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ABSTRACT We present an Internet-of-Things (IoT) software-defined radio platform based on an ultra
low-power microcontroller. Whereas conventional wireless IoT radios often implement a single protocol, we
demonstrate that general-purpose microcontrollers running software implementations of wireless physical
layers are a promising solution to increase interoperability of IoT devices. Yet, since IoT devices are
often energy-constrained, the underlying challenge is to implement the digital signal processing of the
radio in software while maintaining an overall very low power consumption. To overcome this problem,
we propose an ultra low-power microcontroller architecture with an ARM Cortex-M4 processor for the
protocol-specific computations and a hardware digital front-end for the generic signal processing. The
proposed architecture has been prototyped in 28nm FDSOI and the physical layers of the well-known
LoRa and Sigfox protocols have been implemented in software. Thanks to the efficient hardware/software
partitioning and an ultra-low power digital implementation, experimental evaluations of the microcontroller
prototype show sub-mW power consumptions (32 – 332 μW) for the digital signal processing of the
software-defined radios.

INDEX TERMS Internet of Things, wireless communications, microcontrollers, low-power wide area
networks, reconfigurable devices, software defined radio.

I. INTRODUCTION

THE LAST decade witnessed the massive surge of
Internet of Things (IoT) devices and services, especially

in the industry. The Industrial IoT (IIoT) is an emerg-
ing paradigm that aims at increasing the knowledge of
existing physical systems (e.g., machines or a production
environment) by deploying low-cost, resource-constrained
microcontrollers with sensing features. These sensors are
wirelessly connected to the cloud, and the data they provide
is then used to improve the monitoring and efficiency of
industrial processes [1].

The wireless connectivity of the microcontrollers is a
key functionality of IIoT applications. In particular, the fact
that the wireless devices are usually energy-constrained has
led to the development of a new generation of low-power
wide-area network (LPWAN) technologies [2]. Since sensors
are used across a large variety of processes and systems,
no single wireless technology matches the broad range of

requirements of all IIoT applications [3]. Several LPWAN
protocols hence co-exist together, as each favors a different
set of characteristics (payload size, communication range,
energy efficiency, cost, . . . ,). Nowadays, three main stan-
dards share the LPWAN market: NB-IoT, LoRaWAN and
Sigfox [4]. NB-IoT is a cellular standard derived from LTE
that uses licensed frequency bands. LoRaWAN and Sigfox
are two technologies operating in the unlicensed indus-
trial, scientific and medical (ISM) frequency bands, mainly
around 868 MHz in Europe and 915 MHz in North America.
LoRaWAN is rolled out by both commercial operators and
non-profit organizations, whereas the Sigfox network is
managed worldwide by a single company.
Nonetheless, new LPWAN technologies are constantly

designed and put on the market, even more with the recent
advent of satellite IoT communications [5]. The LPWAN
market hence evolves at a higher pace than the deploy-
ment of industrial processes, which have much longer life
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FIGURE 1. Architecture of an IoT software-defined radio with a common sub-GHz
RF front-end, a configurable digital front-end (DFE) and a general-purpose processor
performing the protocol-specific digital baseband (DBB) computations.

cycles. This raises an issue for the long-term maintenance of
IIoT devices and their interoperability with newer wireless
technologies and services. As of today, LPWAN radios are
often implemented in hardware and tied to a single stan-
dard, which limits the reconfigurability of the devices and
thus their in-field lifetimes.
Sensors with multiple radio access technologies (multi-

RAT) have the potential to enhance the interoperability of
IIoT devices. The authors of [3] and [6] suggest combining
several hardware LPWAN radios in a single device to ben-
efit from the integration of multiple wireless technologies.
This solution however does not allow to support protocols
that are yet to come. A more flexible approach consists
in the design and deployment of software-defined radios
(SDRs) [7], [8]. In an SDR, the RF front-end is designed to
be generic while most of the digital baseband (DBB) compu-
tations of the physical (PHY) layer are performed in software
by a processor (CPU). Such an architecture enables over-the-
air updates of the communication protocol, and therefore
allows a device to switch from one standard to another dur-
ing its lifetime, or simply to follow the latest revisions of a
protocol.
Yet, the main challenge of SDRs for IIoT sensors is

to execute the DBB processing in software with a power
consumption that fits in the 1–10 mW budget of LPWAN
transceivers [9]. Three different approaches have been iden-
tified in the literature to tackle this challenge. In [7], the
DBB computations are offloaded to a custom baseband
processor with an instruction set specifically designed for
LPWAN protocols. In [8], the authors observe that most
standards share very similar characteristics (i.e., the use of
small bandwidths in sub-GHz bands), and therefore propose
an architecture (shown in Fig. 1) with a single common
RF front-end, a configurable digital front-end (DFE) that
executes the generic baseband operations (e.g., low-pass fil-
tering) in hardware for power savings, and a general-purpose
CPU that carries out the protocol-specific computations.
They however provide only simulation results of a generic
GFSK receiver implemented in software. In a subsequent
study using the same architecture [10], the authors extend
the RISC-V instruction set architecture (ISA) with custom
instructions that implement the complex arithmetic opera-
tions used in DBB computations at lower power. Using this
ISA extension, they implement in software and simulate parts
of the LoRa and Bluetooth Low Energy (BLE) Rx chains.

In [11], an SDR platform for experimental IoT communi-
cations running on a generic MCU and a reprogrammable
field-programmable gate array (FPGA) is presented. The
large price (55$), bulky size and important power consump-
tion (around 100 mW in Rx) of the platform are however
incompatible with the specifications of cheap, small and
low-power IIoT sensors. Although the concept of SDRs for
LPWAN protocols originated several years ago, the design
and experimental validation of a low-power SDR architec-
ture actually implementing several standards is so far still
missing in the literature.

