
Received 2 November 2023; revised 18 January 2024 and 13 February 2024; accepted 9 April 2024. Date of publication 12 April 2024;
date of current version 8 May 2024.

Digital Object Identifier 10.1109/OJCAS.2024.3388210

Exploiting Neural-Network Statistics for
Low-Power DNN Inference

LENNART BAMBERG 1, ARDALAN NAJAFI 1, AND ALBERTO GARCIA-ORTIZ 2 (Senior Member, IEEE)
1 NXP Semiconductors, 22529 Hamburg, Germany

2 Integrated Digital Systems, ITEM Institute, University of Bremen, 28359 Bremen, Germany

This article was recommended by Associate Editor M. Cagnazzo.

CORRESPONDING AUTHOR: L. BAMBERG (e-mail: lennart.bamberg@nxp.com)

This work was supported in part by the IPCEI ME/CT; in part by the European Union Next Generation EU; in part by the German Federal Ministry for Economic
Affairs and Climate Action; in part by the Bavarian Ministry of Economic Affairs, Regional Development and Energy; in part by the Free State of Saxony with

the Help of Tax Revenue Based on the Budget Approved by the Saxon State Parliament; and in part by the Free and Hanseatic City of Hamburg.

ABSTRACT Specialized compute blocks have been developed for efficient DNN execution. However,
due to the vast amount of data and parameter movements, the interconnects and on-chip memories form
another bottleneck, impairing power and performance. This work addresses this bottleneck by contributing
a low-power technique for edge-AI inference engines that combines overhead-free coding with a statistical
analysis of the data and parameters of neural networks. Our approach reduces the power consumption
of the logic, interconnect, and memory blocks used for data storage and movements by up to 80% for
state-of-the-art benchmarks while providing additional power savings for the compute blocks by up to
39%. These power improvements are achieved with no loss of accuracy and negligible hardware cost.

INDEX TERMS Artificial intelligence, edge-AI inference, low-power coding, low-power digital design,
neural networks.

I. INTRODUCTION

THE INCREASING demand for AI at the edge has
led to the development of various low-cost, yet

high-performance Deep Neural Network (DNN) infer-
ence engines. However, due to the compute requirements
and the large memory footprint of modern DNNs (e.g.,
the famous ResNet50 requires 25.6M parameters and
4.1 GFLOPS/frame [1]), the power consumption of these infer-
ence engines remains a major challenge. This is particularly
true for edge-AI deployment in small, battery-operated
devices (e.g., hearing aids and IoT nodes). The main contrib-
utors to the power consumption of modern edge-AI inference
engines are typically the memories and global interconnects
used for data storage and exchange. Also, the required
parallel multiply-accumulate (MAC) units noticeably impact
power consumption.
Therefore, reducing the power consumption of these

components is crucial for enabling energy-efficient edge-AI
inference. A standard technique in the TinyML space (i.e.,
AI/ML on low-cost/battery-powered devices) is to quantize
parameters and activations from 32-bit floats to lower-
bit-width integers. However, quantization impacts network

accuracy. Thus, to quantize below 8 bits is not possible
without harming the accuracy for many applications. Full-
integer 8-bit quantization reduces the power consumption of
the memories and interconnects by a factor 4×. The savings
for the MAC units are even higher as integer MAC blocks are
cheaper than the floating-point equivalents [2]. Moreover, the
complexity of a MAC unit scales quadratically with the bit
width. Another technique to reduce power consumption at the
application level is to use a lighter-weight DNN (e.g., [3]).
Again, the drawback is a reduced maximum accuracy.
A further advantage of the “lossy” techniques mentioned

above is that they substantially reduce the overall memory
footprint. This enhances their suitability for systems with
small memory capacities. Further techniques to reduce
the memory footprint are weight pruning combined with
variable-length entropy encoding. Thereby, the tool prunes
weights with a small magnitude (effectively setting them
to 0) during training. The large peak in zero-valued weights
is then exploited by the entropy encoding, using a lower bit-
width for zeros. Variable-length encoding, however, harms
performance and area due to the decoding hardware and
the varying decoder throughput for a given bus bandwidth.

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

178 VOLUME 5, 2024

HTTPS://ORCID.ORG/0000-0003-4673-8310
HTTPS://ORCID.ORG/0000-0002-6529-4084
HTTPS://ORCID.ORG/0000-0002-6461-3864


Thus, parameters are typically only compressed for higher
memory levels (e.g., off-chip DRAM or Flash), keeping them
uncompressed in memory that is the closest to the data path
of the AI engine.
The power issue can also be addressed through compute-

in-memory (CIM) or neuromorphic architectures. However,
these techniques are likely years away from commercial
mass adoption. Near-memory computing and systolic/data-
driven architectures are already deployed at a larger scale.
Hence, local SRAM blocks near the compute engines—
called tightly coupled memories (TCMs)—store the weights
and activations during processing for cheap data access.
Moreover, activations and weights are fetched from the
TCMs once and used for multiple computations in parallel
and/or sequential. To run larger DNNs or to run multiple
networks in a time-multiplexed fashion, additional memory
levels are still required to swap parameters in the TCM or
spill activation from the TCM. Furthermore, even though
better than more traditional architectures, accessing the rela-
tively large local memories still strongly impairs the overall
power consumption despite the high reuse from the systolic
computing style.
In this paper, we propose a novel approach to further

