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ABSTRACT This paper proposes a method of transferring physical continuous and switching/converter
circuits working in continuous conduction mode (CCM) and discontinuous conduction mode (DCM) to
graph representation, independent of the connection or the number of circuit components, so that machine
learning (ML) algorithms and applications can be easily applied. Such methodology is generalized and
is applicable to circuits with any number of switches, components, sources and loads, and can be useful
in applications such as artificial intelligence (AI) based circuit design automation, layout optimization,
circuit synthesis and performance monitoring and control. The proposed circuit representation and feature
extraction methodology is applied to seven types of continuous circuits, ranging from second to fourth
order and it is also applied to three of the most common converters (Buck, Boost, and Buck-boost)
operating in CCM or DCM. A classifier ML task can easily differentiate between circuit types as well
as their mode of operation, showing classification accuracy of 97.37% in continuous circuits and 100%
in switching circuits.

INDEX TERMS Electric circuit, bond graph, graph neural networks (GNN), machine learning.

I. INTRODUCTION

AI ALGORITHMS are used to model computationally
complex systems or systems/processes with significant

parameter uncertainties. Modern improvements in compu-
tation resources enable the incorporation of AI algorithms
in power converter design and control. Complex nonlin-
ear problems such as thermal and electromagnetic designs,
modeling of layout parasitics and estimation of compo-
nent stresses under different operating conditions are some
areas where AI algorithms can significantly simplify and
optimize the design process. [3], [4], [5], [6]. Power
electronics applications of ML have focused on control,
component design and maintenance [7]. ML-based surro-
gate/black box models are used for online prediction tasks

to reduce computational effort, memory and power used by
classical simulation/mathematical-based models [7]. Design
optimization is an additional target as ML models obtain the
optimal target without compromising other design constraints
or trade-offs of design, which is known in its mathemati-
cal formulation as Pareto front [8]. ML-based circuit design
should be able to reflect circuit component connectivity as
well as the effect of varying the values of these components.
In [9] a graph representation of circuits with a combined fea-
ture map for input and output nodes was proposed. However,
it does not represent details of component types or con-
nectivity, rather it is just a numerical input/output transfer
characteristic of the circuit. Reinforcement Learning (RL)
was introduced in [10] to optimize passive component values.
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An updated version of the RL agent was presented in [11],
where the RL-based optimization algorithm is used to opti-
mally size transistors. In this case, based on a given design
flow, the RL algorithm updates the node embedding in
Graph Neural Network (GNN) representation of the circuit
to maximize the cost function. One-hot encoding is used to
represent transistors, in addition to other internal parame-
ters, which are passed as features to a Graph Convolution
Network (GCN) to extract node embedding. Despite the
simplicity of this approach, it is incorrect and does not guar-
antee a solution in the inverse problem. In other words, in
circuit synthesis/generation problem, there is no guarantee
that the circuit synthesis neural network can transform the
generated graph to a physically realisable circuit. Existing
methods do not provide a systematic way of circuit feature
embedding in GNNs. These models have several limita-
tions including scalability of circuit size (number of nodes
and/or components), mapping connectivity and identifying
component types within the circuit. This paper proposed
a systematic approach for electric circuit representation to
enable use of ML design or performance prediction tools.
This method has the benefits of being scalable and topology
agnostic. In this paper the following key contributions are
proposed:

• A comparative review of different research attempts
in mapping circuits to ML domain including cir-
cuit representation techniques, feature assignment,
intended task and how components and connections are
represented.

• Proposing three possible circuit representation tech-
niques, listing the advantages and disadvantages while
providing mathematical reasons for technique selection.

• The circuit representation includes different circuit
element types and circuit connection types, without
indulging the concept with numerical tuning or the
empirical hyper-parameters optimization of ML.

• Proposing a unified (applied to all circuit elements) node
feature assignment algorithm, irrespective of number of
connections present in circuit or circuit order, while
combining the feature maps of the nodes to generate
the feature map for the whole graph in a GNN.

