sign extension elimination (BMSE) (c) MBE multiplier
along with WALLACE reduction for PPs with sign extension elimination (BMSEW).

TABLE 6. Tiny-YOLO-v2 architecture.

first reduced to two numbers using CSA tree then these two
numbers are added by CPA to get the final product. A reduc-
tion technique based on a (3:2) compressor using full adder
reduces three layers of PPs to two and (2:2) compressor
reduces two layers to two using half adder. WALLACE tree-
based adders using (3:2) and (2:2) compressors were used
to replace the typical binary adder tree [22]. As a result,
it reduces LUTs consumption and improves the propaga-
tion delay. Although the (3:2) compressor is well known
but in research, many higher-order compressor designs have
been proposed to further reduce the area, power, and delay
characteristics [39].
In this article, (4:2) compressor is selected to further

improve the system performance compared to [22]. The
internal structure of the exact (4:2) compressor is shown
in Fig. 10 (a) and it consisted of two full adders connected
serially. The three outputs of this design are given below:

Cout = (x1 ⊕ x2)x3 + (
x1 ⊕ x2

)
x1 (6)

sum = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ Cin (7)

carry = (x1 ⊕ x2 ⊕ x3 ⊕ x4)Cin+ (
x1 ⊕ x2 ⊕ x3 ⊕ x4

)
x4

(8)

FIGURE 10. (a) Structure of (4:2) compressor. (b) Optimized implementation of
exact (4:2) compressor.

The optimized implementation of the exact (4:2) compressor
design using XOR-XNOR gates is shown in Fig. 10 (b) [40].
It is based on three XOR-XNOR gates (represented as
XOR*), one XOR and two 2-1 MUX. Consider the unitary
delay of � by any gate then (4:2) compressor has a delay
of 3� giving the delay of 1� less compared to the con-
ventional implementation [40]. Applying this structure into
WALLACE tree adders, each level of a tree with (4:2) com-
pressor reduces the number of operands by a factor of 2.
This reduction continues until we get the final two rows.
The height of a tree can be represented as:

h(4:2)(n) = [
log2(n/2)

]
(9)

where h(4:2)(n) is the height of an adder tree for n-number
of parallel inputs after multiplication. The height of this
reduction tree of WALLACE based on (4:2) compressor for
parallel inputs are shown in Table 5. If we compare the
two compressor designs in terms of LUTs consumption, the
WALLACE adders based on (4:2) compressor in the first
stage of adder tree in PE unit consumes only 176 LUTs as
compared to 188 LUTs based on (3:2) compressor in [22].
A new PE unit based on MBE multiplier and WALLACE

tree-based adders using (4:2) compressor is presented in
Fig. 11. Previously, the WALLACE tree multiplier was used
to perform the convolution of input feature maps and con-
volution kernels [21]. In this work, the MBE multiplier is
proposed and implemented to replace the WALLACE tree

VOLUME 1, 2020 83

FARRUKH et al.: POWER EFFICIENT TINY YOLO CNN USING REDUCED HARDWARE RESOURCES BASED

FIGURE 11. The final proposed design for the PE unit that will replace the old PE
units in CNN accelerator design.

FIGURE 12. Propagation delay of different multiplier designs.

multiplier due to hardware overhead, power consumption,
and a long delay in its path. It will also avoid the usage
of bulky MACs. As a result of multiplication, 16 outputs
are generated. These parallel outputs become the inputs of
WALLACE tree adders (WAT). Each PE unit produces a par-
tial sum after the process of multiplication and addition
performed by WAT.
In the next section, the discussion and results are presented

about the overall system performance with the previous
approaches.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
In this article, Xilinx Zynq706 (XC7Z045 SoC) board is used
for the evaluation of a proposed design and Verilog HDL
is adopted to implement the architecture. Behavioral simu-
lation is performed with ModelSim SE 10.5, synthesis and
implementation is done with Vivado 2015.4. The proposed
design is based on pure RTL design flow and it does not
use the HLS flow. As a result, hardware optimizations are
performed by implementing our soft IP design using RTL
written in Verilog HDL.

A. NETWORK ARCHITECTURE
In order to test the performance and efficiency of the
proposed architecture in deeper networks, Tiny-YOLO-
v2 architecture is used. It consists of 9 convolution layers

FIGURE 13. Device utilization summary of multiplier designs.