reduce the power consumption of edge-AI inference engines
by combining lossless and overhead-free low-power coding
techniques with a comprehensive analysis of the statistical
properties of the activations and parameters in neural
networks. In particular, our approach exploits the non-
maximized entropy of the activation and parameter streams
caused by the non-uniform distribution of the data incl.
activation and weight sparsity. Our approach is meant to
extend existing approaches such as light-weight DNNs, full-
integer quantization, pruning, and near-memory-compute,
to further optimize the power consumption. Our coding
technique is “lossless” which implies that it does not affect
the DNN accuracy. Thus, the technique does not impact
the outputs of the neural networks at all. This means that
no change to the DNN architectures, the training, or the
quantization step is required. On top, our proposed technique
has no noticeable hardware cost and does not increase the
memory footprint (i.e., overhead-free coding).
These properties allow designers and architects to apply

the technique to their AI engines “blindly” (i.e., without
an analysis of trade-offs). To the best of the authors’
knowledge, it is the first low-power technique for DNN
engines with the property of being universally applicable
without drawbacks on any abstraction level. Despite the easy
application of the proposed technique at negligible silicon
cost, it reduces the power consumption of interconnects
and on-chip memories by over 80% for real benchmarks
in combination with weight-pruning [4]—initially proposed
as a pure compression technique. On top, we can achieve
additional power savings by over 35% for the processing
elements.
The rest of this paper is structured as follows. Related

work is outlined in Section II. The background is presented

in Section III. Subsequently, the bit-level statistics in modern
DNNs are analyzed. In Section V, our proposed technique
is presented. Afterward, the gains of the technique are
qualitatively and quantitatively assessed in Section VI.
Finally, a conclusion is drawn in Section VII.

II. RELATED WORK
Low-power coding, reducing the power consumption by
changing the statistical properties of the bits, has been widely
researched for various components and applications. Due to
the large parasitic capacitance, most low-power encoding
focuses on power savings in planar metal wires and 3D
through-silicon-via interconnect [5], [6], [7], [8], [9], [10],
[11]. Also, low-power coding for memories and memory
buses has been researched [12], [13].
Traditional low-power codes are tailored for a power

reduction for arbitrary or random data. The most popular
coding techniques here are bus-invert or inversion codes
(e.g., [6], [7]). These techniques increase the bit-width of the
codewords over the plain data words by one inversion line.
Also, application-specific low-power codes, for example for
signal processing [9], [13] or address buses [8], [10], [11],
were designed. Compared to inversion codes, they are
overhead-free (i.e., codeword bit-width equal to dataword
bit-width) and/or yield much higher power savings while
exhibiting a lower implementation complexity. These gains
are achieved by exploiting the statistical properties of the
involved data. The drawback is that they are not universally
applicable due to their application-specific nature.
Recent research already investigated low-power coding to

decrease the power consumption in DNNs accelerators [14].
In particular, it uses bus-invert for coding the mantissa
of the bfloat16 numbers used in a systolic array. The
authors demonstrated an overall power reduction of 9.4%
for ResNet50. Although the motivation is similar to ours,
this work provides substantial novelty.
First, we design the first application-specific low-

power codes for DNN inference. Thereby, we substantially
increase the power savings at reduced implementation cost.
Second, [14] focuses only on the data-path of the core
accelerator, disregarding potential savings in the memories
and interconnects—which however typically exhibit the
highest power needs. Moreover, [14] focuses on floating
point numbers, while AI inference at the low-power edge
is dominantly uses integer quantization [2]. Thus, this work
presents the first, holistic and application-specific low-power
coding approach for integer-quantized DNN inference.

III. BACKGROUND
A. FULL-INTEGER DYNAMIC-RANGE QUANTIZATION
In the following, we describe the standard way of quantizing
a neural net to full-integer operations described in [2].

The core operation of the DNN layers is a MAC series of
a set of weights w with a set of activations, x, followed by

VOLUME 5, 2024 179



BAMBERG et al.: EXPLOITING NEURAL-NETWORK STATISTICS FOR LOW-POWER DNN INFERENCE

the addition of a bias, b, and a non-linear activation function,
σ(), on the result:

yi = σ

⎛
⎝∑

j

wi,jxi,j + b

⎞
⎠ (1)

Different DNN layer types (e.g., convolutional vs. fully
connected) differ in how the weights and the activations are
gathered and reused for a set of activations to be generated.
Full-integer dynamic-range quantization quantizes

different sets of activations or weights to int8 (i.e., qxi ∈
[−127, 128]) through a float scale factor, S, and an int8
zeropoint (ZP). Thereby, the quantization has a dynamic
range based on the value range of each set, determined
during training time. The de-quantization from a quantized
integer, q, back to the float is described as:

xi = Sx
(
qxi − ZPx

)
(2)

Hence, the multiply-accumulate can be expressed as:

SxSw

⎛
⎝∑

j

qwi,jq
x
i,j − qwi,jZP

x − qxi,jZP
w + ZPxZPw + qb

⎞
⎠ (3)

Here, the term −qwi,jZPx is constant post-training and can
therefore be calculated at compile time and merged into the
32-bit bias for the accumulation. This cannot be done for the
term qxi,jZP

w due to varying quantized data qx at inference
time. To avoid the extra compute, weights are thus mean-free
quantized (i.e., ZPw = 0; qwi ∈ [−127, 127]). It is empirically
found that this does not harm accuracy as weight kernels
tend to be mean-free due to the applied weight regularisation
during training.
Highly non-linear activation functions are hardware-costly

and reduce the accuracy of quantized inference. Thus, full-
integer quantization typically focuses on activation functions
that are a mere clipping, as the saturation of quantized
values to the (min,max) values (−128, 127) makes this a no
operation (NOP). The most common activation function for
quantized inference is ReLU = max(x, 0), clipping negative
values to zero [2]. With activation functions that are a
mere clipping and symmetrically quantized weights, the core
operation becomes:

qyi = M

⎛
⎝∑

j

qwi,jq
x
i,j + q′b

⎞
⎠, (4)

where q′b is the effective bias equal to quant32(b/SxSy +
ZPy/M − qwi,jZP

x). M is the rescale factor to change to the
scale of the quantized output Sy (i.e., M = SwSx/Sy). The
multiplication with this “float” rescale factor M ≤ 1 is
realized through integer multiplication and shifting. For
rescale factors and biases, typically 16 or 32 bits are used.
Since typically hundreds to thousands of 8-bit activations
are weighted and accumulated per output activation, the cost
of having wider rescale factors and biases is negligible.

