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ABSTRACT The high speed, scalability, and parallelism offered by ReRAM crossbar arrays foster the
development of ReRAM-based next-generation AI accelerators. At the same time, the sensitivity of ReRAM
to temperature variations decreases RON /ROFF ratio and negatively affects the achieved accuracy and
reliability of the hardware. Various works on temperature-aware optimization and remapping in ReRAM
crossbar arrays reported up to 58% improvement in accuracy and 2.39× ReRAM lifetime enhancement.
This paper classifies the challenges caused by thermal heat, starting from constraints in ReRAM cells’
dimensions and characteristics to their placement in the architecture. In addition, it reviews the available
solutions designed to mitigate the impact of these challenges, including emerging temperature-resilient
Deep Neural Network (DNN) training methods. Our work also provides a summary of the techniques
and their advantages and limitations.

INDEX TERMS ReRAM, memristor, thermal heating, nonideality, resistive crossbar arrays, resistive
hardware accelerators.

I. INTRODUCTION

THE RAPID progress in artificial intelligence (AI) is
dictating new requirements for hardware accelerators.

Modern computational processes are characterized by an
abundance of dot-product operation and an extreme lack
of storage space. In this regard, non-volatility, nanoscale
size, and the ability to retain multiple states made resistive
switching materials (RSMs) promising in designing energy-
efficient high-density memory devices. Moreover, RSMs, and
resistance random access memory (ReRAM) in particular,
can act as synapses and allow the building of artificial
neurons and even neural networks. Multiple ReRAM cells
organized into crossbar arrays can perform vector-matrix
multiplication (VMM) faster and more efficiently than von-
Neumann-based architecture since ReRAM cells can store
data values as conductance states and reduce data movement
between separate memory and processing units [1].
Therefore, computing-in-memory (CIM) or processing-

in-memory (PIM) analog and digital ReRAM-based

accelerators such as ISAAC [2], PRIME [3], PUMA [4] and
others are firmly entering modern electronics. In particular,
ISAAC outperformed its fully digital counterpart DaDianNao
with improvements of 14.8× in throughput, 5.5× in energy,
and 7.5× in computational density [2].
Nevertheless, an intra-class comparison with state-of-the-

art (SoTA) commercial accelerators shows that existing
ReRAM-based accelerators have higher power density with
non-uniform distribution [5]. On the other hand, it also
leads to disproportional temperature distribution. Previous
works showed that an increase in temperature has an
impact on resistive switching behavior and the RON /ROFF
ratio of ReRAM cells [7], [8]. In turn, the change of the
conductance states affects the accuracy of ReRAM-based
hardware [9]. Moreover, the materials and dimensions of
ReRAM cells can define the level of the hardware’s sensitiv-
ity to temperature [10], [11]. A closer look at ReRAM-based
architectures shows that heterogeneous parts of the accel-
erators demonstrate non-uniform power density distribution
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FIGURE 1. a) Power density of ISAAC-CE [5]; b) Steady-state temperature
distributions of the same ReRAM chip running three different CNN models for
inference: VGG16, InceptionV3, ResNet50 [6].

(as shown in Figure 1a for ISAAC) and consequently result
in uneven temperature regions [5], [12]. Since power-hungry
components have a higher rate of heat dissipation, they
might interfere with the temperature and performance of
surrounding elements. It was observed that an increase in
temperature from 300K to 400K may reduce the accuracy
of ReRAM-based hardware by up to 6× [9]. Moreover, due
to different conductance values and input voltages, there
might be a non-uniform temperature distribution within the
ReRAM crossbar arrays, too. Figure 1b shows the steady-
state thermal distribution in the same ReRAM chip during
inference of VGG16, InceptionV3, and ResNet50 workloads
for ImageNet dataset classification. As can be seen, the
temperature difference between the models can reach up to
17.16K [6].
However, the majority of resistive hardware accelera-

tors did not consider the thermal sensitivity of ReRAM
cells in their design. The study of temperature impact on
ReRAM-based architectures and the development of solu-
tions to mitigate the problem started gaining attention only
recently [8], [10]. This paper contributes in the following
ways:

• We summarized the design and performance challenges
of ReRAM-based hardware caused by temperature
increase;

• We reviewed existing solutions developed to address the
identified challenges;

• We categorized methods designed to mitigate the impact
of temperature and analyzed their advantages and
shortcomings compared to each other;

• Finally, based on the solutions discussion, we high-
lighted the key takeaways.

The rest of the paper is organized as follows: Section II
provides information on ReRAM crossbar arrays and SoTA
ReRAM-based neural accelerators. Section III discusses the
thermal challenges in ReRAM-based hardware caused by
temperature increase, and Section IV introduces existing
techniques developed to address these challenges. Finally,
Section V provides a summary discussion of the presented
solutions.

II. EXISTING RESISTIVE NEURAL ACCELERATORS
A. RERAM CROSSBAR ARRAYS
ReRAM is a non-volatile memory device with conducting
filament (CF) material sandwiched between top and bottom
electrodes [13]. Resistivity switching (RS) of ReRAM cells
from High Resistance State (HRS) to Low Resistance State
(LRS) and vice versa can be controlled via connection and
disconnection of the CF. Typically, ReRAM devices operate
in read and write modes. During write mode, current or
voltage pulses of certain amplitude, polarity, and duration
are applied to the ReRAM to program its state. Sensing the
ReRAM state is performed during read mode via applying
voltages and currents of a specific range.
ReRAM’s high speed and scalability, power efficiency,

nanoscale size, and ability to retain a value in a non-
volatile manner sparked interest in ReRAM-based resistive
crossbar array (RCA) architectures. RCAs can serve either
as non-volatile memory devices for storing data or as CIM
architectures for performing VMM or accelerating neural
networks. In the latter application, a ReRAM cell acts as
a synaptic weight wi,j of a neural network with a neuron
output yj = ∑N

i=1 wi,j × xi. According to Kirchoff’s current
law (KCL), the output current of each column in RCA is
equal to a weighted summation of the input voltages, Ij =
∑N

i=1 Gi,j × Vi. The weights are mapped to the RRAMs’
conductances, G, while the inputs are mapped to the applied
voltages, V , This property forms the basis of many ReRAM-
based accelerators [1].

