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ABSTRACT The trade-off between decoding performance and hardware costs has been a long-standing
challenge in Low-Density Parity Check (LDPC) decoding. Based on model-driven methodology, the
Neural Network-Aided Variable Weight Min-Sum (NN-aided vwMS) algorithm is proposed to address this
dilemma in this paper. Not only eliminating the second minimum value in the check node update process
for reducing hardware complexity, our approach featuring a fast-convergent shuffled scheduling method
proposed to enhance convergence speed can also maintain similar decoding performance as compared to
the traditional normalized min-sum algorithm. Different from existing model-driven methodologies only
suitable for short codes, a Globally-Coupled Like (GC-like) LDPC code construction is presented to enable
efficient training with simplified neural networks for longer LDPC codes. To demonstrate the capability of
the NN-aided vwMS algorithm with the fast-convergent shuffled scheduling method, a GC-like (9126,8197)
LDPC decoder is implemented for NAND flash applications, achieving a 6.56 Gbps throughput with a core
area of 0.58 mm? under the 40-nm CMOS TSMC process, and average power consumption of 288 mW
under the frame error rate of 2.64 x 107> at 4.5dB. Our decoder architecture achieves a superior normalized
throughput-to-area ratio of 11.31 Gbps/mm?, demonstrating a 2.4x improvement among previous works.

INDEX TERMS

ECC, LDPC, decoder, neural network-aided LDPC.

I. INTRODUCTION

OW-DENSITY Parity Check (LDPC) codes, initially

invented by Robert Gallager in the early 1960s [5], are
a class of linear block codes that approach the Shannon
limit through iterative decoding. Extensive research has
been dedicated to their code construction, encoding, and
decoding algorithms. LDPC codes are currently one of the
most prominent topics in modern coding theory and find
applications in various domains, including Ethernet, wireless
communications, and solid-state drives.

Over the past few decades, researchers have dedicated
considerable effort to finding an algorithm that strikes
a balance between hardware complexity and decoding
performance. The Pseudo Marginalized Min-Sum (PMMS)
Algorithm proposed in [6] combines the first and second
minimum values into a single message, effectively reducing

the necessary number of interconnections and thereby min-
imizing hardware complexity. In [7], a novel approximation
strategy is proposed that uses only the first minimum in
the check update process. This refined approach yields a
remarkable reduction in the hardware cost of the sorting unit.
However, it’s important to note that while these approaches
effectively reduce hardware costs, they come at the sacrifice
of decoding performance and convergence speed.

Recently, neural networks have gained significant attention
from both academia and industry for their ability to learn
meaningful features from data, resulting in remarkable real-
world applications. This surge in interest extends to the
Error Correction Codes (ECC) [8], [9], [10], [11], [12], [13],
[14], [15] as well. One such techniques is the integration
of neural networks with traditional decoding algorithms,
known as model-driven neural networks [16], aimed at
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enhancing the error correction capabilities of LDPC codes.
For example, in [17], the decoding performance of the LDPC
decoder is improved by training additive offsets and weights.
Alternatively, the approach presented in [18] focuses on
training multiplicative correction factors for both the check
node and variable node messages.

In contrast to a full neural network decoder, where the
entire decoding process is managed exclusively by a neural
network without explicit reliance on traditional decoding
algorithms, a neural network (NN)-aided decoding algorithm
leverages the capabilities of NN for training parameters used
in traditional decoders. Designing such decoders presents a
significant challenge because they usually add extra param-
eters, leading to increased hardware costs, which are crucial
factors to consider when designing decoding algorithms.
Additionally, current research tends to concentrate on shorter
to medium-length LDPC code decoders due to the neural
network’s complexity scaling with code length. However,
it’s worth noting that longer LDPC codes typically provide
better error correction capabilities.