• Proposing a dataset generation algorithm, that is easily
applicable to the ML task or application, capturing cir-
cuit performance variables of interest in a standardized
data format that can be used in ML problems.

• A proof of concept classifier problem applied to vari-
able structure continuous circuits or switching circuits
operating in CCM or DCM is presented. The target
ML task covers a wide range of possible tasks or even
a combination of tasks including regression, classifica-
tion and clustering tasks, whether it is supervised or
unsupervised tasks.

The proposed mapping approach enables a wide range of
possible ML tasks or a combination of tasks including
regression, classification, clustering, and synthesis of power
electronic converter circuits.

II. PROBLEM DESCRIPTION
Neural networks can construct model from training data after
being processed in order to obtain features to characterize the
built model. In the case of electrical circuits, the process does
not have an established methodology or criteria. Problems
with interfacing electric circuits to ML tools are highlighted
in this section, while different solutions are proposed in next
section.

A. CIRCUIT STRUCTURE REPRESENTATION PROBLEM
The main problem faced when circuits are to be fed to
a NN is the fixed size input layer, which has a defined
dimension, invalidating the scalability requirement. The
workaround proposed in [12] pre-processes a matrix con-
sisting of multiple vectors representing circuit components,
so that the input to the Convolutional Neural Network (CNN)
is of a fixed size. Eventually, this workaround added more
computational overhead and increased training time and com-
putational resources. Moreover, from a circuit standpoint, it
is an incomplete circuit model because it has no explicit rep-
resentation of the circuit structure or the dynamic behaviour
or circuit elements interactions. In this paper we lay some
foundations on how the physical properties of an electric
circuit can be mapped to ML space, as follows:
1) Circuit performance is independent of circuit entering

order or elements order variation as long as the connec-
tion is kept invariant (isomorphic circuits). This makes
the circuit representation Permutation Invariant.

2) Circuit connectivity (series or parallel connections) and
circuit elements values define the circuit performance.

3) Circuits may have any numbers of elements and has
no upper boundary.

4) For circuits of similar input/output response (e.g.,
dual circuits [13]), circuit type/connection will be the
identifying factor in each case.

The realization of the last three definitions necessitates that
the ML input layer be independent of the size of the input
dataset. Hence, the representation becomes Scalable.

B. DATASET EXPRESSIVENESS PROBLEM
Machine learning algorithms gain knowledge by iterative
training. Datasets contain standardized/normalized data
according to the nature of the ML task. Neither a gener-
alized and confirmed methodology to handle circuit datasets
nor a feature extraction/definition algorithm are defined that
independently capture the circuit topology and the effects of
component variation. More importantly, a clear measure of
dataset expressiveness is absent. Given the circuits in Fig. 2,
every class has identical component count however, their
performance is different and depends on component values,
especially at resonance, and the dataset should indicate that
difference.

C. NEURAL NETWORK TOPOLOGY PROBLEM
The physical circuit topology and the influence of parameter
variation on its output variables must be clearly expressed
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by the selected NN topology. As an example, same circuit
performance, can be obtained by using dual components [13].
In [14] a model of similar purpose employs CNN and takes
placement images as its features. Arguably, Graph Neural
Networks (GNN) are superior in capturing the netlist topol-
ogy, which is a graph. Moreover, GNN is more efficient
in feature encoding. For instance, the shape of a transistor
can be represented by two real numbers (width and height)
in GNN while it requires an array of pixels for CNN. The
spatial features can be easily embraced in GNN by taking
the location coordinates as features, which are motivations
to take the GNN approach.

III. REVIEW OF CIRCUIT REPRESENTATION
TECHNIQUES
This section offers all possible solutions to presented prob-
lems in Section II, and highlights the flow of work and
derivations made from initial problem statements and better
explains available solutions by offering detailed comparisons
between them. There has been a lot of attempts to bet-
ter represent circuits in ML domain, which are thoroughly
explained in this paper. Moreover, the paper will also high-
light why solutions offered are insufficient, ungeneralizable
and empirical solutions, which either require fixed layout,
huge datasets or extensive training and very complex models.

