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ABSTRACT In recent years, deep neural networks (DNNs) have brought revolutionary progress in various
fields with the advent of technology. It is widely used in image pre-processing, image enhancement
technology, face recognition, voice recognition, and other applications, gradually replacing traditional
algorithms. It shows that the rise of neural networks has led to the reform of artificial intelligence. Since
neural network algorithms are computationally intensive, they require GPUs or accelerated hardware for
real-time computation. However, the high cost and high power consumption of GPUs result in low energy
efficiency. It recently led to much research on accelerated digital circuit hardware design for deep neural
networks. In this paper, we propose an efficient and flexible neural network training processor for fully
connected layers. Our proposed training processor features low power consumption, high throughput,
and high energy efficiency. It uses the sparsity of neuron activations to reduce the number of memory
accesses and memory space to achieve an efficient training accelerator. The proposed processor uses a novel
reconfigurable computing architecture to maintain high performance when operating Forward Propagation
and Backward Propagation. The processor is implemented in Xilinx Zynq UltraSacle+MPSoC ZCU104
FPGA, with an operating frequency of 200MHz and power consumption of 6.444W, and can achieve
102.43 GOPS.

INDEX TERMS Fully connected layers, on-chip training, optimized memory access, energy efficient,

learning on edge, sparsity.

. INTRODUCTION

EEP neural networks (DNNs) have been incorpo-

rated in the field of computer vision [1], [2],
and a fully connected layer (FC) has been employed
extensively for image classification tasks. In the early
stages, in pursuit of high accuracy for specific applica-
tions, researchers developed deeper network layers such as
VGG16 [3] and ResNet [4], which have massive param-
eters. To achieve faster computation, GPUs have become
indispensable for the inference and training phases of neu-
ral networks. Although GPUs are highly flexible, they also
suffer from high power consumption and high latency.
Due to the hardware architecture and compiler of the

GPU, low performance and low utilization problems occur
during the inference stage. Therefore, many DNNs accel-
erators for inference have been developed to solve this
problem.

As shown in Fig. 1, the DNN model is trained on the
server, and the trained network model is deployed on a
dedicated processor for inference purposes. During the data
transfer from the personal information server, there can be
a data privacy problem, which may affect the user’s privacy.
In addition, when a large amount of data is transferred back
and forth between servers and personal devices, it causes
delays in transmission due to network speed factors, which
affects the overall stability. Therefore, training on the edge
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FIGURE 1. Training on cloud servers using personal data.

devices is essential to reduce the risk of data breaches and
data transfer costs.

Several papers proposed DNN processors that can perform
training to solve the privacy and latency problems encoun-
tered in inference-specific DNN accelerators [5], [6], [7], [8],
[9], [10], [11], [12]. Due to the activation function mod-
ule, many zero values are generated during the inference
and training. These zero values are useless for computing
operations, which occupy colossal memory space and affect
the overall performance. Therefore, some papers proposed
the use of the sparsity feature of DNNs for inference
and training. For example, in an inference-only accelera-
tor, Eyeriss [13] and EIE [14] use run-length coding (RLC)
and compressed sparse column (CSC) compression meth-
ods to reduce the number of memory accesses and storage
requirements of SRAM. Reference [7] introduced techniques
for implementing sparse computation in the training phase
to improve hardware performance. The edge device’s com-
puting and memory space are limited, so learning can only
be done using small batches. According to [15], training
with small batches (between 2 and 32) improves stability
and convergence.

In DNN, Forward Propagation (FP) is the way to move
from the input layer to the output layer in the neural network.
It also used Backward Propagation (BP) for adjusting or cor-
recting the weights to reach the minimized loss function. Due
to the edge device’s limited computing and memory band-
width, multiple memory accesses are required to calculate
the error/delta value of the backward propagation (BP) stage.
This limitation leads to most of the on-chip training time
being spent calculating error/delta values, creating a mis-
match between the performance of FP and BP. Therefore, the
processor used a memory-optimized access method proposed
by Hussain and Tsai in [16] to speed up the error/delta cal-
culation step. In the BP stage of the FC layers, the memory
optimization method proposed in [16] can save 0.13x-13.93x
memory accesses. It shows the advantage of FC layers for
inference and training.

This paper proposes an energy-efficient sparsity-aware
on-chip training processor. The proposed processor can
perform FC layers-based inference and training on-chip.
In this paper, we use Brain Floating Point as the data
format of our architecture. Brain Floating Point format
is developed by Google. It combines the advantages of
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IEEE 754 single-precision floating-point computing and
half-precision floating-point computing. It retains the single-
precision 8-bit exponent and combines the half-precision
with fewer mantissa bits. In the experience, using the Brain
Floating Point format can slightly reduce the accuracy, but
it can significantly save chip area and power consumption.
Previous works [5], [8], [10], [17], [18] use single-precision
floating-point or 16-bit fix-point to train or inference neu-
ral networks. It will either spend lots of hardware resources
or the accuracy loss on training and inference may not be
negligible. To the best of our knowledge, we are the first to
design a hardware architecture that uses the Brain Floating
Point format for all operations. It can maintain a certain
level of accuracy during training while using fewer hardware
resources.

Another contribution of our paper is that we exploit the
data sparsity on input feature maps. We use the sparsity
map index (SMI) matrix to efficiently compress both input
data and weight information. Compared to other compression
methods, it has a significant improvement in compression
rate. Although some papers such as SparTen [19] and
SIGMA [20] have proposed similar methods, both papers
extract non-zero information from on-chip memory while
ours store the data that will be computed in on-chip memo-
ries, which makes memory storage more efficient. Overall,
both methods make our hardware efficiency higher and
power consumption lower than the other works.

The main contributions of this work are summarized as
follows;

1) We use a 16-bit brain floating-point format to represent
a wide dynamic range of numeric values by using a floating
radix point.

2) We use a novel reconfigurable processing element (PE)
architecture to complete the training and inference stages of
the FC layer.

3) We use the sparsity of neurons and combine the opti-
mized memory access method to reduce the memory space
and the number of memory accesses required for FP and BP
computations.

4) We implement the whole accelerator on ZCU104. It
can achieve 102.4 GOPS with 256 Multiply—Accumulate
(MAC) units working at 200 MHz. The design is scalable
to expand according to the PEs to achieve higher throughput
quickly.

