
Received 1 November 2023; revised 14 January 2024 and 10 April 2024; accepted 11 May 2024.
Date of publication 14 May 2024; date of current version 31 May 2024.

Digital Object Identifier 10.1109/OJCAS.2024.3401028

StrideHD: A Binary Hyperdimensional
Computing System Utilizing Window

Striding for Image Classification
DEHUA LIANG 1, JUN SHIOMI 1 (Senior Member, IEEE), NORIYUKI MIURA 1 (Member, IEEE),

AND HIROMITSU AWANO 2 (Member, IEEE)
1Graduate School of Information Science and Technology, Osaka University, Suita 565-0871, Osaka, Japan

2Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan

This article was recommended by Associate Editor M. Rastogi

CORRESPONDING AUTHOR: D. LIANG (e-mail: d-linag@ist.osaka-u.ac.jp)

This work was supported by the Japan Science and Technology Agency (JST), PRESTO, Japan, under Grant JPMJPR22B1.

ABSTRACT Hyper-Dimensional (HD) computing is a brain-inspired learning approach for efficient and
fast learning on today’s embedded devices. HDC first encodes all data points to high-dimensional vectors
called hypervectors and then efficiently performs the classification task using a well-defined set of
operations. Although HDC achieved reasonable performances in several practical tasks, it comes with huge
memory requirements since the data point should be stored in a very long vector having thousands of bits.
To alleviate this problem, we propose a novel HDC architecture, called StrideHD. By utilizing the window
striding in image classification, StrideHD enables HDC system to be trained and tested using binary
hypervectors and achieves high accuracy with fast training speed and significantly low hardware resources.
StrideHD encodes data points to distributed binary hypervectors and eliminates the expensive Channel item
Memory (CiM) and item Memory (iM) in the encoder, which significantly reduces the required hardware
cost for inference. Our evaluation also shows that compared with two popular HD algorithms, the single-
pass StrideHD model achieves a 27.6× and 8.2× reduction in inference memory cost without hurting the
classification accuracy, while the iterative mode further provides 8.7× memory efficiency. Under the same
inference memory cost, our single-pass mode StrideHD averagely achieves 13.56% accuracy improvement
in comparison with the single-pass baseline HD, which is a similar performance even in comparison
with the costly iterative baseline HD models. As an extension, the iterative retraining mode of StrideHD
averagely provides 11.33% accuracy improvement to its single-pass mode, which can be accomplished
in fewer iterations in comparison with the baseline HD algorithms. The hardware implementation also
demonstrates that StrideHD achieves over 9.9× and 28.8× reduction compared with baseline in area and
power, respectively.

INDEX TERMS Hyperdimensional computing, distributed system, memory requirement.

I. INTRODUCTION

THE EMERGENCE of the Internet of Things (IoT)
has led to a copious amount of small connected edge

devices and systems [1]. Many of these devices need to
perform classification tasks such as speech recognition [2],
activity recognition [3], and image classification [4]. Though
Deep neural networks (DNNs) have provided high accuracy

for complex classification tasks, with the scale of DNNs
increasing, the high computational complexity and memory
requirement of DNNs hinder usability to a broad variety of
embedded applications. For example, AlexNet [5] requires
249MBof inferencememory and performs 1.5Bhigh precision
operations to classify one image. Even applying the hardware-
friendly techniques to get the Binarized Neural Networks

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 5, 2024 211

HTTPS://ORCID.ORG/0000-0002-4922-3921
HTTPS://ORCID.ORG/0000-0003-2733-9349
HTTPS://ORCID.ORG/0000-0002-0072-6114
HTTPS://ORCID.ORG/0000-0002-3674-4584

LIANG et al.: StrideHD: A BINARY HD COMPUTING SYSTEM UTILIZING WINDOW STRIDING

(BNNs) [6] or XNOR-Networks [7], still requires expensive
computation costs due to the floating-point calculation and
backpropagation algorithm during the training. The energy
constraint of edge devices hinders them from the real-time
training of NN models [8].

Although sending the data to a powerful cloud platform
to perform tasks is one of the options, there are still trans-
mission delays and privacy security issues. For example, in
health care monitoring, we often require learning algorithms
to have real-time control of the patient’s daily behavior,
speech, and bio-medical sensors. Sending all data points
to the cloud, cannot guarantee scalability and real-time
response, which is often undesirable due to privacy and
security concerns [9]. Hence, for edge devices with limited
hardware resources, the demand for a more processing-
efficient model is rising.
Brain-inspired hyperdimensional computing (HDC) has

been proposed as a computing method that processes
cognitive tasks in a more lightweight way [10]. HDC aims at
realizing real-time performance and robustness through using
strategies that more closely model the human brain [11].
HDC relies on mathematical properties of high-dimensional
vector spaces and use high-dimensional distributed rep-
resentations called hypervectors [12]. HDC works based
on the existence of orthogonal hypervectors which can be
combined using well-defined vector space operations. The
mathematics governing the high dimensional space enables
HDC to be easily applied to different learning problems.
The first step in HDC is to encode/map data points from
the original domain to the high-dimensional space with bit-
wise operations. During the training, HDC combines the
encoded hypervectors to generate a hypervector representing
each class. The classification task at inference performs by
searching the similarity of an encoded test hypervector with
all trained classes.
However, there are still several remaining challenges in the

application of HDC in edge devices: (i) Huge memory cost
for the encoding procedure. In most HDC models, they need
to represent both the index and value of the input features
via hypervectors, which requires a large size of memory
blocks. Such a process takes huge occupation of the total
inference memory cost, e.g., 96.15% for letters recognition
task. (ii)ManyHDCalgorithmsneed to be trained on expensive
floating-point (FP) hypervectors and perform the inference
with costly cosine similarity measurement, which leads to the
increase of hardware resource requirement in edge devices.
(iii) The hypervector ofmostHDC is generated holistically. For
the hypervector with thousands of dimensions, optimization
based on dimension-wise sparsity has been proposed in some
prior works. However, feature-wise sparsity should also be
under consideration when it comes to image processing tasks.
(iv) The widely used retraining procedure in current HDC
algorithms requires tens of iterations to get saturated, which
leads to long training time.
In this work, we propose a novel HDC system: StrideHD.

The uniqueness of StrideHD is to capture the critical features

utilizing window striding method and organize the HDC
architecture in a distributed way. After utilizing the window
striding to chop the input images, thermometer binarization
and max-pooling are applied. The extracted binary features
are further encoded to hypervectors with high orthogonality,
which enables efficient training/testing in our HDC model.
Meanwhile, the hypervectors can be generated without the
expensive item memory requirement. The main contributions
of our StrideHD model are as follows:

1) Successfully eliminated the costly Channel item
Memory (CiM) and item Memory (iM) by exploiting
a pseudo-random hypervector generation mechanism
in the encoder. Besides the traditional dimension-wise
sparsification, a feature-wise model sparsification is
further proposed for image processing tasks.