In this paper, our primary objective is to design a Neural
Network-Aided (NN-aided) LDPC decoder. We introduce
a novel approach by presenting a Globally-Coupled (GC)-
like LDPC code with a more compact structure, maintaining
equivalent decoding performance. Compared to the GC-
LDPC code proposed in [19], our GC-like LDPC code
incorporates not only disjoint local code but also disjoint
global code. The special code structure significantly sim-
plifies the neural network, which unleashes code length
limitations in training neural networks. Based on this
approach, we propose a Neural Network-Aided Variable
Weight Min-Sum algorithm (NN-aided vwMS), which esti-
mates the difference between the first minimum and the
second minimum values among incoming variable node to
check node messages through the neural network. Despite
discarding the second minimum, our algorithm achieves
decoding performance closely aligned with the normal-
ized Min-Sum algorithm [20]. Furthermore, we improve
convergence speed by introducing the fast-convergent shuf-
fled scheduling approach. Hardware implementation results
validate that our proposed algorithm effectively balances
decoding performance and hardware costs. It’s noteworthy
that, although we specifically discuss the advantages of the
GC-like LDPC code in simplifying the neural network within
this paper, the design methodology of the NN-aided decoder
is not confined to GC-like LDPC codes alone but also
applicable for shorter length LDPC codes.

The remainder of this paper is organized as follows:
Section II provides the preliminary concepts. Section III
details the GC-like LDPC code construction method and the
proposed neural network framework. Section I'V elaborates on
the shuffled scheduling used in the NN-aided vwMS algorithm
and introduces the fast convergence shuffled scheduling.
Section V delves into the hardware architecture of the decoder
and offers a comparative analysis against the state-of-the-art
work. Finally, Section VI concludes this paper.
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FIGURE 1. An example of QC-LDPC code and its base matrix.

II. BACKGROUND

A. LDPC CODES FUNDAMENTALS

An (n, k) LDPC code is defined by the parity check matrix
H, a sparse matrix of dimensions m x n. Here, n signifies
the code’s length, k denotes the information length, and m
corresponds to the parity length, expressed as m = n — k.
LDPC code can also be visually represented as a bipartite
graph known as Tanner graph [21]. In Tanner graph, a cycle
is defined as a group of interconnected edges that start and
end at the same node. A well-constructed parity check matrix
adheres to the Row-column (RC) constraint, ensuring that
no two columns (or rows) share more than one non-zero
element.

Quasi-cyclic (QC) LDPC codes typically consist of cir-
culant permutation matrices (CPM) arranged in an M x
N configuration, with each CPM sized a x a. The base
matrix is a simplified representation of the QC-LDPC parity
check matrix, where each element in the matrix corresponds
to a shift coefficient. The parity check matrix and the
base matrix are illustrated in Figure 1, where ‘2’ indicates
cyclically shifting the CPM two columns to the right, ‘0’
represents the identity matrix, and ‘—1’ signifies an all-zero
matrix.

B. VARIABLE WEIGHT MIN-SUM ALGORITHM
Normalized Min-Sum (NMS) algorithm [20] is a simplified
approximation of Sum-Product algorithm (SPA). With a
properly chosen normalization factor (8 < 1), it is
capable of achieving a performance similar to the SPA.
For further complexity reduction in the check node update
process, the Variable Weight Min-Sum(vwMS) algorithm,
as proposed in [22], adopts iteration-dependent weight
factors denoted as w'”. This method involves an analysis
of the discrepancy between the 1% minimum magnitude
and the 2 minimum magnitude of V2C, allowing us to
derive the most probable weight factor for each decod-
ing iteration. Algorithm 1 provides a detailed description
of vwMS, and the symbol definitions are provided in
Table 1.

C. NEURAL NETWORK-AIDED (NN-AIDED) LDPC
DECODER

The utilization of model-driven neural networks for the
design of message-passing LDPC decoders, structured
according to the edge connections in the Tanner graph
derived from the parity check matrix, is an alternative
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TABLE 1. Symbol definitions.

Symbol Notation | Description

LUJ —e; the message sented from the j"h variable node to the it® check node
LCI_WJ the message sented from the ith check node to the jth variable node
Lc;,,j the channel value corresponding to the j”‘ variable node

L,,_l a posteriori log-likelihood ratio (LLR) of the j’h variable node.

xj the j" estimated bit

N(i) the neighboring check/variable of the i*" variable/check node

t the iteration counter

Trmazx the maximum number of iterations

S the vector of the syndrome, s; denotes the i*" syndrome

Tl(t) the number of ijacq that is equal to I\VIim

]W,L(t) the absolute minimum of the i*" check node in the ¢*" iteration
c2v the check node to variable node message

vac the variable node to check node message

Algorithm 1 Variable Weight Min-Sum (vwMS) Algorithm
1: forj=0ton—1do

> Initialization

2 LV/-)C,‘ = LC/’L,"
3: end for '
4: for t=1, ..., Tyar do
5: fori=0tom—1do > Check Node Update
6 if 7 = 1 and Ly, ¢, = M" then
7: Magg)_)vj = Mi(t) + w®
8: else
9: Mi(t)
10: end if
11: end for
12: forj=0ton—1do > Variable Node Update
13: LE?—)C,‘ = Lchj + Z Lg/)—wj-
7eN(H\i