The organization of the rest of the paper is as follows.
Section II reviews the literature related to training processors.
In Section III, the implementation of the proposed hardware
architecture is discussed in detail. Section IV includes the
results and discussion of our design. In addition, this section
also contains the results of comparing with other literature.
Finally, the conclusions are provided in Section V.

Il. BACKGROUND

This section introduces the DNN hardware accelerators, the
fully connected layer networks, and well-known floating-
point computing formats. The basis is that since the inference
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and training of the FC layer are used, the weights need to
be updated during the training stage to allow the model to
converge and obtain the final desired effect. It means the
hardware precision format is important, and the trade-off
between accuracy and hardware resources is significant.

A. RELATED WORKS ON HARDWARE ACCELERATORS
Deep neural network techniques are composed of com-
plex data access and complex computation to achieve more
efficient processing of neural network computations. Many
researchers have designed ASICs that can perform neu-
ral network inference, including Eyeriss [13], EIE [14],
Nullhop [21], etc. Researchers also target FPGAs for neural
network inference [22], [23], [24]. A hardware accelerator for
inference is mainly optimized for the forward propagation of
numerical computations in convolutional networks and fully
connected layers, mainly for scheduling optimization of data
in memory, reducing the number of memory reads as much
as possible and improving the overall hardware performance
by parallelizing the processing.

Among the research on hardware accelerators for ASIC
reasoning, the MIT team is best known for their invention
of Eyeriss [13] AI chip. It proposed a row stationary and
used RLC, a compression format, in its designed architec-
ture. Reference [25] proposed a hardware accelerator design
for Angel-Eye. It constructs a programmable and flexible
architecture for accelerators through data quantization strate-
gies and compilation tools and illustrates the entire hardware
design process. It first obtains parameters from trained mod-
els and quantizes them. It supports multiple neural network
architectures through a compliable hardware architecture to
increase flexibility, and finally maps them to the hardware
for execution. Reference [26] proposed CNN accelerator
designed on Xilinx Vertex 7 FPGA.

Howeyver, the above-mentioned hardware accelerators are
designed for inference only and cannot perform the training
of DNN models. To fine-tune the DNN model for such
accelerators, the data is always transferred to the servers for
the training, and the updated trained model is deployed on
the edge device again. This leads to data privacy issues due to
data transfer, which requires high bandwidth for high-speed
data transfer.

Multiple hardware accelerators have been proposed to per-
form both training and inference of different DNN layers at
the edge to deal with the data transfer issues during the
training stage. Reference [5] proposed the F-CNN config-
urable training framework. It covers the training tasks of
each layer of the CNN by reconfiguring the data flow path
at runtime. Reference [6] uses a particular memory manage-
ment unit to reduce the number of memory accesses during
training. Experiments at different network sizes demonstrate
the great flexibility of the proposed framework. Sticker [7]
has been proposed to achieve high throughput for sparse
FC layers. Liu et al. [8] designed an FPGA-based train-
ing accelerator using a unified computational engine and a
scalable framework. An online learning processor has been
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FIGURE 2. A small FC network made up of input features layer, hidden layer and
output layer.

proposed in [9] by Han et al. to support the training of the
fully connected layers. It can perform object tracking and
update the DNN model according to the changes in the data.
EILE [10] was proposed to achieve incremental learning at
the edge, where only the fully connected layer needs to
be trained in its incremental learning processor. In [11], an
FPGA-based accelerator with a compressed training scheme
and effective compression using both quantization and prun-
ing methods is proposed, exploiting sparsity in both forward
and backward propagation. FPDeep [12] proposed a design
framework for DNN training on multiple FPGAs in a clus-
ter. In their research, the energy efficiency of training 16-bit
AlexNet can be improved by a factor of 3.4 when the com-
putations are distributed in a pipelined fashion across 15
FPGAs. Shao et al. [27] designed a reconfigurable processing
element with a unified architecture that can flexibly support
various computational modes during training and introduced
scaling and rounding schemes to reduce memory usage.

B. TRAINING ON FC LAYER

Fig. 2 shows a miniature model of the FC layer. It includes
the input feature layer (IFL), hidden layer (HL), and output
layer (OL). When the training process is performed in FC
layers, there are three stages: FP, BP, and weight update
(WU). FP starts from IFL, multiplies each node and weight,
and accumulates the result to get the value of each node
in the next layer. The BP is performed by partial linear
differentiation based on the value of each node of the FP to
obtain the gradient of the weights and the delta/error values.
The WU stage uses the weight gradient obtained during BP
to update the weights for training purposes. The following
equations define these stages.

FP: 0, = Y " H; x Wi, (1)
i

In (1), O, is the output node of the next layer, H; is the node
of the input layer, and W;, is the weight value associated
with the output node that generates the next layer.

aL
AH; =) " (Oy = Yn) x Wiy 3)
n
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In (2) and (3), the weight gradient and delta values are
calculated where On is the output value at the output node
n, Yn is the target value of output node n, also known as a
ground truth value. Hi is the node’s value where the weight
Win is connected in the previous hidden layer.

aL
T Wold

In (4), W,y4 is the previous weight value. L represents the FC
layer’s loss, which is calculated at the end of the FP stage
during the training process. 7 is the learning rate. Depending
on the optimizer function used during training, it can be a
fixed number or a variable number.

WU: Wyey =

“)

old —

C. FLOATING POINT FORMAT
In many DNN hardware accelerators, the fixed-point format
is mostly used as the computational format for the entire
architecture. Many recent works have replaced fixed-point
numbers with floating-point formats. This section describes
several well-known floating-point formats and describes the
advantages and disadvantages of these floating-point formats.
In the previous, the floating-point representation fol-
lowed the IEEE 754 floating-point standard format [28],
defined by the International Institute of Electrical and
Electronics Engineers (IEEE). This standard describes two
formats, single-precision floating-point, and double-precision
floating-point numbers. They can be expressed by the
following:

F=(—15x1fx2°" (5)

where s is the sign bit, f is the mantissa bit, and e is the
exponent bit. The single precision format bias is 127 and
the double precision format bias is 1023.