B. SOTA RERAM ACCELERATORS
The typical architecture of many-core bank- or tile-based
resistive hardware accelerators comprises ReRAM crossbar
arrays and various peripheral circuits and interconnects. Two
of the first many-core ReRAM-based accelerator designs
were ISAAC [2], and PRIME [3]. ISAAC has many-
core architecture with tiles connected via network-on-chip
(NoC). Compared to fully digital neural network accelerator
DaDianNao [14], utilization of RCAs in ISAAC for VMM
operation allowed ISAAC to reduce energy by 5.5× and
increase throughput and computational density by up to
14.8× and 7.5×, respectively [2]. PRIME consists of banks
that are connected via bus interconnect and uses RCAs for
both data storage and VMM. Both accelerators support only
the inference phase with 16-bit precision. Figure 2 shows
the hierarchical structure of a ReRAM-based accelerator,
including a node, processing tile (PT), processing unit (PU),
and RCA.
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FIGURE 2. Hierarchical architecture of a ReRAM-based CIM accelerator (2D planar
design): from a node to a resistive cell.

Communication between on-chip and off-chip components
in multi/many-core platforms takes place via interconnects.
Currently, ISAAC and PRIME serve as baseline models
for the majority of SoTA ReRAM neural accelerators.
Subsequent architectures such as AEPE [15], PUMA [4],
Newton [16], and others have mainly aimed to decrease
the power consumption of the peripheral circuits by mod-
ification of the resolution of ADC and DAC circuits or
optimization of the weight mapping. In addition, PRIME-
based PipeLayer [17] and ISAAC-based AtomLayer [18] and
PANTHER [19] architectures provide support for on-chip
training phases.
Heterogeneous on-chip and off-chip components in

multi/many-core platforms should be placed to ensure high
signal transmission speed/rate, small area, and low power.
Traditional two-dimensional integrated circuits (2D ICs) are
no longer feasible for this task, and active research is
being conducted in the fields of 2.5D/3D stacking [20].
A through-silicon via (TSV) (also called an active TSV-
interposer) technology allows bonding several dies in a
face-to-face (F2F), face-to-back (F2B) and back-to-back
(B2B) manner. TSV is used in 2.5D/3D die-stacking,
including popular commercial technologies like Micron’s
Hybrid Memory Cube (HMC) and Hynix’s High Bandwidth
Memory (HBM). However, TSV does not scale well as the
technology node size shrinks. Recently proposed monolithic
three-dimensional (M3D) integration, also called 3D sequen-
tial integration, allows integration of ICs on top of each other
on a single silicon substrate [21].
Improvement in bandwidth and power can also be achieved

by stacking 2D planar ReRAM crossbar arrays into hori-
zontal 3D ReRAM (H-ReRAM) or horizontal cross-point
architecture (HCPA). There is also a vertical 3D ReRAM (V-
ReRAM) design known as a vertical cross-point architecture
(VCPA). Here, multiple devices are fabricated at the sidewall
of horizontally running word-lines (WL) and a vertically
oriented bit-line (BL). Both H-ReRAM and V-ReRAM allow
scaling the ReRAM device size down to 4F2/n where n is
the number of stacked layers [22]. Generally, 3D die-stacking
and 3D stacking of ReRAM arrays also lead to higher power
densities and thermal problems.
In Figures 3a and b, SoTA ReRAM neural accelerators

are compared against commercial accelerators, including
Google TPUv4 [23], GraphCore C2 [24], Groq [25],
Nvidia A100 [26] and H100 [27]. All accelerators use
16 floating point precision operation. An intra-class com-
parison shows that the power density of the commercial
accelerators is always less than 0.5W/mm2, whereas the

FIGURE 3. The state-of-the-art ReRAM-based and commercial accelerators:
a) Power density; b) Power density per operation per second.

power density of the majority of resistive accelerators is
above the bound and reaches 2W/mm2 in the case of
PipeLayer. Figure 3b represents power spent per opera-
tion per second versus area. The best performance are
yield by ReRAM-based Newton and commercial H100
and Groq.

III. CHALLENGES
The increase in the computational capacity of information
processing systems is accompanied by continuous device
size shrinking and technological advancements such as
three-dimensional stacking, die integration, and packaging.
But they also create thermal challenges and lead to unwanted
performance degradation. This applies in particular to
ReRAM technology since all processes that take place during
RS are thermally activated and can be described using an
Arrhenius dependence [10]. In this section, we identified
challenges that limit the design and operation of ReRAM-
based hardware caused by thermal disturbance. Overall, these
challenges can be grouped into challenges associated with
device-level reliability and thermal design constraints at the
system level.
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FIGURE 4. Measured average conductance of 2-bit HfO2-based array over time at
different temperature for the 4 possible states [30].