A. CIRCUIT REPRESENTATION METHODOLOGIES
The main problem is to properly encode circuit problem
into computer interpretable form, which has been addressed
by three modelling techniques, i.e., graph theory, Y-Matrix
and Bond graph [15], [16], [17]. A brief is given on every
modelling technique, with an expanded illustration on the
one used in this paper, wile a comparison between the merits
and disadvantage of three modelling techniques are listed in
Table 2.

1) GRAPH THEORY REPRESENTATION

Graph theory is a mathematical tool used to model complex
systems in a simplified way. In the field of power electronics
and converters, graph theory has proved to be a powerful
tool for representing and analyzing the complex network of
components and their interactions.There have been numerous
studies in the literature which use graph theory to represent
power electronics and converters [18]. The use of graph the-
ory to represent power electronics and converters has several
advantages. Graphs provide a concise and intuitive way to
represent the components and their interactions. Furthermore,
graph algorithms can be used to analyze the system and
identify system faults. However, the use of graph theory to
represent power electronics and converters also has some
limitations. Graphs are limited in their ability to represent
complex systems with many components, as the number of
nodes and edges increases, the graph becomes cluttered and
difficult to interpret. In addition, graph matrices are usually
very large and computationally intensive, making it difficult
to obtain simulation results in real-time. This can result in

inaccurate or unsatisfactory results [19]. Furthermore, due to
the complex relationship between the different components in
the power system, the graph model may not be able to accu-
rately represent the real-world system, leading to incorrect
results [20]. Graph theory cannot account for nonlinearity
and non-smoothness. Power electronic converters are non-
linear systems and their circuits may contain high-frequency
harmonics, which is difficult to capture using graph the-
ory [21]. Finally, when using graph theory to model a power
electronic converter, the system needs to be linearized, which
may neglect certain important nonlinear effects. This can lead
to incorrect results and further limitations to the accuracy of
the model [20].

2) Y-MATRIX REPRESENTATION

The admittance matrix is a powerful tool used to repre-
sent power systems and power electronic converters. This
method of representation has been used since its inception
in the 1960s, and continues to be an efficient and novel
way to model electrical systems. The admittance matrix is a
complex quantity that describes the relationship between the
voltage and the current in an electrical network. It consists of
a matrix whose elements are admittances of electrical compo-
nents such as resistors, capacitors, and inductors [22]. This
relationship between the voltage and the current provides
a useful representation for solving electrical circuit prob-
lems [26]. The admittance matrix has been used for many
applications such as transient analysis and stability analysis.
In particular, it has been used to study power systems [23]. In
power system analysis, the admittance matrix can represent
the components in the power system such as transmission
lines, transformers, and loads, which can be analyzed in
both the frequency domain and the time domain [24]. The
advantage of the admittance matrix is that it is computation-
ally efficient and provides a concise representation of the
wide range of power system components [25].The admittance
matrix has also been used for analyzing the stability of power
electronic converter systems [26]. Power electronic convert-
ers are devices used to convert AC power to DC power or
vice versa, and they generally consist of power switches,
capacitors, and inductors [27]. Using the admittance matrix,
the stability of the power electronic converter can be accu-
rately analyzed in the frequency and time domains [28]. This
method of representation is relatively old but can provides
for accurate and efficient simulations of power electronic
converters.
In a preliminary attempt of this work, different circuits

were modelled utilizing Y-bus admittance matrix, where
nodes represented buses and admittances serve as node
features, while edges represent whether a connection is estab-
lished between nodes. Fig. 1 shows a three and four element
bus systems and its equivalent Y-bus admittance matrix and
the corresponding features. However, this representation was
proven to be non expressive based on the fact that it is not
uniformly scalable, i.e., a three and four element (admit-
tances) systems can both have the same number of nodes,
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TABLE 1. Bond graph terminologies [34].

FIGURE 1. Early attempt of converting circuit to graph by using Y-Matrix.

which in this case is two, hence losing a very important fea-
ture in graph notation. This is because the branch elements
are lumped together into a single equivalent admittance mak-
ing it impossible to distinguish between different elements.
Moreover, with this representation, the change in node fea-
ture values doesn’t discriminate between whether a new
element is added or component value has changed.