In recent years, many researchers have been working
on accelerators for DNNs training, and as a result, many
papers have proposed 16-bit or less than 16-bit floating-
point computing formats. The IBM team has invented a new
floating-point format and named it DLFloat [29]. DLFloat
comprises 6 bits of exponential, 9 bits of fractional, and
1 bit of positive and negative numbers. Their definition is
based on the actual range of values encountered in deep
learning. Compared to IEEE 754 half-precision, the for-
mat has 1 bit more exponential and 1 bit fewer fractional
bits. DLFloat also optimizes the floating-point format. Their
proposed floating-point algorithm incorporates the NaN and
infinity representations because when numerical operations
are performed with NaN or infinity input, the result is always
NaN or infinity. Therefore, they use e = 63 and m = 511
to represent the result of NaN and infinity, simplifying the
logic unit of the FPU.

Flexpoint [30] is a floating-point computing format
invented by the Intel team. Flexpoint combines the advan-
tages of fixed-point and floating-point computing by using
an index that automatically manages each tensor, using the
same index for some operations to reduce computation and
memory requirements. Flexpoint is tensor-based, using the
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N-bit mantissa to store the two’s complement integer val-
ues and the M-bit exponent e shared among all tensor
elements. This format is denoted as flexXN+M. In gen-
eral, the multiplication of two independent tensors can be
computed as a fixed-point operation, which can turn most
of the computations in deep neural networks into fixed-
point operations. Flexpoint reduces memory and bandwidth
requirements in hardware compared to single precision float-
ing point. However, Flexpoint also has some disadvantages.
Flexpoint is more complex than single-precision floating-
point in format conversion and has a small dynamic range,
which makes it easy to generate gradient disappearance prob-
lems when training neural networks, thus making it difficult
for the model to converge.

TensorFlow-32 (TF32) [31] is a floating-point format
proposed by NVIDIA to replace the single-precision floating-
point format (FP32). TF32 uses the same 10-bit mantissa as
the half-precision (FP16) math, shown to have more than
sufficient margin for the precision requirements of Al work-
loads. And TF32 adopts the same 8-bit exponent as FP32 to
support the same dynamic range. The advantage of TF32 is
that the format is the same as FP32. When computing inner
products with TF32, the input operands have their man-
tissa rounded from 23 to 10 bits. The rounded operands are
multiplied exactly and accumulated in normal FP32. TF32
requires a CUDA compiler to perform the format conversion
effectively. Although the dynamic range is the same as FP32,
the complexity of TF32 will be more complex than other
16-bit floating point formats when designing the hardware,
resulting in higher power consumption and area.

Finally, we introduce a 16-bit floating-point format
developed by Google, called “Brain Float Point” [32], which
consists of a 1-bit sign, an 8-bit exponent, and a 7-bit
mantissa. This floating-point format combines the advan-
tages of IEEE 754 single-precision floating-point computing
and half-precision floating-point computing, which retains
the single-precision 8-bit exponent and combines the half-
precision with fewer mantissa bits. However, the accuracy is
slightly less than that of single-precision floating-point com-
puting. In hardware design, Brain Float Point uses fewer bits
of mantissa bit, so it can significantly save chip area and
power consumption. For example, using Brain Float Point
will save eight times the power consumption for a multiplier
than using single-precision floating-point computing. This is
why Google and Intel use Brain Float Point as a floating-
point format for their cloud servers. Brain Float Point has
some advantages. It can directly intercept the first 16 bits
of FP32, so it is straightforward to convert between FP32
and Brain Float Point. It also has a more extensive dynamic
range than FP16, so it is less likely to overflow.

Although Google teams recommended that in general
cases, representing activations in bfloat16 is generally safe,
while weights and gradients should be kept in FP32 for-
mat. However, there is some potential to use bfloat 16 to
represent more values. We trained AlexNet and ResNet-50
on ImageNet with all data formats where the computation
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FIGURE 3. Validation accuracy for (a) AlexNet and (b) ResNet-50.

precision is set to bfloat 16. Fig. 3 shows that both top-1
and top-5 validation accuracy drops less or equal to 0.6%.
Therefore, using bfloat 16 in all data formats is suitable for
training and inferencing models and can significantly save
hardware resources and power consumption.

Based on the above introduction, each floating-point com-
puting format has its advantages and disadvantages. We
prioritize the selection based on the ability to maintain a
certain level of accuracy during training while using fewer
hardware resources. In this paper, we use 16-bit Brain Float
Point as the computational precision format for our hardware
architecture.

Ill. PROPOSED WORK

In this section, we describe the proposed hardware architec-
ture. In Section III-A, we present our overall architecture
and data processing. In Section III-B, we present the data
processing data flow. In Section III-C, the sparsity method
in our design is introduced. The PE array architecture and
the other Computational Core Unit (CCU) of the proposed
design are explained in Section III-D. The Memory Bank
(MB) of the proposed design is described in Section III-E.

A. OVERALL ARCHITECTURE AND PROCESSING FLOW
We use the SoC architecture which includes the PL (pro-
grammable logic) and PS (processing system) to design the
hardware accelerator. The proposed accelerator is imple-
mented on the PL side, and we use the AXI4 bus protocol
to communicate with the PS. When PS needs to acceler-
ate a fully connected neural network, it can control the
accelerator on the PL side for inference and training of
the neural network. PS can perform format conversion and
data pre-processing of the feature maps and weight data. All
feature maps and weights are stored in DDR4 on the PS
side, waiting for PL to fetch these data. We use the DMA
IP provided by Xilinx to implement high-performance burst
transfers between PS DRAM and PL.

Fig. 4 shows the overall architecture of the proposed pro-
cessor, and there are five main blocks in the architecture.
These include a control unit (CU), memory bank (MB),
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computational core unit (CCU), data sparsity encoder and
decoder unit, and a configuration register module to set the
parameters used for training and inference stages, such as
epoch, batch size, ground truth, etc. The data sparsity encoder
and decoder unit are responsible for encoding and decoding
the feature data. The MB stores the weights, input features,
and output data generated by the CCU module. The CCU
is responsible for processing the FP and BP calculations,
including calculations such as output feature generation, acti-
vation function, softmax function, loss function, and weights
update. The CU controls the data transfer from the processor,
including data transfer from external memory to the MB for
local storage, MB to the CCU for computation, and between
different CCU modules during different calculation opera-
tions. ‘Module Gating’ is responsible for activating different
modules to reduce the switching power of the processor. This
is because during the processing of some modules, few of
the modules remain inactive, e.g., PEs remain inactive when
data is being transferred from off-chip memory to BRAM
and BRAM to PEs, etc.