2) Compared to two HDC baselines, our single-pass
training achieved a 27.6× and 8.2× reduction in
memory cost without hurting the accuracy, while the
iterative training can further improve 8.7× memory
efficiency.

3) Under the same inference memory cost, the clas-
sification accuracy of single-pass mode StrideHD
is averagely 13.56% higher than the baseline HDC
models.

4) As an extension, we propose an iterative retraining
mode in our StrideHD, which averagely provides
11.33% accuracy improvement to its single-pass mode
in DistriHD [13], which can be accomplished in fewer
iterations compared to the other baseline HD models.

5) For hardware cost, we achieved over 9.9× and 28.8×
reduction compared with baseline HD [9] in area and
power, respectively.

II. RELATED WORK
Hyperdimensional Computing (HDC) leads to fast learning
ability, high energy efficiency and acceptable accuracy
in learning and classification tasks [14]. For the further
improvement of memory efficiency and classification accu-
racy, many works have been proposed.
The first general idea is to utilize hypervector with high-

precision elements. In [15], [16], [17], [18], [19], [20],
authors need to encode data points to hypervectors with non-
binary elements, i.e., storing integer or FP value for each
element. This leads to the high memory requirement and
expensive computational cost. To reduce the inference cost,
Rahimi et al. [21] and Imani et al. [9] propose binarizing the
elements of class hypervectors after the training. Although
these approaches can simplify the inference similarity matrix
to Hamming distance and lead to a faster computation
speed, it comes with the cost of significantly degraded
HD classification accuracy on practical image recognition
applications. For instance, Imani et al. [19] proposed a
HDC model for face image classification task. If the model
is binarized, the accuracy performance sharply decreases to
38.9%, which is far lower than the non-binarized mode.

212 VOLUME 5, 2024

FIGURE 1. (a) Overview of General HDC. (b) Functionality of Record-based Encoder I. (c) Dimension-wise Compression.

To recover the model performance degraded through
the quantization step, iterative training algorithms have
been proposed [15], [16], [17], [18], [19], [20], [22].
After encoding all the training data point into high-
dimensional binary vectors, these hypervectors are stored in
the Associative Memory (AM). Utilizing the labeled train-
ing data, the similarity between the encoded hypervectors
and stored hypervectors of each class can be measured.
According to the correctness of prediction, the HD models
are adjusted and optimized iteratively. By employing such
gradient descent, the error rate of the HD model can
be significantly reduced. However, this strategy requires
tens of iterations to adjust the model, which leads to
a long training time in comparison with the single-pass
training.
Since the number of dimensions in the HDC model is

strictly related to the performance of classification accuracy,
Imani et al. [19] proposed a framework to sparse the
HDC model. They explore the prospect of sparsity in
hypervectors to improve HDC efficiency without serious
loss to accuracy. The research mainly focused on the
sparsity of hypervectors class-wise and dimension-wise.
Such strategy enables discarding the elements with minimal
impact on the results and discarding the inconsequential
(non-informative) dimensions shared across all learned
hypervectors, which means the number of dimensions in
hypervectors can be equally reduced. In this way, the clas-
sification accuracy can be improved with the same memory
cost.
However, the redundancy of dimensions in hypervectors is

not the only limitation. The difference of contributions from
each feature should be taken under consideration, especially
in the image classification tasks. Most of the current HDC
algorithms use a simple encoder, in which all the pixels of
images play an equal role in the generation of the non-binary
hypervectors. Then it applies the majority voting to get the
binary hypervectors as the representation of the input image.
In this encoding mechanism, the crucial information from
the key patterns could be minified by the noise from the
other less important pixels, which may limit the application
of HDC in image processing tasks.

III. PRELIMINARY
A. HYPER-DIMENSIONAL COMPUTING
HDC is a computing paradigm involving long vectors
with dimensionality in the thousands, which are called
hypervectors. In high-dimensional space, there are several
nearly orthogonal hypervectors. HD exploits well-defined
vector operations to combine these hypervectors, while also
preserving most of the information of the hypervectors.
Hypervectors are holographic and (pseudo) random with
i.i.d. components and full holistic representation, thus no
component has more responsibility to store any piece of
information than any other hypervector.
Fig. 1(a) shows the overview of the classification in high

dimensional space. HD consists of an encoder and an AM.
For all sample data within a class, HD maps data to high
dimensional vectors, called hypervectors, then combines
them together to create a single hypervector modeling each
class. Thereafter, the encoded hypervectors belonging to the
same prediction class (label) are accumulated to build up
the class’s hypervector. All trained class hypervectors are
stored in the AM. During the inference process, the same
encoding scheme maps test input data to high dimensional
space. AM looks at the similarity of the generated query
hypervector against all stored class hypervectors. The input
then gets the label of that class with which it has the highest
similarity.

B. GENERAL ENCODING APPROACH
The goal of HDC is to represent the input data in
high-dimensional space. In the current existing HDC algo-
rithm, models need to encode the input data to a single
hypervector with D dimensions. Aygun et al. [23] sum-
marized many encoding styles for the prior HDC. The
difference of encoders epitomizes from two perspectives:
(i) The operation in the HD space. E.g., the binding in
Record-based encoder, the bundling in Random-projection
encoder, and the permutation in N-gram based encoder [21].
(ii) The way to consider the impact of each feature
value on the final hypervector. For the reference, we
explain the functionality of three popular encoders in
detail:

VOLUME 5, 2024 213

LIANG et al.: StrideHD: A BINARY HD COMPUTING SYSTEM UTILIZING WINDOW STRIDING

FIGURE 2. (a) Functionality of Encoder II. (b) Functionality of Encoder III.

Encoder I: Record-based encoder
Fig. 1(b) shows the functionality of this encoding scheme,

which was proposed and utilized in [9], [24]. Assume the
original data point has n features {f1, . . . , fn}. The first step
is to quantize the range of pixel values into m levels. Then it
assigns a random binary hypervector with D dimensions to
each quantized level {L1, . . . ,Lm}, where Li is the ith feature
values level. The number of dimensions D in the hypervector
is large enough compared to the number of features (D>>n)
in the original data. The level hypervectors are generated
such that the neighbor levels have higher similarity, as their
absolute values have closer distance. To take the impact
of each feature position under consideration, the encoding
module assigns a random binary hypervector to each existing
feature index {ID1, . . . , IDn}, where ID ∈ {0, 1}D. These
IDs are randomly generated such that all features will
have orthogonal IDs. The encoding can happen by linearly
combining the feature values over different indices, where a
hypervector corresponding to a feature index preserves the
position of each feature value in a combined set:

H = ID1 ⊕ L1 + ID2 ⊕ L2 + · · · + IDn ⊕ Ln. (1)

Here the H is the non-binary encoded hypervector, ⊕
denotes the XOR operation, and Li is the binary hypervector
corresponding to the i-th feature of vector F. The binarization
of the encoded hypervector can happen by comparing each
dimension of H with n/2 value. All dimensions with a
smaller value than n/2 are assigned to 0, while other
elements are assigned to 1.
Encoder II: Random-projection encoder
Unlike Encoder I, the second encoder differentiates feature

positions by multiplying feature values with the correspond-
ing index hypervector, ID ∈ {−1, 1}D and adding them for all
the features. Fig. 2(a) shows the functionality of the second
encoding scheme, which is proposed in [16]. For example,
where fi is a feature value, the following equation represents
the generation of encoded hypervector H:

H = sign(f1 ∗ ID1 + f2 ∗ ID2 + · · · + fn ∗ IDn) (2)

Here the H is the binary encoded hypervector, the ∗ denotes
the element-wise multiplication, and sign is a sign function
that maps the elements of results to ‘+1’ or ‘0’.