B. LOW-POWER CODING
Due to the large parasitic capacitances of modern
interconnects, data encoding is a promising low-power
technique in advanced technology nodes [5]. Low-power
encoding adopts the bit-level properties of the data to reduce
the power consumption of the physical: interconnects (e.g.,
metal wires or vias) for data transmission; memory for
data storage; or logic for data processing. In this work, we
only consider lossless and overhead-free low-power encoding
such that it can be applied without further analysis of the
impact on the memory footprint, bandwidth requirements,
or network accuracy.
The interconnects in today’s integrated circuits (ICs) are

made up of metal wires and vias. Metal wires and vias
entail a physical capacitance that dominates their power con-
sumption. Whenever the logical value transmitted on a metal
interconnect toggles, the capacitance is charged or discharged
resulting in an energy loss of V2

ddC/2. Thus—as with logic—
reducing the bit-switching activities of the lines yields a
proportional reduction in the dynamic interconnect power
consumption. For 3D interconnects, also increasing the 1-bit
probability on the lines reduces the power consumption due
to the MOS effect [15].
In modern DNN engines, the dominating factor for power

consumption is reading on-chip memory. On-chip memories
in today’s ICs are predominantly SRAMs. The SRAM read
power consumption is dominated by the bitline discharging if
the stored value differs from the pre-charge voltage [13]. For
single ported SRAMs, low-power coding cannot effectively
reduce power consumption due to the complementary read
behavior. Always, either the regular or complemented bitline
is charged or discharged from Vpre-charge to zero by the read
resulting in a power consumption that is independent of the
bits to be read. This changes for single-ended reads in dual-
ported SRAMs [13]. Thus, if dual-ported SRAMs are used
(e.g., to load parameters in parallel to compute) low-power
encoding can effectively reduce power consumption via an
increased 1-bit probability of the encoded data stored in the
memory. This is illustrated in Fig. 1.

Lastly, the dynamic power of the logic and sequential
elements in the processing elements is again dominated by
bit switching of the bits due to internal short-currents when
gate inputs switch and the gate input capacitances. Some flip-
flops also show to have a power consumption that depends
on the logical bit probabilities.
Leakage is another important power contributor in modern

ICs, especially in modes of low activity. The leakage power
of SRAM, logic, and flip-flops can be optimized again by
tuning bit probabilities [5]. Leakage for interconnects is
negligible.
In summary, low-power coding should reduce the switch-

ing and the bit probabilities. Which metric is more important
depends on the components whose power consumption
must be reduced. Generally, SRAMs, MACs, and global
interconnects dominate the power consumption in modern
AI engines. For the former, the bit probabilities must be

180 VOLUME 5, 2024



FIGURE 1. Reading a 0-bit (a) and 1-bit (b) from a dual-ported 6T SRAM cell. Due to
the discharging of the bitline, (a) results in a higher power consumption. Figure
adopted from [13].

optimized, and for the latter two, the switching. The worst
case is a completely random switching and 1-bit probability
of 0.5 (50%). Everything above 0.5 can be transformed to
1 − x through inverting buffers if the bit-level statistics are
understood. This is why our encoding focuses on reducing
the 1-bit probabilities even though SRAMs actually needs
high 1-bit probabilities for minimal power consumption.

IV. ANALYSIS OF THE BIT-LEVEL STATISTICS
In this section, we analyze the bit-level statistics of the
streams of int8 (two’s complement number representation)
quantized weights and activations found in modern Edge-AI
inference engines. We moreover, compare the statistics to
the ones for data found in more traditional DSP applications.
Data streams sampled from the physical environment—
such as audio, radio signals, etc.— tend to be Gaussian
distributed. Consequently, the bit-level statistics follow a
systematic pattern with two characteristic parts: a group
of LSBs which are strongly un-correlated and have a
switching activity of 0.5, and a group of strongly correlated
MSBs with lower switching activity for temporally correlated
signals [16]. These bit-level characteristics can be used
to decrease the power consumption during transmission
using low-cost low-power codes [5]. It is worth noting
that the bit-level probability is equal to 50% for all
bits, only the switching activity changes; and second, that
the decrease in switching activity happens only when the
samples are temporally correlated—the typical case in DSP
signals.
The characteristics of the data streams in DNN engines

are however different. The left-hand side of Fig. 2 shows
the probability density function (PDF) for a stream con-
taining all 25M, per-channel, 8-bit quantized weights of
ResNet50. Analyzing various DNNs for this work showed
that light-weight DNNs such as MobileNet, exhibit a typical
Gaussian-like distribution with spikes at the edges −127 and

FIGURE 2. Probability density function of all the weights of an 8-bit-quantized
ResNet50 before (left) and after (right) pruning. After pruning, the zero weight
contains almost all the probability (80 %).

FIGURE 3. Two-dimensional PDF of the weights of a quantized ResNet50. Results
for two different output layers. The example illustrates the un-correlation between
pattern pairs and the leptokurtic characteristics.