Fig. 5 shows the overview of the processor with two dif-
ferent kinds of data processing, i.e., inference mode and
training mode. First, we read some information from the
external memory into the configuration register for specifi-
cation customization, and the related information to perform
inference or training mode. In the case of training mode, the
configuration register contains the information used in the
inference stage and epoch, batch size, the number of images
used for training, and the ground truth value of the images
in the training mode.

In the inference mode, the non-zero input feature values
are first stored in the input BRAM of the memory module
by the data sparsity encoder module. The weight parame-
ter is stored when all the input feature values are stored or
the memory space is full. The weight values of the non-
zero input features are stored in weight BRAM by the data
sparsity decoder module. When the weights are stored to
a certain amount, we transfer the input feature values and
weight values to the computing core unit (CCU) to start
the accumulation operation. In this stage, the data generated
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FIGURE 4. Proposed Overall Architecture.

by the computation will be transferred back and forth with
the memory module to generate the node results of each
layer. After the CCU completes the calculation of all FC
layers, the data from the output layer is sent to the Output
Classifications module for the final output classification,
deciding which category it is finally classified.

In the training mode, the overall processing can be divided
into the forward pass (FP) and backward pass (BP). The FP
in the training mode is similar to the inference mode. The
only difference is that the results in the output layer will
be sent to the softmax module for calculation, and the BP
stage will be started. In the next step, we will calculate the
delta values and each weight gradient for each FC layer
according to (2) and (3). The weight gradient for each layer
is calculated cumulatively according to the size of the Batch
Size. Therefore, the weight update will be calculated only
when the specified Batch Size value is reached. When all
the weights are updated, the newly obtained weights are
used for the FP calculation again, and the above steps are
repeated until the required number of updates is completed.
The total number of weight updates (TWU) can be calculated
as follows;

LTI
TWU = E x ceil| — (6)
BS

where TWU is the abbreviation of Total Weight Updates, E
is Epoch, TI is the total number of images used for training,
and BS is the batch size.
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B. FP AND BP PROCESSING DATA FLOW

Fig. 6(a) shows the data stream used by the accelerator for
forward propagation. The proposed processor uses output
stationary data flow to reduce the number of output data
movements. If we repeatedly transfer the result of each com-
putation to BRAM and then read it out from BRAM for
accumulation, this step will cause a delay in data transfer
and generate additional power consumption. Therefore, we
store the results of each cycle in the partial sum registers
in the PEs first, and then transfer the results to the memory
module after all the values of that cycle have been computed.
When processing the forward propagation data, the input fea-
ture data is distributed to each PE Cluster synchronously. As
a result, each PE in the PE Cluster uses the same input fea-
ture data for computation while the weight data is distributed
to each PE with different weights by Unicast.

Fig. 6(b) shows the data flow for the weight gradient
calculation during the BP in the proposed processor. During
BP, input stationary data flow reduces the number of input
data moves. During BP, the input and weight data need to
be reused for different computations. The input stationary
method reduces data movement and provides data to PEs
quickly to speed up BP. When calculating the weight gradient
of BP, the result of each layer of FP and the error/delta values
of each layer are used to generate the weight gradient value.
This calculation also uses a mixture of unicast and broadcast
modes to process the values.
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Fig. 6(c) shows the data flow used by the proposed pro-
cessor to calculate the error/delta values. We adopt output
stationery to reduce the time of output data transfers, power
consumption, and memory access time. When calculating
the error/delta values, the previous layer of delta values and
weights is used, and unicast and broadcast mode generates
the result values.

In the case of the forward pass, delta computation, and
weight update, all three cases are more likely to reach
memory bound because they all involved unicast mode to
deliver data to PEs. Unicast mode will send different data
to different PE which will potentially cause high memory
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bandwidth. Adding the sparsity feature can reduce the over-
all latency since it eliminates unnecessary operations, but
the passes will still have potential memory bound when it
comes to unicast mode.

When the number of MACs increases, if the number
of memory is also increased, there will be no congestion
problem since the memory bandwidth is also higher. If the
number of memory remains unchanged, the performance of
the accelerator will be limited because the value cannot be
transferred to each PE in time when performing unicast
mode.

C. DATA SPARSITY ENCODER AND DECODER UNIT

Our design uses a simple sparse matrix compression algo-
rithm as shown in Fig. 7. The algorithm mainly modifies
the CSC compression method. The original CSC algo-
rithm requires three matrix spaces to store the values.
The first matrix records the number of non-zero in each
row, the second matrix records the location of non-zero
values in each column, and the third matrix records non-
zero values. Although CSC allows flexibility in processing
data, it takes ample memory space to record the row and
column coordinates of the values. Instead of using two
matrixes to record the row and column coordinates posi-
tion, we only use one matrix to save sparsity information.
The sparsity map index (SMI) matrix can be generated
using (7).

1, input(x,y) > 0;

SMI(x,y) = { 0, input(x,y) = 0; @

The values are coded as 0 or 1 according to the conditions
in (7) and recorded in SMI. The non-zero input feature values
are stored in the input BRAM of the MB. The weight values
of the non-zero input features are stored in weight BRAM
to save processing time in the inference and training stages
through the sparsity table.

According to the above-proposed compression method, we
use SMI, CSC, and Coordinate list (COO) to perform the
relationship between sparsity and the input feature nodes,
as shown in Fig. 8. When the sparsity of the input feature
map is lower than 10%, the data transfer time will be longer
than the original format and will have less reduction in PE
computing time. The higher the sparsity is, the better the
compression performance will be since both data transfer
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FIGURE 8. Comparison of compression methods over different sparsity amounts.

time and PE computing time are significantly reduced. Since
the input features need to be flattened before the output
nodes can be computed in the fully connected layer, the
input feature nodes become one-dimensional matrices. CSC
and COO need to record the positions of non-zero values.
When the number of input feature nodes increases, more bits
are required to record the positions of non-zero coordinates,
which will cause additional capacity overhead. Therefore,
using the proposed SMI compression format will have better
compression results than CSC and COO.

