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ABSTRACT This paper describes a supervised speech enhancement (SE) method utilising a noise-
aware four-layer deep neural network and training target switching. For optimal speech denoising, the
SE system, trained with multiple-target joint learning, switches between mapping-based, masking-based,
or complementary processing, depending on the level of noise contamination detected. Optimisation
techniques, including ternary quantisation, structural pruning, efficient sparse matrix representation and
cost-effective approximations for complex computations, were implemented to reduce area, memory,
and power requirements. Up to 19.1x compression was obtained, and all weights could be stored on
the on-chip memory. When processing NOISEX-92 noises, the system achieved an average short-time
objective intelligibility (STOI) and perceptual evaluation of speech quality (PESQ) scores of 0.81 and
1.62, respectively, outperforming SE algorithms trained with only a single learning target. The proposed
SE processor was implemented on a field programmable gate array (FPGA) for proof of concept. Mapping
the design on a 65-nm CMOS process led to a chip core area of 3.88 mm2 and a power consumption of
1.91 mW when operating at a 10 MHz clock frequency.

INDEX TERMS Deep neural network, digital circuits, field programmable gate array (FPGA), mapping,
masking, multi-target learning, speech enhancement, structured pruning, ternary quantisation.

I. INTRODUCTION

THE USE of artificial neural networks, for example,
deep neural networks (DNNs) [1], recurrent neu-

ral networks (RNNs) [2], generative adversarial networks
(GANs) [3] and convolutional neural networks (CNN) [4],
[5] in speech enhancement (SE) algorithms, can provide
significant improvement in denoising performance compared
to conventional non-deep learning-based methods [6], [7].
Supervised deep learning SE algorithms use a data-driven
approach to derive enhanced speech from noisy speech.
Learning targets, usually two-dimensional time-frequency
(T-F) masks or spectrograms of clean speech, are often used
for learning the necessary mapping or processing to convert
noisy speech into clean speech.
Different learning targets exhibit complementary prop-

erties at different signal-to-noise ratio (SNR) levels and

when processing different noise types. This is suggested by
studies which found that mapping targets are preferred over
masking targets at low SNR conditions [4], [6]. To exploit
the complementary properties of different learning targets, a
deep learning framework with multiple-target joint learning
is needed. Multi-target learning [7], an example of multi-
task learning [8], has attracted increased research interest
due to its ability to predict multiple targets simultaneously
and to solve challenging problems where multiple condi-
tions are considered. Single jointly learned neural network
models exploit shared knowledge across relevant targets and
capture inter-target correlations, leading to improved regres-
sion performance. Furthermore, they achieve comparable
performance with ensemble networks while benefitting from
significantly smaller model sizes and lower computational
complexity [2].
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Hardware implemented SE processors have been
reported [5], [9], [10], [11]. In [5], hardware sharing was
used to reduce the SE processor area by leveraging the high
similarity between CNN and fast Fourier transform (FFT)
computations. Low-rank expansion and weight quantisation
were used to further compress the CNN-FFT model. For
quantisation, a 4-bit index was used to indicate 16-bit weight
values, providing 75% memory reduction. Weight pruning
was not extensively explored in [5]. In [9], the SE processor
contains multi-modal speech selection, lookup table-based
(LUT-based) non-linear approximation circuits and speech
detection controlled dynamic clock gating. The non-deep
learning-based processor relies on independent component
analysis to separate noisy inputs into statistically independent
signals. Although the SE processor in [9] is compact and
performs well in multi-talker scenarios, it struggles to
effectively remove unvoiced noise. The non-deep learning-
based SE processor in [10] achieved a 34% reduction in
both power consumption and area footprint by employing
a more efficient spectral-change enhancement technique.
This was further optimised by using 6-bit coefficients in a
bandpass filter. Coefficient sharing reduced execution time
by 73.4% and 48.9% for spectral smoothing and convolution
in the difference-of-Gaussian function, respectively. A DNN-
based SE processor that uses adaptive step-size-based slope
and intercepting to approximate the sigmoid function was
described in [11]. A common drawback in all these deep
learning-based SE processors is that they only adopt a single
type of processing for all noise conditions. In addition, there
remains the challenge of reducing computational complexity
and memory, particularly for applications where a compact
design is required.
In this paper, a compact and low-power deep learning-

based SE processor with speech intelligibility and quality
improvements in different acoustic noise environments is
proposed. The novel SE method utilises both mapping and
masking learning targets, where the switching between the
learning targets or a complementary approach combining
both targets is made possible through multi-target learning.
It incorporates dynamic noise level sensing (DNLS) to
provide information on temporal noise changes. The DNLS
also provides voice activity detection (VAD) to improve
noise estimation, and to suppress burst and non-stationary
noise more effectively. The DNN is made more compact
by using a customised ternary quantisation model that is
optimised by the weight distributions of the SE network,
and a structured weight pruning scheme that is compatible
with the sparse ternary network. To estimate on-chip power
and area requirements for integrated implementation, the
proposed SE method was implemented on an FPGA platform
and synthesised in a 65-nm CMOS process.
The major contributions of this paper are as follows:
(i) A noise-aware (through DNLS) SE approach with

multi-target learning is introduced, featuring bespoke
schemes for dynamically switching between mapping-
based, masking-based, and combined processing.