3) BOND GRAPH REPRESENTATION

Bond graphs (BG) were proposed as a graphical language
and systematic representation, to overcome limitations of
block diagram models [29]. Using BG, a circuit can be
modeled as bonds during all possible series and parallel
connection permutations and combinations. Two key model
elements were devised the 0 junction that is used to represent
a parallel connection and 1 junction for series connec-
tions [29], [30]. In addition to electric circuits, this approach
can be extended to mechanical and chemical models as well
[31], [32], [33]. The BG representation capturing the dynam-
ics of a system is based on transforming (mapping) system
components to their BG model counterparts. The bond graph
analogies used to describe physical systems in the form of
bonds and paths are listed in Table 1.

Bond graphs in opposition to transfer function which
are behavioral models, belong to the class of structural
models. Controllability and structural observability are appli-
cable to BG, which are structural properties of models [37].

Moreover, it was proven in [36] that BGs are structurally
identifiable, which allows a unique set of parameters to
associate with given input/output response. In other words,
bidirectional transformation governs circuit to graph and
graph to circuit transformation and hence, graphs generated
from ML algorithms can be translated into a circuit if they
match structural identifiability criterion.

IV. REVIEW OF NEURAL NETWORK TOPOLOGIES
A. CLASSICAL NEURAL NETWORK TOPOLOGIES
Linear regression, random forest (RF) and artificial neu-
ral networks (ANN) are classical regression models used
as attempts for regression tasks. For classification tasks,
support vector machine (SVM), K-Nearest-Neighbor (KNN)
algorithm and RF are used. Convolutional neural network
(CNN) and recurrent neural networks are extensively used
in ML tasks. CNN models are composed of convolutional
layers and other basic blocks such as non-linear activation
functions and down-sample pooling functions. While CNN
is suitable for feature extraction on grid structure data like
2-D image, RNN is good at processing sequential data such
as text or audio [38] due to their ability to leverage sta-
tistical properties of the image as Euclidean data such as
stationarity and compositionality through local statistics. On
the contrary, non-Euclidean data has no familiar properties
as global parameterization, common system of coordinates,
vector space structure, or shift-invariance. Operations like
convolution that are taken for granted in the Euclidean case
are even not well defined on non-Euclidean domains [39].
From that prospective, it is necessary to use an ML topol-
ogy that can better represent non-euclidean structures like
electric circuits.

B. GRAPH NEURAL NETWORKS
GNNs are composed of definite function layers, but unlike
other neural networks, the input is a graph. Acyclic, cyclic,
directed, and undirected graphs can be processed by GNN as
was stated in the first GNN model in [40]. Scalablity and per-
mutation invariance are unique properties in GNNs allowing
input layer to be variable while graph node re-ordering will
not affect the NN layer output, which satisfies the require-
ments needed for physical circuits representations. RNNs and
GNNs, capable of directly processing graphs with labeled
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TABLE 2. Comparison between different circuit representation techniques.

nodes and edges. An image classification task showed that
GNNs outperforms RNNs, both in terms of accuracy and
error rate [41]. Convolution operation on graphs is defined
by spectral and spatial operations. In [42], spectral-based
GCNs was proposed, which used the spectral graph theory
to develop a new variant of graph convolutional operation.
Graph mutual dependence complexity was solved using non-
recursive layers presented in [43]. Moreover, spatial GCNs
have been developed based on the fact that spectral GCNs
are difficult to extend to large-scale graphs [44]. This makes
GNNs suitable for circuit representation.

1) GRAPH DEFINITION

Graph G is a defined as (V, E) with V the set of ver-
tices/Nodes equals v1, . . . , vN , while set of Edges E � V×V .
Let N and M be the number of vertices and edges, respec-
tively. Each graph can be represented by an adjacency matrix
A of size N N: Ai,j = 1 if there is an edge from vertex vi
to vertex vj, and Ai,j = 0 otherwise. Every edge has a set of
edge features e.