A. PERFORMANCE CHALLENGES
1) CHALLENGE 1: STATIC AND DYNAMIC RETENTION

A study of the conduction mechanism in RSMs has shown
that room temperature affects the readout margin of a
device [7]. In particular, a stable bipolar switching behavior
in TiN/HfO2/Ti/TiN ReRAM on 0.25μm complementary
metal–oxide–semiconductor (CMOS) technology is observed
within the temperature range 213–413K. However, further
temperature increase leads to a proportional decrease of
ROFF/RON ratio and data loss. To describe the temperature
effect on ON-state and OFF-state, a quantum point-contact
(QPC) framework was used [28]. According to the QPC
model, the ON-state shows a metallic characteristic, and
resistance can be modeled as:

RON = R0
ON[1 + ρ(T − T0)] (1)

where R0
ON is the resistance measured at temperature T0=

293K; and temperature coefficient ρ = 3×10−2 1/K.
Another test was conducted on 2-bit 256×256 1T1R

HfO2-based array 90nm technology. The temperature was
varied from 300K to 395K, and the measured static retention
characteristics were used to update a model [29], resulting
in the following equations [30]:

�μ = μ(t) − μinit = Aavg × log t (2)

�σ = σ(t) − σinit = Bvar × log t (3)

where t is retention time; μ is the average conductance of
the state and σ is its standard deviation; and Aavg and Bavg
are the conductance drift rates that depend on temperature.
According to the observations, the intermediate states of
ReRAM are more susceptible to thermal effect due to a weak
filament as shown in Figure 4 a-d [29], [31] Here, State 1
exhibits High Resistance State (HRS), whereas States 2-3 are

in Low Resistance State (LRS). Resistance of HRS decreases
over time due to neutral oxygen vacancy aggregation, and
this process is irreversible, whereas resistance of LRS
increases due to a gradual dissolution of the conducting
filament [32]. Therefore, the sign of coefficients A and B
depend on the initial state.
In addition to a static retention variation, there is a dynamic

retention variation caused by temporal temperature changes.
Dynamic retention can be modeled as the sum of the static
variations at each temperature step [33].

2) CHALLENGE 2: ENDURANCE

The expected shortest lifetime (ESL) of ReRAM is around
eight years. From prior works [34], the dependence of
endurance of temperature variation can be expressed via
write latency tw [8]:

Endurance ≈ (tw/t0)
UF/US−1 (4)

where t0 is a constant that depends on the device, and UF
and US are the activation energy for the failure mechanism
and the switching mechanism, respectively. For non-volatile
devices, the typical ratio of UF

US
varies from 2 to 4. From

the analytical model, it was derived that increasing the
temperature from 300K to 330K decreases tw from 50 ns to
30 ns and reduces device endurance [8]. Moreover, high rates
of SET-RESET also increase the temperature and decrease
the average ReRAM lifetime. Surprisingly, low temperature
also has a negative impact on ReRAM as it hinders recovery
of a broken filament [35].

B. DESIGN CHALLENGES
1) CHALLENGE 3: THERMAL CROSS-TALK EFFECTS

The repeated SET-RESET switching cycles in a ReRAM
device generate Joule heat, which may also affect the
performance of surrounding devices. To quantify the thermal
effect, a Cu/TaOx/Pt crossbar array with a neighboring
line pitch of between 150 μm and 185 μm was studied.
The heated (“aggressor”) cell deteriorates the neighboring
unheated (“victim”) cell with the degradation factor D, which
can be found as follows:

D = 1 − Mx(heated)

Mx(unheated)
(5)

where Mx is the maximum number of SET-RESET switch-
ing cycles of a ‘marginal’ memory cell required to
become volatile. The term “marginal” means that the
device is used as a temperature-sensitive probe. Testing
of around 100 “marginal” devices (the current is set to
Icc=10 μA and voltage ramp rate rr=1.1V/s.) showed
that the Mx of unheated TaOx-based unheated device is
around 13 and afterward the device demonstrates unstable
performance [11].
In two-dimensional (2D) crossbar arrays, the degradation

factor depends on the presence of a shared electrode, its
material and size, and the remoteness of the unheated device
from a heated cell. The study also showed that the first
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neighbor cell suffers the highest degree of degradation. In
particular, in Cu/TaOx/Pt crossbar arrays, degradation of
the first neighbor along the Pt electrode was about D=67%;
along the Cu electrode, it was 80%. In the case of non-shared
electrodes, degradation of the first diagonal neighbor was
D=19%. The thermal effect increases with the downscaling
of the pitch size and spacing between them. It becomes a
huge issue in commercial ReRAM devices that are 1000×
smaller than the studied device [11].

Another parameter that can be used to evaluate thermal
cross-talk in a crossbar array is the time ts required to
reach a thermal steady state - a condition where the
temperature within the ReRAM device or/and crossbar array
reaches a balanced temperature and remains stable over
time under the same operating conditions. Maintaining a
thermal steady state is essential in electronic devices since
it ensures predictable and desirable operation of the device.
For an individual device with feature size 80nm, ts is
5 ns, which is less than the required RESET time. But
for 1D1R cell in 1×1×1 array, ts is around 50ns and
steady-state temperature is equal to 500K, whereas, in a
3×3×3 block array, ts is 500ns and the temperature is
605K. Therefore, the thermal model of a single device
should be extended. In [10], the authors presented two
different “worst case” scenarios - one in a typical crossbar
array structure and the other in a crossbar array with
shared WL/BL represented in [10, Figs. 3a and 3b]. In the
first case, when ReRAM cells were reset from LRS to
HRS by applying a reset pulse, thermal heat propagated
along the vertical direction and disturbed the unprogrammed
layer. In the second case, the configuration allows eras-
ing/programming at different layers of the crossbar. This
time, heat from neighboring cells propagated in both verti-
cal and horizontal directions and disturbed unprogrammed
cells.

2) CHALLENGE 4: DIE-STACKING

ReRAM crossbar arrays can be stacked into heterogeneous
structures using 2.5D and 3D integration technologies. These
include TSV-based interposer and monolithic integration.
The common interfacing methods in TSV-based integration
are HBM and HMC. Such multiple die-stacking offers
numerous advantages over 2D geometry scaling, including
shorter interconnect, reduced latency, higher density, and
smaller footprint [36], [37].
However, due to the different thermal densities of the

components, stacked architectures suffer from inter-die ther-
mal coupling and hotspots. Consequently, die-stacking leads
to accuracy degradation and reliability challenges, including
retention, thermal cross-talk, and endurance. For instance,
in a 2.5D stacking design the temperature in the ReRAM
banks reaches up to 344K and decreases their lifetime close
to or below ESL. In a 3D interposer stacking design, the
vertical heating temperature rises up to 380K and reduces
ReRAM lifetime below 2.6 years [8]. In terms of die-to-
die interconnections, M3D design has less area overhead

compared to TSV-3D, but it is more sensitive to temperature.
At ten years, the accuracy drop in M3D-air architecture was
53%, whereas, in TSV-3D, it was 10% [38].