FIGURE 1. High-level system overview of the proposed SE method with multi-target
learning.

This adaptability significantly improves denoising
performance under varying noise conditions.

(ii) A dynamic ternary quantisation approach, opti-
mised for SE, that employs statistical distribution to
enhance computational efficiency while maintaining
high denoising quality.

(iii) An adaptive structural pruning technique for feedfor-
ward fully connected layers is proposed, specifically
designed to complement the ternary network.

The rest of this paper is organised as follows. Section II
describes the proposed SE design and its major functional
units. Section III describes the ternary quantisation and struc-
tured pruning optimisation techniques. Section IV presents
the FPGA implementation. The datasets used for evaluation,
discussion of the measured results and comparison with other
work are presented in Section V. Concluding remarks are
drawn in Section VI.

II. SPEECH ENHANCEMENT WITH MULTI-TARGET
LEARNING
Fig. 1 presents an overview of the proposed multi-target
learning for SE. During the training phase, clean speech and
noise from the training dataset are merged to produce a noisy
speech signal. Feature extraction is then performed on the
noisy speech signal. The extracted features, combined with
the noise estimate from the DNLS, form the acoustic feature
vector for DNN training across various noise types and
levels. The DNN training utilises two targets: the mapping-
based target (Path 1 in Fig. 1) and the masking-based target
(Path 2 in Fig. 1). The SE system employs the DNLS
noise estimate to allocate weight coefficients, activating three
training modes:
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• Mode 1 focuses on mapping target training and involves
computing the cochleagram of the clean speech. Mode
1 utilises only Path 1 in Fig. 1.

• Mode 2 emphasises masking target training and involves
calculating correlation-based masks using both clean
speech and noise. Mode 2 utilises only Path 2 in Fig. 1.

• Mode 3 (simultaneously activating Paths 1 and
2) integrates both mapping and masking training for
multi-target learning.

During the enhancement phase, the trained DNN is acti-
vated using the DNLS. If speech is detected, the SVAD switch
in Fig. 1 engages, allowing the input frame to proceed to the
subsequent enhancement blocks. An acoustic feature vector
is extracted from the input frame and then processed by the
trained DNN to either derive the denoised cochleagram or
estimate the ratio mask for the noisy cochleagram. Switches
S1 and S2 in Fig. 1 control this process. When S1 is active,
the frame undergoes a direct mapping process (Mode 1) to
produce an enhanced cochleagram. This mode modifies the
noisy speech to yield an enhanced speech cochleagram,
which is then reconstructed into a waveform. Activating S2
results in a pure masking enhancement (Mode 2), where
the noisy speech cochleagram is overlaid with the DNN-
estimated mask. The resultant output is then reconstructed
into its time-domain representation. Lastly, joint processing
(Mode 3) combines both masking and mapping approaches,
initially determining the enhanced cochleagram and sub-
sequently refining it with the enhancement mask. Further
explanation is outlined in Section II-B on how the modes
and switches are activated using the DNLS block.

A. ACOUSTIC FEATURE EXTRACTION
As shown in Fig. 1, the noisy speech frame is applied to the
feature extraction unit, before DNN training and inference
in the training and enhancement stages. Each signal frame
spans 25 ms and is sampled at a rate of 16 kHz, resulting
in 400 samples per frame. Adjacent frames share an overlap
of 15 ms, equivalent to 240 samples.
In this work, the amplitude modulation spectrogram

(AMS) and Gammatone frequency cepstral coefficients
(GFCC) features [12] are used to form the acoustic feature
set, because they offer a synergistic balance between compu-
tational efficiency and effective speech signal representation.
AMS features are adept at capturing temporal modulation
characteristics, which are vital for maintaining speech
intelligibility in noisy environments, while GFCC features,
derived from the Gammatone filterbank – also employed in
training target generation – provide a physiologically relevant
analysis of speech that closely mimics the human auditory
response.
The Gammatone filters are expressed by:

g(t) = af t
n−1e1−2πbf t cos (2π fct + φ) (1)

where af is a constant that controls the filter gain, t is time, n
is the order of the filter, fc is the filter central frequency and

φ is the phase. The decaying factor bf determines the filter
bandwidth. The Gammatone filter centre frequencies are
equally distributed on the equivalent rectangular bandwidth
scale (ERB) defined as:

ERB = 24.7

(
4.73

fc
1000

+ 1

)
(2)

Reconstructing the time-domain speech signal from the
cochleagram is done indirectly through several stages
of inversion, which include performing short-time auto-
correlation on all outputs of the cochleagram [13].
The combination of AMS and GFCC features avoids the

need for multiple filterbanks, such as the Mel filterbank
for Mel frequency cepstral coefficients (MFCCs) and the
Bark filterbank for relative spectral transformed perceptual
linear prediction coefficients (RASTA-PLP), thereby reduc-
ing computational complexity. An empirical analysis also
further substantiates that the integration of AMS and GFCC
features achieves the best tradeoff between SE performance
and computational demand.
The AMS computation involves extracting the signal’s

envelope using full-wave rectification before decimation by
a factor of 4 is applied. The decimated envelope is then
Hanning windowed, zero-padded and then integrated by
15 triangular windows uniformly spaced from 15.6 Hz to
400 Hz. This produces a 15-D AMS feature vector. To obtain
the GFCC features, the signal is first decomposed using a
64-channel Gammatone filter before it is decimated to an
effective sampling rate of 100 Hz. The output subsequently
goes through loudness compression by a cubic operation,
followed by a discrete cosine transform to yield a 31-D
GFCC vector. In addition to the coefficients, the first- and
second-order time differences are obtained and concatenated
to the feature vector.