V. REVIEW OF CIRCUIT REPRESENTATION AND DESIGN
USING GNN
In [45] it was shown that the most intuitive way to represent
circuit, netlists or layouts is graph representation. It was also
stated that graph neural networks (GNNs) are an opportu-
nity replace shallow methods or mathematical optimization

techniques, and Table 3 shows the state of the art circuit rep-
resentation trials. Many research has utilized GNN in circuit
optimizations/classification operations and in many appli-
cations like transistor sizing, capacitor value optimization
and many more. In [46], [47], the model leverages rein-
forcement learning (RL) to learn the optimal policy for best
parameter selection by rewarding the model for the best
Figure of Merits (FOM) composed of several performance
metrics. The circuit is embedded into a graph whose ver-
tices are components and edges are wires, while generating
a vector for each transistor and passing the graph to the
RL agent. Finally, the RL agent processes each vertex in
the graph and generates an action vector for each node,
then process the graph with an action vector with the pur-
pose of maximizing the reward. Reference [48] proposes
a model that solves the forward and inverse problems. In
which, the model maps a given circuit to the corresponding
transfer function and vise versa. Inversely, the model uti-
lizes gradient descent to optimize the circuit parameters to
produce a transfer function. The model leverages the differ-
entiable nature of the neural network and applying gradient
descent methods to optimize the input parameters of the neu-
ral network. However, the neural network is trained for a
particular circuit topology, and hence cannot be used for gen-
eral circuit representation, in addition to the lack of switching
circuit representation. Moreover, [9] proposed a technique
for combining the feature maps of the nodes to generate the
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TABLE 3. Review of circuit representation in previous research.

feature map for the whole graph in a GNN. By propagating
information from nodes to nodes representing input and out-
put instead of pooling operation. The paper represents graphs
as a concatenations of the feature maps of the input and out-
put nodes. In resonator circuits applications, [9] introduced
a model that learns to simulate electromagnetic properties
of distributed circuits. Circuit were mapped on system level
basis, such that each node refers to a resonator and each edge
refers to the interaction between a pair of resonators (i.e., the
electromagnetic coupling) between a pair of resonators. This
representation does not incorporate the resonator internal

structure or if the system had different resonators with differ-
ent characteristics. By propagating information from nodes
to nodes, while representing circuits as concatenation of
input and output node features instead of pooling operation,
regression task is utilized to obtain predictions about circuit
performance. On the other hand, feature concatenation is not
the correct technique to represent circuit. Feature concate-
nation is a numerical representation of circuit inputs and
outputs that properly tuned by minimizing the loss function.
Attempts has been made to include different circuit topolo-
gies and obtain predictions as in [49], where two circuit
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types were included in the study: the ladder circuits and two
stage operational amplifier circuits, with 20k training data
instances of resistor ladders with 2 to 10 branches with equal
distribution weight. The model is based on DeepGEN archi-
tecture and was able to make predictions on ladder circuits
with higher number of branches. However, the model’s abil-
ity to generalize and applicability to other circuit topologies
and types remain questionable. Moreover, no clue was given
on how to distinguish connection type, and its effect on cir-
cuit performance. Moreover, the representation was limited to
transistors, without the inclusion of other circuit parameters
or elements (Transistor/resistor/voltage sources, .. etc). Also,
no guidelines/rules were given on how to model circuit ele-
ments properties like frequency, phase shift, .. etc. One major
drawback in this representation is the elements with multiple
terminals like transistors are represented as four connected
nodes, which can cause unnecessary excessive computations.
In [50], heterogeneous GNN were utilized to construct a
graph based on a circuit schematic, where each device (tran-
sistor, resistor, capacitor, etc.) can be mapped into different
node and edge type within the graph. The model target is
to predict net capacitance, which was achieved by mapping
connections as nodes with corresponding node information
(i.e., net capacitance), preventing information loss if nets
were represented as graph edges. To complete the structure,
circuits were represented as multi-graphs, where graphs have
two edges with opposing directions, and are mapped between
every net node and the appropriate device nodes correspond-
ing to terminal connections within the schematic. Despite
leveraging heterogeneous GNNs to differentiate between cir-
cuit elements nodes and netlist nodes, this representation
works around the circuit connection type problem (series or
parallel) in the netlist nodes by assigning four types of con-
nection signal (Net to transistor gate, transistor gate to net,
Net to transistor drain, and transistor drain to net), resulting
in an over complicated representation that extensively require
more time at training. Physically, connections in series share
the same current and connections in parallel share the same
voltage, which are not shown in multi-graph heterogeneous
graphs. In the area of analog circuit layout automation, [51]
showed a GNN based model that can identify symmetry
constraints in analog circuits That can be extended to other
pairwise constraints. However, the graph representation of
circuits is simplistic as it treats device instances and device
pins as graph nodes, while edges represents connections
between pin nodes of devices. Eventually, this simplistic rep-
resentation creates a problem of isomorphic graphs, which
was mitigated by adding an additional a two-dimensional
vector to node feature to distinguish between whether a node
is a device or a pin, which eventually increases computa-
tional cost at training. Followed by [52] in which circuits was
represented as heterogeneous multi-graphs to the purpose of
modelling active and passive elements for analog and mixed
signal circuits. In this representation, four types of edges
(To transistor (drain), To transistor (source), To transistor
(gate), To passive device) are used to represent connections