TABLE 1. Previous HDC encoders comparison.

TABLE 2. Inference memory occupations in [9].

Since the element in IDs is ‘-1’ or ‘+1’, which simplified
the element-wise multiplication of fi ∗ IDi to the wire
connection in hardware, i.e., using the readout data from
the index hypervectors IDs as the sign bit of input features
fi. This encoder also assigns a unique index hypervector ID
to each feature position and is stored in the Channel item
Memory (CiM). But on the other hand, the item Memory
(iM) is eliminated at the cost of broadening the range of
summarizing results

∑n
i=1 fi ∗ IDi.

Encoder III: Non-linear encoder
Fig. 2(b) shows the functionality of the third encoding

scheme, which is proposed in [25]. This method explicitly
considers non-linear interactions between input features.
Though the data is not linearly separable in original dimen-
sions, it might be linearly separable in higher dimensions. To
generate a binary hypervector H = {h1, h2, . . . , hD} with D
dimensions from an input feature vector F = {f1, f2, . . . , fn},
the first step is to calculate a dot product of the feature vector
with a randomly generated vector as hi = cos(IDi ·F). Here
the IDi represents the index hypervector, which is a randomly
generated vector from a Gaussian distribution (mean λ=0
and standard deviation σ=1) with the same dimension as
the feature vector. After this, the final encoded hypervector
can be obtained by binarization with a sign function.
Note that to ensure the index hypervectors IDs follow

the Gaussian distribution and keep the summaries results
in a suitable range before applying cosine function, the
elements in IDs need to be floating-point data, which
seriously increases the memory requirement in the CiM.
Meanwhile, in comparison with Encoder II, it requires the
more expensive floating-point arithmetic, which limits the
computation efficiency during the encoding procedure.
Table 1 shows the comparison between these three popular

encoders. The values of level hypervectors Ls and index
hypervectors IDs are stored in the item Memory(iM) and
the Channel item Memory (CiM) respectively. Take the
Encoder I utilized in [9] as an example, for different
classification tasks, the occupations of memory cost during
the inference are shown in Table 2. We observed that the
CiM and iM averagely take more than 93.4% and 4.7%
of the inference memory cost, respectively. Meanwhile, the
arithmetic difference is seriously affecting the hardware

214 VOLUME 5, 2024

FIGURE 3. (a) Overview of the proposed StrideHD. (b) Overview of proposed encoder procedure.

resource requirement, e.g., the FP calculations in Encoder III
increase the computational complexity and memory require-
ment under the same number of dimensions. Hence, we
proposed a novel encoding scheme to eliminate the usage of
CiM and iM while maintaining the simplicity of arithmetic,
which is described in Section IV-E.

C. MODEL SPARSIFICATION
The goal of HDC at inference is to find a class hypervector
with the highest similarity to the query hypervector, which
is relative to the class hypervectors. However, not all
dimensions of the class hypervectors have useful information
that can distinguish one class from others. In some of the
dimensions, all class hypervectors store common information
shared among all classes, which add relatively similar
weight to all classes in calculating the Cosine distance or
Hamming distance. Reference [19] proposed a framework
to explore the sparsity of hypervectors on the class-wise
and dimension-wise, which enables discarding the elements
with minimal impact on the results and discarding the
inconsequential (non-informative) dimensions shared across
all learned hypervectors. The number of dimensions in
hypervectors can be equally reduced and the classification
accuracy can be improved with the same inference memory
cost.
For the dimension-wise sparsity in HDC, the changes in

the class elements in each dimension should be measured.
After obtaining the variation of dimensions, the dimensions
with the lowest change are selected to be dropped from the
HDC model as they have the least impact on differentiating
the classes. Fig. 1(c) shows the overview of sparsification
on dimension-wise.
However, the redundancy of dimensions in hypervectors is

not the only limitation. The difference of contributions from
each feature should be taken under consideration, especially
in the image classification tasks. Most of the current
HDC algorithms use a simple encoder as we explained in
Section III-B, in which all the pixels of images play an equal
role in the generation of the non-binary hypervectors. Then
it applies the majority voting to get the binary hypervectors
as the representation of the input image. In this encoding

mechanism, the crucial information from the key patterns
could be minified by the noise from the other less important
pixels, which may limit the application of HDC in image
processing tasks. Hence, we proposed a novel sparsification
mechanism to match our StrideHD model, which can be
applied on the dimension-wise and feature-wise. The details
will be described in Section IV-E.

IV. PROPOSED METHOD
As a novel HDC system, StrideHD utilizes window striding
to capture the critical features in the distributed way, and
enables to train/test the model with such distributed binary
hypervectors. Fig. 3(a) shows the overview of StrideHD for
image classification task. In StrideHD, the first step is to
extract the feature from the original images, in which we
apply the window striding technique. Utilizing the receptive
window striding, the critical locality patterns can be captured
effectively. Then, for features in each receptive window, we
apply maxpooling layer and thermometer encoding method
to quantize the non-binary values into binary data [26]. After
obtaining the binary features for each receptive window,
we apply the hypervector encoder to convert features into
hypervectors. Note here that, contrary to the conventional
HD, a single input image is converted into multiple (i.e.,
distributed) hypervectors. During the initial single-pass
training, these distributed hypervectors are combined in a
training module in order to create a set of binary hypervector
representing each class. The classification is performed by
finding the class distributed hypervectors set which has the
highest similarity with the test distributed hypervectors set.
Note again that the similarities are respectively computed

for each hypervectors. Further, for the model size reduction,
we prune part of the class distributed hypervector by
using validation dataset whose procedure is detailed in
Section IV-E. Since StrideHD works with a binary model,
the inference can be performed with hardware-friendly
Hamming distance as the similarity matrix. As an extension,
we also proposed the iterative learning in our framework
for performance improvement. The pseudo-code for the
StrideHD is further shown as the Algorithm 1 and the