B. DYNAMIC NOISE LEVEL SENSING (DNLS)
The introduction of the DNLS method is primarily motivated
by its capability to dynamically adapt to temporal variations
in noise characteristics, a feature essential for real-time SE
applications. Prior works on noise estimation include [31]
and [32]; the proposed DNLS extends these concepts by
incorporating real-time adaptability and integration with
multi-target deep learning frameworks for SE. Furthermore,
it has been designed to be computationally efficient whilst
effective at providing a responsive approach that improves
the SE performance in non-stationary noise.
The operations of the proposed DNLS are shown in

Fig. 2. The DNLS estimates the noise level within a noisy
speech frame. In Fig. 2(a) the DNLS block calculates the
weighted average noise level estimate, N′

k. This noise level
estimate is utilised to compute the weight coefficient γ ,
which determines the training mode. Under high noise levels
(or low SNR conditions), the preference is for mapping target
learning. Consequently, the weight coefficient γ should lean
towards the mapping target or complementary target training,
with greater emphasis on the mapping target.
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FIGURE 2. (a) The operation of the DNLS in the training stage includes noise
estimation and calculation of the weight coefficients for multi-target training. (b) The
operation of the DNLS in the enhancement stage includes voice activity detection and
noise estimation.

The weighted average noise level estimate N′
k necessitates

the computation of the current noise level estimate Nk. The
noise level for the current 25 ms frame is given by:

Nk = 1 − R(j, j− 1)

R(j− 1, j− 1)
(3)

where Nk represents the estimated noise level for frame k
and R(j, j− 1) is the normalised cross-correlation between
the current segment j and the preceding segment j − 1.
This equation gauges the reduction in autocorrelation from
segment j− 1 to segment j, offering a noise level estimate.

The noise estimate is continuously updated over time,
allowing the algorithm to adjust to noise level variations.
This is achieved using a recursive averaging technique, where
the new noise estimate N′

k is a weighted average of the prior
estimate and the new measurement. The update equation is:

N′
k = ϕNk + (1 − ϕ)N′

k−1 (4)

where ϕ is a weighting factor that determines the influence of
the new and old noise estimates. It is dynamically determined
during the training process to ensure optimal noise estimation
adaptability. If ϕ is close to 0, the old estimate exerts
more influence, causing the noise estimate to evolve slowly.
This is suitable when the noise is relatively stationary
(determined by |N′

k − N′
k−1|) and exhibits gradual changes.

Conversely, if ϕ approaches 1, the new measurement has

more influence, allowing the noise estimate to shift swiftly.
This is appropriate when the noise is highly non-stationary
and can change quickly over time.
An adaptive weight coefficient γ is introduced based on

the noise estimation from the DNLS and |N′
k−N′

k−1|, where
a large |N′

k − N′
k−1| value denotes a non-stationary noise:

γ (k) ∝ N′
k · ∣∣N′

k − N′
k−1

∣∣. (5)

Empirical tests revealed that beyond or below specific
noise levels, either purely mapping-based enhancement or
purely masking-based enhancement outperforms comple-
mentary enhancement. As a result, the weighting coefficient
γ is assigned 1 above an upper threshold, thrup, and 0 below
a lower threshold, thrlow, as follows:

γ
′(k) =

{
1 γ (k) > thrup
0 γ (k) < thrlow.

(6)

The thresholds are normalised to maintain consistency
with the normalised speech and noise signals used in the
training and inference stages. From testing, thrup was estab-
lished to provide the optimal performance at 0.85 whereas
thrlow was at 0.15. When γ = 1, switch S1 (as shown in
Fig. 2) is activated, allowing the noisy speech to undergo
purely mapping-based enhancement (Mode 1). When γ = 0
only the masking-based target learning is activated (Mode
2). For conditions where 0 < γ < 1, the network undergoes
complementary processing (Mode 3) where both mapping
and masking-based SE are jointly learned. Fig. 3 shows how
γ , N′

k, Nk and ϕ vary with an example speech waveform
contaminated by factory noise at 0 dB SNR, demonstrating
its responsiveness to noise levels. Note that ϕ has been
downscaled by 90x to prevent the occlusion of the other
plots.
At the enhancement stage, shown in Fig. 2(b), the DNLS

block additionally performs VAD such that enhancement
is activated only when speech is present. This is achieved
by thresholding the noise level estimate N′

k. Noise-only
frames are indicated by high values of N′

k, whereas silent
frames are usually characterised by N′

k values of zero.
The threshold identifying noise-only frames is determined
at the training stage, where noise-only frames are known
and correlated to N′

k. The ROC curve depicted in Fig. 4
effectively demonstrates the reliability of the proposed VAD
approach when presented with speech contaminated with
noise at −5 dB SNR. In the figure, the positive rates
indicate noise-only frame detections. As illustrated, the
chosen threshold is the one that results in minimal false
alarms, a critical factor in determining whether a frame
is noise-only. This careful selection ensures that the VAD
algorithm tends towards activating the SE process. This
approach prioritises the quality of the hearing experience
over computational simplicity.