between device/circuit elements, which were represented as
nodes. Circuit representation in previous research can be
summarized as:

• All methods for circuit to graph representation are
arbitrary, without any mathematical/scientific base.

• These methods disregards mapping the connection type
and hence is substituted by a significant increase in the
number of hidden layers, number of neurons, training
for many epochs,. . . , etc.

• Other implications of disregarding connection type in
previous methods are the limited scope of the methodol-
ogy. Previous methods cannot be applied to any circuit
except what it is intended for.

• All methodologies had deficiency in modelling common
circuit properties like frequency, phase shift,. . . , etc.

• Most methodologies mention only elements of interest
(Transistors and capacitors), but ignores other circuit
parameters like inductance, resistance, voltage source,
current source, transformers,. . . , etc.

• Some methodologies try to simulate the connection type
by adding component terminals as nodes and define the
circuit as a multi-graph heterogeneous graph. Despite
the added complexity and extensive computational cost
of heterogeneous graphs, This representation suffers
a major disadvantage as different circuit topologies
can have the same graph representations (isomorphic
graphs). This problem is usually addressed by defining
another node feature the define whether a node is a pin
or a device at the expense of added computational cost.

• Some representations omits voltage and current sources
nodes to focus on circuit structure. However, this
is incorrect representation since source location can
change the circuit behavior.

• Some methodologies include one-hot encoding of
device position in circuit along with device type, which
inherently means the node features vector size per node
is linearly proportional to the circuit size.

VI. PROPOSED CONVERTER CIRCUITS MODELING FOR
MACHINE LEARNING APPLICATIONS
In this section, the proposed formulation of a graph repre-
sentation of continuous or switching circuits that allow the
application of ML algorithms to circuit design and control
will be presented. This formulation is completed in several
steps:

1) Bond graph modeling of circuit topology.
2) Generating standardized datasets that capture cir-

cuit topology, input and output circuit variables and
operating conditions.

3) Defining a scalable and permutation invariant NN
structure.
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TABLE 4. Circuit to bondgraph equivalent elements.

A. GRAPH CREATION USING BOND GRAPH MODELING
This section explains how to model electric circuit as a graph
for further processing.

1) CONTINUOUS CIRCUIT PRESENTATION AS BOND
GRAPH

An electrical circuit consists of five main components such
as resistors, inductors, capacitors, voltage source, and current
source. The generalized BG elements and their mathemati-
cal relations can describe any continuous circuit and perform
analysis of dynamics of electrical systems. Zero-junction is
assigned for each distinct voltage node in the circuit where
according to Kirchhoff’s voltage law (KVL)–the algebraic
sum of all voltage drops around a closed circuit is equal
to zero. Additionally, one-junction is assigned for each ele-
ment in the circuit, according to Kirchhoff’s current law
(KCL)–the algebraic sum of all electrical currents entering
and leaving a node is equal to zero), taking into consider-
ation the relative voltage or drops related to each element
located between two 0-junctions, since 1-junction represents
and effort summation point. Fig. 2 shows the bond graph
models of seven classes of resonant circuits of increasing
order and Table 4 shows the equivalent notations used in
BGs with their circuit counterparts.