14: Ll(lj) = Lch,- + Z Lg/)—wj

" 'eN())
15: if L,(,j.) <0 then
16: Xj =
17: else
18: Xj = 0
19: end if

20: end for

21: fori=0tom—1do > Syndrome Check

22: Si= @ x
JeN()
23: end for
24: Terminate the decoding process if (S == 0)
25: end for

graphical representation to the message-passing algorithm. In
this paradigm, the edges in the Tanner graph are represented
as nodes within hidden layers. The neural network comprises
the input layer, the hidden layers, and the output layer.
The input layer receives channel output, the output layer
determines the decoding results, and the hidden layers
facilitate message propagation. The dimensions of the input
and the output layers are N, corresponding to the number
of variable nodes in the Tanner graph. The hidden layers
have dimensions E, which is equivalent to the number of
edges in the Tanner graph. An example of such a neural
network that unfolds two iterations of the prototype decoder,
is in Figure 2. The connection from the input layer to the
first hidden layer can be thought of as distributing channel
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FIGURE 2. (a) Parity check matrix. (b) Tanner graph. (c) An example of the
corresponding neural network.

values to the edges of V2C. The subsequent CN update layer
can be understood as follows: Assuming the 0”* check node
needs to update the edge 1, it requires V2C from edges 3
and 11. The next VN update layer can be viewed in this
way: Assuming the 07 variable node needs to update edge
1, it requires C2V from edge 2. As the steps continue, a
complete neural network can be constructed.

D. GLOBALLY-COUPLED (GC) LDPC CODE
Globally-Coupled Low-Density Parity Check (GC-LDPC)
code [19] consists of local codes Hy,q and global codes
Hiopal- Hrocqi comprises s disjoint submatrices positioned
along the main diagonal of the upper s x s submatrices
within Hgc. The remaining sections of the s x s submatrices
within Hgc are all-zero matrices. Hg,pq resides in the lower
section of Hgc and serves to connect the local Tanner graphs
for exchanging messages between disjoint local codes. The
decoding of the received codeword can be achieved partially
using disjoint local codes. In case of decoding failure, the
global code helps to exchange messages among local codes.
The base matrix of the GC-LDPC code is shown in the
Equation (1).

H Local, 1

Hge =

lll. PROPOSED GC-LIKE LDPC CODE CONSTRUCTION
AND NN-AIDED VWMS ALGORITHM

Previous works primarily focused on short LDPC codes
because neural networks are memory-intensive, and the
memory requirements for training NN-aided LDPC codes
increase quadratically with the number of edges in the Tanner
graph. Since the neural network model is not fully connected,
where connections between layers are sparse, the connection
matrices between layers are used to specify the connectivity
pattern. For an LDPC code with E edges in the Tanner
graph, the size of the connection matrix of input layer to
the first hidden layer and the last hidden layer to the output
layer is N x E. The connection matrix between hidden layers
are E x E. Therefore, a neural network designed for 7"
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FIGURE 4. Tanner graph of the proposed GC-like LDPC code.

iterations the total size is 2 X N X E4+T"* x 2 x E X E
for the connection matrix. As code length increases, these
edge-specific neural network decoders become impractical
because the number of edges grows rapidly.

A. CONSTRUCTION OF GC-LIKE LDPC CODE

In response to the demands of neural networks for long
LDPC codes, we aim to simplify the neural network by
dividing its edges. In Figure 3, the original neural network is
divided into 4 groups; thus, the total size of the connection
matrix is reduced from E? to %2. The methodology highly
relies on the LDPC code structure that check nodes and
variable nodes should be able to partition into disjoint sets,
and this reminds us of the GC-LDPC code.

Several methods have been proposed for the construction
of GC-LDPC codes [23], [24]. For example, an algebraic
GC-LDPC code can be constructed by the Latin square with
superposition. To enable edge splitting in a neural network
based on the GC-LDPC code, we construct not only the
disjoint local codes but also the disjoint global codes, which
means the tanner graph of the row blocks of local code
or the global code are not connected between each other.
The Tanner graph of the proposed GC-like LDPC code is
presented in Figure 4.