TABLE 7. Implementation results of proposed design and previous PE units.

TABLE 8. Power and frequency of PE unit for different multipliers.

and 6 max-pooling layers as shown in Table 6. The model
is trained using a PASCAL VOC 2012 dataset [41]. It con-
sisted of 20 classes and approximately 5000 training images
in its dataset. The network is trained in a 32-bit environ-
ment on GPU and stored in a floating-point but an inference
phase; this high precision is not required. Therefore, 16-bit
fixed-point number representation is selected considering the
precision loss from PASCAL VOC pre-trained weights from
the Darknet framework. Table 6 shows the precision loss
costed by using a 16-bit fixed-point for each convolution
layer. The proposed system architecture on FPGA is using
16-bit fixed-point quantization and it incurs an accuracy loss
of approximately 1.9% compared with the full precision
network. It also gives the mean average precision (mAP)
of 51.12%.

B. IMPLEMENTATION RESULTS AND DISCUSSION
1) DELAY AND HARDWARE RESOURCES OF
MULTIPLIER DESIGNS

Four multiplier designs are synthesized using Vivado 2015.4
and the results are shown in Fig. 12 and Fig. 13 for path

84 VOLUME 1, 2020

TABLE 9. Comparison of the proposed design with the previous implementations.

TABLE 10. Number of MACs required for different designs.

delay and device utilization on FPGA respectively. In Fig. 12,
the path delay faced by each multiplier is further divided
into its logic and net delay. BMS multiplier design faces
the highest delay due to the sign extension logic used in
this multiplier. Consequently, this multiplier utilizes more
adders to generate the final product and hence it faces more
delay. On the other hand, the path delay of BMSEW is
lowest amongst the other multipliers because WALLACE
reduction using in MBE helps to reduce the path delay [38].
Its delay is reduced by 19% while comparing with the MBE
multiplier design (BMS). This BMSEW design faces only
four adders delay in its critical path compared to six FA delay
of WALLACE tree multiplier for 16-bit operands [21]. The
path delay for WALLACE based architectures depends on
the number of PPs and it can be calculated and verified
using O(log3/2(N)) [21], [38].
Similarly, Fig. 13 shows the device utilization sum-

mary for different multiplier designs. It can be observed
that BMSE multiplier design consumes fewer hardware
resources while comparing to others. On the other hand,
MBE with WALLACE reduction and sign extension elim-
ination design (BMSEW) consumes relatively high LUTs
as compared to MBE without WALLACE (BMSE) because
many adders are used for parallel processing. Comparing
the delay and hardware costs of MBE multipliers with
WM, it can be observed from Fig. 12 that the timing of
BMSE is improved by 0.8% and 5.4% of BMSEW com-
paring with WM. Similarly, Fig. 13 shows that the BMSE

LUTs consumption is improved by 38.8% and 4.5% of
BMSEW compared to WM. Therefore, multiplier design can
be selected depending on the requirement of the critical-
ity of hardware resources or considering the delay-sensitive
designs. The main focus of this article is to save the amount
of hardware resources, therefore BMSE multiplier is used to
perform the multiplication task in convolution.

2) POWER, FREQUENCY, AND RESOURCES OF
PROPOSED PE UNIT

From the above discussion and results, the multiplier design
of BMSE is proposed in the PE unit as shown in Fig. 11.
Further, to perform the addition on intermediate results gen-
erated in a process of multiplications, WALLACE adders
based on (4:2) compressor are implemented as shown in
Fig. 11. Table 7 shows the synthesis results of one PE
unit of proposed design on FPGA and different architec-
ture designs presented in the literature. The listed works in
Table 7 are not based on the same FPGAs and the resources
and DSP architecture may differ from each other. However,
still some aspects of different designs can be compared,
such as the hardware overhead, since the architectures of
the mainstream FPGAs are quite similar. In [14], the PE unit
is regenerated and the MAC unit is replaced with WM. It
has utilized 16 multipliers and 15 numbers of adders to
perform convolution in one PE unit. Similarly, a PE unit
is regenerated using the multiplier design of [21] and addi-
tion is performed with WALLACE tree adders [22]. This
PE design used 05 blocks of 16x4 WALLACE tree adders
to perform addition on intermediate results after multipli-
cation. The design of [42] is based on convolution blocks
that perform the convolution task using multipliers and
adders. A total of 18 multipliers and 17 adders are used
to perform the convolution task. Our proposed design of