127 due to truncation of the Gaussian tails. However, more
heavy DNNs such as ResNets and Transformers depict PDFs
with a larger kurtosis and lower variance, σvar. Also, per-
tensor instead of per-channel quantization yields a smaller
variance, as a single outlier in one channel reduces the integer
values in all other channels. Bit pruning heavily increases the
number of zero values such that it dominates the distribution.
In any case, the switching activity and bit activity are

almost exactly 0.5 because the individual weights show
to be uncorrelated as shown in Fig. 3. This yields a
particularly high power consumption. The contribution of
this paper is to understand the bit-level characteristics of
the weights and activations by analytical models and to
use these models to derive efficient low-power coding
strategies.
For the activation statistics, we constrain our analysis

to the ReLU activation function (and its derivatives like
ReLU6), applying a merge clipping of the values. It is not
only the most common activation function for quantized
TinyML applications; it also has great characteristics for
low-power processing, as we will show in the remainder
of this paper. A ReLU clips all negative values to zero.
Thus, a ReLU only outputs positive values while 8-bit-
quantized activations are in [−128, 127], resulting in the ZP
for ReLU activations shows to be always −128, transforming
the range linearly to a purely positive one, [0, 255]. Since
the weighted, accumulated values are normally distributed,
after activation, about 50% of activations are equal to the
ZP −128 or 0x80.

VOLUME 5, 2024 181



BAMBERG et al.: EXPLOITING NEURAL-NETWORK STATISTICS FOR LOW-POWER DNN INFERENCE

V. PROPOSED TECHNIQUE
As outlined above, the statistics of the quantized weights
and activations show a large potential to decrease power
consumption by an appropriate low-power coding. In this
section, we discuss our proposed approach to achieve this
reduction. First, we give an overview of the type of systems
we are targeting; then, we describe the proposed techniques
for encoding the weights and activations; and finally, we
analyze the impacts of the encoding variants on the hardware
implementation of the MAC.

A. SYSTEM OVERVIEW
Certainly, the exact low-level micro-architectural details of
different AI accelerators vary notably; however, the structure
of the memory hierarchy and the interconnect architecture
is, in the fundamental aspects, very similar.
From bottom to top: AI architectures are composed of a set

of processing elements (PEs), typically including a private
TCM, separated for parameters and activations. Multiple PEs
are clustered in groups that commonly contain one or more
additional levels of shared, unified memory dedicated to the
AI engine. The individual PEs and the dedicated memories
are connected over a massively parallel and high bandwidth
interconnect architecture—often a network-on-chip (NoC).
The AI engine is connected to the rest of the system over a
system-level interconnect. This interconnect architecture can
be the same as for the local interconnect between the PEs
(typically for NoCs), or a different one such as an AHB or
AXI bus. For large models, the weights are saved outside the
chip in DRAM, normally in compressed form, and are read
on-demand into the on-chip global memories with on-the-fly
decompression.
The two key streams of information in an AI architecture

are the weights and the activations. The interpretation of
these two streams requires three levels of abstraction; from
the low level of abstraction to the higher one, they are:

word The physical stream of bits moving through the
interconnects, or the values saved into on-chip
memories. Can be encoded using approaches such
as Bus-Invert, K0, etc. Thus, for processing, the
bits have to be converted into (interpreted as) an
integer, which may imply some hardware modules.

int. Once decoded, the words need to be inter-
preted as integer numbers. Here again, there
are different alternatives, as for example, the
use of sign-magnitude, unsigned numbers, or the
more common two’s complement. Note that this
interpretation of words into integers determines the
actual ALU that is required in the PEs (e.g., a
standard signed-signed MAC or a sign-magnitude
approach).

real Finally, in an AI architecture, the integer numbers
are interpreted as a corresponding real number
using a linear mapping characterized by a zero
point, ZP, and a scale, S. The rescale process after

FIGURE 4. Illustrative system overview with low-power encoding/decoding for
weights and activations. The bus width depends on the system (e.g., 4 bytes or 8
bytes) and encoding or decoding is done per byte lane. The encoding is overhead-free
(i.e., code word width equal to data word width, 1 byte) such that the bus width and
memory requirements are not affected by the coding. The memory hierarchy can have
any number of levels (we show two as an example).

the integer MAC-series is responsible for the right
interpretation.

The fundamental idea of this work is to exploit the
statistical characteristics of the activation and weights, as
well as the degrees of freedom provided by the interpretation
as integer and later as real numbers of the words to decrease
the power consumption in the interconnect architecture and
the memory hierarchy of AI inference engines.
Fig. 4 shows an illustrative system overview with the

proposed low-power-coding technique in place. Weights are
low-power encoded at compile time and placed in the on-
chip memory or DDR with optional additional compression.
Activations are dynamic and not known at compile time.
They are generated and read by the PEs. Ideally, activations
are only stored on the lowest level of the memory hierarchy,
made up of the TCMs of the PEs, but are spilled to higher
hierarchies if a TCM capacity is exceeded. Weights move
from the higher memory levels into the TCM when the
respective layer of the neural network is processed by the
PEs. From the TCM, the PEs typically access weight multiple
times per inference, depending on the weight reuse in the
layer.
The goal of our technique is to improve the power

consumption across all levels of the interconnect and memory
hierarchy. Thus, only at the input of the PEs the weights
and activations are potentially decoded into the standard int8
format to perform the MACs computations. At the output of
the PEs, the activations are low-power encoded again.
However, the weights encoded in the parameter TCM,

can be also used directly by the PEs (without decoding)
by adapting the architecture of the PEs to a different
integer representation, as shown in the experimental results
section of this paper. Similar to the weights, at the input
of the PEs, the activations can be either decoded to int8 or
processed in the low-power representation.
At the interface between a memory and an interconnect

block, the number encoding/representation is potentially
changed to one that optimizes the power of the respective
physical medium for transmission or storage. Thus, going