The construction of the proposed GC-like LDPC code
comprises the generation of the base matrix and the
formation of local and global code. Algorithm 2 details the
steps to construct the proposed GC-like LDPC codes.

B. PROPOSED NN-AIDED VWMS ALGORITHM

The weight factors utilized in the vwMS algorithm have a
significant influence on decoding performance. In the work
of [22], weight factors were determined through an exhaus-
tive search. Nonetheless, this method is time-consuming due
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Algorithm 2 Construction of the GC-Like LDPC Code

Step I:

The Hjcqr is @ QC-LDPC code with [ row blocks and &
column blocks. The CPM size is denoted as Z. x Z.. The shift
coefficients are generated by the computer search method and
the RC constraint is satisfied. The local code of the GC-LDPC
code consists of s copies of Hy,qq on the diagonal.

Step II:

The first row block of Hgjypar is constructed by inserting
s — 1 columns of all-zero submatrices between adjacent column
blocks of Hycal-

Step I1I:

The remaining s — 1 row blocks of Hgjypar are constructed
by cyclically shifting the row block constructed in Step II by
one column block.

Step IV:

Check the RC constraint for the constructed GC-LDPC code.
If RC constraint is violated, return to Step I and re-randomize
the shift coefficients. Otherwise, construction is done. With s =
3, the yellow shaded regions denote non-zero matrices, while
the white shaded portions signify all-zero matrices. The entire
construction procedure is illustrated in Figure 5.

‘ Step 1 ‘

|
1 { I‘lw%
ks

: {f H nﬁ#

FIGURE 5. The construction flow of the proposed GC-like LDPC code.
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FIGURE 6. Block diagram of neural network-optimized low-resolution decoder.
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Offline Training e

Parameters

to the need to assess all possible combinations of weight
factors. To overcome this, we propose a novel approach
that uses a model-driven neural network to efficiently train
optimal weight factors.

The Neural Network-Optimized Low-Resolution Decoder
(NOLD), proposed in [25], introduces a structured frame-
work comprising both offline training stages and online
decoding stages. As shown in Figure 6, the online decoding
stages behave like a typical decoder, applying parameters
trained in the offline stages and forwarding the V2C and C2V
to the offline training stages; the offline training unfolds the
decoding algorithm for a single iteration. Assuming we are
training parameters for the 7" iteration, the process begins
with a pre-stored dataset containing noisy codewords derived
from specific channel conditions. The C2V and V2C are
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FIGURE 7. Training diagram of the proposed NN-aided vwMS algorithm.

obtained from online decoding stages, which has already
decoded for ¢t — 1 iterations. Training continues until the
specified maximum iteration count is reached.

The target code is a (9216,8197) regular GC-like LDPC
code with a column degree of 4 and a CPM size of 128 x 128.
Since the target code consists of disjoint local and global
codes, each local and global update layer can be split into
two disjoint parts. The decoder in the online decoding stages
is a vWMS decoder, which adopts weight factors trained in
the offline training stage. The block diagram of the neural
network during the offline training stage is illustrated in
Figure 7.

The activation functions for each layer are shown below,
and the training goal is to derive the weight factors denoted
w for each decoding iteration and minimize the loss.

« Input Layer: The j# node in the first layer receives

the j* channel value, where j=1,2,3---N

L = Lo, )

« Local Variable Nodes Update Layer: The local V2C
Llocal g updated with the channel value Lchj and the

V —>Cj
local C2V L@ ~and global C2V L§{”i“jj

Cyp —>Vj

Lyt ¥ ik e ¥
7eN()\i 7eN()\i
o Local Check Nodes Update Layer: The local C2V
Llc‘l’ﬁilvj is updated with the incoming V2C Ly, ;. The
Jmin 18 the index of the smallest Lvi,ﬁci. The weight

factor w is the training parameter:

Llocal _

global
vi—=ci T L

Cit—>Vj

Lo =075 x [ sign(Lyy—e)

JEN®\

min (ILV,_>C,|) +w,
JENG)

j/gll\lfnl (|LVJ«/—>C,' |)1

otherwise.