C. SPEECH ENHANCEMENT MODES
Three modes (Mode 1, Mode 2, and Mode 3) in conjunction
with the DNLS are designed to perform deep SE.
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FIGURE 3. Variation of γ , N ′
k , Nk and ϕ in response to a speech waveform

contaminated by factory noise at 0 dB SNR.

FIGURE 4. ROC curve illustrating the performance of the VAD algorithm. The curve
highlights the trade-off between false positive rates and true positive rates, with the
optimal threshold marked to minimise false alarms in noise-only detection.

MODE 1: MAPPING-BASED TRAINING TARGET
The activation of S1 leads to Mode 1 processing, which is
the mapping-only enhancement. This enhancement maps the
noisy speech cochleagram directly to an enhanced one. The
cochleagram is derived from the Gammatone filters described
in Section II-A. The output of each filter is visualised over
time, creating a T-F representation of the sound. Each row in
the cochleagram corresponds to one Gammatone filter (one
frequency band), and the intensity of the colour or grayscale
in the visualisation represents the energy at each frequency
band over time.

MODE 2: MASKING-BASED TRAINING TARGET
A cost-effective adaptation of the ideal ratio mask (IRM)
employing inter-channel correlation (ICC) factors [14] is
used in the masking-based target construction. To minimise
computational expense, the ICC factors are determined using
pre-established sum tables, as detailed in [14].
Traditionally, the ICC factor computation involves deter-

mining the speech energy Px(c,m) and noise energy Pn(c,m)

of the mth frame in the cth channel:

ICCIRM(c,m) = ρx(c,m) · Px(c,m)

ρx(c,m) · Px(c,m) + ρn(c,m) · Pn(c,m)
(7)

where ρx(c,m) is the normalised cross-correlation (NCC)
coefficient between the clean speech and noisy speech power
spectra in the cth channel of the mth frame and ρn(c,m)

is the NCC coefficient between the noise and noisy speech
power spectra in the cth channel of the mth frame. They are
given by:

⎧⎪⎪⎨
⎪⎪⎩

ρn(c,m) = yTc,m·nc,m√
‖yc,m‖2·‖nc,m‖2

, (a)

ρx(c,m) = yTc,m·xc,m√
‖yc,m‖2·‖xc,m‖2

, (b)
(8)

where yc,m, nc,m and xc,m are the magnitude spectrum column
vectors of noisy speech, pure noise, and clean speech for each
frame in each Gammatone channel respectively. T denotes
the transpose operation.
The sum tables method eliminates redundant calculations

and approximates cross-correlation with energy differencing
between relevant signal windows. Given that many calcu-
lations are repetitive due to the comprehensive comparison
between noisy speech as reference windows (yc,m) and
clean speech (xc,m ) or pure noise (nc,m) as comparison
windows, the sum tables method replaces squared and dot
product operations with simpler subtractions and additions.
This substantially reduces the computational complexity for
calculating ρn(c,m), ρx(c,m) and ICCs.

D. MODE 3: MULTI-TARGET LEARNING
The DNN features two output layers for multi-target
(or joint) learning. One layer produces the enhanced
cochleagram, while the other generates the predicted
correlation-based ratio mask to attain clean speech, as shown
in Fig. 1. Employing a shared DNN allows the network
to discern the relationship between mapping and masking-
based processes. It further enables generalisation capability
improvement by integrating multiple regularisation elements.
Moreover, using a singular DNN for multi-target and multi-
task learning results in a more compact model with lower
computational demands compared to deploying multiple
DNNs.
During the joint learning of mapping and masking-based

targets, the minimum mean square errors (MMSEs) from
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both outputs guide the adjustment of network parameters in
training:

Err = γ ∗ 1

K

K∑
k=1

∥∥Xmap − Xmapk

∥∥2
2∥∥Xmapn

∥∥2
2

+ (1 − γ ) ∗ 1

K

K∑
k=1

∥∥Xmask − Xmaskk

∥∥2
2∥∥Xmaskk

∥∥2
2

(9)

X
map = X̂

map
k

(
Ymapk±r ,Y

mask
k±r , W, b

)
(10)

X
mask = X̂

mask
k

(
Ymapk±r ,Y

mask
k±r , W, b

)
(11)

where X̂k and Xk represent the estimated and clean cochlea-
grams at sample index k, respectively. K denotes the
mini-batch size. Yk±r is the noisy speech feature vector
where the window size is 2∗τ +1. (W, b) denotes the weight
and bias parameters within the network. The superscripts
‘map’ and ‘mask’ refer to the cochleagram-based mapping
target and correlation-based masking target, respectively.