2) SWITCHING CIRCUIT REPRESENTATION AS BOND
GRAPH

A study in [55], [56] showed that switches (unidirectional
or bidirectional) can be represented in BG by the concept
of Switched Power Junctions (SPJ) and activated bonds
and hence, BG can be used to model switching circuits.
Other switch modelling techniques including Modulated
Transformer (MTF) with Boolean modulation index m and
a resistive element R or the Ideal Switch Element method
where switch state depends on the junction to which the
switch element is connected, an energetic connection is
established or broken [57], [58]. A comparative study in [59]
shows that the most convenient method is the SPJ Modelling
method as it does not lead to causality conflicts and leads
to a unified model, like the Modulated Transformer method,
but does not require additional elements (R) to eliminate
algebraic loops. In this paper, the SPJ method will be used
to represent switches. Converter topology and its function
are defined by the location of the energy storage/resonance
elements (L & C) and the type and order of the switching
cell. Simplification of Single Pole Double Throw switching
cell can be in the form of two Single Pole Single Throw

FIGURE 2. Converter circuits to Bondgraphs: (a) Two elements circuits, (b) Three
elements circuits, (c) Four elements circuits.

(SPST). Every SPST is modelled as a 1s-junction with two
flow decider bonds. For the sake of completion, the phys-
ical interpretation of current interruption when the SPST
switch is OFF is represented when one flow decider bond is
modelled as the zero current source (Sf) and the other flow
decider bond is connected to the system. The current source
has a zero value, indicating that current falls to zero when
switch is OFF. D and D̄ are the control signals that con-
trol the junction flows. This is uniformly analogous to the
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FIGURE 3. Switching cell and equivalent BG formulation.

FIGURE 4. Circuit with equivalent BG formulation.

duty cycle (D) physical concept in converter circuits. Based
on [55], [56], SPST switches combinations can be modelled
using (0s and 1s) junctions. Fig. 3 shows a switching cell
represented as two SPST switches and its equivalent bond
graph representation, the flow decider bond and the zero
value flow sources. Additionally, switched power junctions
are a generalisation of the already existing zero and one-
junction concepts of the bond graph element set [55]. Thus,
the traditional zero and one-junctions are special cases of
the more general switched power zero and switched power
one-junctions. When converters operates in DCM, the induc-
tor current reaches zero before switching cycle is over. This
paper utilizes the virtual switch concept to represent con-
verter operation in DCM mode. As the inductor current
reaches zero, both switches S1 and S2 are in OFF state. This
virtual switch only closes when both switches become OFF.
D1,D2,D3 are mutually exclusive control signal to control
switches operation. The concept of virtual switch presented
in [60] is used to express the converter operation in DCM.
This representation is based on the fact that inductor current
reaches zero in DCM. The virtual switch shorts the inductor
ensuring no current passes through, while connecting certain
circuit nodes to maintain voltage balance equations during
the DCM time period D3. This representation compatible
with the predefined physical property namely Scalability.

B. CIRCUITS TO GRAPH REPRESENTATION
The second step is to convert the BG formulation to a
graph representation containing all gathered and simulated
information including circuit types, classes, nodes, edges,
node and edge features. Fig. 4 shows a continuous circuit
represented as graph following BG formulation, with minor
changes in Switching circuits. Nodes are used to represent

TABLE 5. General representation of all possible switching patterns as node features.