182 VOLUME 5, 2024



from a memory to an interconnect the data encoding
is changed to one that optimizes the interconnect power
consumption and vice versa. It is also possible that the same
low-power encoding is used for interconnects and memories.
Either because a single encoding sufficiently optimizes both
power metrics or because the prime optimization goal is only
the power consumption of one structure. In this scenario,
there is at most encoder/decoder circuit between each TCM
and the corresponding PE.
For our approach, it is essential to use low-power codes

with negligible hardware implementation costs to ensure
that the technique is universally applicable, as it comes in
variants where multiple en- or decoder circuits are required
in the system. The only exception is weight encoding, which
always happens offline at compile time. It thus can exhibit
a larger complexity than weight decoding or activation en-
and decoding.
In summary, we need low-power codes that exploit

statistics of activations and weights for maximized power
savings through minimizing the 1-bit probabilities (for dual-
ported SRAMs) or the switching probabilities (for logic and
interconnects). The low-power codes need to be designed
to change from encodings with low switching activities
to encodings with low 1-bit probabilities at low hardware
costs. On top, the MAC hardware must either be capable
of directly processing the encoded weights or activations,
or a low-cost decoding to the standard int8 format is
required.

B. LOW-POWER CODING FOR WEIGHTS
In this work, we only consider the most area-efficient
coding approaches, inspired by our existing work on more
traditional low-power coding [5]. Our contribution is a
coding framework that, at ultra-low-cost, can change the
signal representation to one with optimized switching char-
acteristics or one with optimized bit probabilities, and back.
Thereby, IC designers can pick for each component the signal
representation that results in the best power consumption.
Two separate encoding schemes are used: first, a prob-

ability coding that decreases the 1-bit probabilities of the
patterns, and second, an XOR-decorrelator that maps 1-bits
at the input x to transitions at the output y; i.e., y = yprev⊕x.
To go back from the minimized-switching representation to
a minimized-1-bit representation, an XOR-correlator is used,
mathematically expressed as y = xprev ⊕ x. If 0 bits are
minimized by the probability encoding instead of 1 bits,
in decorrelator and correlator, XOR operations must be
swapped with XNORs to map zeros to transitions. As can
be seen in the last two rows of Table 1, in both variants,
the encoder and decoder only need B = 8 flip-flops and
X(N)OR gates and have a logic depth of 1.
We study two alternatives for the probability coding

for DNN parameters: Sign-Magnitude (SM) representation
and the XOR-MSB-coding. The latter approach consists of
XORing the B − 1 LSBs with the MSB value, leaving
the MSB untouched, for a minimized 1-bit probability. An

TABLE 1. Used coding techniques. Note that encoders and decoders of the
proposed techniques are identical, except for the XOR-decorrelator coding.

advantage of this XOR-MSB-coding is that the encoder and
decoder circuits are identical. Also, it again has ultra-low
cost as the coding circuit is B− 1 parallel XOR gates (i.e.,
logic depth of 1) as shown in the first row of Table 1. To
achieve a minimized 0-bit probability, again simply XNOR
gates are used instead of XOR gates.

VOLUME 5, 2024 183



BAMBERG et al.: EXPLOITING NEURAL-NETWORK STATISTICS FOR LOW-POWER DNN INFERENCE

The rationale behind the XOR-MSB technique is to exploit
that the upper-most bits in each pattern are typically equal
(i.e., high spatial correlation), but with equal probability
0 and 1 (i.e., no temporal correlation). By XORing or
XNORing each bit with the MSB, the upper-most bits but the
MSB become mostly 0 or 1, respectively. This by itself does
not only optimize the bit probabilities. It already reduces the
switching. Thus, the technique optimizes both key metrics
at once. Hence, without additional XOR-decorrelator coding
it can improve the power consumption of all kinds of
components without additional re-coding steps.
Thus, for the typical case of B = 8, our proposed coding

technique approach only needs 7 XOR-gates when the XOR-
decorrelator is not used. With the decorrelator-coding, an
additional 8 XOR gates and flip-flops are needed per re-
coding. Note that the data is typically already encoded once
at compile time with an XNOR-MSB encoding to optimize the
power consumption of the memories in which the parameters
will be stored before they are first used.
The second variant, Sign-Magnitude (SM) encoding, works

for DNNs weights without causing any coding overhead,
despite the redundant representation of 0 (0x80 and 0x00),
as weights are only symmetrically quantized to integers in
[−127, 127]. Thus, −128 does not occur.
Sign-magnitude coding has higher encoder-decoder costs

(see the third row of Table 1), but is based on the same coding
idea as the XOR-MSB encoding. Hence, it yields similar
optimization in terms of bit probabilities and switching.
Despite the higher en/decoding complexity, SM encoding for
weights is promising, as, for the actual MAC execution,
weights either need to be decoded or the hardware adjusted
to the new weight representation. If the weights are in sign-
magnitude format, the hardware becomes even simpler by
the modification compared to the initial 8b×8b signed MAC.
The multiplication becomes 7-bit unsigned (7 LSBs of SM
weight) by 8-bit unsigned activation, followed by a selective
addition or subtraction of the result to the accumulator based
on the sign-bit of the weight. Thus, no on-chip SM encoding
or decoding of the weights is needed at all while the MAC
hardware is minimized. For this scenario, SM weights are
proposed.