VOLUME 1, 2020 85

FARRUKH et al.: POWER EFFICIENT TINY YOLO CNN USING REDUCED HARDWARE RESOURCES BASED

the PE unit based on the BMSE multiplier with 05 blocks
of WAT using a (4:2) compressor achieves high hardware
efficiency as compared to previous designs. The LUTs con-
sumption of the proposed PE unit is improved by 41.2%
compared to [14] and 29.5% to [42]. Therefore, this PE
unit design of Fig. 11 is proposed and applied in our final
architecture.
The next important parameter of efficient hardware is

power efficiency. In this proposed design using MBE
multiplier, the focus is to reduce the area, delay, and power
consumption of multipliers [35]. Therefore, from Table 7 it
can be observed that the hardware costs of PE unit are sig-
nificantly reduced. Similarly, power is measured for different
PEs and proposed design. Table 8 shows the power consump-
tion and synthesis frequency of PE unit designs with different
multipliers. It can be observed that the power of PE using
WALLACE multiplier consumes more power while com-
paring with WALLACE multiplier with WALLACE adders.
It means adder tree is another factor that consumes hard-
ware resources and power. It is discussed in Section III
that replacing the built-in adders with WAT can improve
the hardware consumption, delay, and power. However, DSP
based PE unit design still achieves low power compared
to the other two PEs with WALLACE multiplier designs.
The power and frequency of proposed PE unit design of
Fig. 11 is compared with other designs. The power con-
sumption of the proposed PE is 22.1% of that of the
MAC-based PE unit. In the meanwhile, the maximum achiev-
able frequency is also improved by 201% when the design
is changed from built-in adders to WALLACE tree adders
because built-in adders are slow and consume more hardware
resources.
The system architecture is built on the PE unit as

depicted in Fig. 11 and Table 9 represents the comparison
of proposed architecture with the previous designs. Only
FPGA’15 [18] design is running the AlexNet model and
the rest of the designs in Table 9 are running the Tiny-
YOLO-v2 model on FPGA platform to test their proposed
designs. The bulky MAC units (DSP48 slices in FPGA)
are not used and further typical deep binary adder tree is
replaced. In this work, custom BMSE multiplier is imple-
mented instead of DSP48 slices and WALLACE based adders
with (4:2) compressor is to perform addition. Note that the
achieved peak performance is 89.28 GOP/s and the actual
throughput is about 87.03 GOP/s with the extra clock cycles
for memory access when the proposed CNN is used for
an object detection system. It can be observed that the
proposed system reduces hardware cost by 24.5% while
attaining a power efficiency of 61.64 GOP/s/W compared
to the previous work for the object detection task [46].
Similarly, it also gives us an improvement in a frame rate
of 13.61 and power efficiency by 17.54 GOP/s/W compared
with the design of [14]. Considering all previous designs,
zero number of DSPs are used in our work. Therefore,
the power efficiency of 61.64 GOP/s/W is achieved with
fewer hardware resources as compared to previous designs.

The proposed FPGA based design is free from the
DSP48 slices.
Since this design is free from the bulky MAC units, it

can be a good candidate for power and hardware efficient
systems. Table 10 shows previous designs with different
unroll factors. It is also presented that how many numbers
of MACs are required to perform the convolution task with
different unroll factors. MACs are not recommended and
require an alternate solution due to high area and power
consumption [26]. The proposed design in this article is
free from the MAC units instead implemented a custom
multiplier. Table 10 shows that zero number of MACs are
consumed.

V. CONCLUSION
In this paper, optimization techniques are proposed and
implemented to achieve better system performance, reduced
amount of hardware resources, and power efficiency of the
CNN accelerator design for object detection. MBE multiplier
is presented to replace the MAC units on FPGA. Another
challenge was to find an alternate solution for a typi-
cal adder tree. Therefore, WALLACE tree-based adders
with (4:2) compressors are used to replace the traditional
adder tree. The objective was to reduce the resources on
FPGA consumed by CNN accelerator and improve the
system performance in terms of power. More computa-
tions can be implemented on available hardware because
proposed design helps to reduce hardware consumption com-
pared to previous designs. Achieving high power efficiency
can help us to use the system in practical low power
applications.
The proposed system architecture and optimization tech-

niques opens new opportunities for ASIC implementation
targeting the low area and power applications. To test
the behavior of proposed architecture, Xilinx FPGA plat-
form is selected to implement the Tiny-YOLO-v2 network
for object detection. It validates that the proposed hard-
ware optimization solutions will help us to achieve high
performance in terms of resource utilization and power for
future system implementations.