VOLUME 5, 2024 215

LIANG et al.: StrideHD: A BINARY HD COMPUTING SYSTEM UTILIZING WINDOW STRIDING

Algorithm 1 StrideHD Computing Framework
Design Parameters: shape of striding window Wrec × Hrec,
number of training subsets Le, number of dimension-wise
selected distributed hypervectors Ms, number of feature-wise
selected distributed hypervectors Ls, thermometer binarized
levels Lb, number of dimensions D.
Require: Initialize an integer model C and a binary model B
in shape of N×M×L×D with ‘0’s, where N is the number of
categories, M is the number of dimension-wise distributed hyper-
vectors, L is the number of feature-wise distributed hypervectors.
Ensure: Update the binary model B=sgn(C)
{① Single-pass & Iterative Training}
Split training set to Le minibatch including samples ue with
Nfeature non-binary features u(n), which corresponds to the labels
y(u).
u(e)(n)←u(n), e=1, 2, ...,Le
for e=1 to Le do

for n=1 to Nfeature do
thermometer binarization
u(e,b)(n)←u(e)(n), b=1, 2, ..., Lb using Eq.(3)
for b=1 to Lb do
window striding & max-pooling
u(e,b,l)(n′)←u(e,b)(n), l=1, ..., Lb; n′=1, ...,Wrec×Hrec

Reshape u(e,b,l)(n′) as f ln, l∈[0,L], n∈[1,Wrec × Hrec]
where L=Le×Lb×Lr
Generate a random matrix R(i,j)∈[1,Wrec × Hrec]M×B
for i=1 to M do

pi←
∑B

j=1 fR(i,j)2
B−j using Eq.(5)

for l=1 to L do
if single-pass training then
for k=1 to N do # all categories
C
l
k[pi]←C

l
k[pi]+1

else if iterative training then
if ypredict �= y then
C
l
correct[pi]←C

l
correct[pi]+1 # correct category

C
l
predict[pi]←C

l
predict[pi]−1 # predict category

Algorithm 2. In the following, we explain the details of the
StrideHD functionality.

A. FEATURE EXTRACTION BY WINDOW STRIDING
For the input image, we firstly apply a Wrec × Hrec size
receptive field with a stride of Trec, i.e., chopping the
pixels with striding windows. Then we apply a max-pooling
operation to improve the generalization of the model. After
these two steps, Lr distributed patterns with non-binary
elements are generated. Subsequently, we binarize the non-
binary element with thermometer way [26]. Assume the
range of non-binary element u is �u = umax − umin and
quantize it into Lb levels as follow:

u(b) =
{

1, �u·b
Lb

< u,

0, �u·b
Lb
≥ u. (3)

where b ∈ [1,Lb]. In this way, Lr × Lb distributed binary
patterns are extracted from each image.

B. ENCODER
Considering the expensive memory cost of item Memory,
we proposed an encoder with a pseudo-random hypervector

Algorithm 2 Sparsification & Inference
{② Sparsification}
Calculate the accuracy of distributed hypervectors C

l[pi]
where i∈[0,M], l∈[0,L], discard the Cl[pi] with poor Acc.
Model C and B are compressed as: M −→ Ms,L −→ Ls
{③ Inference/Prediction}
for k=1 to N do

for l=1 to Ls do # before ②:L; after ②:Ls
Similarity(k) += AND(Cl

k[pi]), i=1, 2, ...,Ms

before ②:M; after ②:Ms

Output← Argmax(Similarity)

FIGURE 4. Hypervector Orthogonality of Encoders.

generation mechanism that can map a pattern to a hyper-
vector only using the shifting operation. Fig. 3(b) shows
the overview of the proposed encoder, and Fig. 4 shows
the orthogonality comparison between the hypervectors
generated by different encoders. Assuming the l-th binary
pattern (l ∈ [1,Lb × Lr]) obtained via feature extraction is
represented by vector Fl. Where Fl = {f1, f1, . . . , fn} with
n elements (fi ∈ N), will be mapped to the distributed
hypervector Hl = {hl1, hl2, . . . , hlD} with D dimensions (hi ∈
{0, 1}D). Firstly, we randomly select the elements from vector
Fl and construct a matrix R:

R =

⎛

⎜
⎜
⎜
⎝

fσ(1,1)
fσ(1,2)

· · · fσ(1,B)

fσ(2,1)
fσ(2,2)

· · · fσ(2,B)

...
...

. . .
...

fσ(M,1)
fσ(M,2)

· · · fσ(M,B)

⎞

⎟
⎟
⎟
⎠

(4)

where fσ(i,j) ∈ {f1, f1, . . . , fn}, i ∈ [1,M], j ∈ [1,B]. M
and B represent the number and range of the generated
binary numbers, respectively. And the function σ represents
the random selection. Each row of the matrix R can be
considered as a binary number pi:

pi =
B∑

j=1

fσ(i,j)2
B−j (5)

Similar to Bloom filter [26], we can generate M binary
vectors in the range of B-bits by flipping the pi-th bit
of the empty vector (all logic “0”), which can be easily
accomplished with shifting operation. Finally, the distributed
hypervector Hl is the connection of these binary vectors.

216 VOLUME 5, 2024

Such a mechanism has three main advantages as compared
to the other encoding methods in the HDC algorithms [9],
[16], [17], [18], [19], [20], [21]. First, unlike existing
approaches which need to read the index hypervectors
from item Memory, this encoding method can generate
hypervectors only using shifting operation.
The expensive memory cost by item Memory (shown in

Table 2) can be avoided. Second, this method doesn’t need
to do accumulation and majority voting for each dimension
during encoding, which means it is hardware-friendly and
suitable for parallel implementation. Third, the hypervectors
generation with high orthogonality. We randomly select
1,000 training images from MNIST dataset and generate the
hypervectors with different encoders. As shown in Fig. 4,
the orthogonality measure is based on Hamming distance,
while our encoder achieved superior performance.

C. SINGLE-PASS TRAINING
Initially the AM is blank, i.e., all the values are set to logic
“0”. After the feature extraction, Lr × Lb distributed binary
patterns are obtained. By using the encoder we described
in Section IV-B, a set of distributed hypervectors Hl are
generated (l ∈ [1,Lb × Lr]). For all input within the same
class, the training data will be divided into Le training subset.
For all the data within the same training subset {S1, . . . , SK},
the distributed hypervectors are added to create the class
distributed hypervectors C = {C1,C2, . . . ,CL} with integer
addition for each dimension as follow:

C
l = Hl

1 + Hl
2 + · · · + Hl

K (6)

where C
l
i represents the l-th distributed hypervector belong-

ing to the i-th class and L = Lb × Lr × Le. These class
distributed hypervectors will be stored in the AM during
the training. Note that in comparison with the existing HD
model, the majority voting is simplified to OR operation,
which contributes to a fast and ultra-efficient learning
process.

D. INFERENCE
After the feature extraction and encoding procedure, L dis-
tributed hypervectors Hl are generated to represent one input
image for query. Similarly, L distributed class hypervectors
C
l have been trained and stored in the AM part, which

contains the universal information of each class in HD space.
When it comes to the inference, we measure the similarity
of them as follows:

Similarity =
L∑

l=1

sgn
[
δ
(
Hl&C

l,Cl
)
−M

]
. (7)

Where & represents the bitwise AND operation and the
δ is the Hamming distance between two vectors. The sgn
represents the sign function that extracts the sign of a
real number. The class of distributed hypervectors with the
highest similarity is chosen as a representative category of
the testing image.