III. DNN OPTIMISATION TECHNIQUES
A pre-trained DNN with a restricted Boltzmann machine [14]
employing four hidden layers with 1024 nodes each is
utilised for SE in this work. A standard backpropagation
algorithm using the normalised MMSE cost function is
considered for weight tuning across learning iterations. A
typical DNN often demands more than 10 MB of memory
when weights are stored in the floating-point format. To
address this, this work introduces a two-fold strategy to
reduce the DNN’s memory requirements: (i) dynamic layer-
wise ternary quantisation of parameters, minimising both the
memory footprint for storage and the memory bandwidth for
parameter retrieval, and (ii) compressing the architecture of
the feedforward ternary network through structured pruning.

A. TERNARY QUANTISATION
This work uses a dynamic ternary quantisation approach
to reduce the neural network weight precision to three
values: {+1,0, −1}, with each ternary weight represented
by 2 bits. The approach concurrently trains network weights,
quantisation thresholds and a layer-wise scaling factor.
It bridges the gap between full precision and quantised
weights, mitigating accuracy loss from model compression.
Fig. 5 shows the ternary quantisation training process with
dynamic quantisation thresholds (instead of employing fixed
or uniform ternarisation).
As shown in Fig. 5(a), to achieve dynamic ternarisation,

the kernel density estimation (KDE) evaluates the distribu-
tion of the network’s pre-trained full-precision weights. The
KDE for the network’s pre-trained full-precision weights is:

KDE(x) = 1

NB

N∑
i=1

K(x−Wi)

B
(12)

where x represents the weight value at which the probability
density function is calculated, N is the number of weights in

FIGURE 5. The dynamic ternary quantisation process where the weight distribution
at pre-training determines the ternarisation method to be employed. The ternarisation
of the full precision weight is executed with respect to the ternarisation thresholds
and scaling factor.

the layer, Wi indicates the layer weights, K is a non-negative
kernel function and B is a smoothing parameter called the
bandwidth. In this work, the normal kernel is used. The
bandwidth B is set to the Silverman’s Rule of Thumb [15].

The nature of the weight distribution (i.e., normal or
skewed distribution) is then determined by assessing the
skewness of the KDE as shown in Fig. 5(b):

Skew =
∑

N

i=1

(
KDEi − KDE

)3

(N − 1)σ 3
(13)

A normal (symmetric) distribution is defined when the
probability density function possesses a skewness between
−0.5 and 0.5. For a symmetric weight distribution, a trun-
cated Gaussian approximated ternarisation is performed as
shown in Fig. 5(c). In this case, the ternarisation thresholds
(θ±
l ) are set to be where the KDE reaches a certain fraction

of its maximum value. The ternarisation thresholds determine
the boundaries for quantising the full-precision weights into
ternary values.
The layer-wise ternarisation thresholds for a symmetric

distribution are calculated by the weight ternarisation func-
tion:

W ′
l,i = ζl(KDEl) · Tern(Wl,i, θ

±
l

)

= ζl(KDEl) ·
⎧⎨
⎩

+1, Wl,i > θ+
l

0, θ−
l ≤ Wl,i ≤ θ+

l
−1, Wl,i < θ−

l ,

(14)

where Wl,i and W ′
l,i denote the full-precision and ternarised

version of the weight at index i of layer l, respectively. ζl is
the layer-wise scaling factor calculated using the extracted
mean KDEl. θ±

l represents the ternarisation thresholds in
each layer. For asymmetric or skewed distributions, the
ternarisation thresholds are determined by identifying the
three primary weight clusters using weight entropy [16].
Additionally, the straight-through estimator [17] is employed
to enhance gradient approximation for the non-differentiable
ternarisation function, ensuring quicker convergence and
high inference accuracy.
The scaling factor, acting as a multiplier, adjusts the

magnitude of the ternarised weights to ensure they are
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FIGURE 6. (a) Architecture of the proposed SE inference processor. The training target generation unit is not part of the SE enhancement (inference) stage. (b) The Radix-22

FFT used for obtaining the AMS features. (c) Structure of a single SOS IIR stage for the Gammatone filterbank.

representative of the original full-precision weights. The full-
precision weights, ternarisation thresholds and scaling factor
are all integral to the backpropagation training shown in
Fig. 5(d).