According to the compression method proposed above,
we can analyze the number of weight memory accesses
for the forward propagation and backward propagation
operations of the fully connected layer as calculated
in (8) to (10):

FP: Nyi» x [1 — sparsity(NHLz)] x Nor (8)
BP: Nueaor x [1 = sparsity(Naenaor) ] X Nara - (9)
WU: Nyeaor % [1 — sparsity(Neiaor) | X Nura

x [1 — sparsity(Naeianr2) | (10)

Here, N, is the total number of nodes in HL2, Ngy is the
total number of nodes in OL, and sparsity () is the sparsity
of the network layer.

From (8) to (10), we can conclude that using this bitmap
compression method can reduce many memory accesses
when performing FP and BP. Especially when the weight
update is performed, the network sparsity is squared ratio
with the number of memory accesses.

In our proposed architecture, we add the data sparsity
encoder and decoder module before the memory bank to
prevent the storage of zero values. These values are not worth
further computation since the computation will always result
in zero. These values include zero values in the input feature
map and the corresponding weight values. The remaining
values are stored in order. Hence, the frequency of accessing
memory banks will be much lower, and the PE calculations
will be reduced, which leads to lower computing and memory
energy. Moreover, it will not affect the PE architecture since
the data are already organized in the encoder and decoder
modules.
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D. COMPUTATIONAL CORE UNIT (CCU)

Fig. 9 shows the architecture of a PE Cluster where each PE
Cluster is composed of 16 PEs. There are 16 PE clusters in
the proposed processor. In each PE Cluster, all PEs process
data in parallel; and the switching power is reduced by signal
gating modules. Figure 10 shows the PE structure that can
support both FP and BP. There is a total of 256 PEs in the
proposed processor. As long as there are enough hardware
resources, a PE array can contain more PE clusters and a
PE cluster can contain more PEs.

The input and output of each PE are processed using
the 16-bit brain floating-point precision format. Each PE
comprises a multiplier, an adder, multiplexers, and a demul-
tiplexer. A 4-stage pipeline is used to increase the operating
frequency of the processor. Each pipeline stage consists of
input data storage into registers, multiplication, addition, and
output registers. Some registers are designed in the PE to
reduce the memory accesses required for computing.

In image classification, the softmax function is used to
map the value of the output layer between 0 and 1 to obtain
the probability value of the category. The softmax function
is defined as follows:

exp(x; — C)
>jcoexp(yj =€)
Here, K is the total number of output classes in the output
layer, x; represents the output value of node /, and C is the
maximum value of the output layer node.

From the above equation, it is known that the soft-
max is composed of complex mathematical operations.
Compared to the previous hardware design using the RISC
approach [33] and modified softmax function [34] to imple-
ment the softmax function, the proposed processor uses the
fast exponential function proposed in [35] for exponential
computation and a low resource divider module to complete

Softmax(x;) = (11)
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FIGURE 11. The hardware design of the exponent unit.

the softmax module. There are three modules in this softmax
architecture, which are the exponential function module, the
accumulator module, and the divider module. To enhance the
operation frequency of the chip, the fast exponential function
proposed in [34] is used to perform exponent calculation in
the proposed design. The fast exponential algorithm is shown
in (12).

F=@xxa+pB—y)xAKT (12)

Here o = 1.4426950409, 8 = 127, and y = 0.0579848147.
The main purpose of « here is to convert the exponent to the
second power of 2. 8 and y are used to correct this exponent
function. In the normal forward propagation process, output
values produced by the output layer will be directly used
to calculate the softmax function. However, the exponen-
tial function is too expensive for hardware implementation.
Therefore, before performing the softmax function, the out-
put layer will subtract its largest value to convert every value
under zero. According to the characteristics of the exponen-
tial function, we can observe that when x is under zero, the
function can be approximated as a linear equation. Since
the softmax function will always redistribute all output val-
ues between 0 and 1, the approximation will not affect the
prediction accuracy.

The hardware design for the exponent unit is shown in
Fig. 11. It includes a single 16-bit multiplier, two adders,
and one sifter in this architecture. The result of the exponent
module is stored in the output BRAM after the accumulation
(denominator of (11)). After all exponent calculations have
been performed for all output nodes, the exponential values
are read from the MB. The division unit performs the final
division to get the final softmax result.

The division operation in (13) is performed after calcu-
lating the sum of the exponent values of the output nodes.
Suppose O represents the exponent value of any given out-
put node, and P represents the sum of all exponents of the
output layer nodes. Then, the final softmax value (Q) for
node E can be calculated as follows;

=7

To reduce hardware resources, the division operation uses
only shift and subtraction operations in pipelined mode.

13)
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FIGURE 13. Block diagram for the hardware architecture of the loss function.

Fig. 12 shows the hardware architecture of the division mod-
ule. In the sign bit of floating-point operation, we use the
XOR logic gate to determine the positive and negative sign.
In the exponent part, we mainly perform phase subtraction
and then add bias. In the processing of mantissa, we use shift
and subtractor to implement the divider. Our practice is simi-
lar to the concept of long division. Although the disadvantage
of this is that it takes 20 cycles to get an output value, the
advantage is to save hardware resources and achieves the
effect of increasing the overall frequency.

Since the proposed processor is used for image classi-
fication tasks, the cross-entropy loss function used in the
proposed processor can be defined as follows.

C
CE=— Z #; In(S;) (14)

where ¢; is the ground truth value and S; is the output value
after the softmax function of each class in the C classes of
the DNN model.

To obtain the loss values for the training stage, we cal-
culate two values in this module: loss per round and loss
per batch. Where loss per round is the loss value generated
when training a DNNs model once. The loss per batch is
the average loss value when training a specified number of
times. For example, if batch size (BS) is equal to 4, then
each round loss is generated four times, and per batch loss is
generated using an average loss value based on each round
loss. If the DNNs model is being trained for class C, then
only one training image and one ground truth is provided
per training round. It is known from (14) that for the class
with zero ground truth, i.e., #i = 0, the loss value will be 0.
Therefore, in the proposed processor, when f; = 1, only one
loss value is calculated for the single class in class C, which
can save C-1 calculations of loss values in each training
round.