3) CHALLENGE 5: LIMITED SCALING POTENTIAL

ReRAM, among other NVM technologies, is known for
having the smallest size, around 4F2. Typically, a single
ReRAM size is below 10nm. Although ReRAM minia-
turization allows saving power and area, scaling down
the feature size (F) in devices such as NiO ReRAM
from 100nm to 30nm node can lead to an increase
of temperature from around 400K up to 1800K. In
addition, miniaturization enhances the thermal cross-talk
issue [10].
The thermal reaction model from [39] was utilized to study

the behavior of saturated temperature in various ReRAM
devices at low resistivity (10 μ� cm), medium resistivity
(50 μ� cm) and high resistivity (100 μ� cm) [40]. In
the analysis, the reset voltage was set at 0.5V, and the
thickness of the oxidation membrane was 200nm. The radius
of the conductive filament of ZnO,TiO2,WO3 and HfO2
was varied from 10nm to 100nm. Overall, the conduction
mechanism in ReRAM is mainly defined by the material and
the geometry of CF and electrodes in a metal-insulator-metal
(MIM) structure. Most popular ReRAMs can be classified
into conductive bridge random access memory (CBRAM)
and metal oxide ReRAM (OxRRAM).

4) CHALLENGE 6: RERAM CELL RESOLUTION

The precision of the weights significantly affects the accu-
racy of the output results. DNN training and inference on
conventional GPU platforms are done using 32-bit floating-
point precision. In the case of high-resolution ReRAM
cells, there is a need for fewer crossbar arrays, which
benefits in lower latency and better accuracy [41]. However,
ReRAM cells have limited states and suffer from low
precision. Prior work demonstrated that a 16-bit-wide fixed-
point number representation is adequate for classification
problems [42] and was used in a majority of the early
ReRAM-based accelerators [2], [4]. The recent state-of-the-
art works demonstrated that the lowest recommended bit
width is 8 bits or above [43]. Besides, a 4-bit ReRAM
cell is more susceptible to temperature variation than a
2-bit ReRAM cell due to its having a larger number
of states [44]. Moreover, intermediate states are more
vulnerable to heat than the states close to electrodes [30].
As mentioned earlier, an increase in temperature leads to a
decrease of the Gon/Goff ratio and lowers the noise margin
(NM) [44]. In particular, utilization of an 8-bit cell instead
of a 2-bit cell decreases the number of required resistive
crossbar arrays by 75%, but it also leads to a 64× NM
drop [45]. Therefore, numerous ReRAM-based accelerators
have adopted a weight-composing scheme [2], [4] with an
increased number of arrays and additional power consump-
tion and latency [5].
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FIGURE 5. Steady-state temperature distributions of the bottom ReRAM layers:
naive, strike, and chess-board allocation [46].

5) CHALLENGE 7: INPUT DISTRIBUTION

The amplitude and frequency of input signals contribute
to the power density and speed of the hardware, respec-
tively. An increase of input voltages leads to higher power
consumption and generates heat [12]. The higher operating
frequency decreases execution time, but thermal noise
causes limitations in the frequency scaling of ReRAM-
based designs [44] and an increase of frequency leads
to accuracy decrease [6], [45]. The degradation gets more
severe as the depth of neural networks grows. For instance,
at 1GHz, the accuracy of VGG-19 drops by 50% compared
to 5% in LeNet-5. Adding residual connections improves
accuracy [44]. At frequency 100MHz and temperatures of
300K and 400K, the accuracy of ResNet20 was equal to
around 88.2% and 88.1%, respectively. When frequency
increased to 1GHz, at the same temperature conditions,
accuracy decreased to 83.5% and 80.5%, respectively [45].

IV. EXISTING SOLUTIONS
The nanoscale size and non-volatile nature of RSMs allow
the implementation of small-size and energy-efficient com-
putational hardware components based on ReRAM crossbar
arrays. On the other hand, dense architecture design increases
temperature susceptibility and negatively affects reliability
since an active ReRAM cell in a crossbar array causes
thermal disturbance (TBD) in neighboring victim cells [10].
Therefore, the accuracy of a ReRAM simulation model
plays a vital role in the validation of the ReRAM-based
hardware design before its fabrication. One of the ways
to overcome the conductance drift problem in RCAs is to
refresh the cells’ states frequently, but it requires additional
power consumption [33].
In [46], authors tested three memory allocation schemes

in a 3D crossbar array, namely “strike,” “chess-board” and
“naive”, for the same model and identified that in all cases,
the bottom ReRAM layers were the hottest. In addition, as
can be seen from Figure 5, the peak temperature in the
“strike” and “chess-board” schemes are 363K in contrast to
371K in the original “naive” scheme. Moreover, the average
temperature of the ReRAM crossbar array was also reduced.
Overall, these demonstrate that, to a certain extent, the
thermal distribution can be controlled by static allocation
schemes. In this section, we present the existing SoTA

thermal-aware remapping and optimization solution designed
for ReRAM-based memory and PIM accelerators.

A. SOLUTION 1: THOR
The goal of the thermal-aware optimization for extending
ReRAM lifetime (THOR) is to keep the temperature of the
ReRAM banks below a threshold temperature to ensure
a lifetime above ESL. THOR consists of THOR - Lazy
Access (THOR-LA) and THOR - Smart Access (THOR-SA)
schemes, which can work both together and independently
from each other. THOR-LA delays requests to hot banks and
thus allows their cooling during idle periods. The delays are
implemented by extending the memory controller (MC) to
four queues: Normal read/write and Lazy read/write. THOR-
SA reduces the number of accesses to hot arrays.
Nevertheless, it allows overall system power reduction

by 5.5% and ReRAM lifetime enhancement by 2.06× the
baseline design with a normal read queue, a lazy read queue,
a normal write queue, and a lazy write queue [8].