« Global Variable Nodes Update Layer: The global V2C

L‘E’Jlilffll is updated with the channel value Ly, and the
lobal
local C2V L, and global C2V L{Z,.
L2 =Lay+ D LS, + D0 LED, 6
'eN()H\i 'eN(H\i
« Global Check Nodes Update Layer: The global C2V
Lglobal

Ci—vj is updated with the incoming V2C ij,ﬁcl.. The
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TABLE 2. Quantized weight factors w.

Iteration 1 2 3 4 5 6
Parameter 1.25 1.25 1.5 2 1.75 2

Tteration 7 8 9 10 11 12
Parameter  1.75 1.75 1.75 1.75 1 1.5

Jmin 18 the index of the smallest ij,_>ci. The weight
factor w is the training parameter:

[T sign(ty,~c)

JEN@\j

min (|LV/—>c, D +w,
JEN(i)

min (ILVHL,I)
JENG)

lobal
LY i‘; =0.75 x
if j = jmin
otherwise.
« Output Layer: For the output layer, the j” variable
node produces a decision based on

Ly; = Len; + Z Ley—y;- )
i'eN(j)

The soft-sign function is used for bit estimation because
the derivative of the sign function is 0 except for 0,
which could pose problems during back-propagation.

L
Lautput Vi 3
j L, +0.01 ®
N 2
Loss = Z(L;m” “_ Cj) 9)
j=0

The loss function can be considered as a criterion to estimate

the performance of neural network models. Most neural
network models adopt the binary cross-entropy function
as the loss function; however, it can only be seen as the
approximation of the bit error rate [26]. To exploit the soft
bit information, we use the square error that measures the
distance between the result L“P" and the code bit cj as a
loss function to train the proposed neural network.

C. NUMERICAL RESULTS

The neural network is built with TensorFlow, and Adaptive
Moment Estimation (ADAM) [27] with a learning rate equal
to 0.01 is used to optimize the neural network. There
are 64000 codewords in the pre-stored data set that are
modulated by BPSK and distorted by AWGN generated in
4.7 dB. The batch size is 64.

The training results of weight factors, quantized into 2
integer bits and 2 fractional bits, are shown in Table 2.
The validation loss barely decreases after 12 iterations,
indicating that a convergence of the decoder is achieved
within 12 iterations. The weight factors denoted w® where
t = 1,2,3,...,12, are used for the iteration 1 to 12,
Subsequently, for decoding iterations beyond 127, w2 is
used.

Figure 8 shows the decoding performance of the NMS
decoding algorithm, the NN-aided vwMS algorithm and the
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((9216,8197) GC-like LDPC code, AWGN

—— NMS
NN-aided vwMS
—— vwMS [22]

36 38 40 42 44 46
SNR(dB)

FIGURE 8. The FER performance of the (9216,8197) GC-like LDPC code using the
NMS algorithm and the NN-aided vwMS algorithm over AWGN channel.

802.15.3d(R=14/15), AWGN

10+4 —+— NN-aided vwMS
—— NMS

30 35 40 a5 50 55 6.0
SNR(dB)

FIGURE 9. The FER performance of the LDPC code designed for IEEE 802.15.3d
using the NMS algorithm and the NN-aided vwMS algorithm over AWGN channel.

vwMS algorithm proposed in [22]. The scheduling methods
of these three algorithms are flooding and 77" is 50. While
the vwMS algorithm demonstrates comparable performance,
the efficiency of an exhaustive search for optimal weight
factors is challenging when more accurate numerical values
are required. This results in an increased search space,
making the exhaustive search less efficient.

To enhance the robustness of our training framework, we
conducted experiments focusing on an LDPC code designed
for IEEE 802.15.3d [28], featuring a code rate of 14/15 and
a code length of 1440. As shown in Figure 9, the decoding
performance of the NMS decoding algorithm and the NN-
aided vwMS algorithm is closed under flooding scheduling,
with 77 set at 50. This result highlights the effectiveness
of the proposed training methodology.

IV. NN-AIDED VWMS ALGORITHM WITH FAST
CONVERGENCE

Column-based shuffled scheduling is a hardware-friendly
implementation of the LDPC decoder, and the ordered set is
proposed to simplify the complexity of the decoder [29]. By
carefully considering the replacement strategy, it’s feasible
to maintain comparable decoding performance with only the
two smallest V2C. This replacement should occur not only
when the magnitude of the input V2C is smaller than one of
the magnitude of the 1% and 27 minimum, but also when
there’s an index conflict that arises when the index of the 1%
minimum or the 2"¢ minimum equals the index of the current
processed variable node. Figure 10 illustrates an example of
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FIGURE 10. An example of the 15 minimum and the 2"¢ minimum conflict in the
shuffled NMS algorithm.