B. STRUCTURAL PRUNING
Group lasso is a regularisation technique that promotes
sparse structured pruning [18]. However, simply merging
group lasso-based structured pruning with ternary quan-
tisation can hinder performance and slow down training
convergence [19]. This is because while group lasso aims
to reduce weight mean and variance during training, weight
ternarisation seeks to broaden the weight distribution.
Structured pruning can be regulated to encourage mean-

ingful group-wise sparsity patterns (e.g., channel-wise or
kernel-wise sparsity) that harmonise with the ternarised
DNN. If the intra-group L2-norm of a weight cluster is
significant, it indicates the cluster contains crucial weights.
Such clusters should be exempt from group lasso pruning
during backpropagation training. To achieve this, weight
penalty clipping [19] is employed for more optimal pruning
of the ternary network. The weight penalty clipping method
in [19] is adapted for fully connected feedforward DNNs in
this work as:

L̂ = L
(
f
(
x;Tern{Wl}Ll=1

)
, t

)

+ λ

L∑
l=1

Gl∑
i=1

min
(∥∥Wl,i

∥∥
2, δl

)
(15)

δl = η · 1

Gl

Gl∑
i=1

∥∥Wl,i
∥∥

2 (16)

where L(., .) is the objective function of the DNN, which
is the normalised MMSE in this work, and L̂ is the
new loss function added to the backpropagation training.
f (x;Tern{Wl}Ll=1) computes the ternarised weights of the
DNN with respect to the input x. ‖Wl,i‖2 calculates the

intra-group L2-norm (Euclidean norm) of the indexed weight
group Wl,i. Gl is the number of groups in the lth layer,
and λ is a tuneable hyperparameter. δl is a layer-wise self-
adaptive threshold used to diminish the L2-norm penalty on
large weights. η denotes a scaling coefficient that is found
empirically.
There are two scenarios in the weight penalty clipping

process: (i) if ‖Wl,i‖2 ≥ δl, weight clipping is performed
to prevent relatively large weights from being pruned from
the network, replacing ‖Wl,i‖2 with δl; (ii) if ‖Wl,i‖2 < δl,
weight clipping is not in effect, and the weight penalty
remains ‖Wl,i‖2. To determine whether a single neuron
should belong to a group (one of Gl) within a fully connected
layer, the average intra-group L2-norm is assessed whenever
a new vector-wise neuron is added. If adding a neuron
significantly reduces the average intra-group L2-norm, it
suggests the neuron is unimportant and should be considered
part of the weight group.

IV. FPGA IMPLEMENTATION
The proposed supervised SE method with multi-target
learning was adapted for FPGA via a multi-step process.
Since many complex operations cannot be directly and
easily implemented on an FPGA with reasonable resource
utilisation, formulae-based approximations or LUTs were
often used in replacements. The coordinate rotation digital
algorithm (CORDIC) [20] was employed to compute square
roots, multiplications, divisions, exponentials, and logarithms
to avoid using area-inefficient digital signal processor (DSP)
slices on the FPGA.
Fig. 6(a) shows the architecture of the SE inference

processor. The input signal undergoes preprocessing via the
I/O data buffer and Hanning window before being directed
to the DNLS, acoustic feature extraction or deep learning
unit. The input features are processed by the DNLS unit
and then by a systolic array for DNN operations. To achieve
the sigmoid activation function, an LUT with pre-calculated
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results is used. Interpolation between two pre-calculated
results is obtained when an intermediary output is requested.
The FFT for AMS features was implemented using the

Radix-22 method [21]. With the Radix-22 method, the r-point
FFT processor has a log4(r) number of stages, as shown in
Fig. 6(b). BF I and BF II in the figure represent a Radix-2
butterfly and a Radix-2 butterfly with trivial multiplication
by −j, respectively. The multiplication by −j involves real-
imaginary swapping and sign inversion. The Gammatone
filter was implemented by a cascade of second-order section
(SOS) IIR bandpass filters [22]. Fig. 6(c) shows the structure
of a single SOS IIR stage. The second order IIR stage
composes four 16 x 16-bit multipliers, two adders and two
flip-flops. The filter coefficients (AN, BN, B and C) are stored
on BRAM and loaded from the BRAM into the registers
when updated. The internal variables (ω0 and ω1), also
stored on the BRAM, are loaded into the flip-flops when
the load_ff signal is high.
Storing the network weights on the external DRAM (or,

more specifically, theDDR2 synchronousDRAMof theNexys
A7) would not be efficient due to longer access time and
significantly higher power consumption, especially when the
weights are only fetched once for each output computation.
Through the ternary quantisation, the bit-width of the DNN
was reduced to 2-bit from a 32-bit full precision representation.
This optimisation allowed weight storage on the on-chip
BRAM and simplified weight operations. Post-structural
pruning, the 2-bit representation is further streamlined to a
1-bit format, achieved by eliminating non-zero weights.
Although ternary quantisation and structured pruning

can greatly reduce memory footprint, there were some
challenges. Since only non-zero weights were stored in
memory, relative row index and column pointer were needed
to store the sparse matrix. A 5-bit data was used to store the
network weight, with 1 bit for the ternary weights and 4 bits
for the relative row index. Fig. 7(a) shows the compressed
storage format employed, including zero-padding used to
encode the weight locations. A column in the weight matrix
is located through a pointer, and the absolute addresses of
weights are calculated by accumulating the relative indexes.
Load imbalances were introduced in the ternarised sparse

DNN as some processing elements may face longer waiting
periods due to having fewer non-zero weights, as shown in
Fig. 7(b). To address this, a FIFO, built on the distributed
RAM was used. It allowed fast-processing elements to
retrieve new elements from the FIFO without being hindered
by slow-processing elements. The FIFO was 16-bit; its depth
could be adjusted from 1 to 16. The utilisation of a FIFO
resulted in an approximately 21% increase in throughput
and a 14% reduction in latency, indicating a substantial
enhancement in performance.