REFERENCES
[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification

with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), 2012, pp. 1106–1114.

[2] R. Sivaramakrishnan, C. Sema, K. Incheol, T. George, and A. Sameer,
“Visualization and interpretation of convolutional neural network
predictions in detecting pneumonia in pediatric chest radiographs,”
Appl. Sci., vol. 8, no. 10, p. 1715, 2018.

[3] L. Yinghua, S. Bin, K. Xu, D. Xiaojiang, and G. Mohsen, “Vehicle-
type detection based on compressed sensing and deep learning in
vehicular networks,” Sensors, vol. 18, p. 4500, Dec. 2018.

[4] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Boston, MA, USA,
2015, pp. 1–9, doi: 10.1109/CVPR.2015.7298594.

[5] S. Ren, K. M. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
real-time object detection with region proposal network,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017.

86 VOLUME 1, 2020

http://dx.doi.org/10.1109/CVPR.2015.7298594

[6] O. Abdel-Hamid, A. R. Mohamed, H. Jiang, and G. Penn, “Applying
convolutional neural networks concepts to hybrid NN-HMM model for
speech recognition,” in Proc. IEEE Int. Conf. Acoust. Speech Signal
Process. (ICASSP), Kyoto, Japan, Mar. 2012, pp. 4277–4280.

[7] C. Farabet, C. Poulet, J. Y. Han, and C. Y. Le, “CNP: An FPGA-
based processor for convolutional networks,” in Proc. Int. Conf.
Field Program. Logic Appl., Prague, Czech Republic, Aug./Sep. 2009,
pp. 32–37.

[8] M. Sankaradas et al., “A massively parallel coprocessor for convolu-
tional neural networks,” in Proc. IEEE Int. Conf. Appl. Syst. Architect.
Process., New York, NY, USA, Jul. 2009, pp. 53–60.

[9] R. Hadsell et al., “Learning long-range vision for autonomous off-
road driving,” J. Field Robot., vol. 26, no. 2, pp. 120–144, 2009,
doi: 10.1002/rob.20276,

[10] J. Maria, J. Amaro, G. Falcao, and L. A. Alexandre, “Stacked
autoencoders using low-power accelerated architectures for object
recognition in autonomous systems,” Neural Process. Lett. vol. 43,
pp. 445–458, May 2016.

[11] J. Cheng, P.-S. Wang, G. Li, Q.-H. Hu, and H.-Q. Lu, “Recent
advances in efficient computation of deep convolutional neural
networks,” Front. Inf. Technol. Electron. Eng., vol. 19, no. 1,
pp. 64–77, Jan. 2018.

[12] D. Aysegul et al., “Accelerating deep neural networks on mobile pro-
cessor with embedded programmable logic,” in Proc. IEEE NIPS,
2013, p. 1.

[13] M. Peemen, A. A. Setio, B. Mesman, and H. Corporaal, “Memory-
centric accelerator design for convolutional neural networks,” in Proc.
IEEE 31st Int. Conf. Comput. Design (ICCD), 2013, pp. 13–19.

[14] W. Xie, C. Zhang, Y. Zhang, C. Hu, H. Jiang, and Z. Wang,
“An energy-efficient FPGA-based embedded system for CNN appli-
cation,” in Proc. IEEE Int. Conf. Electron Devices Solid-State
Circuits (EDSSC), 2018, pp. 1–2, doi: 10.1109/EDSSC.2018.8487057.

[15] E. Nurvitadhi et al., “Can FPGAs beat GPUs in accelerating next-
generation deep neural networks?” in Proc. ACM/SIGDA Int. Symp.
Field Program. Gate Arrays (FPGA), 2017, pp. 5–14.