C. LOW-POWER CODING FOR ACTIVATIONS
For activations, the proposed coding is even simpler than
for weigths. The absence of negative numbers due to the
ReLU activation already heavily reduces the MSB switching.
Moreover, all bits but the MSB have low bit probabilities.
This is because 50% or even more patterns are equal to
the ZP (0x80), which only has one 1-bit at the MSB. Thus,
X(N)ORing with the constant ZP effectively optimizes the
bit probabilities. For a ZP of 0x80, this just requires negating
the MSB to reduce the number of 1 bits and negating the
7 LSBs to reduce 0 bits. Thus, the hardware cost for this
coding we refer to as XOR-ZP is approximately zero (see the
second row of the Table 1). Effectively, the coding moves the
number representation from int8 to uint8 with a quantization

FIGURE 5. The MAC architectures with inputs: (a) int8−int8, (b) int8−uint7, and
(c) uint8−uint7. For the cases where weights are coded with sign-magnitude (uint7 ),
the sign bit is used as an additional input to the adder.

zero-point of 0. This enables directly processing the uint8
numbers in a uint MAC block without decoding by adjusting
the accumulator bias calculated at compile time.
As for weights, XOR-decorrelator coding is used to

transform optimized bit probabilities into optimized bit
switching. Again, for B = 8, the proposed decoding approach
just needs a couple of gates and 8 flip-flops if the XOR-
decorrelator is present, while the logic depth is one.

D. IMPLEMENTATION OF MAC WITH CODING
To demonstrate that the above-mentioned coding schemes
result in overall energy savings, we study their effects on
the MAC units as well. Based on the coding schemes
discussed earlier, we consider three alternatives for the
MAC implementation, as shown in Fig. 5. Note that in the
case of XOR-MSB coding, an extra addition is required to
obtain the correct result. Since the irregular architecture
results in an excessive overhead, the inputs to the MAC
unit should be decoded first for this specific coding. As
a result, the corresponding MAC unit would be a normal
two’s complement (Fig. 5a), and we do not consider an extra
design alternative for XOR-MSB coding.
In Fig. 5a, the conventional two’s complement MAC

implementation is shown. This design employs 8-bit signed
multiplication. Fig. 5b illustrates the case where the activa-
tions are not coded (int8), and the weights are in SM (uint7).
In this case, the multiplier has one less partial product
row, resulting in a smaller architecture. The accumulator
input width is reduced by 1 in exchange for the addition
of a carry-in and an input XORing (to decode into two’s
complement). The last alternative shown in Fig. 5c is the
implementation of the MAC unit where the activations are
coded with XOR-ZP (uint8), while the weights are in SM
(uint7). In this alternative, an unsigned multiplier is used.
To study if the coding ideas mentioned earlier affect the

energy consumption of PEs, we consider an inner-product
unit (IPU) performing eight MAC operations in parallel.
For the baseline case in which no coding is applied, the

184 VOLUME 5, 2024



FIGURE 6. The adder tree-based inner-product units.

Algorithm 1: Description of the Proposed Low-Power
Technique in the Different Variants
OFFLINE (AT COMPILE TIME):
Weights encoded with either SM or XOR-MSB

ONLINE (USING LOW-COST CIRCUITRY):
Activations XOR-ZP encoded at PE output
if decorrelator used then

XOR-decorrelator at memory read and PE output
XOR-correlator at memory write and PE input

end
if int8–int8 MAC used then

Weights XOR-MSB or SM decoded at PE input
end
if not uint8–uint7 MAC used then

Activations XOR-ZP decoded at PE input
end

inner-product unit works with two’s complement numbers
(see Fig. 6(a)). When the weights are in SM, the sign bits
are used to negate the outputs of the multiplier employing
parallel XOR gates (cf. Fig. 6(b)). The additions of the sign
bits are integrated into the adder tree so that they do not
introduce an overhead. As a result, for the applied codings,
the overhead is the XOR gates (8×15 gates for our IPU)
and the saving is one partial-product addition for each of
the 8 multipliers.
The detailed algorithm of the proposed low-power tech-

nique for different variants when using a specific MAC unit
is shown in Algorithm 1. The algorithm also shows which
coding is done offline at compile time and to which coding
hardware is dedicated.

VI. EXPERIMENTAL RESULTS
The experimental results section is divided into three parts: a
qualitative analysis, a quantitative assessment, and the effects

FIGURE 7. Impact of proposed low-power coding on bit-level statistics for 8-bit
quantized ResNet50 weights (non-pruned): (left) without XOR-decorrelator; (right)
with XOR-decorrelator.

of the codings on the energy consumption of the MAC
unit. For a fair, unbiased experimental setup, throughout this
work, we analyze only DNNs that were professionally trained
by others. In detail, we use CNN trained for ImageNet1k
classification provided by the application module of Keras
in TF2.11. This ensures maximized reproducibility of the
experimental results without any neural-network IP issues.
With the paper, we further publish a Python package to test
the power gains of our technique for any quantized TFlite
model: https://github.com/ardalan-ids/interconnect-statistics-
nn.git. This further enhances reproducibility.
We investigate per-channel quantized neural networks.

Per-tensor quantization (the less advanced technique) results
in smaller standard deviations for the weight distribution.
This enhances the gains of our technique (cf. Section VI-B).
Thereby, we avoid reporting overly optimistic gains for our
technique that are only seen in some applications.

A. QUALITATIVE CODING ANALYSIS
Our qualitative analysis employs an analysis of the prob-
abilities of a logical 1 on a bit line of a code word
and the switching activity of the bits, carried out with
Python and Tensorflow. We present results for the vanilla
ResNet50 architecture as a representative example. The same
analysis for other DNNs shows no conceptual differences.
Quantitative results for several DNNs are provided in the
next subsection. In this qualitative analysis, we investigate
the bit-level switching and bit probabilities of the activation
and weight data. The order in which the data is processed,
read, or transmitted is irrelevant to this analysis, as the values
tend to be uncorrelated. Hence, without loss of generality,
we can investigate a single random shuffle of the activations
and parameters in each tensor.
The results for the 25M weights of ResNet50 are

presented in Fig. 7. The standard raw values result in high
power consumption quantities, as both the bit switching
as well as the bit probabilities seem to be random (i.e.,
50%/bit)—which is the worst case. Due to the random bit
probabilities an XOR-decorrelator alone cannot reduce the
power consumption, as shown in the raw-switching line of
the right panel.