B. SOLUTION 2: DEEPSWAPPER
Hybrid DRAM/NVM memory systems benefit from the
lower access latency of DRAM and the high capacity of
ReRAM. However, data migration between two memory
types is costly due to the need for metadata storage. Existing
swapping schemes are based on prediction tables and do not
consider the temperature effect.
DeepSwapper is a novel deep learning-based page swap

management scheme for hybrid DRAM/ReRAM memory.
Instead of lookup tables, it uses a Long Short-Term Memory
(LSTM) recurrent neural network (RNN) to predict future
memory access patterns. This hardware-managed framework
consists of two main components: an LSTM-Based Address
Predictor and a Temperature-Aware Swap Management Unit.
Evaluation results showed that the ReRAM lifetime was
enhanced by 1.87× that of other schemes [8].

C. SOLUTION 3: TADMSIMA
Thermal-Aware Design and Management for Search-based
In-Memory Acceleration (TADMSIMA) is a thermal-aware
data allocation scheme that utilizes steady-state and dynamic
thermal management (DTM) techniques [46]. In the first
stage, static program analysis is used to estimate the number
of ReRAM banks and their power consumption based on
the type of application program, the size of the dataset,
the architecture, and the operating frequency. Then, banks
are classified as high power-consuming and low power-
consuming. For thermal-aware mapping, a two-phase design
space exploration method based on a genetic algorithm is
applied.
The proposed system was validated on two search-based

applications - hyperdimensional computing and database
query processing. The experimental setup included ten
encoding-search ReRAM bank pairs to store and compute
data. According to the results, the steady-state tempera-
ture was reduced by at least 15.3K and the lifetime of
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FIGURE 6. Thermal-aware Solutions for acceleration of DNN and IMC:
a) Temperature-aware weight adjustment (TAWA) scheme; b) Thermal-aware
Optimizations of ReRAM-based Neuromorphic Computing Systems (TARA); c) A Heat
Resilient Design for RRAM-based Neuromorphic Computing (HR3AM);
d) Thermal-aware optimization framework for accelerating DNN on ReRAM (TOPAR);
e) Weight RemApping and Processing in RRAM-based Neural Network Accelerators
(WRAP); f) Thermal-aware layout optimization and mapping methods for resistive
neuromorphic engines (TALOMRNE); g) Placement strategy in AccuReD.

the ReRAM device was extended by 57.2% on average.
The dynamic temperature management provided 17.6%
performance improvement compared to other SoTA methods.

D. SOLUTION 4: TARA
One of the first works that addressed the impact of
temperature on computational accuracy in a ReRAM-based
neuromorphic computing system proposed weight remapping
based on temperature-aware row adjustment (TARA) [9]. Its
performance is compared to a baseline architecture with
random mapping and an architecture with temperature-
aware weight adjustment (TAWA). TAWA is based on weight
pruning, as proposed in [47], and its implementation scheme
is illustrated in Figure 6a. Here, weights mapped to hot cells
are pruned, and the neural network is retrained again.

FIGURE 7. Weight mapping in TARA.

The schematic of TARA shown in Figure 6b was designed
for Micron’s HMC architecture. Here, diode thermal sensors
were placed at the center and left side of each row of the
ReRAM array - the hottest spots due to the close location of
the analog-to-digital (ADC) converter and memory. At each
epoch time, the temperature of the rows was approximated
and classified. If the estimated temperature of a row was
higher than the threshold temperature equal to 330K, the
ReRAM crossbar row was considered hot; otherwise, cold.
In addition, rows of neural networks were classified as
effective and ineffective using a metric called Summed
Weight Variations (SWV) and predefined threshold β:

SWVpq =
m∑

j=0

|wpj − gqj| (6)

where wpj is the weight at the weight matrix location (p, j)
and gpj is the corresponding conductance of the ReRAM cell
located at (q, j) in the ReRAM crossbar array. If SWV > β,
rows are effective; otherwise, they are ineffective.
Increase of row temperature from 340K to 360K leads to

an accuracy decrease from 61.7% to 23.4%. Therefore, at the
final stage of the scheme, effective rows were mapped to the
ReRAM crossbar array, avoiding hot rows, as in Figure 7.
Evaluation of the thermal-aware row adjustment on a two-
layer neural network in NeuroSim demonstrated an increase
of the system accuracy by up to 39.2%.

E. SOLUTION 5: HR3AM: A HEAT RESILIENT DESIGN
FOR RRAM-BASED NEUROMORPHIC COMPUTING
Conversion of neural network weight w into conductance
state of ReRAM cell G can be done based on the equation
below:

G = α × w+ β (7)

where parameter α = Gmax−Gmin
wmax−wmin is used to scale a weight w

within a range of [Gmin,Gmax] and parameter β = Gmax −
α × wmax is used to remove negative weights.
It was observed that a 1◦ increase of temperature in

ReRAM-based architecture leads to an overall performance
decrease of 0.9%. In order to decrease the negative impact
of heat on ReRAM-based CNN accelerators, the HR3AM
design (Figure 6c) utilizes a bitwidth downgrading technique
(HR3AM-BD) and tile pairing (HR3AM-TP) [6]. To do this,
the HR3AM system monitors temperature distribution in the
ReRAM chip dynamically using temperature sensors. If the
temperature is above the threshold (330K), a heat-resilient
weight adjustment is applied:

Gnew = 1

2N
× (α × w+ β) (8)
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where Gnew is the new conductance state and N is the number
of shifted bits so that:

Vo = VTi × Gnew × RS × 2N =
(
VTi × Gold × RS/2N

)
× 2N .