FIGURE 5. Overview of Feature-wise Compression.

E. OPTIMIZED MODEL SPARSIFICATION
To improve memory efficiency, we proposed to sparsify asso-
ciative memory with the labeled validation data. Compared
with the existing mechanism, our model sparsification is
changed from unsupervised to supervised mode, which are
performed dimension-wise and feature-wise. The details are
shown in Fig. 1(c) and Fig. 5.

For dimension-wise sparsity, we use the labeled validation
images to calculate the accuracy of each dimension. In the
ideal scenario, the value of a dimension in the validation
hypervector should be equal to the corresponding dimension
in the matching class hypervector, while all other values of
this dimension in the mismatching class hypervectors should
not be equal to it. After obtaining the accuracy performance
of dimensions, the dimensions with the lowest accuracy are
selected to be dropped from the HDC model as they have
the least/worst impact on differentiating the classes. Note
that in our proposed encoding, the distributed hypervector Hl

is a connection of the shifted binary vectors, which means
the dimensions in these shifted binary vectors can not be
dropped separately. Hence, the discard of dimensions only
happened for the whole shifted binary vectors, which makes
the dimensions of class distributed hypervectors decrease:
C
l ∈ {1, 0}M·D→ C

l ∈ {1, 0}Ms·D.
Similarly, for the feature-wise sparsity, we can also

calculate the accuracy for class distributed hypervector by
validation images simultaneously. The C

l with the lowest
accuracy are selected to be dropped as those represented
features have the least impact on differentiating the classes.
The number of Cl is decreased: l ∈ [0,L]→ l ∈ [0,Ls].

F. ITERATIVE RETRAINING
As an extension, we also proposed iterative learning in
our framework, which aims at reducing the error rate of
the initial HD model by employing gradient descent. As
shown in Figure. 3(a), the StrideHD firstly encodes the
training data to query distributed hypervectors, then check its
similarity with each pre-stored class distributed hypervector
set as mentioned in Section IV-D. If the class distributed
hypervector set with the highest similarity matches the
correct label, the StrideHD ignores updating the model.
However, if an encoded training data H incorrectly matches

VOLUME 5, 2024 217

LIANG et al.: StrideHD: A BINARY HD COMPUTING SYSTEM UTILIZING WINDOW STRIDING

FIGURE 6. The hardware implementation of StrideHD during inference includes Encoding, Associative Memory Blocks, AND Gates Array, and Nearest Distance Searching
modules.

with the model, we add this query to the correct class Ccorrect

while subtracting it from the predicted incorrect class Cpredict

as follows:
{
Ccorrect = Ccorrect[+]H
Cpredict = Cpredict[−]H

(8)

Where [+] and [−] is a binary addition and subtraction for
each dimension. Note that such accumulation is performed
in class distributed hypervectors with integer elements in a
pre-defined range, which is also considered as the counters
model [9]. When it comes to the inference, we can use an
additional binarized model with the same size of dimensions.
All dimensions with a smaller value than 0 are assigned to 0,
while other elements are assigned to 1.
Based on the novel encoding procedure described in

Section IV-B, the percentage of logic ‘1’ in the encoded
hypervector of StrideHD is much less than the conventional
hypervector. Hence, the update of model mainly focuses on
the more significant dimensions, which leads to efficient
iterative retraining and fewer iterations.

V. HARDWARE IMPLEMENTATION OF INFERENCE
The hardware implementation of StrideHD during inference
mainly consist of four different blocks: (❶) Encoding, (❷)
Associative Memory Blocks, (❺) AND Gates Array, and
(❻) Nearest Distance Searching modules. Figure 6 shows
the overview of our hardware architecture.

A. ENCODING BLOCKS
The hardware implementation of each encoding block is
shown in Figure 6 (❹). This process performs the (❸)
feature extraction and pseudo-random hypervectors genera-
tion mechanism with the memory address decoder, which
are integrated in the (❶) as hardware implementation of
the Encoding Blocks. Mathematically, the computation of

feature extraction can be performed by the window striding,
thermometer binarization, and max-pooling techniques.

• As for the window striding, it is mainly implemented
with the wire connection, which does not require
additional transistors in hardware implementation.

• The next step is to convert each original decimal feature
to the Lb-bits thermometer binary data. This process
can be accomplished with cheap combinational logic
circuits. According to Eq.(3), the more continuous ‘1’s
at the beginning of the converted data represent the
larger value of the original feature.

• Based on the characteristic of thermometer binary data,
it is convenient for the implementation of the max-
pooling layer, which can be performed by bit-wise OR
gates for each bit of the binary data.

Figure 6(❸) shows an example of thermometer binarization
and its corresponding max-pooling operation. After this
step, each original data point is converted to Ls different
Ms-bits binary patterns, which are the input of the address
decoders. Based on the decoded addresses, the data from
the corresponding memory cells in C different categories
are read. Note that the Ls and Ms represents the number
of feature-wise and dimension-wise distributed hypervectors
after the model sparsification, which has been accomplished
by validation data during the training. Such model sparsifi-
cation process aims at further reducing the memory usage
of well-trained model, leading to a light weight requirement
for hardware implementation during the inference.

B. ASSOCIATIVE MEMORY (AM) BLOCKS
Figure 6(❷) shows the implementation of the AM Blocks.
Unlike the prior HDC algorithms that read the data from all
the memory cells, the StrideHD only requires reading parts of
the memory cells. For each inference operation, Ls×Ms×C

218 VOLUME 5, 2024

bits of data are read from the AM Blocks, while the AM
Blocks contain D times larger memory in total. Based on the
decoded addresses, the data from the corresponding memory
cells are read, which leads to Ms different C-bits data as
the input of the following AND gates array. Note that the
readout data are not the hypervector of each category but
represent the similarity measure results.

C. AND GATES ARRAY
Figure 6(❺) shows the implementation of the AND gates
array. Compared to the XOR gates array in prior works, even
costing the same number of memory cells in AM Blocks, the
scale of AND gates array in StrideHD is much smaller. On
one hand, the scale of readout data from AM is reduced for D
times. On the other hand, the StrideHD are checking whether
the readout dimensions are ‘+1’, while the traditional way
(Encoder I, II, and III) requires to check whether the readout
dimensions are equal to query hypervector. Hence, readout
data from AM blocks are the only input of AND gates array,
while the two inputs of the traditional XOR gates array are
the readout data and query hypervector, respectively. When
Ms-bits of readout data from the same category are ‘+1’,
the similarity of the corresponding category is increased by
1, which makes the similarity in the range from 0 to Ls.

D. NEAREST DISTANCE SEARCHING
Figure 6(❻) shows the implementation of the nearest distance
searching module. After getting C × Ls bits data from
AND gates array, it requires C different binary counter to
calculate the number of ‘+1’ in the Ls-bits data, which is
considered the similarity for each category. Finally, utilizing
the comparators to get the output. The range of similarity in
StrideHD is much smaller than the traditional one (D>>Ls).