(9216,8197) GC-like LDPC code, AWGN

—4— Shuffled NMS

_. | —#— Shuffled NN-aided vwMS (num of column blk = 1)

—e— Shuffled NN-aided vwMS (num of column blk = 4)
Shuffled NN-aided vwMS (num of column blk = 8)

36 38 40 42 44 46
SNR(dB)

FIGURE 11. The FER performance of the (9216,8197) GC-like LDPC code using
shuffled NN-aided vwMS and shuffled NMS over AWGN channel.

the index conflict in the shuffled NMS algorithm. In this
example, the 1* minimum is outdated in the 1% group of the
2 jteration, since the magnitude of the input V2C is larger
than the magnitude of the 1* minimum. The 1% minimum
is replaced by the 2"¢ minimum.

For the NN-aided vwMS algorithm with shuffled schedul-
ing, the magnitude of the input V2C directly replaces the
magnitude of the 1% minimum when a conflict arises, as
there is no stored information about 2" minimum. However,
as illustrated in Figure 11, increasing the number of column
blocks updated in a single sub-iteration does enhance the
Frame Error Rate (FER), the overall performance remains
undesirable. This is primarily because the pseudo 1* min-
imum, obtained by sorting the magnitude of the incoming
V2C to replace the outdated 1% minimum in case of a
conflict, is often larger than the actual 1% minimum.

To ensure the decoding performance, two scenarios need
to be taken into consideration when determining the replace-
ment value for the 1% minimum during a conflict:

1) The replacement value shouldn’t be too large, leading
to performance degradation due to erroneous C2V.

2) The replacement value shouldn’t be too small, risking
the chance of missing the opportunity to replace the
15" minimum in successively sub-iterations.

The proposed method compares the magnitude of V2C
with the magnitude of the outdated 1* minimum plus an
increment in the event of a conflict. It then updates the
1" minimum with the smaller one. Taking into account
the aforementioned considerations, Figure 12 shows the
performance on various increment values ranging from 1 to
3.5. The best performance is observed when the increment
is set to 1, which is subsequently adopted.

In addition to the decoding performance, we also examine
the average number of iterations, which is detailed in
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(9216,8197) GC-like LDPC code, AWGN

increment = 1
increment = 1.5
increment = 2
increment = 2.5
increment = 3
increment = 3.5

38 39 40 41 42 43 a4 45
SNR(dB)

FIGURE 12. The FER performance of the proposed (9216,8197) GC-like LDPC code
with the increment between 1 and 3.5.

Algorithm 3 The 1% Minimum Update Method of Proposed
Fast-Convergent Shuffled Scheduling

Input: V2C magnitude, VN index, old 1¥ min magnitude, old 1%
min index
Output: new 1 min magnitude, new 1 min index

1: if VN index == old 1% min index then
2: if V2C magnitude > old 1% min magnitude + increment then
3: new 1% min magnitude = old 1%’ min magnitude + increment
4: new 15 min index = old 1% min index
5. else
6: new 1% min magnitude = V2C magnitude
7: new 1% min index = VN index
8: end if
9: else if V2C magnitude <= old 1* min magnitude then
10: new 1% min magnitude = V2C magnitude
11: new 15 min index = VN index
12: else
13: new 1% min magnitude = old 1% min magnitude
14: new 1% min index = old 1*’ min index
15: end if
replace  conflict
) Increment-used only Iteration =1 Iteration = 2 Iteration =3
Group. 1 2 3 4 1 2 3 4 1 2 3 a
old 0.1 0.2 0.5 0.1 05 0.1 0.5 0.1 03 0.4 0.1 0.2
1*min 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.1

Timin

plbe Y 1 1 1 1 2 2 2 2 2 3 3

(b) Proposed
Group. 1 2 3 a 1 2 3 a 1 2 3 4

old 0.1 0.2 05 0.1 05 0.1 05 0.1 03 0.4 0.1 0.2
Timin | 0.1 0.1 01 0.1 0.1 01 0.1 0.1 0.1 0.1 01 0.1

1 1 1 4 4 2 2 4 4 4 3 3

FIGURE 13. lllustration of the 15t minimum update of NN-aided vwMS with proposed
fast-convergent shuffled scheduling.