Fig. 13 shows the overall block-level hardware architec-
ture of the proposed cross-entropy loss processing. The input
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Algorithm 1 Fast Binary Logarithm Algorithm

1. x < Input Data
2. Initialize b=16"h3f00 and log_2_result=16"h0000
3. while(x<(16°h3£80))
X<«Xx+(1<<8)
log_2_result <—(log_2_result -1)
4.7 < X
5. for (i=0; i < 7; i4++)
7 < 7
if(z>= (16’h4000))
7z <« 72>>1
log_2_result < log_2_result +b
b <« b-(1<<8)
6. Output log_2_result

Batch Num

New
Weight Data

16 16
Learning Rate \ Weight Previous
Gradient Weight Data

FIGURE 14. Proposed hardware design for Weight Update.

data from the softmax module results are in a 16-bit brain
floating point format. In the first stage, the logarithmic func-
tion is computed in the “log2” module. In the second stage,
the output of the logs unit is processed in the Divider mod-
ule, which is a division of the logye parameter. In the final
stage, we convert the result of the division output value by
a positive and negative sign.

The fast binary logarithm [36] has been implemented for
the high-speed design of log functions for loss calculation.
The fast binary logarithm [36] benefits from high-speed
and simple hardware architecture as it can be implemented
efficiently with the pipelined-based design. Algorithm 1
shows the pseudo-code of a fast binary logarithm [36]. In
Algorithm 1, precision represents the precision required for
the decimal points. In the proposed design, 16-bit brain float-
ing point numbers are supported where 1-bit sign bit, 8 bits
are exponent, and 7 bits are mantissa bit. So the precision will
be 7 based on mantissa for log calculation using Algorithm 1.

Figure 14 illustrates the weight update process in the WU
module. The module is based on (4). First, the BS of the con-
figuration register is converted to the reciprocal of the BS
through the LUT register. For example, if BS = 4, the LUT
conversion will result in a quarter (16°’h3e80). Second, the
result of the reciprocal is multiplied by the learning rate.
Third, it multiples the accumulated weight gradient with the
above result to get the updated weight error value. Finally,
the old weight value is subtracted from the updated weight
error value to obtain the new weight value. All computing
units in this module use the sequential circuit to achieve
high frequency.

E. MEMORY BANK (MB)

The memory bank (MB) is responsible for storing data trans-
ferred from external memory and different modules of the
proposed processor. The MB is composed of 768KB of
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TABLE 1. Comparison of N-bit floating point add/subtracter.

N-Bits Common Name Power (mW) Area (um?)
16 (1,5,10) Half-Precision [28] 0.403 485.352
16 (1,6,9) DLFloat [29] 0.348 474919
16 (1,8,7) Brain Float [32] 0.287 466.074
19 (1,8,10) TF-32 [31] 0.352 554.299
22 (1,6,15) Flexpoint [30] 0.737 772.027
32(1,8,23) | Single-precision [28] 0.901 1134.907

TABLE 2. Comparison of N-bit floating point multiplier.

N-Bits Common Name Power (mW) Area (um?)
16 (1,5,10) Half-Precision [28] 0.508 641.844
16 (1,6,9) DLFloat [29] 0.443 578.113
16 (1,8,7) Brain Float [32] 0.315 447.476
19 (1,8,10) TF-32 [31] 0.531 680.399
22 (1,6,15) Flexpoint [30] 1.047 1185.257
32 (1,8,23) | Single-precision [28] 2.127 2157.321

BRAM, and the memory capacity is divided into three main
blocks to store different data types. The weight BRAM is
256 KB and is responsible for storing the weight values
required for FP and error/delta calculations. The input fea-
ture BRAM is 256KB. It is responsible for storing the input
features from external memory and the node results of FC
layers and is also used to store the weight gradient when
performing weight updates. The output BRAM is 256KB. It
is responsible for storing the results of the CCU calculation,
including the partial sum of each node of the FP, the weight
gradient, and the error/delta value of the BP.

IV. EXPERIMENTAL RESULTS
This section provides detailed experimental results and
comparisons with other works.

A. COMPARISON OF FLOATING-POINT ARITHMETIC
OPERATORS

Since we have investigated several floating-point computing
formats, here we analyze these floating-point computing for-
mats evaluated with their digital circuits. Our design environ-
ment is on the Design Compiler provided by Synopsys. Here
we use TSMC 40nm process technology and 200MHz oper-
ating frequency for evaluation. Table 1 shows the synthesis
results for floating-point adder/subtractor with different bit
widths. The floating-point format for each bit width is rep-
resented by N(S, E, M), where N denotes the total number
of bits, § is the sign bit, E is the exponent bit, and M is the
mantissa bit. It shows that the 16-bit floating point format
will get a smaller area and power consumption than single-
and half-precision. Also, the brain floating point format can
get the lowest area and power consumption.

Table 2 shows the synthesis results for floating-point
multipliers with different bit widths. As shown in Table 2,
the fewer the number of mantissa bits used in floating-point
multiplication, the smaller the area and energy consumption.
Also, the brain floating-point format has the smallest area
and power consumption under the same condition of 16-bit
length.
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TABLE 3. DRAM access comparison between the original and use sparsity of TABLE 6. Overall hardware specifications.
AlexNet.
DRAM P?rameter Description
In/Out [16] Proposed | Zero in Access Working Frequency 200 MHz
Layer Chamnels Method Method Ifmap Reduction Number of PEs 256
(MB) (MB) (%) Ratio Power Consumption (W) 6.444"
Fp- Arithmetic Precision 16-bits BFP
FCI 9216/4096 72.0254 26.654 63 63% Throughput (GOPS) 102.43
FP- Energy Efficiency (GOPS/W) 15.895
Foy | 409614096 32.016 9.61 70 70% Suppported Layers (Inference) FC
FP- Supported Layers (Training) FC
FC3 4096/1000 7.8222 274 65 65% Loss Function Cross Entropy Loss
BP- . Activation Functions ReLU
FC3 | 10004096 | 23455 | 13.294 43.33% Maximum Enochs Any number. No
BP- o p limitations
FC2 4096/4096 96.0234 17.933 81.37% Batch Size 1~32
BP- o FC1 1~4096
FCl 4096/9216 144.0254 15.993 89.9% FC2 14096
Maximum Outputs Calssification for 1000
. . . normal DNN model
322:.: 4. DRAM access comparison between the original and use sparsity of Softmax Support Yes
) *: Include processing system (PS) power
In/Out [16] Proposed | Zero in I[iRAM .
Layer Channll:ls Method Method Ifap Re(;f:tsifm TABLE 7. Resource usage of the proposed design on ZCU104.
0,
(MB) (MB) (%) Ratio Resource Utilization Available Usage
lfgl 25088/4096 196.056 29.415 85 85% LUTs 73622 230400 31.95%
1552 4096/4096 32.016 9.61 70 70% LUTRAMS 983 101760 0.97%
FP- Flip-flops 26832 460800 5.82%
FC3 4096/1000 7.8222 2.35 70 70%
Bp DSP 1285 1728 74.36%
R 0,
FC3 1000/4096 23.455 12.512 46.66% BRAMS 220 312 7051%
Egé 4096/4096 96.0234 15.3725 84% BUFGs 3 544 0.55%
DR | 409625088 | 392056 | 17.649 95.5%