VI. EXPERIMENT
A. EXPERIMENTAL SETUP
We consider the popular HDC algorithm [9] as the baseline,
which is similarly utilizing binary hypervectors and elimi-
nating FP calculations. We evaluated StrideHD and baseline
HD training and inference with three encoders on an Intel
Core i7 7600 CPU using an optimized C++ implementation.
To verify recognition quality of StrideHD, we consider three
problems: MNIST [4], Kuzushiji-MNIST [27], Fashion-
MNIST [28], and SMILES [29]. For the MNIST-kind
datasets, we randomly select 55k images for training and 5k
images for validation.
MNIST: is a collection of handwritten digits in grayscale

format and is intensively used to compare the performance
of many classification models.
Kuzushiji-MNIST: is a dataset that focuses on Kuzushiji

(cursive Japanese) [27]. Even though this dataset is created
as a drop-in replacement for the MNIST dataset, the char-
acteristics of Kuzushiji and Arabic numbers are completely
different, which makes it more challenging than MNIST.
Fashion-MNIST: is a new dataset comprising of fashion

products, such as shirts, T-shirts, or coats that look very

similar at 28×28 pixel resolution in grayscale, making many
samples ambiguous even for humans (Human performance
on Fashion-MNIST is only 83.5% [28]).
SMILES: is a face recognition task that aims at classifying

the images with or without smiling. There are 13,165 images
in the dataset, with each image having a size of 64×64
pixels. Among all the face images, 9475 of these examples
are not smiling, while only 3,690 belong to the smiling class.
Hence, we randomly select 600 positive images 600 negative
images for testing, and 300 images for the validation.
In software, we utilize the MNIST dataset to explore the

impact of several design parameters in StrideHD single-pass
training, and the reduction of the inference memory cost
are evaluated in comparison with the baseline HD. As an
extension, we make a comparison between our proposed
StrideHD, and three baseline HD algorithms. The BinHD,
SecureHD, and DUAL represent the iterative HDC learning
framework in [9] utilizing the Record-based Encoder I
from [9], Random-projection Encoder II from [16], and Non-
linear Encoder III from [25], respectively.

B. SINGLE-PASS TRAINING PARAMETERS TUNING
In our experiment for MNIST dataset, the max-pooling layer
is selected to have a stride of 2, a squared window of size 2,
and zero padding. According to the evaluation results shown
in Fig. 7(a), we applied a 5 × 5 receptive window with a
stride of 3. Meanwhile, Fig. 7(b-c) illustrates the impact of
binary levels Lb and the number of training subsets Le. With
higher Lb and Le, the classification accuracy is improved
with a larger memory cost. Hence, for competitive accuracy
and memory efficiency, we choose Lb = 4 and Le = 2 as
a performance trade-off. Fig. 7(d-f) shows the classification
accuracy under different Feature-wise sparsity, Dimension-
wise sparsity, and the dimensions D. Similarly, we adopt
the Feature-wise and Dimension-wise sparsity as 20% and
95%, respectively. The parameters setting of our StrideHD
in different tasks are listed in Table 3.

C. MEMORY EFFICIENCY
As we mentioned in Table 2, the iM and CiM are averagely
taking huge occupation of memory cost (93.4% and 4.7%)
during inference for the BinHD, which is unnecessary in
the StrideHD. Based on the observation of Table 1 and
Table 2, we found that the hardware cost for Encoder III
in DUAL is much higher than the Encoder I in BinHD and
Encoder II in SecureHD due to the expensive FP calculation
and high data precision. Hence, we make a comparison of
StrideHD, BinHD, and SecureHD in terms of classification
accuracy and memory cost, which is shown in Fig. 8. For
a comprehensive and fair comparison, we evaluated the
performance of the baselines in two different ways.
The first way is to calculate the inference memory cost

including the CiM and iM part, which performs very poor
accuracy in Fig. 8 (a). To achieve the same level of accuracy
(e.g., 94.8%), the iterative BinHD and SecureHD require
27.6× and 8.2× memory cost compared to the single-pass

VOLUME 5, 2024 219

LIANG et al.: StrideHD: A BINARY HD COMPUTING SYSTEM UTILIZING WINDOW STRIDING

FIGURE 7. Impact of Different Parameters: (a) Length of Receptive Window. (b) Binary Levels Lb . (c) Number of Training Subsets Le . (d) Dimensions D. (e) Dimension-wise
Sparsity. (f) Feature-wise Sparsity.

TABLE 3. Parameters setting.

FIGURE 8. The comparison of accuracy and memory cost.

training StrideHD model. When applying iterative learning
to our proposed model, the accuracy is improved compared
to the single-pass training, which results in 8.7× memory
efficiency. The significant memory reduction mainly comes
from the elimination of the costly CiM and iM.
The second way is to calculate the baseline memory

cost without the expensive CiM and iM parts, which can
give a fair comparison to the performance of the trained
classifiers. Although increasing the number of dimension
D in BinHD and SecureHD results in improving the
classification accuracy, but also leads to a huge usage of
memory during inference. In MNIST dataset, when D is
increased to 10K, the accuracy of the iterative baseline

HDC models gets saturated at around 96%, which consumes
97.7 KB for the associative memory (AM) part and 7.7 MB
for the total memory cost. We found that with the same usage
of AM, our single-pass training has the advantage over the
iterative BinHD algorithm but is not competitive with the
iterative SecureHD. When we apply iterative learning to our
proposed model, the accuracy of StrideHD is improved to the
same level as SecureHD. Hence, such experimental results
show that our method successfully eliminated the expensive
CiM and iM while maintaining the same accuracy as the
classifier.

D. RETRAINING ITERATIONS & CLASSIFICATION
ACCURACY
Besides the huge memory efficiency, the fast training process
is also considered as the advantage of StrideHD. Fig. 9
shows the comparison during the iterative training. The
parameters setting of StrideHD is shown in Table 3, while
the D = 10k for the baseline HDC models. Compared
to the baseline HD algorithms, our method requires much
fewer iterations to achieve saturated and stable classification
accuracy. Since the percentage of logic ‘1’ in the encoded
hypervector of StrideHD is much less than the conventional
hypervecotor in baseline HD algorithms [9], [16], [25].
Therefore, the update of the model can mainly focus on
the more significant dimensions, which leads to efficient
iterative retraining and fewer required iterations. Meanwhile,
most traditional HDC algorithms simply calculating the
Hamming distance during the inference query. Although
the iterative learning mode of HDC tends to increase
the similarity between the class hypervectors and training
hypervectors, some of the dimensions still changes back and
forth. The noisy information within each training hypervector
are accumulated within such dimensions, which might result

220 VOLUME 5, 2024

FIGURE 9. Comparison of Iterative Retraining for StrideHD and Baseline HD models in different datasets.