A. CONTRIBUTIONS
In this paper, we demonstrate an SDR transceiver running
the LoRaWAN and Sigfox PHY layers on an ultra low-power
(ULP) microcontroller unit (MCU), such as encountered in
typical IIoT applications. We design an MCU architecture
that follows the approach from [8] by offloading the generic
DBB computations to a configurable hardware accelerator.
The protocol-specific DBB processing is implemented in
software on a general-purpose ARM Cortex-M4 CPU. The
LPWAN protocol deployed in the MCU can hence be mod-
ified by the means of a software update. We prototype our
MCU architecture in a 28nm CMOS FDSOI technology
and implement in C the PHY layers of LoRaWAN (usu-
ally named LoRa) and Sigfox. We validate the functionality
of both protocols in an experimental testbed and show that
the SDRs attain receiver sensitivities below −120 dBm.
Thanks to an efficient hardware/software co-design of the
MCU, the signal processing of the SDRs exhibits a sub-
mW power consumption. To the best of our knowledge,
this work is the first to demonstrate an actual prototype of
an ULP SDR with implementations of two commercial IoT
protocols.
This work is an extension of [12], which only presented a

preliminary version of the LoRaWAN PHY software imple-
mentation on the same MCU. In this journal version, we
describe in more detail the design of the proposed MCU
architecture. In addition to the LoRaWAN SDR, we also
present a new implementation of the Sigfox PHY layer. We
finally conduct more in-depth experimental evaluations of
both SDRs, and we provide a new discussion on the rele-
vance of low-power CPUs with extended ISAs by comparing
our results with those of [10].

B. OUTLINE
The remainder of this paper is organized as follows. In
Section II, we conduct a hardware/software co-design of
an ULP MCU architecture suitable for IIoT SDRs, includ-
ing the CPU exploration. In Section III, we briefly introduce
the PHY layers of LoRa and Sigfox and we then describe
how we implement them on our custom MCU architecture.
Finally, we perform in Section IV an experimental evaluation
of both SDR implementations in a testbed and we discuss
their performance.
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II. DESIGN OF A MICROCONTROLLER FOR IOT
SOFTWARE-DEFINED RADIOS
In this section, we explore several key architectural issues
when designing an ULP SDR-capable MCU. We first moti-
vate the choice of the ARM Cortex-M4 as CPU for the digital
signal processing (DSP) of LPWAN physical layers. We then
explain the hardware implementation of our DFE. The over-
all architecture of our custom ULP MCU with the different
peripherals (memories, DFE, . . .) is finally described.

A. LOW-POWER CPU EXPLORATION
In the general architecture presented in Fig. 1, one of the
most critical design choices consists in the selection of
the general-purpose processor. Indeed, more advanced CPUs
require fewer cycles to carry out a given operation, which
therefore lowers the minimal frequency at which the CPU
needs to run. On the other hand, such processors also require
a greater silicon area and consume more energy per cycle
compared to low-area and low-power CPUs. The CPU choice
hence amounts to a trade-off between the minimum required
frequency, the consumed energy per cycle and the occupied
silicon area.
For the design of the MCU, we considered three differ-

ent popular low-power CPUs from ARM: the Cortex-M0,
Cortex-M3 and Cortex-M4.1 These 32-bit processors all
share a RISC instruction set and feature a 32-bit three-
stage pipeline. The Cortex-M0 features the lowest area by
implementing a Von Neumann architecture with a unique
memory for both program and data, whereas the Cortex-M3
and M4 occupy more area by relying on a Harvard archi-
tecture, with distinct program memory (PMEM) and data
memory (DMEM). Moreover, contrary to the other cores,
the Cortex-M4 also contains two 16-bit single-instruction
multiple-data (SIMD) lanes to accelerate fixed-point DSP
computations. These additional SIMD instructions allow the
Cortex-M4 to efficiently carry out DSP computations on
pairs of Q16 fixed-point numbers. For instance, the SMUAD
instruction performs two multiplications on two pairs of Q16
numbers and returns their sum in a single cycle. This instruc-
tion allows an efficient implementation of the multiplication
of two complex 16-bit numbers.
When performing the CPU selection, we conducted bench-

marks with two DSP kernels implemented in the ARM
CMSIS DSP library: a 256-point complex FFT and a FIR
filter with decimation (63 taps, decimation factor of 52). The
FFT and FIR filter kernels are used, respectively, in the LoRa
and Sigfox SDRs. Both kernels use the Q16 fixed point rep-
resentation. Fig. 2 shows the number of CPU cycles required
for each kernel and the three studied processors. Compared
to the Cortex-M0, we observe that the Cortex-M3 requires

1. There exist more recent Cortex-M CPU architectures. The more recent
Cortex-M33 and Cortex-M55 CPUs were not available when we started the
design of the MCU. The Cortex-M33 features performance characteristics
similar to the Cortex-M4, whereas the Cortex-M55 is a more advanced
CPU with the M-Profile Vector Extension. However, these CPUs were not
available for academic access when we started the design of the MCU.

FIGURE 2. CPU cycles required for a Q16 complex 256-point FFT and a FIR filtering
and decimation of 260 Q16 complex samples (63 taps, decimation factor of 52) for
three low-power ARM Cortex-M CPUs.