[16] Y. Ma, N. Suda, Y. Cao, S. Vrudhula, and J.-S. Seo, “ALAMO:
FPGA acceleration of deep learning algorithms with a modularized
RTL compiler,” Integr. VLSI J., vol. 62, pp. 14–23, Jun. 2018. [Online].
Available: doi.org/10.1016/j.vlsi.2017.12.009

[17] J. Qiu et al., “Going deeper with embedded FPGA platform for con-
volutional neural network,” in Proc. ACM/SIGDA Int. Symp. Field
Program. Gate Arrays (FPGA), 2016, pp. 26–35.

[18] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong,
“Optimizing FPGA-based accelerator design for deep convolutional
neural networks,” in Proc. ACM/SIGDA Int. Symp. Field Program.
Gate Arrays (FPGA), 2015, pp. 161–170.

[19] K. Abdelouahab, M. Pelcat, J. Serot, C. Bourrasset, and F. Berry,
“Tactics to directly map CNN graphs on embedded FPGAs,” IEEE
Embedded Syst. Lett., vol. 9, no. 4, pp. 113–116, Dec. 2017.

[20] K. Abdelouahab, M. Pelcat, and F. Berry, “The challenge of multi-
operand adders in CNNs on FPGAs: How not to solve it!” in Proc. 18th
ACM Int. Conf. Embedded Comput. Syst. Architect. Model. Simulat.
(SAMOS), Jul. 2018, pp. 157–160.

[21] F. U. D. Farrukh, T. Xie, C. Zhang, and Z. Wang, “Optimization for
efficient hardware implementation of CNN on FPGA,” in Proc. IEEE
Int. Conf. Integr. Circuits Technol. Appl. (ICTA), Beijing, China, 2018,
pp. 88–89, doi: 10.1109/CICTA.2018.8706067.

[22] F. U. D. Farrukh, T. Xie, C. Zhang, and Z. Wang, “A solution to
optimize multi-operand adders in CNN architecture on FPGA,” in
Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Sapporo, Japan, 2019,
pp. 1–4, doi: 10.1109/ISCAS.2019.8702777.

[23] J. Cong and B. Xiao, “Minimizing computation in convolutional neural
networks,” in Artificial Neural Networks and Machine Learning—
ICANN. Cham, Switzerland: Springer, 2014, pp. 281–290.

[24] S. Sabeetha, J. Ajayan, S. Shriram, K. Vivek, and V. Rajesh, “A study
of performance comparison of digital multipliers using 22nm strained
silicon technology,” in Proc. 2nd Int. Conf. Electron. Commun. Syst.
(ICECS), 2015, pp. 180–184.

[25] R. Huang, J. Pedoeem, and C. Chen, “YOLO-LITE: A real-time
object detection algorithm optimized for non-GPU computers,” in
Proc. IEEE Int. Conf. Big Data (Big Data), Seattle, WA, USA, 2018,
pp. 2503–2510.

[26] J. Garland and D. Gregg, “Low complexity multiply-accumulate units
for convolutional neural networks with weight-sharing,” ACM Trans.
Architect. Code Optim., vol. 15, no. 3, pp. 1–24, Aug. 2018.

[27] J. E. Stine, “Multiplication,” in Digital Computer Arithmetic Datapath
Design Using Verilog HDL. New York, NY, USA: Springer, 2004,
pp. 55–93, ch. 4.

[28] S. A. Khan, “Design options for basic building blocks,” in
Digital Design of Signal Processing Systems: A Practical Approach.
New York, NY, USA: Wiley, 2011, pp. 183–252, ch. 5.

[29] O. L. MacSorley, “High-speed arithmetic in Binary computers,” Proc.
IRE, vol. 49, no. 1, pp. 67–91, Jan. 1961.

[30] E. G. Walters, “Array multipliers for high throughput in Xilinx FPGAs
with 6-input LUTs,” Computers, vol. 5, no. 4, pp. 1–25, 2016.

[31] M. D. Ercegovac and T. Lang, “Multiplication,” in Digital Arithmetic
(The Morgan Kaufmann Series in Computer Architecture and Design).
San Francisco, CA, USA: Morgan Kaufmann, 2004, pp. 180–245,
ch. 4.

[32] B. Parhami, “High-radix multipliers,” in Computer Arithmetic:
Algorithms and Hardware Design, 2nd ed. New York, NY, USA:
Oxford Univ. Press, 2010, pp. 157–171, ch. 10.