TABLE 4. Classification accuracy comparison.

in the performance fluctuations of the HDC model. For our
StrideHD, the bit-wise AND operation and sign function
are included during hypervector query, which provides
a threshold to reduce the noisy information during the
retraining.
For the single-pass training mode, the classification

accuracy of StrideHD is averagely 13.56% higher than
the baseline HDC models. As an extension, the iterative
retraining procedure averagely provides an 11.33% accuracy
improvement to the single-pass StrideHD model. The com-
parison of classification accuracy is shown in Table 4.
Overall, in comparison with the popular HDC models

BinHD, SecureHD, and DUAL, our StrideHD significantly
reduced the memory cost for the inference by the elimination
of costly item Memory. Meanwhile, the fast and simplicity
of the training process avoids expensive iterative training
while maintaining the same level of classification accuracy.

E. HARDWARE IMPLEMENTATION
The hardware architecture and functionality of StrideHD
and BinHD are designed via RTL SystemVerilog. Then
we use Synopsys Design Compiler to synthesize and report
the area and power consumption in 65-nm ASIC flow. All
the synthesis are based on minimum hardware area cost
approach, and the clock period are set as 5 nanoseconds. The
memory part can be individually simulated with CACTI [30].
The memory type is also chosen to be the main memory in

TABLE 5. Hardware performance comparison.

65-nm ASIC flow, which doesn’t contain any tag array and
every access will happen at page granularity.
Table 5 shows the comparison of StrideHD and the

BinHD during inference in terms of ASIC area and power
consumption with the same level of classification accuracy
(94.8%). The maximum propagation delay of StideHD and
BinHD is 4.61 and 4.83 nanoseconds, respectively. There
are no timing violations. Both StrideHD and baseline are
using the binary mode, which mostly exploits the hardware-
friendly Hamming distance for similarity measurement.
The memory block takes over 96.9% of the area and

99.1% of the power consumption in the StrideHD model.
The gap in hardware cost between the proposed model
and the baseline mainly comes from memory efficiency.
The key concept behind StrideHD is to eliminate the
costly memory blocks in HDC, i.e., the CiM and the
iM blocks, which provides significant energy consumption
reduction. We aim for this HDC model to bring benefits
to customers, irrespective of the type of memory used in
hardware implementation. Hence, to exclude the performance
gap of the memory, we didn’t manually design the memory

VOLUME 5, 2024 221

LIANG et al.: StrideHD: A BINARY HD COMPUTING SYSTEM UTILIZING WINDOW STRIDING

part for StrideHD and synthesize it alone with the logic
parts, but simulate it by the architectural simulation model
CACTI individually. Both of the baseline HD architecture
and our StrideHD are compared using the same method to
evaluate the power/area performance of the memory block,
the accuracy of CACTI does not affect the comparison of the
hardware cost. Another reason is that the baseline requires
the majority voting mechanism to generate the hypervectors
while the encoding in StrideHD only requires shifting and
OR operations, which also contributes to the improvement
of hardware efficiency.

VII. CONCLUSION
In this work, we proposed a novel HDC system StrideHD
that utilizes window striding to capture the locality feature of
images. This framework supports using binary hypervectors
and achieves high accuracy with fast training speed and
significantly low hardware cost. Compared to the baseline
BinHD and SecureHD utilizing iterative learning strategy,
our framework achieves a 27.6× and 8.2× reduction in
memory cost without hurting the accuracy in single-pass
mode, while the iterative training can further provide 8.7×
memory efficiency. Under the same inference memory cost,
the accuracy of single-pass mode StrideHD is averagely
13.56% higher than the baseline HDC. As an extension,
the iterative retraining mode of StrideHD averagely provides
11.33% accuracy improvement to its single-pass mode,
which can be accomplished in fewer iterations compared to
the baseline HDC. Our hardware evaluation results demon-
strate that compared to BinHD, our StrideHD achieves over
9.9× and 28.8× reduction in area and power, respectively.
The experiment result illustrates StrideHD successfully

eliminates the expensive Channel item Memory (CiM) and
item Memory (iM) that is frequently used in most HDC
algorithms. Compared to the general way, the distribution of
hypervectors based on features not only helps the encoder to
replace the iM with shifting operation but also constrains the
noisy information from the less important pixels or binary
channels. Due to the memory efficiency and competitive
accuracy, StrideHD shows promising potential for image
classification tasks aimed at hardware implementation.

REFERENCES
[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and

its role in the Internet of Things,” in Proc. 1st MCC Workshop Mobile
Cloud Comput., 2012, pp. 13–16.

[2] D. Dua and C. Graff. “UCI machine learning repository.” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml/datasets/ISOLET

[3] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz,
“Human activity recognition on smartphones using a multiclass
hardware-friendly support vector machine,” in Proc. 4th Int. Workshop
AAL, 2012, pp. 216–223.

[4] Y. LeCun, C. Cortes, and C. Burges, “MNIST handwrit-
ten digit database: ATT Labs,” 2010. [Online]. Available:
http://yann.lecun.com/exdb/mnist

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. 25th Int. Conf.
Neural Inf. Process. Syst., 2012, pp. 1097–1105.

[6] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks: Training deep neural networks with
weights and activations constrained to +1 or −1,” 2016,
arXiv:1602.02830.

[7] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-
Net: ImageNet classification using binary convolutional neural
networks,” in Proc. 14th Eur. Conf. Comput. Vis. (ECCV), 2016,
pp. 525–542.

[8] C.-Y. Chang, Y.-C. Chuang, C.-T. Huang, and A.-Y. Wu, “Recent
progress and development of hyperdimensional computing (HDC) for
edge intelligence,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 13,
no. 1, pp. 119–136, Mar. 2023.

[9] M. Imani, J. Messerly, F. Wu, W. Pi, and T. Rosing, “A binary learning
framework for hyperdimensional computing,” in Proc. Design, Autom.
Test Eur. Conf. Exhib. (DATE), 2019, pp. 126–131.

[10] P. Kanerva, “Hyperdimensional computing: An introduction to com-
puting in distributed representation with high-dimensional random
vectors,” Cogn. Comput., vol. 1, pp. 139–159, Jun. 2009.

[11] H. Amrouch et al., “Brain-inspired hyperdimensional computing for
ultra-efficient edge AI,” in Proc. Int. Conf. Hardw./Softw. Codesign
Syst. Synth. (CODES+ISSS), 2022, pp. 25–34.

[12] D. Kleyko, D. A. Rachkovskij, E. Osipov, and A. Rahimi, “A survey on
hyperdimensional computing aka vector symbolic architectures, Part
I: Models and data transformations,” ACM Comput. Surveys, vol. 55,
no. 6, pp. 1–40, 2022.

[13] D. Liang, J. Shiomi, N. Miura, and H. Awano, “DistriHD: A memory
efficient distributed binary hyperdimensional computing architecture
for image classification,” in Proc. IEEE 27th Asia South Pac. Design
Autom. Conf. (ASP-DAC), 2022, pp. 43–49.