40% and 46% less CPU cycles to perform the FFT and the
FIR filtering, respectively, thanks to its Harvard architecture.
In the Von Neumann architecture, the Cortex-M0 needs to
stall for one cycle to retrieve every data word (e.g., a FIR
filter coefficient) since the retrievals of the next instructions
and the data word cannot be parallelized. The Cortex-M3
and M4 do not suffer from this limitation. Moreover, run-
ning the complex FFT and FIR filtering on the Cortex-M4
instead of the M3 further reduces the number of cycles by
64% and 10%, respectively, thanks to SIMD instructions
such as SMUAD.
This benchmarking illustrates the importance of select-

ing a CPU with parallel processing features such as SIMD
to attain both a real-time and energy-efficient DBB pro-
cessing. To minimize their power consumption, ULP MCUs
often rely on low supply voltages, which also imply low
CPU frequencies. As such, ULP MCUs usually exhibit
minimum energy points below 50 MHz [13]. Overall, the
Harvard architecture and the SIMD DSP instructions of the
Cortex-M4 offer a 4.65× speed-up for the complex FFT
compared to the M0, at the cost of a relative power con-
sumption only 2.3× higher and a CPU area only 3.5×
larger (for a 40LP technology) [14], [15]. For the LoRa
Rx baseband chain described in Section III, solely execut-
ing the complex 256-point FFT at the Nyquist sampling
frequency of 125 kHz already requires a minimum CPU
frequency of 33.48 MHz (versus only 7.2 MHz for the M4).
Since running the entire LoRa Rx chain on the Cortex-M0
would need high CPU frequencies (> 100 MHz), which
would in turn require a higher supply voltage and there-
fore be energy inefficient, and since the Cortex-M3 and
M4 have similar areas while the latter is computation-
ally superior, we opted for the Cortex-M4 in our MCU
architecture.
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TABLE 1. Required ARM Cortex-M4 CPU frequency for the two most intensive DSP
operations of the LoRa baseband Rx chain.

The authors of [10] draw a similar conclusion by imple-
menting a SIMD DSP extension similar to the one of the
Cortex-M4, but for the RISC-V Bk3 core. Thanks to their
ISA extension, the number of cycles required to carry out
a complex FFT with the Bk3 core is decreased by 55%.
This gain is much in line with the one observed between
the Cortex-M3 and M4 (64%).

B. HARDWARE OFFLOADING OF RX LOW-PASS
FILTERING
As LPWAN protocols use different modulations with var-
ious data rates and signal bandwidths, both the sampling
frequency of the baseband signal and its low-pass filtering
in Rx have to be configurable. In the proposed architecture,
we assume that the RF front-end has a single analog low-pass
filter with a fixed cut-off frequency. The proper low-pass fil-
tering to the actual bandwidth of the sampled signal must
hence by done in the digital domain. A first solution would
be to perform the low-pass filtering and decimation in soft-
ware. Table 1 shows the minimum CPU frequency required
to carry out in software each of the two most intensive DSP
operations of the Rx LoRa baseband chain implemented in
this work: the low-pass FIR filtering with decimation and the
complex FFT used to demodulate LoRa symbols. Since the
low-pass filtering is performed at a higher frequency than
the demodulation (oversampling rate R = 16 to allow sub-
sequent timing synchronization), the FIR filter is one order
of magnitude more computationally intensive than the FFT
and would require a minimum CPU frequency of 46.4 MHz
for its sole execution.
To reduce the power consumption of the SDR, we offload

instead the generic low-pass filtering to a configurable hard-
ware accelerator. This strategy allows to further scale down
the CPU frequency and hence to decrease the power con-
sumption (e.g., the proposed LoRa Rx chain runs at 32 MHz
instead of >78 MHz). The design of the hardware accel-
erator is illustrated in Fig. 3. We implemented a low-area
FIR filter with two multipliers and two accumulators, each
of these operating on the in-phase and quadrature sample
streams in parallel. The number of filter taps is equal to
the decimation factor R, which allows carrying out a single
multiply-and-accumulate operation per in-phase or quadra-
ture input sample. The weights and the decimation factor
of the FIR filter are configurable by the CPU through the

FIGURE 3. Low-area digital implementation of the FIR filtering and decimation unit
in the DFE. All registers are clocked with the same clock running at the frequency fS .

FIGURE 4. Architecture of the proposed SDR-capable SleepRider microcontroller,
with the silicon area usage of the underlying blocks.

AHB bus, as well as the decimation index, i.e., the rela-
tive input sample offset at which the computation of a new
output sample begins. The programming of the decimation
index enables a fine-grain time synchronization before the
signal is decimated to a lower frequency and demodulated.

C. MICROCONTROLLER ARCHITECTURE WITH DIGITAL
FRONT-END
Fig. 4 shows the architecture of the proposed SDR-capable
MCU, codenamed SleepRider [13]. The design contains
an ARM Cortex-M4 CPU, two 32-kB high-density (HD)
SRAM memories, a Direct Memory Access (DMA) con-
troller, a custom digital front-end (DFE), a unified frequency
and back-bias regulation (UFBBR) unit and I/O peripherals.
Except for the PMEM, the CPU and all other blocks share a
single memory bus to exchange data. SleepRider MCU was
designed for ULP consumption in 28nm FDSOI with var-
ious techniques, including ultra-low supply voltage (0.4V)
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for its logic [13]. The UFBBR unit jointly generates the
main system clock and the back-bias voltages of the FDSOI
transistors to compensate for PVT variations. The frequency
of the system and CPU clock is programmable and spans
from 12 to 80 MHz.
The ARM Cortex-M4 CPU runs a bare-metal software

that implements the protocol-specific DBB processing. In
this prototype, the software instructions are stored in the
program HD SRAM and are written through JTAG by a
debugger at boot time. With the SleepRider MCU proto-
type, due to the limited size of the SRAM memories, we
have to program the MCU with another software to change
the protocol. Commercial MCUs with larger non-volatile
memories should not suffer from this inconvenience, and
should instead allow to switch between protocols on-the-fly.
In addition, programmers of IoT end nodes with an LPWAN
technology usually seek to communicate as less as possible to
save power and avoid interference. During the vast majority
of the time, when the MCU is not sending or receiving data,
the CPU is free to execute the usual tasks of an end-node
(data acquisition from sensors, edge data processing, . . .).