VOLUME 5, 2024 185



BAMBERG et al.: EXPLOITING NEURAL-NETWORK STATISTICS FOR LOW-POWER DNN INFERENCE

FIGURE 8. Impact of proposed low-power coding on bit-level statistics for 8-bit
quantized ResNet50 weights that are 80 % pruned: (left) without XOR-decorrelator;
(right) with XOR-decorrelator.

When we apply the XOR-MSB coding or the SM coding
to the weights we observe a significant decrease in the bit
probabilities, especially at bit indices 6 to 4. This reduction in
the bit probability results in a reduction of switching activity,
as ti = 2pri(1 − pri) for uncorrelated data. If an XOR-
decorrelator is additionally used (right panel), the switching
activity is reduced even further, since 1 bits are mapped
to transitions. The drawback is random bit probabilities
again. Note that there is no improvement in the MSB,
since this bit is not modified by the probability coding
schemes.
After the analysis for standard DNNs, we focus on the

effect of weight pruning. The results for the ResNet50
architecture after pruning 80% of the weights using the
standard TFLite pruning methodology are shown in Fig. 8.
The first noticeable effect is that now all the bit probabilities
of the unencoded raw data are close to 0.1 instead of
0.5. The reason is the increase of the zero values due
to pruning (ZP = 0x00 for all weights). This effect
reduces the switching as well as bit probabilities—and
thereby the power consumption–dramatically. After applying
our coding approach without an XOR-decorrelator, the
switching activity of bits is further reduced by 2×, with
a low gain in the LSBs. When the full coding approach
is used with the XOR-decorrelator (cf. right panel), the
switching activity of all bits goes below 0.1. Hence, the
total power consumption can be reduced by over 5× for
both: components whose power consumption is proportional
to the bit switching; as well as components whose power
consumption is proportional to the bit probabilities. It is
worth noting that even without further probability coding
(e.g., XOR-MSB or SM), XOR-decorrelator coding is very
beneficial for pruned weights.
In the last step of the qualitative analysis, we evaluate

our coding for activations. Again, our analysis for various
inferences shows that the gains seem to be relatively
independent of the input data, why we represent only data for
one randomly selected input. Also, weight pruning shows to
have no noticeable impact on the activation distribution why
it is not analyzed separately here. The results for all 9.4M
activations of a ResNet50 inference are shown in Fig. 9.

FIGURE 9. Impact of proposed low-power coding on bit-level statistics for all
activations within an 8-bit quantized ResNet50 weights (non-pruned, one input).

The clipping to zero by the ReLU activation has a positive
effect on the switching and bit probabilities. Compared
to zero-mean Gaussian distributed data the switching is
reduced by 2× in the LSBs to about 10× in the MSB.
The bit probabilities in the LSBs are even reduced by 3×
for the LSB to over 41× for the second MSB. However,
the extremely high bit probability of the MSB reduces the
overall optimization of the bit probabilities to only 2×.
This is fixed by our XOR-ZP encoding which here just
negates the MSB resulting in an overall bit-probability and
switching optimization compared to random/Gaussian data
by over 5× and 10×. Our XOR-correlator enables us to get
also 10× switching savings, at no bit probability savings.
This shows that ReLU activations alone already bring the
power consumption noticeably down, but our coding can
even further push the low-power limits.

B. QUANTITATIVE CODING ANALYSIS
We quantify the bit-switching and bit-probability
optimization utilizing Python and the Tensorflow models
of popular edge DNN. First, we analyze two of the most
widely used CNNs in academia and industry ResNet50 and
MobileNet. As a cross-validation, we look at MobileNet V1
as well as V2 which differ in some concepts but are both
light-weight DNNs. Furthermore, we look at a more recent
DNN, EfficientNet, to show that the technique is future-
proof. Activations are only investigated for MobileNetV1 and
ResNet50, as for others we found no professionally trained
but yet publicly available variants with ReLU activations.
Pruning is as well only reported for these two networks as
the other two show the same behavior/gains.
Table 2 shows the total switching and bit probability

reductions obtained with the proposed technique compared
to random/Gaussian distributed data. The results for SM
encoding are similar to the ones for XOR-MSB encoding,
with a tendency to be slightly worse (always <2 percentage
points). Thus, SM encoding is not listed separately.
For standard weights whose individual bits appear random,

our technique achieves a power reduction of up to 33%.
This is a remarkable reduction considering that the technique
here requires no changes to the training, the DNN itself,
and comes at no accuracy or noticeable hardware cost. For

186 VOLUME 5, 2024



FIGURE 10. Energy versus delay in a commercial 40-nm technology of: (a) the multipliers, (b) the adder tree, and (c) the total energy of the inner-product unit including
multipliers and the adder tree, for different coding schemes.

TABLE 2. Switching and bit probability optimization by the proposed versus the
standard technique for various DNN data.

the other lighter-weight DNNs, the standard deviation of the
neural network is smaller. This reduces the possible coding
gains. Still, we achieve an optimization by 22.6%, 18.6%,
and 22.7% in both power-relevant metrics for MobileNet V1,
MobileNet V2, and EfficientNet B0, respectively.
If weight pruning is applied during DNN training—which

in that case entails no extra cost nor an accuracy loss [4]—we

even achieve power reductions of over 80%, also for the
lighter-weight DNN.
We stated in Section IV of this paper that using ReLU

activations already reduces the power characteristics versus
activation functions for which the 8-bit output tends to
be normally distributed. The results show that in fact the
power can be reduced by 28% to 68.1%. Our proposed
technique, which again comes at no accuracy nor noticeable
hardware cost, enhances the power savings further to 50.4%
to 81.8%.