V. PERFORMANCE EVALUATION RESULTS AND
ANALYSIS
To evaluate the denoising performance of the SE processor,
the short-time objective intelligibility (STOI) [23] and

FIGURE 7. (a) Encoding in compressed sparse column with relative index and
zero-padding. (b) Example of an imbalanced workload with some processing elements
(PEs) having a long wait period.

perceptual evaluation of speech quality (PESQ) [24] were
employed. The scores were calculated in MATLAB after
the enhanced signals were obtained from the processor
and transmitted to MATLAB via UART. The SE processor
was implemented on a Nexys A7 processing board with a
Xilinx Artix-7 XC7A100T-1CSG324C FPGA as a proof-
of-concept. Resource utilisation reports were obtained from
post-implementation on the Vivado Design Suite, and power
and area estimates were acquired when the SE processor
design was mapped onto a 65 nm CMOS process.

A. DATASETS
Clean speech utterances from the TIMIT [25] corpus and
noise samples from the NOISEX-92 [26] database were
used. To develop the training set, 1500 randomly chosen
clean utterances were mixed with five types of noise
(babble, factory, pink, Volvo (car) and white noise) from the
NOISEX-92 database at −5 dB, 0 dB and 5 dB SNR. For
the testing set, 100 utterances that had not been chosen for
the training set were mixed with the same five types of noise
at the same SNR values. The ‘f16’ and ‘factory 2’ noise from
the same noise database were additionally used to evaluate
the generalisation performance of the SE system. Random
cuts of the first and last 2 minutes of each noise were used
for training and testing, respectively, to avoid using the same
noise frames for both training and testing.

B. ABLATION STUDY
The effectiveness of the multi-target learning is sum-
marised in Table 1. The multi-target learning demonstrated

148 VOLUME 5, 2024



TABLE 1. Ablation study of the effectiveness of multi-target learning.

FIGURE 8. Validation accuracy vs. self-adaptive threshold δl value. The thresholds
are in multiples of max(|Wl |) (e.g., δl = 0.05max(|Wl |) ).

TABLE 2. Ablation study of the compression methods.

improvements in average validation accuracy, computed as
the proportion of correctly predicted instances over the total
number of instances in the validation dataset, as well as
denoising performance, evaluated using STOI and PESQ,
when compared to training and processing with mapping or
masking-only targets. Fig. 8 shows the validation accuracy
for different layer-wise self-adaptive thresholds δl. δl =
0.15(|Wl |) gave the optimal accuracy.
Table 2 compares the proposed harmonised combination

of weight ternarisation and structured pruning against three
scenarios: (i) weight ternarisation, (ii) structured pruning,
and (iii) naive combination of weight ternarisation and
structured pruning. The overall sparsity in Table 2 refers to
the percentage of individual zero values within the whole
weight tensors. This is different to group sparsity which
represents the percentage of the number of channels and
frame-wise groups that are all zeros. From Table 2, the
proposed approach has the smallest overall but largest useful
group sparsity. Compared with the fully connected full-
precision network, the compression and quantisation methods
generally led to insignificant accuracy loss (< 2%). However,

FIGURE 9. (a) STOI scores and (b) PESQ scores obtained from the: (1) unprocessed
speech; (2) SE utilising DNN trained with ideal binary mask (DNN-IBM); (3) SE utilising
DNN trained with ideal ratio mask (DNN-IRM); (4) SE utilising DNN trained with optimal
ratio mask (DNN-ORM); and (4) proposed SE system utilising a hardware efficient DNN
with multi-target learning at -5, 0 and 5 dB SNRs.

it was observed that the compression did come with a
compromise in terms of validation accuracy and average
PESQ scores. Simply combining weight ternarisation and
structured pruning produced a more noticeable accuracy
deterioration. This highlights the importance of employing a
harmonised approach to promote coherent sparsity patterns
within the network.

C. SPEECH ENHANCEMENT PERFORMANCE
In addition to the evaluation of SE performance for various
training targets (Table 1), the average STOI and PESQ
scores of the proposed SE system were compared with
those of SE systems utilising fully connected full-precision
DNNs trained with: (i) ideal binary masks, (ii) ideal ratio
mask and (iii) optimal ratio mask [27]. The comparison
was performed after DNN architectural optimisations were
applied to the proposed method. The results are shown in
Fig. 9. The designed SE demonstrated superior denoising
capability with improved STOI and PESQ scores obtained
across all SNR values tested despite employing much
lesser weight values and sparse connections. Additionally,
the proposed approach yielded results that are comparable
to those achieved by the recently proposed UNetGAN
for time-domain robust speech enhancement, as detailed
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FIGURE 10. STOI and PESQ scores when processing the untrained noise types,
‘f16’ and ‘factory2’ noise.

TABLE 3. FPGA resource utilisation for the feedforward DNN with and without
optimisation.

in [33]. This comparison is particularly relevant as the
study involved SE using the NOISEX-92 dataset at similar
SNRs. Fig. 10 shows that the proposed system also provided
good generalisation performance as favourable enhancement
performance continued to be evident when processing the
‘f16’ and ‘factory2’ noise.