To minimize the CPU load and power consumption, the
protocol-dependent signal pre-conditioning is offloaded to a
configurable DFE. The DFE is a custom hardware accelerator
that features several parameters to accommodate IoT proto-
cols with different characteristics (e.g., bandwidth, signaling
rates). Our DFE contains the FIR filtering and decimation
unit previously described and directly interfaces with the RF
front-end and the data memory bus. Its logic uses an external
clock as reference sampling clock. The nominal frequency of
the DFE clock is 2 MHz,2 but it can be adapted to match the
signaling rate of the targeted PHY layer. Frequency dividers
in the DFE further allow to divide the external clock by 2,
4, 8 or 16 to generate the sampling frequency fS at the RF
front-end. Similarly, the weights and the decimation rate R
(between 1 and 16) of the FIR filter can also be configured
following the targeted waveform specifications.
The DFE contains separate datapaths and control logic for

the Tx and Rx chains. In Rx, the block retrieves baseband
samples from the RF chain at an oversampled frequency fS.
The oversampled samples are first low-pass filtered using the
FIR filter and then decimated to the baseband frequency fS

R .
In Tx, the DFE directly transfers samples to the RF front-
end without performing upsampling, i.e., the sampling rate
is directly equal to fS. In either Tx or Rx, the digital sam-
ples retrieved from or sent to the RF front-end are complex
baseband samples coded on 2x12-bit fixed point numbers.
Since the CPU contains two 16-bit SIMD lanes, these 12-bit
words are extended to (resp. truncated from) 16 bits before
entering (resp. leaving) the memory bus.
To further alleviate the CPU load by avoiding costly

context switches, the DMA controller is responsible for

2. The RF front-end used in this work has Rx low-pass filters with a
minimum cut-off frequency of 0.75 MHz. The sampling frequency of the
DFE must hence be above 1.5 MHz to avoid aliasing.

transferring the 32-bit complex baseband samples between
the DMEM and the DFE. The memory transfers are orga-
nized as follows. The CPU first defines windows of L
complex samples in the DMEM and indicates the length
of these windows to the DFE. In Tx, when the CPU has
modulated L samples, it configures the DMA to transfer the
L 32-bit words to the DFE. The rate of the memory transfers
is determined by the baseband frequency fS

R , i.e., the DFE
processes one complex sample at a time and only requests a
new sample to the DMA controller when it has transmitted
the previous one to the RF front-end. Similarly, in Rx, the
CPU first configures the DMA controller for L transfers, and
the DFE then issues for each new decimated sample a 32-bit
transfer request to the controller. When L samples have been
transferred, the DFE raises an interrupt request (IRQ) to the
CPU, indicating that the window has been transmitted (in
Tx) or is ready to be demodulated (in Rx).

III. SOFTWARE IMPLEMENTATION OF IOT PHYS
Since LoRa and Sigfox use the same sub-GHz ISM spectrum,
whereas NB-IoT employs separate licensed frequency bands,
both standards are a perfect match for our SDR architecture
introduced in Section I. We hence conduct in this section a
brief description of the LoRa and Sigfox PHY layers, and
we then explain how their associated DBB chains have been
implemented on our SDR-capable MCU. Both DBB imple-
mentations are coded in C and rely on the ARM CMSIS DSP
library, which provides complex DSP routines optimized for
the Cortex-M4. All DSP software operations are executed
in Q16 fixed-point to benefit from the SIMD instructions of
the CPU.

A. LORA: A SPREAD-SPECTRUM SYMMETRIC PHY
LAYER
The LoRa PHY layer, contrary to the open LoRaWAN MAC
standard, is a patented technology invented in 2010 and now
owned by Semtech. The main characteristic of the LoRa
PHY is its chirp spread spectrum (CSS) modulation. This
spread spectrum technology enables devices that use differ-
ent spreading factors (SFs) to transmit data simultaneously
without interfering with each other [16].

1) THE LORA PHY LAYER

LoRa is a symmetric PHY layer, i.e., both the uplink and
downlink channels use the same modulation and code. CSS
modulated symbols are chirps, i.e., signals whose instan-
taneous frequency increases linearly and spans the entire
bandwidth B ∈ {125, 250, 500} kHz. The SF ∈ {7, . . . , 12} of
the modulation corresponds to the number of bits carried by
a symbol and also determines its duration T = 2SF

B . Selecting
a large spreading factor increases the symbol period, which
in turn decreases the data throughput but enhances the
communication range.
LoRa symbols are modulated by selecting the ini-

tial instantaneous frequency of the chirp, with N =
2SF possible different initial frequencies. For a symbol
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FIGURE 5. Block diagram of the LoRa DBB processing for B = 125 kHz.

s ∈ {0, . . . ,N − 1}, the signal starts at an initial frequency
of B( sN − 1

2 ). The instantaneous frequency of the modu-
lated signal increases linearly over time, until the moment
tfold = N−s

B , when the instantaneous frequency is decreased
by B (i.e., folded) to keep the signal in the allocated
bandwidth [17]

xs(t) =
⎧
⎨

⎩

e
j2π

(
B

2Ts
t2+B

(
s
N − 1

2

)
t
)

for 0 ≤ t < tfold,

e
j2π

(
B

2Ts
t2+B

(
s
N − 3

2

)
t
)

for tfold ≤ t < Ts.
(1)

The DSP chain of a LoRa transmitter is designed as fol-
lows [18]. The input payload bits are first whitened with a
predefined pseudo-random sequence. The whitened bits are
then coded using a (4,CR) Hamming code (CR ∈ {6, 7, 8}).
Blocks of SF × CR coded bits are subsequently interleaved
with a diagonal interleaver and modulated following (1)
using a Gray mapping. Moreover, to facilitate the synchro-
nization at the receiver, LoRa packets start with a preamble
that contains eight repetitions of an upchirp (the base wave-
form x0(t)), followed by two network identifier symbols and
2.25 repetitions of a downchirp (the complex conjugate of
x0(t), i.e., a chirp whose frequency decreases over time) [19].