Table 3. We observe that the NN-aided vwMS algorithm
with increment-used shuffled scheduling converges slower
than the shuffled NMS. To enhance convergence speed, we
have implemented a strategy to reduce conflict frequency.
Specifically, we keep track of the most recent 1% minimum
index, updating it when the input V2C equals the 1%
minimum as outlined in line 9 of Algorithm 3. The
algorithmic details are provided in Algorithm 3. In this
algorithm, ‘old’ refers to the value before an update, and
‘new’ refers to the value after the update.

Figure 13 is an example of Algorithm 3. Through fre-
quent replacement of the 1% minimum index, conflicts are
postponed or potentially precluded, thereby enhancing the
algorithm’s convergence speed.
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TABLE 3. The comparison table of the average number of iterations.

SNR(dB) 4.1 42 43 44 4.5 4.6
Shuffled NMS 1526 1053 7.89 671 6.02 554
Increment-used 1827 1256 930 7.69 6.77 6.17
Proposed 16.75 1092 833 691 6.10 556

(9216,8197) GC-like LDPC code, AWGN

—+— Layered NMS
—+— Shuffled NMS
—+— Proposed Fast-convergent shuffled NN-aided vwMS

36 38 40 42 44 46
SNR(dB)

FIGURE 14. The FER performance of the (9216,8197) GC-like LDPC code using
layered NMS, shuffled NMS and proposed fast-convergent shuffled NN-aided vwMS

over AWGN channel.
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FIGURE 15. Proposed decoder architecture.

The FER performance over AWGN channel using BPSK
signaling and decoded with 50 iterations of the layered NMS,
shuffled NMS and the proposed fast-convergent shuffled NN-
aided vwMS algorithm is shown in Figure 14. The average
decoding iteration using the proposed fast-convergent NN-
aided vwMS is detailed in Table 3. The proposed algorithm
demonstrates a 9.9% improvement in convergence speed at
an SNR of 4.5 dB.

V. DECODER ARCHITECTURE AND IMPLEMENTATION
RESULTS

A. DECODER ARCHITECTURE

The top-level architecture is shown in Figure 15. The critical
path starts and ends at the registers containing check node
information. Processing of a column block containing four
non-zero CPMs, the requirement is 4 x 128 check node
information to recover the C2V and a posterior probability.
In each cycle, the V2C generation units sum the channel
value and the C2V to compute the V2C. Subsequently, the
1% minimum and the global sign will be updated and stored
in the check node information registers.
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TABLE 4. Comparison table of the 1K-Byte LDPC decoders.

This work C Zhang [26] KC Ho [27] MH Chung [28] H Zhong [29]
Code (N,K) LDPC (9216, 8197) | LDPC (9216,8192) | LDPC (9376,8204) | LDPC (9280,8315) | LDPC (9376,8192)
Coderate 0.889 0.889 0.875 0.896 0.889
Scheduling Shuffled Layered Shuffled Flooding Shuffled
Iteration Avg. 6.18 Max. 4 Avg. 8 Max. 4 Max. 16
Status Post-Layout Synthesis Synthesis Synthesis Synthesis
Process 40 nm 28 nm 90 nm 90 nm 65 nm
Frequency (MHz) 313 126 ~ 272 200 138.8 300
Area (mm?) 0.58 0.26 1.4 2.52 2.32
% Throughput (Gbps) 6.56 1.59 0.52 0.393 2.1
b TAR (Gbps/mm?) 11.31 6.11 0.37 0.16 1.1
¢ NTAR (Gbps/mm?) 11.31 2.1 4.2 1.8 4.7
Power (mW) 288 50.5 N/A N/A N/A
_ CodewordLength
¢ Throughput = (AverageCycleCountx ClockPeriod)
b TAR = W
Th h
¢ NTAR = rzzgaput X (P'rzq(:)ess)3
15 min index = VN index P e ek i i bl R e e e i R ~.
____________ _l' G conflict hA
- ‘ [ old 1% min+1 R \
1t min +w >>2 EY : 1 V2C_mag "l |
_ ! N Y 1 1w magmludel cle | [ new1* min !
1%t min + w : >1 : 2V magnitude | old 1% min + 1 [ S |
1% min T» >>2 Y : ! Vz(‘,"“‘:;:“::g I old 1% min :I (on,,” I
! . I !
pmin o1 ¥ P i —{Compartore | & !
) .
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FIGURE 16. Check node to variable node messages recovery unit.