C. ENERGY CONSUMPTION OF MAC
This section studies the effects of the codings on the MAC
units. The MACs shown in Fig. 6 are synthesized in a
commercial 40-nm technology using different timing con-
straints, from relaxed to stringent. The power consumption
is measured after back-annotated gate-level simulations. As
a representative example, we consider the real activations
and weights of an EfficientNet B0 inference. We report the
average energy consumption of the MAC units over all
convolution layers (including the depthwise layers).
Fig. 10 shows the comparison of energy consumption

of the multipliers, the adder tree, and the total energy of
the MAC units versus the delay of the units. The energy
consumptions in the adder trees are marginally different
for the studied coding schemes (see Fig. 10b). In contrast,
the coding can result in substantial energy savings in
the multipliers (see Fig. 10a). Consequently, as shown in
Fig. 10c, applying low-power coding for memories and
interconnects, can even provide additional energy savings in
the PEs instead of introducing an energy overhead for these
components. As an instance, when the activations are coded
with XOR-ZP (uint8), and the weights are in SM (int7), up
to 39% energy saving can be achieved in comparison to the
case where no coding is applied (activations and weights
in int8). It should be noted that this energy saving is in
addition to the aforementioned improvements in memory
and communication by the proposed low-power coding
framework.

VOLUME 5, 2024 187



BAMBERG et al.: EXPLOITING NEURAL-NETWORK STATISTICS FOR LOW-POWER DNN INFERENCE

VII. CONCLUSION
This work presented a thorough analysis of the bit-level
statistics of the parameters and activations in full-integer
quantized, ReLU-based, neural networks and an ultra-
low-cost coding technique, exploiting the gained insight
for power savings. At no noticeable cost, the technique
can reduce the power consumption of on-chip memories,
interconnects, and buffers to up to over 80%. The technique
is effective for any DNNs with power savings expected in
the range of 18%-82% (cf. Table 2). Achieving its full
potential requires to apply standard weight pruning for the
DNN weights. In this case, the power savings are shown to
be constantly in the range of 80% (cf. pruning entries of
Table 2). On top, the technique can achieve power savings by
almost 40% for the MAC blocks in the processing elements.
Our proposed technique is also efficient for the fully

connected layers in LLMs. However, the multi-headed dot-
product attention modules due to the effect of SoftMax
activations need further investigation in future work. For
future work, we will also extend this work to further enhance
the coding gains for other activations functions that are not a
mere clipping such as leaky ReLU, or (H)Swish. Moreover,
we plan to exploit the data statistics also for hardware- and
power-efficient compression.

REFERENCES
[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2016, pp. 770–778.

[2] B. Jacob et al., “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 2704–2713.

[3] A. G. Howard et al., “MobileNets: Efficient convolutional neural
networks for mobile vision applications,” 2017, arXiv:1704.04861.

[4] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding,” 2015, arXiv:1510.00149.

[5] A. Garcia-Ortiz, L. Bamberg, and A. Najafi, “Low-power coding:
Trends and new challenges,” J. Low Power Electron., vol. 13, no. 3,
pp. 356–370, 2017.

[6] M. Stan and W. Burleson, “Bus-invert coding for low-power I/O,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 3, no. 1,
pp. 49–58, Mar. 1995.

[7] N. Jafarzadeh, M. Palesi, S. Eskandari, S. Hessabi, and
A. Afzali-Kusha, “Low energy yet reliable data communication
scheme for network-on-chip,” IEEE Trans. Comput. Aided Design
Integr. Circuits Syst., vol. 34, no. 12, pp. 1892–1904, Dec. 2015.

[8] S. Ramprasad, N. Shanbhag, and I. Hajj, “A coding frame-
work for low-power address and data busses,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 7, no. 2, pp. 212–221,
Jun. 1999.

[9] T. Murgan, P. B. Bacinschi, A. G. Ortiz, and M. Glesner, “Partial bus-
invert bus encoding schemes for low-power DSP systems considering
inter-wire capacitance,” in Proc. 16th Int., Int. Workshop Power Timing
Model., Optim. Simul., PATMOS, 2006, pp. 169–180.

[10] L. Benini, G. De Micheli, E. Macii, D. Sciuto, and C. Silvano,
“Asymptotic zero-transition activity encoding for address busses in
low-power microprocessor-based systems,” in Proc. Great Lakes Symp.
VLSI, 1997, pp. 77–82.

[11] L. Benini, G. De Micheli, E. Macii, M. Poncino, and S. Quer, “Power
optimization of core-based systems by address bus encoding,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 6, no. 4, pp. 554–562,
Dec. 1998.

[12] H. Fujiwara et al., “A two-port SRAM for real-time video processor
saving 53% of bitline power with majority logic and data-bit
reordering,” in Proc. Int. Symp. Low Power Electron. Design, 2006,
pp. 61–66.

[13] M. E. Sinangil and A. P. Chandrakasan, “Application-specific SRAM
design using output prediction to reduce bit-line switching activity and
statistically gated sense amplifiers for up to 1.9x lower energy/access,”
IEEE J. Solid-State Circuits, vol. 49, no. 1, pp. 107–117,
Jan. 2014.

[14] C. Peltekis, D. Filippas, G. Dimitrakopoulos, and C. Nicopoulos,
“Low-power data streaming in systolic arrays with bus-invert coding
and zero-value clock gating,” in Proc. 12th Int. Conf. Modern Circuits
Syst. Technol. (MOCAST), 2023, pp. 1–4.

[15] L. Bamberg and A. Garcia-Ortiz, “High-level energy estima-
tion for submicrometric TSV arrays,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 25, no. 10, pp. 2856–2866,
Oct. 2017.

[16] P. E. Landman and J. M. Rabaey, “Architectural power analysis: The
dual bit type method,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 3, no. 2, pp. 173–187, Jun. 1995.

188 VOLUME 5, 2024



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