D. FPGA RESOURCES AND INFERENCE TIME ANALYSIS
The resource utilisation for the designed SE system is
summarised in Table 3. To put into perspective the improve-
ment achieved from the design optimisation techniques, the
resource utilisation for 32-bit fixed-point weights is given.
The unoptimised full-precision network consumed almost the
entire FPGA flip flops and DSP slices because 32-bit weights
required plenty of hardware multipliers for operation. With
the 32-bit implementation, an external DRAM was required
for weight storage as the BRAM capacity was insufficient.
A small amount of DRAM was required in the optimised
system to store incoming signal frames. The major building
blocks of the designed SE system were flip flops, LUT slices
and BRAM memory. Moreover, the synthesised chip core
area with the unoptimised full-precision network was found
to be almost 3.5x than that of the optimised version.
Fig. 11 shows the inference latency reduction achieved by

optimising the SE system. The largest reduction in latency
was achieved in the DNN modified with parameter pruning

FIGURE 11. Latency reduction by applying (1) weight ternarisation and (2) weight
ternarisation optimally combined with structured pruning.

and network weight quantisation. Due to the sparsity of
the network, the relative row index was used to indicate
weight addresses. Although the relative row index led to
more storage required for storing the network weights (1 bit
for the ternarised weights and 4 bits for the relative row
index), implementing structured pruning was still beneficial
since computations within the network were significantly
reduced. The optimisations combined achieved an overall
latency reduction of 67%.

E. ON-CHIP POWER AND AREA REQUIREMENTS
To estimate the chip resource requirement of the designed
system, its architecture was synthesised in TSMC 65 nm
technology using Synopsys Design Compiler. The place-
and-route was done with Cadence SoC Innovus. A two-step
process is used to evaluate the correct operation after Place
& Route (P&R). Firstly, timing violations are checked in
Innovus. This ensures that all timing constraints are met.
Secondly, annotated gate-level simulations are performed to
verify the functionality of the design post-P&R.
The correct operation of the entire system was verified

at various operating voltages and clock frequencies. The
real-time performance at the best STOI score was obtained
at a clock frequency of 75 MHz. At this clock frequency,
a supply voltage of 1.18 V was required. Under these
conditions, the average core power consumption at 100%
duty cycle was 3.14 mW. The chip core area was 1.97 mm
× 1.97 mm with a total on-chip memory (SRAM) of
262 kB. It was found that a clock frequency of at least
10 MHz was required to process 16 kHz waveforms in
real-time. At this clock frequency, 1.91 mW of power was
required.

F. COMPARISON WITH OTHER SPEECH PROCESSORS
Table 4 compares the proposed SE design with state-of-
the-art speech processors, many of which exerted much
effort in hardware optimisation. The comparison includes SE
and speech recognition processors implemented with various
artificial neural networks (i.e., CNN, feedforward DNN and
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TABLE 4. Performance comparison with state-of-the-art deep learning-based speech processors.

LSTM RNN). The SE processor in this work has comparable
performance with the CNN-FFT-based speech enhancement
processor in [5], where hardware and parameter sharing,
zero-skipping, low-rank expansion, weight quantisation and
careful arrangement of processing elements were leveraged.
Despite integrated circuit implementation and optimisation
being minimally explored, the proposed DNN produced a
smaller core area than [1], [5], [28] and [29], smaller on-chip
memory requirement than [5] and higher energy efficiency
in terms of tera-operations per second per Watt (TOPS/W)
than [28] and [30].

Future work will include exploring more hardware opti-
misation techniques, for example, resource sharing and
mapping the SE design onto a smaller technology node to
further reduce its chip core size. In addition, the conventional
cochleagram-based mapping approach could be refined to
enhance its sophistication, thereby augmenting its denoising
capabilities. The potential benefits of CNNs for multi-target
learning in the context of SE also present a worthwhile
investigation.

VI. CONCLUSION
This paper discusses an efficient supervised SE design.
Using multi-target learning improved STOI and PESQ scores
when processing noisy speech contaminated with noise types
from the NOISEX-92 database. Allowing the SE processor
to switch between mapping-based, masking-based, or joint
processing based on the sensed level of noise contamination
on speech provided better denoising performance than when
only a single type of processing was made available.
Applying dynamic ternary quantisation reduced the neural
weights to a 2-bit representation from 32-bit, providing
16x compression. Structured pruning was implemented with
weight penalty clipping to encourage the formation of more
meaningful group sparsity. This resulted in further reduction
of neural weights; from 2-bit to 1-bit. Combining ternary
quantisation with structured pruning led to ∼19.1x total
compression from a fully connected full-precision DNN. SE
processor implementation leveraged the flexibility of FPGA.
Estimates for power and area were obtained for the TSMC
65 nm CMOS technology. The computational and memory
requirements of the processor were substantially reduced,

achieving 1.28-2.02 TOPS/W and a core area of 3.88 mm2.
This is comparable to state-of-the-art speech processors
focused on hardware implementations and optimisations.
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