(9)

where Vo is the output voltage; Vi is the input voltage; and
Gold is the old weight.
In addition to this HR3AM-BD, thermal distribution can

be reduced by the introduction of master and slave tiles. The
overheated (master) tile is paired with a cooled-down idle
(slave) tile in such a way that the output of the master tile is
read from even-index columns Vmout = {v0, v2, . . . v2N} and
the output of the slave tile is read from odd-index columns
Vsout = {v1, v3, . . . v2N+1}. This decreases the number of
functioning cells in a crossbar array and thus reduces
power consumption. The pairing mode is represented by
a pairing bit and a master/slave bit in crossbar arrays.
The design was tested on a small two-layer network for
MNIST classification and larger networks such as VGG16,
ResNet50, and InceptionV3 for ImageNet classification. The
obtained results showed 4.8%-58% improvement compared
to the baseline model, which has no thermal optimization. In
addition, HR3AM showed better accuracy by 4.3%–41.8%
over TARA [9].

F. SOLUTION 6: TOPAR
To reduce average temperature and temperature variance
between ReRAM arrays in DNN accelerators, a thermal-
aware optimization framework for accelerating DNN on
ReRAM (TOPAR) has been proposed [48]. It consists of
three-stage offline thermal optimization and online thermal-
aware error compensation, as shown in Figure 6d.

There are 2N−V ways to decompose an N-bit weight value
V to positive and negative arrays. To reduce the temperature
in the ReRAM chip, the first step of the offline stage
performs a thermal-aware weight decomposition (TOPAR-I).
In other words, TOPAR-I aims to identify a decomposition
case with the smallest sum of partial weights. The next step,
a thermal-aware column reordering (TOPAR-II), shuffles the
order of the column pairs in positive and negative ReRAM
arrays. This changes the weight and temperature distribution
in ReRAM arrays and does not affect the computational
output. The final step in offline optimization (TOPAR-
III) is a fine-grained weight adjustment if there are more
than two decomposition cases in TOPAR-I. It is performed
sequentially, starting from the top-left position of the crossbar
array. TOPAR-III aims to reduce the cost difference between
positive and negative arrays. At an online stage, TOPAR
improves ReRAM endurance by up to 2.39× and preserves
inference accuracy.

G. SOLUTION 7: WEIGHT REMAPPING AND
PROCESSING IN RRAM-BASED NEURAL NETWORK
ACCELERATORS (WRAP)
A weight remapping and processing (WRAP) framework
adopted the subarray-based approach rather than dealing

with each weight individually [49]. This helped to reduce
computational complexity accuracy while mitigating thermal
issues to maintain the system. Figure 6e shows the flow
of WRAP, which is based on three algorithms: weight
remapping (WR); weight pruning and splitting (WPS); and
weight compensation (WC).
At the initial stage, the framework receives parameters

of DNN model hardware such as ReRAM cell resolution
and ReRAM array size and maps weights to the accelerator.
Afterward, it retrieves a heatmap of layers and estimates the
accuracy of the system Acc. If the latter is below a predefined
threshold level θ , three subarray-based algorithms are applied
to remap the weights until the estimated accuracy is above
the threshold accuracy. Weight Remapping (WR) algorithm
remaps critical weights to relatively cool subarrays. If some
of the subarrays are still hot, Weight Pruning and Splitting
(WPS) algorithm generates several unused subarrays by
pruning less-critical weights, and then critical weights are
mapped to released subarrays. It was observed that deep
layers are less sensitive to pruning than shallow layers. The
process is terminated when the “prune ratio” in WPS is zero.
Weight Compensation technique shifts conductance levels in
order to decrease the impact of the temperature if WR and
WPS methods cannot help. The framework was evaluated
on VGG8, VGG11, ResNet34, and AlexNet for CIFAR-10
classification with less than 2% inference accuracy loss [49].

H. SOLUTION 8: TALOMRNE
Thermal-aware layout optimization and mapping methods for
resistive neuromorphic engines (TALOMRNE) introduced a
new layout that implies decreased temperature distribution by
dis-centralizing components of the accelerator. In addition,
TALOMRNE (Figure 6f) also noted that previous works
emphasize only the weight itself and do not consider
the input distribution that contributes to the final power
consumption of the system. In addition, it adopted the cross-
array swapping method of input-contained weights Wbias.
The method validation was done for two SNN mod-

els transformed from VGG9 and VGG11 on CIFAR-10
and CIFAR-100 datasets, respectively. The method allowed
reducing the peak temperature up to 10.4◦ and improved the
endurance by up to 1.72× [12].

I. SOLUTION 9: ACCURED
AccuRed is a heterogeneous ReRAM-GPU-based architec-
ture for CNN training and inference. Its compute-intensive
layers are mapped to ReRAM arrays, whereas precision-
critical layers are mapped on GPUs. In addition, AccuRed
performs a thermal-aware placement strategy (Figure 6g)
based on a joint performance–thermal-aware mapping and a
thermal reference cell (TRC) to reduce temperature impact.
For effective mapping and high accuracy, AccuReD applies
the Multiobjective Optimization (MOO) technique. The
combined objective can be expressed as follows:

D∗ = MOO(D,OBJ = U(d),T(d)) (10)
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FIGURE 8. a) Temperature-Resilient ReRAM-based In-Memory Computing for DNN
Inference (TRRIMC); b) Implementation of PKD and BNA in TRRIMC.

where D∗ is the set of Pareto optimal mapping solutions
among CNN layer mapping D; d is candidate mapping;
T is the temperature objective combining both horizontal
and vertical heat flow models; MOO is a multiobjective
optimization solver; and OBJ is the set of all objectives
(latency and temperature). AMOSA [50] was used as the
MOO solver to minimize cost, which is a function of latency
and temperature. Performance- and thermal-aware mapping
of L layers of CNN to N processing elements (GPUs and
ReRAMs) ensures low temperature and high performance.
The CNN layers are classified as high-power (HP) and low-
power (LP) layers. During one pipeline stage, the HP layer
requires the ReRAM to be active for more than 50% and
placed near the sink. LP layers can be placed farther from
the sink. A comparison of TSV-based and M3D designs
showed that M3D integration of AccuRed has superior
thermal characteristics and allows more CNN layers without
sacrificing accuracy. AccuRed outperformed conventional
GPUs by 12× on average and can be further scaled up [44].