[14] L. Ge and K. K. Parhi, “Classification using hyperdimensional
computing: A review,” IEEE Circuits Syst. Mag., vol. 20, no. 2,
pp. 30–47, Jun. 2020.

[15] M. Imani, J. Morris, J. Messerly, H. Shu, Y. Deng, and T. Rosing,
“BRIC: Locality-based encoding for energy-efficient brain-inspired
hyperdimensional computing,” in Proc. 56th ACM/IEEE Design
Autom. Conf. (DAC), 2019, pp. 1–6.

[16] M. Imani et al., “A framework for collaborative learning in secure
high-dimensional space,” in Proc. IEEE 12th Int. Conf. Cloud Comput.
(CLOUD), 2019, pp. 435–446.

[17] B. Khaleghi, H. Xu, J. Morris, and T. S̆. Rosing, “tiny-HD: Ultra-
efficient hyperdimensional computing engine for IoT applications,” in
Proc. IEEE/ACM Design Autom. Test Eur. Conf. (DATE), 2021,
pp. 408–413.

[18] A. Hernandez-Cane, N. Matsumoto, E. Ping, and M. Imani,
“OnlineHD: Robust, efficient, and single-pass online learning using
hyperdimensional system,” in Proc. Design, Autom. Test Eur. Conf.
Exhib. (DATE), 2021, pp. 56–61.

[19] M. Imani, S. Salamat, B. Khaleghi, M. Samragh, F. Koushanfar,
and T. Rosing, “SparseHD: Algorithm-hardware co-optimization for
efficient high-dimensional computing,” in Proc. IEEE 27th Annu.
Int. Symp. Field-Program. Custom Comput. Mach. (FCCM), 2019,
pp. 190–198.

[20] M. Imani, C. Huang, D. Kong, and T. Rosing, “Hierarchical
hyperdimensional computing for energy efficient classification,” in
Proc. 55th ACM/ESDA/IEEE Design Autom. Conf. (DAC), 2018,
pp. 1–6.

[21] A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust and
energy-efficient classifier using brain-inspired hyperdimensional com-
puting,” in Proc. Int. Symp. Low Power Electron. Design, 2016,
pp. 64–69.

[22] Y. Kim, M. Imani, and T. S. Rosing, “Efficient human activity
recognition using hyperdimensional computing,” in Proc. 8th Int. Conf.
Internet Things, 2018, pp. 1–6.

[23] S. Aygun, M. S. Moghadam, M. H. Najafi, and M. Imani, “Learning
from hypervectors: A survey on hypervector encoding,” 2023,
arXiv:2308.00685.

[24] M. Imani, D. Kong, A. Rahimi, and T. Rosing, “VoiceHD:
Hyperdimensional computing for efficient speech recognition,” in
Proc. IEEE Int. Conf. Rebooting Comput. (ICRC), 2017, pp. 1–8.

[25] M. Imani, S. Pampana, S. Gupta, M. Zhou, Y. Kim, and T. Rosing,
“DUAL: Acceleration of clustering algorithms using digital-based
processing in-memory,” in Proc. 53rd Annu. IEEE/ACM Int. Symp.
Microarchitecture (MICRO), 2020, pp. 356–371.

222 VOLUME 5, 2024

[26] D. Liang, M. Hashimoto, and H. Awano, “BloomCA: A memory
efficient reservoir computing hardware implementation using cellular
automata and ensemble bloom filter,” in Proc. IEEE/ACM Design
Autom. Test Eur. Conf. (DATE), 2021, pp. 587–590.

[27] T. Clanuwat, M. Bober-Irizar, A. Kitamoto, A. Lamb, K. Yamamoto,
and D. Ha, “Deep learning for classical Japanese literature,” 2018,
arXiv:1812.01718.

[28] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel
image dataset for benchmarking machine learning algorithms,” 2017,
arXiv:1708.07747.

[29] “The MPLab GENKI database.” Accessed: Dec. 27, 2023. [Online].
Available: http://mplab.ucsd.edu

[30] R. Balasubramonian, A. Kahng, N. Muralimanohar, A. Shafiee, and
V. Srinivas, “CACTI 7: New tools for interconnect exploration in
innovative off-chip memories,” ACM Trans. Archit. Code Optim.,
vol. 14, pp. 1–25, Jun. 2017.

DEHUA LIANG received the B.E. degree in
microelectronic science and engineering from
Xian Jiaotong University, China, in 2018. He
is currently pursuing the Ph.D. degree with the
Department of Information Systems Engineering,
Osaka University, Japan.

JUN SHIOMI (Senior Member, IEEE) received the
B.E. degree in electrical and electronics engineer-
ing, the M.E. degree in Informatics, and the Ph.D.
degree in Informatics from Kyoto University,
Kyoto, Japan, in 2014, 2016, and 2017, respec-
tively. From 2016 to 2017, he was a Research
Fellow with the Japan Society for the Promotion
of Science. From December 2017 to March 2021,
he was an Assistant Professor with the Department
of Communications and Computer Engineering,
Graduate School of Informatics, Kyoto University.

In April 2021, he joined Osaka University, where he is currently an
Associate Professor with the Graduate School of Information Science and
Technology. His research interests include modeling and computer-aided
design for low power and low voltage system-on-chips.

NORIYUKI MIURA (Member, IEEE) received the
B.S., M.S., and Ph.D. degrees in electrical
engineering from Keio University, Yokohama,
Japan. From 2005 to 2008, he was a JSPS
Research Fellow and since 2007 has been an
Assistant Professor with Keio University, where
he developed wireless interconnect technology for
3-D integration. In 2012, he moved to Kobe
University, Kobe, Japan, and became a Professor
with Osaka University, Suita, Japan, in 2020. Also,
he was concurrently appointed as a JST PRESTO

Researcher, and currently working on hardware security/safety and next-
generation heterogeneous computing systems. He was a recipient of the
Top ISSCC Paper Contributors from 2004 to 2013, the IACR CHES Best
Paper Award in 2014, the IEICE Suematsu Yasuharu Award in 2017, and
the Marubun Research Encouragement Award in 2019. He is currently
serving as a Technical Program Committee (TPC) Member for A-SSCC
and Symposium on VLSI Circuits. He served as the TPC Vice Chair of
2015 A-SSCC.

HIROMITSU AWANO (Member, IEEE) received the
B.S., M.S., and Ph.D. degrees in informatics from
Kyoto University in 2010, 2012, and 2016, respec-
tively. He was with Hitachi, Ltd., Tokyo, Japan, in
2016, with the VLSI Design and Education Center,
The University of Tokyo, Japan, from 2017 to
2018, and with the Graduate School of Information
Science and Technology, Osaka University, Osaka,
Japan, from 2019 to 2020. In 2020, he joined the
Graduate School of Informatics, Kyoto University,
Kyoto, Japan, where he is currently an Associate

Professor. His research interests include CAD for VLSI design and hardware
accelerator for machine learning. He was a Research Fellow with the Japan
Society for the Promotion of Science, and a member of IEICE and IPSJ.

VOLUME 5, 2024 223

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