A LoRa receiver implements the following steps to demod-
ulate a signal xs[n] containing a symbol s sampled at the
Nyquist frequency B, where n ∈ {0, . . . ,N − 1} [19]. Let
y[n] = xs[n] +w[n] be the received signal when the receiver
is perfectly synchronized in time and frequency, where w[n]
is additive white Gaussian noise (AWGN). The receiver
processes windows of N samples, with each window con-
taining one symbol. For every window, the sampled signal
y[n] is first dechirped, i.e, multiplied point-wise with an

unmodulated downchirp x0[n] = e−j2π [ n
2

2N − n
2 ]. The point-

wise product removes the squared phase component from
the chirp but leaves the frequency that carries the modulated
symbol s. The dechirped signal ỹ[n] contains a single-tone
term of frequency s

N and AWGN such as

ỹ[n] = y[n] · x0[n] = ej2π sn
N + w̃[n], (2)

where w̃[n] = x0[n] · w[n]. The symbol s is then retrieved
by computing the N-point discrete Fourier transform (DFT)
of ỹ[n] and selecting the DFT bin of greatest energy, i.e.,
ŝ = argmaxk|DFT(ỹ[n])|.
2) LORA SOFTWARE DBB IMPLEMENTATION

We now describe our software implementation of the LoRa
PHY layer, which is illustrated in Fig. 5. In the Tx chain,

FIGURE 6. Organization of the buffers in DMEM for LoRa Tx (fS = 2B) and Rx
(Nyquist rate, after decimation by the DFE) chains. The gray lines in the buffers show
the instantaneous frequency of the modulated chirps.

the whitening, Hamming coding, interleaving operations are
directly implemented in C using bitwise operations. LoRa
symbols are generated using (1) with an oversampling rate
R = 2 to obtain a spectral representation close to the sig-
nal generated by the reference transceiver SX1276 [20]. To
transmit symbols in real time, the software relies on two
ping-pong buffers. The CPU computes the modulated sam-
ples and stores them in one buffer, while the DMA controller
transfers the samples from the other buffer to the DFE. After
the transmission of an entire buffer, the DFE notifies the
CPU with an IRQ and the roles of the ping-pong buffers
are exchanged. If the CPU fills one buffer before the trans-
mission of the other buffer, it waits for an IRQ of the DFE.
The DFE frequency is set fS = 2B and the ping-pong buffers
hence contain a single LoRa symbol of 2N complex samples
each, as shown in Fig. 6.

In Rx mode, the DFE frequency is set to fS = 16B
(R = 16). The DFE is configured to low-pass filter the
received signal from the RF front-end according to the
spectral representation of LoRa symbols and to decimate it
to the Nyquist frequency B. The DMA transfers the dec-
imated samples from the DFE to the DMEM. The first
stage of the Rx software chain is a first-order IIR filter
y[n] = αy[n − 1] + 1+α

2 (x[n] − x[n − 1]) (α = 0.9) that
removes a residual DC offset from the RF front-end. To
perform a real-time demodulation of the received samples,
the Rx chain also uses two adjacent ping-pong buffers and a
buffer storing x0[n], the conjugate of the base waveform, as
shown in Fig. 6. When a ping-pong buffer is full, the DFE
notifies the CPU with an IRQ and the processor demodulates
it by dechirping the sampled signal with the sequence x0[n]
stored in memory and by computing the FFT.
Before demodulating payload symbols, the receiver first

needs to detect the preamble of an incoming packet and to
synchronize to the transmitter. We showed in a previous work
that both the preamble detection and synchronization of a
LoRa receiver can be performed using the CSS demodulator
previously described [19]. A preamble is detected when the
same symbol is repetitively demodulated. The receiver syn-
chronization requires the correction of a carrier frequency
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offset (CFO) �fc and a sampling time offset (STO) τ . A
receiver that is not synchronized in time retrieves windows of
N samples containing two consecutive partial chirps instead
of a single entire chirp. The STO τ represents the sample-
level time offset between the beginning of the window and
the first sample of the second chirp in the window. The CFO
�fc represents the difference of carrier frequency between
the transmitter and the receiver.
After the preamble detection, the synchronization algo-

rithm of [19] is applied. The estimates τ̂ and �̂fc of the STO
and CFO, respectively, are computed on the remainder of the
preamble [12], [19]. The CFO is corrected by multiplying
the reference waveform x0[n] by e−j2πn�̂fc

N
B . The estimated

STO is split in integer L̂STO and fractional λ̂STO parts. The
integer STO is corrected by treating the two adjacent ping-
pong buffers as a single circular buffer of two symbols, as
illustrated in Fig. 6. The DSP routines of the CMSIS DSP
library required by the demodulation (complex multiplica-
tion, FFT and magnitude computation) have been rewritten
to properly handle this circular buffer. The processor can
hence start the demodulation of a symbol anywhere in the
circular buffer, depending on L̂STO. The fractional STO λSTO,
i.e., the intra-sample time offset, is corrected by updating the
decimation index in the DFE among the R available offsets.
Once the entire packet is demodulated, the received bits are
deinterleaved and decoded using a hard-decision Hamming
decoder. The decoded payload bits are finally dewhitened
and sent to the MAC layer. A more detailed description of
the LoRa Rx chain is available in [12].