TABLE 5. DRAM access comparison between the original and use sparsity of
MobileNet-V1.

[16] Proposed | Zero in DRAM
In/Out Access
Layer Channels Method Method Ifmap Reduction
0,
MB) | (MB) | (%) o
Ifgl 1024/1000 1.957 0.784 60 60%
BP- o

FCl 1000/1024 3.91 1.565 60%

B. MEMORY ACCESS ANALYSIS

We adopt the technique proposed by [16] for reducing
memory accesses in the backpropagation stage and combin-
ing it with a sparsity compression scheme. These techniques
also reduce the number of external memory accesses.
Table 3, Table 4, and Table 5 show the analysis of memory
accesses for different layers in AlexNet [1], VGG16 [3], and
MobileNet-V1 [37] respectively. DRAM accesses include the
accesses to read input feature nodes, output feature nodes,
weights, and weight gradients. We use the ImageNet [1]
dataset to analyze DRAM accesses. Here, we set the batch
size to 1 and epoch to 1. Table 3 to Table 5 shows that the
fully connected layer has many parameters that need to be
accessed from DRAM and sent to the PL side for numerical
computation. Since the activation function by ReLU turns
negative values to 0, we can reduce the number of DRAM
accesses by skipping some weights with input values of 0. In
forward propagation, the weights are only used to calculate
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the output of the hidden layer. While in backward propaga-
tion, the weights are used to calculate the delta value of each
layer and get the new weight value so that more DRAM
accesses are needed in backward propagation. Compared
with [16], our proposed method can reduce DRAM accesses
by 43.33% to 95.5% in forward and backward propaga-
tion. It can be seen that higher network sparsity leads to a
higher compression rate, which results in better processor
performance because fewer data needs to be accessed from
DRAM. Since we reduce the DRAM accesses for some use-
less parameters, we can speed up the computation during
the inference and training stage.

C. OVERALL HARDWARE SYNTHESIS RESULTS

Table 6 shows the different attributes of the proposed chip
design. We use 256 PEs and brain floating point precision
format in the proposed design. Our design can support the
inference and training mode for FC layers (FC1 and FC2).
The FC1 and FC2 layers are designed in a reconfigurable
way. They can support 1~4096 nodes, the output layer can
support up to 1000 classes, batch size can support 1~32,
and epoch can support any number. We also support softmax
and cross-entropy loss functions so that we can end-to-end
train the images for image classification.

The proposed design has been implemented in Verilog
HDL and synthesized for Xilinx ZYNQ UltraSacle+MPSoC
ZCU104 FPGA where we use Vivado 2020.1 as the develop-
ment environment. The hardware utilization of the proposed
design is shown in Table 7. Our design utilizes 73622 LUTs
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TABLE 8. Layer by layer execution times for AlexNet on ZCU104.

Zero in Time w/o Time w/ sparse Average
Input Filter Output sparse W/ Sp: Reduction verag
Layer . . Parameters Ifmap . compression . throughput
size size node o compression ratio
(%) (ms) (ms) (GOPS)
FP-FC1 256x6x6 1x1 4096 37,748,737 63 440.49 168.19 62.82% 88.24
FP-FC2 | 4096x1x1 1x1 4096 16,777,217 70 188.95 59.72 68.4% 87.8
FP-FC3 | 4096x1x1 1x1 1000 4,096,000 65 52.35 22.1 57.8% 88.44
BP-FC3 1000x1x1 1x1 4096 8,192,000 143.475 81.98 42.86% 92.53
BP-FC2 | 4096x1x1 1x1 4096 33,554,434 614.25 120.67 80.36% 92.91
BP-FC1 | 4096x1x1 1x1 9216 75,497,474 920.44 106.36 88.44% 88.78
Total 2359.955 559.02 76.32% 89.87
TABLE 9. Layer by layer execution times for MobileNet-V1 on ZCU104.
Zero in Time w/o Time w/ sparse Average
Input Filter | Output sparse WISp: Reduction &
Layer . . Parameters Ifmap . compression . throughput
size size node compression ratio
(%) (ms) (GOPS)
(ms)
FP-FC1 512x7x7 1x1 4096 102,760,448 85 1255.6 200.62 84.02% 88.81
FP-FC2 | 4096x1x1 1x1 4096 16,777,217 70 187.68 62.01 66.95% 87.72
FP-FC3 | 4096x1x1 1x1 1000 4,096,000 70 52.41 20.68 60.54% 89.34
BP-FC3 1000x1x1 1x1 4096 8,192,000 142.92 79.38 44.45% 92.49
BP-FC2 | 4096x1x1 1x1 4096 33,554,434 619.41 102.99 83.37% 92.99
BP-FC1 | 4096x1x1 1x1 25088 205,520,896 2495.32 114.12 95.43% 88.72
Total 4753.34 579.8 87.8% 89.36

and 26832 flip-flops. Moreover, the implementation design
can achieve an operating frequency of 200MHz. We also use
the Vivado Tool to analyze the power consumption of the
proposed hardware architecture. The total power consump-
tion was 6.444 W. The dynamic power consumption was
5.729 W, while the static power consumption was 0.715 W,
and the power consumption of PS accounted for 45% of
the dynamic power consumption, followed by 19% of the
logical computing unit. According to the data flow, we use
70.51% of the BRAM resources on ZCU 104 to complete
this SoC architecture design.