B. CHECK NODE UNIT
The check node unit consists of two parts: the C2V recovery
unit and the minimum selection unit.

The architecture of the C2V recovery unit is shown
in Figure 16. Multiplication of the scaling factor 0.75 is
achieved through shift and addition operations. Additionally,
the weight factor w is added to the magnitude of the
1" minimum. Compared to the shuffled NMS decoder,
the proposed decoder requires a higher hardware cost
for this module due to the requirement of additional
computations to determine the magnitude of the 2™
minimum.

The hardware cost of the check node registers is reduced
by 48% compared to that of the shuffled NMS decoder.
This arises from the fact that the shuffled NMS decoder
stores the magnitude of the 15" and the 27 minimum, the
index of the 1** and 2"¢ minimum, and the global signs.
In contrast, the proposed decoder solely requires storage for
the magnitude of the 1% minimum, the magnitude of the 1%
minimum index, and the global signs.

The architecture of the minimum selection unit is
shown in Figure 17. Compared to the same unit in the
shuffled NMS decoders, as illustrated in Figure 18, the
number of multiplexers in this work has been reduced
from 18 to 5, resulting in a hardware cost reduction
of 46%.
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FIGURE 18. Architecture of the minimum selection unit of shuffled NMS decoders.

C. IMPLEMENTATION RESULTS AND COMPARISONS
The synthesis results under TSMC 40-nm SS corner (125°C,
0.81V) are presented in Table 5. Benefiting from eliminating
the need for the 2"¢ minimum, the clock period in this work
has been reduced to 2.5 ns. Furthermore, the total gate counts
are reduced by 17 %. Although the average iteration of this
work is 0.08 higher than that of the shuffled NMS algorithm
at an SNR of 4.5 dB, the throughput still outperforms the
shuffled NMS algorithm by 6.5% due to the shortened critical
path.

The implementation results of the proposed (9216, 8197)
GC-like LDPC code decoder, along with the state-of-the-art
1K-Byte LDPC codes, are presented in Table 4. Operating at
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TABLE 5. Implementation result of proposed decoder and shuffled NMS decoder.

Proposed | Shuffled NMS
Status Synthesis
Process (nm) 40
LDPC (N,K) (9216,8197)
Base Graph 8,72)
CPM Size 128
Clock Period (ns) 2.5 2.7
Frequency (MHz) 400 357
Average Iterations 6.10 6.02
Total Area (mm?) 0.40 0.48
Total Gate Count(K) 582 706
Throughput (Gbps) 8.39 7.88

FIGURE 19. Layout of the proposed decoder under TSMC 40 nm process.

a frequency of 313MHz, our decoder achieves a throughput
of 6.56 Gbps at an SNR of 4.5 dB. The average power
consumption is 288 mW measured by Synopsys Prime
Time. Considering the variations in process technologies
in the designs, we apply the normalized throughput-to-
area ratio (NTAR) [30] as performance normalization. The
normalized results are presented in Table 4. Because the
NN-aided vwMS algorithm is a simplified version of the
NMS algorithm, and the fast-convergent shuffled scheduling
helps accelerate the convergence speed, this work achieves
the highest NTAR compared to other works.

VI. CONCLUSION

In this paper, an NN-aided vwMS algorithm with fast-
convergent shuffled scheduling is proposed. The hardware
costs of the proposed decoder are significantly reduced
by utilizing the weight factors obtained from the neural
network. In addition, a new GC-like LDPC code construction
is proposed to address the challenges faced by model-
driven neural networks. Implemented under the 40 nm
CMOS TSMC process, the proposed (9216,8197) LDPC
decoder achieves a throughput of 6.48 Gbps at a clock
rate of 313 MHz, with a core area of 0.58 mm? and an
average power consumption of 288 mW. We believe that our
approach, embodied by the NN-aided vwMS algorithm and
the GC-like LDPC code construction, has the potential to
open new avenues for achieving greater efficiency in future
LDPC decoder designs.
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