B. SIGFOX: AN ASYMMETRIC ULTRA-NARROWBAND
PHY LAYER
Sigfox is an IoT wireless technology that runs on a single
global network licensed by the homonymous company. The
protocol achieves low receiver sensitivities thanks to ultra
narrowband (UNB) communications, which minimize the
noise power at the receiver. Contrary to LoRa, the Sigfox
PHY is an asymmetric layer that shifts most of the signal
processing complexity (synchronization, decoding,. . . ) to the
gateway.

1) THE SIGFOX PHY LAYER

To alleviate the load on the sensor, Sigfox relies on different
modulation and coding schemes for the uplink and downlink
channels. In uplink, the sensor encodes the payload with
a convolutional code and transmits data using differential
binary phase shift keying (DBPSK) at a fixed bit rate of
100 bps. Up to three repetitions of the same message, with
different code polynomials, can be transmitted to bring time
diversity at the gateway.
In downlink, the gateway uses a Gaussian frequency shift

keying (GFSK) modulation with a bit rate of 600 bps, a
frequency deviation of 800 Hz and a bandwidth-time product
BT = 0.5. A BCH (15, 11) forward error correcting code and
a whitening sequence are applied on the payload bits before
the modulation stage. Downlink messages are only sent when

FIGURE 7. Block diagram of the Sigfox DBB processing.

a response is requested by an uplink message. Since the
gateway already estimated the CFO of the sensor during the
reception of the uplink packet, it also performs a precor-
rection of this CFO when transmitting the downlink packet.
This technique simplifies the synchronization procedure at
the sensor, as no CFO correction is needed [21]. GFSK
symbols can directly be demodulated using a frequency dis-
criminator, i.e., by determining if the phase of the signal
increases or decreases over the symbol period. Let y[n] and
y[n− 1] be two consecutive samples of a GFSK symbol. A
frequency discriminator computes the phase derivative φ[n]
between the samples y[n] and y[n− 1]

φ[n] = �(y[n])�(y[n− 1]) − �(y[n])�(y[n− 1]). (3)

2) SIGFOX SOFTWARE DBB IMPLEMENTATION

Whereas the CSS modulation of LoRa uses large band-
widths, Sigfox relies on UNB signaling with very low data
rates. However, due to the limited filtering capabilities of
our generic RF front-end, a sampling frequency fS above
1.5 MHz is required to avoid aliasing. The proposed DFE
has hence been designed to operate with a nominal external
clock frequency of 2 MHz. In Tx, this clock can further be
divided down to fS = 125 kHz. The low signaling rates of
the Sigfox PHY compared to the high sampling frequencies
fS of the DFE imply that the Sigfox DBB needs to pro-
cess samples with a high oversampling rate. Fig. 7 shows
our software implementation of this PHY. The Tx chain
only comprises two stages: the convolutional encoder and a
DBPSK modulator. Using the minimum sampling frequency
fS = 125 kHz, the modulation stage generates the DBPSK
symbols (+1 or −1) with an oversampling rate of 1250 to
achieve a baud rate of 100 symbols per second. The mod-
ulated samples are transferred to the DFE using the DMA
controller, similarly to the LoRa DBB.
In Rx, the baud rate is 600 Hz and the GFSK wave-

form occupies a narrow bandwidth of approximately 2 kHz.
To attain a sampling frequency in the DBB that is a
multiple of the 600 Hz symbol rate, the external clock
frequency is decreased from the 2 MHz nominal frequency to
1.9968 MHz. The DFE is configured to filter and decimate
the baseband signal from the RF front-end to a sampling
frequency of 124.8 kHz. In addition to the FIR filter in the
DFE, a second low-pass filtering stage in software is finally
needed to attain the very low cut-off frequency of 2 kHz. The
DMA controller transfers chunks of 1664 complex samples
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to the DMEM in ping-pong buffers, which are then again fil-
tered and decimated by the CPU (63 taps, decimation factor
of 52). It is however worth noting that filtering the received
signal at fS = 124.8 kHz down to 2 kHz using only the CPU
would be particularly energy-intensive, as already discussed
in Section II. We show in the following section that, thanks
to the first filtering and decimation stage in hardware, the
second FIR filter can be carried out with a CPU frequency
of only 12 MHz, and hence a lower power consumption.
The baseband signal after the second filtering stage has

a sampling frequency of 2400 Hz, with four samples per
symbol. We therefore adapt the detection rule of (3) to use
three consecutive samples per symbol from the four avail-
able: φ[n] = φ[n+ 1] +φ[n], which improves the resistance
to noise. When a preamble is detected, the STO is estimated
by selecting the sample offset τ̂ ∈ {0, 1, 2, 3} that maxi-
mizes |φ[4n + τ ]| over successive preamble symbols. The
k-th symbol is demodulated by retrieving the sign of the
time-aligned frequency discriminator: b̂k = sgn{φ[4k + τ̂ ]}.
Upon the demodulation of all payload symbols, the demod-
ulated bits are finally decoded with a hard BCH decoder and
dewhitened.

IV. EXPERIMENTAL PERFORMANCE EVALUATION AND
DISCUSSION
We finally demonstrate and evaluate the LoRa and Sigfox
SDRs in an experimental testbed. SleepRider MCU [13] is
used in the testbed as a prototype of the microcontroller
architecture introduced in Section II. In this section, we
first describe our testbed. We then present and discuss the
energy consumption of the two SDR implementations on
SleepRider, as well as the sensitivities in Rx of both SDRs.
Based on these results, we finally discuss current limitations
of low-power SIMD CPUs for IoT SDRs.