D. PERFORMANCE OF HARDWARE ARCHITECTURE
Tables 8 to Table 9 show the execution times of the
proposed hardware architecture on ZCU104 for AlexNet [1],
VGG16 [3], and MobileNet-V1 [37] respectively. Here we
provide the execution time with two designs, one with and
the other without the sparse compression method. Comparing
the sparse mode to the dense mode, we add the data spar-
sity encoder and decoder module before the memory bank
to prevent the storage of zero values. These values are not
worth further computation since the computation will always
result in zero. The remaining values are reordered in the
encoder and decoder module and stored inside the memory
bank afterward. Thus, the PE array can handle sparse data
in the same way as dense data.
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We used the ImageNet [1] dataset to train the FC layer
network. Here, the batch size is set to 1, and the epoch
is set to 1. Due to the nature of the fully connected layer,
when the hidden layer is large, many weight parameters need
to be transferred from external memory to on-chip memory
for computation. If a sparse approach is used, a signifi-
cant amount of transfer time can be saved. From Table 8
to Table 9, we can see that it takes more time to perform
backpropagation. It is mainly because, in backpropagation,
we need to calculate the Delta/Error value for each layer,
the weight gradient value for each weight, and update each
weight using the weight gradient. Tables 8 to 10 shows that
the execution time can be reduced by 32.45% to 95.43%
using our proposed sparsity approach.

We use the PYNQ framework to complete the overall
design as the SoC. In the overall system design, it takes
much time to start the DMA where it transfers the data
from PS to PL or to transfer the result from PL to PS.
We found that it takes most of the execution time to start
the DMA and send the data to the ZCU 104. If the spar-
sity in the network is exploited to reduce the number of
weights transferred, the number of initiating DMAs can be
reduced and the execution time required for each layer can
be reduced. In Tables 8 and 10, the first layer has the largest
number of weights so it takes more execution time to exe-
cute the forward and reverse propagation of the first layer. In
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TABLE 10. Layer by layer execution times for VGG-16 on ZCU104.

Zero in Time w/o Time w/ sparse Average
Input Filter | Output sparse WIS Reduction verag
Layer h . Parameters Ifmap . compression . throughput
size size node o compression ratio
(%) (ms) (GOPS)
(ms)
FP-FC1 1024x1x1 1x1 1000 1,024,000 60 17.69 11.95 32.45% 92.4
BP-FC1 1000x1x1 1x1 1024 2,048,000 25.7 14.234 44.62% 89.11
Total 43.39 26.184 39.65% 90.43
TABLE 11. Comparison with other works.
2016 2017 2019 2021 2021 .
This Work
[5] [8] [17] [10] [18]
Maxeler . Zynq ZYNQ ZYNQ
Platform ZU19EG Stratix 10
MPC-X XC72100 ZCU 104 ZCU 104
Frequency 100 MHz 200 MHz 240 MHz 150 MHz 100 MHz 200 MHz
Arithmetic X .
. FP 32 FP 32 Fixed 16 Fixed 16 FP 32 BFP 16
Precision
BRAM
510 174 10.6 679.5 304 220
(36 Kb)
DSP 23 1500 1699 64 12 1285
FF 87580 466047 46690 219372 26832
LUT 69510 329288 20800 40492 169143 73622
Power (W) 27.3 14.24 20.6 2.5 0.67 6.444
Throughput
62.02 86.12 19.2 4.39 102.43
(GOPS)
Energy
Efficiency 2.272 6.05 7.68 6.55 15.895
(GOPS/W)

Table 9, since MobileNet-V1 uses only one layer of the fully-
connected network and only 1024 input features, the number
of weight parameters is significantly less than AlexNet and
VGG16. This eliminates the need to start the DMA on the
PS side multiple times to pass the weights, resulting the less
execution time.

E. COMPARISON WITH RELATED WORKS

Table 11 shows the comparison of the proposed accelerator
with the existing FPGA accelerators in terms of resources,
power consumption, and operational performance. The power
data is obtained after the FPGA synthesis results, while the
throughput information is calculated by multiplying the clock
frequency with the number of operations that will be com-
puted in one clock cycle. Due to the different board models of
FPGAs, different training accelerators present different per-
formances. For comparison purposes, the evaluation metric
is energy efficiency (GOPS/W). Our design can reach 102.4
GOPS at an operating frequency of 200 MHz. Compared
with floating-point works in [5], [8], and [18], our design
achieves higher energy efficiency. Although the proposed
hardware architecture can only handle forward propagation
and backward propagation of fully connected layers, our
architecture supports softmax and cross-entropy loss func-
tions for the complete training of image classification tasks.
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The proposed hardware design achieves better performance
compared to the works of [10] that supported training and
inference of only FC layers. The proposed processor achieves
2.14x higher energy efficiency than [10]. The training accel-
erator in [17] uses a batch size of 10 to process more image
data in parallel, thus reducing the energy consumption per
image. However, in [17], they use a batch size of 1 and
it leads to higher energy consumption by the additional
latency imposed on DRAM with frequent weight updates.
With the advantage of high energy-efficient performance,
our proposed architecture is more suitable for deployment
on mobile devices.

V. CONCLUSION

This paper presents a training processor that performs the
training and inference phases of the FC layer. The proces-
sor uses a 16-bit brain floating-point computation format
to achieve a high-performance hardware design while sup-
porting sparse data. Our proposed hardware architecture can
support forward and backward propagation of fully con-
nected layers with a complete training mechanism. We can
also reduce the number of DMA reads by expanding the
number of PEs and the BRAM usage according to the hard-
ware resources of the development board. The final design is
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implemented on the Xilinx ZCU104. The synthesis result of
256 MACs can reach 102.4 GOPS at an operating frequency
of 200 MHz. We design the architecture in a reconfigurable
way to support a different number of nodes, classes, batch
size, and the epoch. As long as the parameters in the config-
uration registers are set at the beginning, end-to-end training
is possible. Our architecture also can transfer fully connected
layers to other types of layers since we can compute the con-
volution layers by transferring the convolution operation to
matrix multiplication with the im2col method. In the future,
the processor will be extended to support 2D convolution
and Recurrent Neural Networks to support multiple types of
training on a single chip.
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