J. SOLUTION 10: TRRIMC
Noise injection during DNN model training is one of the
ways to increase the robustness of ReRAM-based acceler-
ators when it comes to temperature variations. In addition,
knowledge distillation [51] can improve the performance
of the model accelerated on the hardware. However, such
a model recovers only in certain conditions and fails in
other scenarios. To improve the generality of the model,
authors [33] proposed a novel training algorithm - pro-
gressive knowledge distillation (PKD) - and thermal-aware
batch normalization adaptation (BNA). The schematic of the
Temperature-Resilient RRAM-based In-Memory Computing
for DNN Inference (TRRIMC) is shown in Figures 8a and 8b.

In PKD, a clean, low-precision model is used as a teacher
model. In the initial phase, a student model, duplicated from
a teacher model, is trained with low-temperature noises.
Then, the trained model acts as a new teacher model,
and a new duplicated student model is trained with higher
temperature noises and so on. During BNA, weights and
learnable parameters of DNN are frozen, and further training
of 16-bit fixed-point batch normalization (BN) parameters
YBNA with noise injection at different temperature T scenarios

is performed:

YBNA = wT × Y − μT

σT
+ bT (11)

where Y is the output preactivation; w is the weight; μ is the
mean within the batch and σ is its standard deviation. The
proposed PKD+BNA method allows recovering the accuracy
of the 2-bit ResNet on the CIFAR-10 for more than 30%
and of the 4-bit ResNet-18 on TinyImageNet for more than
60%. The primary advantage of the scheme is the absence
of the need to reprogram the initial ReRAM weights.

V. DISCUSSION
Table 1 lists the proposed solutions for ReRAM-based
memory devices and accelerators. Each of them aimed
to overcome certain challenges discussed in Section III
such as the recovery of computation accuracy, extending
the lifetime of ReRAM cells, and reduction of power
consumption. Solutions 1-3 in Section IV are designed for
NVM memory architectures. They implement a thermal-
optimal data allocation in order to retain the state and
extend the lifetime of the cells. Due to the cumulative effect
on the output of crossbar arrays, the ReRAM conductance
state drift caused by thermal heat severely affects the
performance of the ReRAM-based DNN accelerators rather
than ReRAM-based storage devices. Therefore, the main aim
of Solutions 4-8 in Section IV is the recovery of the accuracy
of the system during the acceleration of DNN and CIM
tasks. Moreover, early works considered mainly steady-state
temperature distribution cases, whereas recent works propose
methods to control runtime temperature variations, too.
The proposed temperature-adjustment schemes for RCAs
can be divided into two categories: 1) temperature-aware
optimization and remapping, and 2) temperature-resilient
training of the DNN model.
The goal of thermal-aware optimization and remapping

is to mitigate the impact of high temperature and to create
a uniform temperature distribution in a ReRAM crossbar
array. The optimization and remapping take place at different
levels of granularity: weight level, group of weights (row-
/column-wise) level, subarray level, array level, and tile level.
The initial stage of these solutions requires the creation
of a thermal profile, typically obtained from the limited
number of temperature sensors located around ReRAM
arrays. In HMC, it is the center and left side of the rows [9].
Afterward, various weight mapping optimization techniques
are applied. These methods are provided in Table 2. The
offline stage involves temperature-aware training and/or
optimization steps prior to deployment on the ReRAM-
based hardware. Besides, the temperature distribution in
chips might dynamically change with time. The online stage
includes measures designed to react to dynamic changes in
temperature on the fly.
One of the basic methods of temperature-aware

optimization and remapping is weight pruning (WP). WP
can be applied on either effective or ineffective weights.
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TABLE 1. Thermal-aware ReRAM layout optimization solutions and the challenges. Missing challenges are not addressed yet.
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TABLE 2. Methods applied to decrease temperature effect in ReRAM-based CIM accelerators.
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In [9], effective weights that were mapped to hot cells
are pruned, and NN retrained again. This avoids critical
weights being mapped to hot ReRAM cells and maintains
accuracy. In [49], ineffective weights are pruned to free
space in the arrays. Then, critical weights are remapped.
In addition to weight pruning, at weight level, techniques
such as weight decomposition (WD),bit-width downgrading
(BD) and weight compensation (WC) are available. These
approaches are based on the ReRAM feature that implies that
high conductance states are more vulnerable to an increase in
temperature. In the cases when weights of different polarities
are implemented using negative and positive crossbar arrays,
the WD technique searches for the decomposition case so
that the temperature distribution in both arrays is uniform
and as low as possible. For further optimization, a fine-
grained weight adjustment method can be applied. BD is
the dynamic thermal management method and is used when
the temperature is above 330K. In this technique, weight
adjustment is performed by shifting bits and, therefore, can
be applied only on weights with high resolution. Generally,
BD and WC are the same operations; both methods shift
conductance states and restore multiplication results, but WC
is applied only to weights that were not protected by the
WR and WPS techniques.
Other ways to change temperature distribution in ReRAM