A. EXPERIMENTAL TESTBED WITH SLEEPRIDER MCU
The testbed is shown in Fig. 8. Beside the MCU, the testbed
also contains a LimeSDR Myriad-RF1 LMS6002D config-
urable transceiver board, a low-noise preamplifier, passive
attenuators and a NI-USRP 2900. The Myriad-RF1 is used
as RF front-end and transfers complex baseband samples
from or to the MCU on a 12-bit bus with a sampling
clock driven by the DFE [22]. Because the Myriad-RF1 is
originally designed for cellular communications with higher
signal strengths than those of LoRa and Sigfox, a 30 dB
low-noise preamplifier with a 3 dB noise figure is inserted
to enhance the receiver gain of the RF front-end. Passive
attenuators, with an overall attenuation of 120 dB, are used
in Rx to obtain input signals from the USRP with power
levels between −130 and −120 dBm.
When testing the LoRa SDR, the USRP is driven by a

computer running the LoRa GNU Radio SDR implemen-
tation of [18], which is compatible with commercial LoRa
radios. The Sigfox SDR has been validated in the testbed
by replacing the USRP with the official Sigfox USB test

FIGURE 8. Testbed with the SleepRider MCU, the Myriad-RF1 configurable
transceiver, a low-noise preamplifier and a NI-USRP 2900.

FIGURE 9. Minimum CPU frequency and average energy required by the LoRa and
Sigfox SDRs for processing an information bit in the DFE and the DBB.

dongle [23]. All experiments use a carrier frequency of
868 MHz.

B. MINIMUM CPU FREQUENCY AND ENERGY
CONSUMPTION
We validated the functionality of the Tx and Rx chains for
both LoRa and Sigfox in the testbed. For LoRa, we used the
bandwidth value B = 125 kHz and the coding rate CR = 4/7

with the SFs 7, 8 and 9. We are unable to run the Rx
chain for SFs higher than 9 as the total size of the program
and FFT tables exceeds the available space in the PMEM
(32 kB). This PMEM size is limited by the die area of our
custom chip. Commercial MCUs however usually embed
much larger PMEMs (up to 1 MB).
Fig. 9 shows the minimum CPU frequency required to

run the SDRs in both Tx and Rx, as well as the average
energy per bit transmitted/received by the DFE and DBB.
To minimize the energy consumption, we scale down the
CPU frequency using the UFBBR (by steps of 4 MHz) for
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each mode (Tx or Rx), PHY layer and SF in the case of
LoRa. Contrary to commercial transceivers with integrated
RF circuits, the RF front-end and the low-noise preamplifier
in our setup are off-the-shelf components that are not opti-
mized for low-power operation. The Myriad RF board has a
typical power consumption of 725 mW in Rx [22], whereas
recent integrated LPWAN transceivers feature power budgets
in the 1–10 mW range [9]. Since this work focuses only on
the digital signal processing, and not on the RF front-ends
that often dominate the power budgets, we ignore the non-
optimized low-noise preamplifier and RF front-end from the
power measurements and include only the DFE and DBB.
We first discuss the LoRa SDR. The most intensive part

of the Tx LoRa DBB is the CSS modulation, which has a
linear complexity O(N) with respect to the symbol period
T = 2SF

B = N
B . Since the number of CPU cycles required

to modulate a single sample is independent of the SF, the
MCU runs at a minimum CPU frequency of 16 MHz for
all SFs, with a power consumption of 172 μW. However,
since the data rate of the CSS modulation decreases with the
SF, the energy required to encode and modulate one bit of
information data increases exponentially with the SF, from
44 nJ/bit for SF 7 to 137 nJ/bit for SF 9. On the contrary,
the Rx chain includes the demodulation stage, which has an
algorithmic complexity of O(N logN) because of the FFT.
Incrementing the SF from 7 to 9 hence slightly increases
both the CPU frequency (from 32 to 36 MHz) and the power
consumption (from 316 to 332 μW). This O(N logN) com-
plexity explains why the consumed energy per bit increases
with the SF faster in Rx than in Tx.
Regarding the Sigfox SDR, we observe in Fig. 9 that

the Tx DBB has a lower energy efficiency with 324 nJ
required per information bit, despite the simple signaling
DBPSK scheme. Due to practical design limitations of the
MCU, the CPU frequency cannot be set under 12 MHz,
although the minimum CPU frequency required to modulate
DBPSK symbols in real-time would theoretically be 60 kHz.
As a consequence, the MCU spends 99.5% of its time idle
with an average power consumption of 32 μW, which is
only amortized over the low data rate of 100 bps. This
power consumption could be reduced if our MCU design
was capable of either running at a lower frequency without
having its power dominated by static leakage, or by going
in deep-sleep mode between two symbols. The same issue
applies to the Rx chain to a lesser extent, for which the
MCU spends 61% of the time waiting on the next symbol
and has a power consumption of 90 μW.

Nevertheless, the power consumption of the DSP in
the MCU prototype, between 32 and 332 μW, lie well
below the total power usage of LPWAN transceivers. As a
comparison, the commercial LoRa SX1276 transceiver con-
sumes 34 mW in Rx [20], and the Sigfox-compatible GFSK
receiver from [21] draws 14.5 mW. The power budgets of
both transceivers are dominated by the consumption of the
RF front-ends. These results indicate that the power needed

FIGURE 10. Experimental PERs when receiving LoRa (64 payload bytes) and Sigfox
(8 payload bytes) packets for different input powers.

to run the DSP of our SDRs remains negligible compared
to the overall power budget of a LPWAN transceiver.