[33] O. Hasan and S. Kort, “Automated formal synthesis of Wallace
tree multipliers,” in Proc. 50th Midwest Symp. Circuits Syst., 2007,
pp. 293–296.

[34] J. Fadavi-Ardekani, “M × N booth encoded multiplier generator using
optimized Wallace trees,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 1, no. 2, pp. 120–125, Jun. 1993.

[35] S.-R. Kuang, J.-P. Wang, and C.-Y. Guo, “Modified booth Multipliers
with a regular partial product array,” IEEE Trans. Circuit Syst., vol. 56,
no. 5, pp. 404–408, May 2009.

[36] F. Elguibaly, “A fast parallel multiplier-accumulator using the modified
Booth algorithm,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal
Process., vol. 47, no. 9, pp. 902–908, Sep. 2000.

[37] W.-C. Yeh and C.-W. Jen, “High-speed booth encoded parallel
multiplier design,” IEEE Trans. Comput., vol. 49, no. 7, pp. 692–701,
Jul. 2000.

[38] J. M. Rabaey, A. P. Chandrakasan, and B. Nikolic, “Designing
arithmatic building blocks,” in Digital Integrated Circuits: A Design
Perspective (Prentice-Hall Electronics and VLSI Series), 2nd ed.
Upper Saddle River, NJ, USA: Pearson Educ., 2003, pp. 559–662,
ch. 11.

[39] M. Ha and S. Lee, “Multipliers with approximate 4–2 compressors
and error recovery modules,” IEEE Embedded Syst. Lett., vol. 10,
no. 1, pp. 6–9, Mar. 2018, doi: 10.1109/LES.2017.2746084.

[40] C.-H. Chang, J. Gu, and M. Zhang, “Ultra low-voltage low-power
CMOS 4–2 and 5–2 compressors for fast arithmetic circuits,” IEEE
Trans. Circuits Syst. II, Exp. Briefs, vol. 51, no. 10, pp. 1985–1997,
Oct. 2004.

[41] PASCAL. The Pascal Visual Object Classes
Homepage. Accessed: Apr. 2019. [Online]. Available:
http://host.robots.ox.ac.uk/pascal/VOC/index.html

[42] R. A. Solovyev, A. A. Kalinin, A. G. Kustov, D. V. Telpukhov,
and V. S. Ruhlov, “FPGA implementation of convolutional neural
networks with fixed-point calculations,” 2018. [Online]. Available:
arxiv.abs/1808.09945.

[43] T. B. Preußer, G. Gambardella, N. J. Fraser, and M. Blott, “Inference
of quantized neural networks on heterogeneous all-programmable
devices,” in Proc. Design Autom. Test Eur. Conf. Exhibit., Mar. 2018,
pp. 833–838.

[44] Y. J. Wai, Z. B. M. Yussof, S. I. B. Salim, and L. K. Chuan, “Fixed
point implementation of Tiny-YOLO-V2 using OpenCL on FPGA,”
Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 10, pp. 506–512, 2018.

[45] H. Nakahara, H. Yonekawa, T. Fujii, and S. Sato, “A lightweight
YOLOv2: A binarized CNN with a parallel support vector regression
for an FPGA,” in Proc. ACM/SIGDA Int. Symp. Field Program. Gate
Arrays, Feb. 2018, pp. 31–40.

[46] D. T. Nguyen, T. N. Nguyen, H. Kim, and H. Lee, “A high-throughput
and power-efficient FPGA implementation of YOLO CNN for object
detection,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27,
no. 8, pp. 1861–1873, Aug. 2019, doi: 10.1109/TVLSI.2019.2905242.

[47] B. Liu, D. Zou, L. Feng, S. Feng, P. Fu, and J. Li, “An FPGA-
based CNN accelerator integrating depthwise separable convolution,”
Electronics, vol. 8, no. 3, p. 281, 2019.

VOLUME 1, 2020 87

http://dx.doi.org/10.1002/rob.20276
http://dx.doi.org/10.1109/EDSSC.2018.8487057
http://dx.doi.org/10.1109/CICTA.2018.8706067
http://dx.doi.org/10.1109/ISCAS.2019.8702777
http://dx.doi.org/10.1109/LES.2017.2746084
http://dx.doi.org/10.1109/TVLSI.2019.2905242

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