crossbar arrays include swaping rows or columns within the
same arrays (“in-array”) or between arrays (“cross-array”)
in order to decrease temperature variation. These techniques
can be applied at a row and/or column, subarray, array, or
tile level. In [6] authors proposed to utilize the tile pairing
method to split weights into two tiles. Pairing hot tiles
with idle tiles decreases the average temperature since both
of them work in low-power mode. The temperature-aware
training of the DNN model implies the resilience of the
trained model to the ambient temperature change of a given
range. In Solution 10, the DNN model was trained with noise
injection considering possible temperature fluctuations. Such
model remains resilient to temperature variations for a certain
period of time after mapping to the hardware and does not
require retraining and reprogramming of the states [33]. One
of the ways to improve the PKD method is to implement
via injection lower noise levels to fully connected layers of
CNN, as they are found to be more sensitive to noises [45].
Due to heterogeneous materials and components, com-

puting systems have non-uniform temperature distribution
across their architecture. “Hot spot” regions and average
temperature of the die can differ from five to ten orders
of magnitude. Therefore, the hottest regions determine the
overall reliability of the hardware [52]. Although the majority
of the proposed optimization techniques were designed for
HMC-like 3D configurations, it was noticed that remapping
techniques did not take into account the impact of heat
from neighboring “aggressor” cells in horizontal, vertical,
and diagonal directions. Moreover, in addition to information
from thermal sensors, consideration of input distribution,
the ReRAM cell’s feature size, RCA proximity to ADC,

DAC, and eDRAM, and their pitch lengths would improve
the weight reordering algorithms. Such a close relation-
ship between temperature, ReRAM technology, architecture
design, and performance suggests that one of the best ways of
developing thermal-aware and robust design should be solved
as a MOO problem as in the case of AccuReD in Solution
9. As mentioned earlier, AccuReD is a heterogeneous
ReRAM/GPU platform that supports both inference and
training. Unlike with the majority of other accelerators, the
presence of full-precision GPU in AccuReD allows execution
of Normalization (V-norm) and SoftMax layers and achieves
near-GPU accuracy. Along with the pipeline latency and
model accuracy, its weight mapping strategy takes into
account vertical and horizontal heat flows as objectives. The
authors also highlight that the MOO design and optimization
problem can include other objectives and be solved by differ-
ent MOO solvers. Besides, Solution 8 suggested optimizing
the layout by dis-centralizing the hot components like ADCs,
DACs, and eDRAM. Despite the seeming advantages, such
implementation requires additional research since it leads to
other challenges, e.g., reconsideration of routing and latency.
Most importantly, the new layout may be incompatible with
adopted chip fabrication standards.
In [53], the authors proposed electrical-thermal co-design

of a multitier CIM accelerator based on heterogeneous 3D
integration (H3D) using TSV. Here, the number and diameter
of TSVs were varied to find an optimal point between system
performance and thermal disturbance. Besides, the number
of tiers in the 3D structure was also considered a variable
parameter. In [44], TSV-based 3D design allows four tiers,
and M3D integration has up to eight tiers when a threshold
temperature is set to 373K, and therefore a preference is
given to M3D due to faster heat dissipation. On top of
that, one of the recent works [54] proposes benefiting from
temperature and using natural biomaterials for manufac-
turing sustainable and pollution-free temperature-controlled
ReRAM devices. These can be applied for the production
of temperature-controlled sensors and detectors as well as
medical treatment devices.

VI. TAKEAWAYS
Temperature-aware data allocation in ReRAM storage
devices was developed to increase its reliability. Early works
also applied temperature-aware weight mapping techniques
on ReRAM-based DNN acceleration to restore ReRAM
states and system accuracy. In addition to weight re-
ordering in resistive crossbar arrays, recent Solutions started
considering other design features, such as thermal cross-talk
issues and the impact of the input distribution. Attempts
to train temperature-resilient models were also made. It
should be noted that thermal-aware remapping optimization
designed for ReRAM can also be successfully employed
in other types of non-volatile memory (NVM) technologies
such as spin transfer torque magnetoresistive random access
memories (STT-MRAM), Phase Change Memory (PCM),
Ferroelectric RAM (FeRAM).
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Thermal stability in ReRAM can also be achieved by
utilization of certain materials, their composition, and struc-
tures. For instance, applying the active layer nitrogen doping
technique on HfO2-based ReRAM allows maintaining its
operation at temperatures up to 550 ◦C [55]. Another way is
increasing thickness of a buffer layer of ReRAM [56]. There
is a lack on research in this area to enable RRAM without
the need for off-chip solutions such as using microfluidic
cooling layers [57] for decreasing the effect of temperature
on the hardware, and emerging devices-based designs in
particular.
As demonstrated in Section IV, the proposed ther-

mal remapping techniques benefit in improved device
performance, such as enhanced data retention, extended lifes-
pan, and increased energy efficiency. However, implementing
thermal optimization methods also brings complexity and
overhead into the framework, which is typically discussed
only briefly. For instance, remapping effective and ineffective
weights to crossbar arrays allowed increasing accuracy by
up to 39.2% for a two-layer neural network with an area
overhead of up to 5% [9]. The first challenge is associated
with integrating temperature sensors into ReRAM crossbar
array. These include the need for material compatibility,
minimal disturbance, low power consumption, and high
reliability. Calibration of the thermal sensors and real-
time temperature monitoring can also be sophisticated.
Secondly, performing thermal control requires additional data
movement and may cause data loss. Most of the proposed
solutions [6], [8], [49], [58] were designed for inference
of different workloads on ISAAC configuration which uses
naive and straightforward weight mapping [2]. However,
recent designs of accelerators [4], [18] introduced weight
reuse mapping and support of training phase [4], [17], [18]
that highlights the need for reevaluation of the weight remap-
ping methods. Therefore, another issue is the scalability of
the proposed methods. Moreover, the weight update process
requires additional power consumption. Besides, the review
has shown that there is a lack of simulation tools and
frameworks designed to emulate temperature dependence
in ReRAM devices, especially considering their inherent
variability. In particular, proposed frameworks used thermal
simulators such as 3D-ICE [59] and HotSpot [60] which
still requires chip validation. In other words, temperature
dynamics should be included in the ReRAM model. To sum
up, the choice of thermal optimization strategy depends on
the material, application, and given design constraints.
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