C. EVALUATION OF THE SDR RX SENSITIVITIES
We also assess the performance of our SDR Rx chains by
measuring the packet error rate (PER) versus the signal
power at the input of the preamplifier. In this experiment, we
generate different input power values by sweeping the Tx
gain of the USRP. To evaluate the sensitivity of our Sigfox
radio in Rx, we recorded Sigfox downlink packets from the
USB dongle with the USRP, and then replayed these packets
with the USRP. 1000 LoRa or downlink Sigfox packets are
transmitted per power level. Fig. 10 shows the experimental
PERs of both SDRs, as well as the advertised sensitivity lev-
els of the LoRa SX1276 transceiver and the GFSK receiver
from [21]. We first observe that our LoRa SDR receiver
benefits from a 3 dB spreading gain when the SF is incre-
mented, similarly to the SX1276. Yet, for a target PER of
10−2, our receiver requires about 3 dB higher input power
than the SX1276. This 3 dB gap is mainly due to our imple-
mentation of the low-pass FIR filter in the DFE which only
has 16 taps and hence features non-negligible side lobes
outside the signal bandwidth. A hardware implementation
of the FIR filter in the DFE with several multipliers could
however improve the Rx sensitivities of our SDRs at the
cost of a larger area. For the Sigfox SDR, a 4% PER is
attained at an input power level of −124.5 dBm, compared
to −126 dBm for the GFSK receiver from [21]. Overall, the
results presented in Fig. 10 indicate that our MCU prototype
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TABLE 2. Power consumptions and minimum CPU frequencies of the SDR
implementations of the Sigfox, LoRa and BLE protocols presented in this work and
in [10].

is capable of receiving packets of two different protocols with
near state-of-the-art sensitivity levels.

D. COMPARISON WITH [10] AND LIMITATIONS OF SIMD
CPUS
Finally, we compare the previously presented results with the
performance of the LoRa and BLE SDRs described in [10].
Based on these results, we discuss current limitations of
low-power CPUs with SIMD instructions for IoT SDRs.
Table 2 shows the power consumptions and CPU frequencies
needed by the different SDRs in Rx. Both studies use the
same SDR architecture introduced in Section I, with CPUs
featuring 16-bit SIMD instructions for complex arithmetic
operations. Contrarily to this work, the results of [10] have
been obtained by post-synthesis (pre-layout) simulation with
a more advanced 22nm FDSOI technology. Their work cov-
ers only on the extension of the RISC-V Bk3 core with
SIMD instructions and the software implementations of two
demodulation algorithms, i.e., they do not propose a com-
plete MCU implementation and their power consumption
results do not take into account the memories, nor the DFE
that consume a significant portion of the power.
We first compare the results obtained for the LoRa pro-

tocol with SF = 7 and B = 125 kHz. The extended RISC-V
Bk3 core of [10] implements the demodulation of a LoRa
symbol with 90 cycles per sample, resulting in a minimum
frequency of 11.2 MHz. The same operations on the ARM
Cortex-M4 with the CMSIS DSP library require 151 cycles
per sample, resulting in a minimum frequency of 18.9 MHz.
Yet, the critical path in our LoRa Rx implementation is not
the demodulation of a symbol per se, but the synchronization
stage during the reception of the preamble, during which the
estimation of the frequency and time offsets must be car-
ried out in addition to the demodulation of the preamble
symbols, as explained in Section III. The synchronization
algorithm, which is not implemented in [10], increases

the minimum CPU frequency from 18.9 to 32 MHz.
Although both implementations are not directly compara-
ble (simulation vs. measurement, different compilers, . . .),
they still exhibit similar power consumptions and CPU
frequencies.
Nonetheless, Table 2 also allows to observe the intuitive

relationship between the signal bandwidths and the mini-
mum required CPU frequencies of the SDRs. For moderate
bandwidths such as LoRa with B = 500 kHz or BLE, both
our MCU and the core of [10] need to operate in the 50 –
150 MHz range. This high frequency range is not often pos-
sible for commercial low-power MCUs, which typical exhibit
minimum energy points below 50 MHz. Moreover, other IoT
protocols such as NB-IoT or DECT-2020 NR also rely on
moderate bandwidths (B ≥ 200 kHz), but with more complex
digital basebands than those of LoRa and Sigfox [24], [25].
These observations suggest that, despite the effectiveness
of the proposed SDR architecture, low-power CPUs fea-
turing only SIMD DSP instructions may not be powerful
enough to implement a wide variety of IoT protocols. The
recent introductions of ISA vector extensions for low-power
CPUs, such as ARM’s M-Profile Vector Extension or the
RISC-V Vector extension, however open up new possibili-
ties in this regard [26], [27]. For instance, an implementation
of a generalized frequency division multiplexing (GFDM)
demodulator with the RISC-V Vector extension demonstrated
a speedup of up to 60 times compared to the scalar base
case [28].

V. CONCLUSION
Long-term maintenance of IoT devices in industrial systems
will be an important challenge to keep the operational
expenses of IIoT applications low. In particular, the prevail-
ing hardware architecture of IoT radios, often tied to a single
protocol, strongly weakens the overall interoperability of the
sensors. To mitigate this issue, we designed in this work
an ultra low-power microcontroller architecture suitable for
a software-defined radio implementation of LPWAN proto-
cols. The proposed architecture features (a) a general-purpose
low-power processor with SIMD DSP instructions for the
protocol-specific computations (b) a hardware DFE for the
generic signal processing and (c) an ultra-low power digi-
tal implementation with low supply voltage and frequency
scaling. We implemented in software the physical layers
of the Sigfox and LoRa standards, and we validated both
implementations in a testbed with an MCU prototype in
28nm CMOS FDSOI. Experimental measurements show that
both SDRs reach sensitivities below −120 dBm in Rx. Even
more so, our prototype performs the digital signal process-
ing of the two protocols with a power consumption between
32 and 332 μW, thus demonstrating that an SDR can fit
in the 1–10 mW power budget of a LPWAN transceiver.
Future works should investigate the usage of low-power
CPUs with vector ISA extensions to enable real-time imple-
mentations of more complex IoT protocols than Sigfox and
LoRa.
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