circuit element as well as zero and one junctions. Edges are
used to describe circuit connection between nodes. Node and
edge features describe operating condition of the circuit. In
continuous circuits, edge features are set as one describing
100% connection between designated nodes. The same nota-
tion is used for switching circuit. Node features are used to
describe element type as well as the element value placed
in circuit. Some switching circuit properties require special
consideration and explained as:
a) Duty Cycle Representation: The duty cycle is a property

in every switching circuit and physically represent the per-
centage of the connection existence within switching cycle.
Duty cycle is mapped as a feature of the edges the connects
to switching nodes (0s & 1s nodes).
b) Switching Frequency Representation: The one/zero

switching junctions representing switching cell are connected
to zero-valued current source, interrupting the switch current
with frequency equal to switching frequency. In other words,
the zero-valued current source works as a control source for
every switch. Based on the physical properties of the control
source, including the switching frequency as a property of
the BG control source aligns with the physical properties of
the circuit.
c) Switching Pattern Representation: A generalized

switching pattern representation is proposed, allowing all
types of switching patterns and duty cycle variations. This
adds more flexibility to represent converters that operate dif-
ferently when subjected to different switching patterns, i.e.,
resonant converters operating with different control modes.
The switching pattern representation is expressed in the con-
trol source (flow source in BG representation) node features.
Fig. 6 shows two cases of switching patterns. In the first
case, the switching is aligned so that the first switching
operation compliments the second one. The current source
node features should indicate the same phase shift refer-
ence, and by default is set to zero. In the second case,
where switch operations are not aligned either at turn on or
turn off, a phase shift φ indicates that delay, and is set the
control source of the delayed switch. Combining the phase
shift information along with duty cycle information, allows
complete representation of the switching patterns in switch
operations. Table 5 summarizes the switching pattern modes
and their node feature representation.

C. DATASET GENERATION
Generating a dataset of different circuit topologies, circuit
elements and circuit order is shown in this section. Also,

58 VOLUME 4, 2023



FIGURE 5. Buck, boost and Buck-Boost converters and their equivalent BondGraphs in CCM.

FIGURE 6. Switching pattern representation as features.

a proposed technique for storing recorded data in a gen-
eral format for any ML task is highlighted. Fig. 7 shows a
paradigm for such dataset generation step, where a circuit
netlist is converted to its equivalent bond graph model. Since
BG is a graph notation for modeling circuits, they inherently
have all graph characteristics, with all requirements of graph
definitions like number of nodes, node types, edge weights
and the adjacency matrix. Finally, BGs are passed to feature
assignment algorithm, where features are assigned to each
node in graph.

1) FEATURE ASSIGNMENT

Node features are defined based on circuit element type and
its behavior in circuit using the proposed algorithm. Circuit

TABLE 6. Feature matrix assignment.

simulations are used to obtaining features describing cir-
cuit performance such as node voltages and loop currents.
Simulations run for multiple instances at multiple operating
points for all circuits including different component values
and circuit conditions. Output values are normalized to com-
mon base to avoid sparsity of the feature vector, which is
referred in Table 6 as “Normalized Values Vector”. The
proposed feature assignment algorithm is expandable and can
include many circuit features if it is desired to be included
in the dataset. Therefore, the normalized values vector can
be multiple columns listing not only component’s value, but
also different component properties, i.e., source frequency in
continuous circuits or phase shift in switching circuits. One
main function of feature extraction algorithm is to define
the circuit element types, which are defines the concept of

VOLUME 4, 2023 59



KHAMIS AND AGAMY: COMPREHENSIVE MAPPING OF CONTINUOUS/SWITCHING CIRCUITS

FIGURE 7. From circuit to ML Block diagram.

FIGURE 8. Equivalent graph with node and edge features in: a) LCC Continuous
circuits, b) Buck converter switching circuit.

Element ID. Element ID assigns a binary code based on cir-
cuit element type by utilizing one-hot encoding [61]. The
second main function of feature assignment algorithm is to
concatenate the assigned one-hot encoded vector with nor-
malized values vector, forming the feature matrix of the
whole graph with dimension N× din, where N is number of
nodes and din is the dimension of feature vector.

2) DATASET FORMAT

Extracted features and other graph information like types
and number of node, adjacency matrix and edge features are
saved in a unique graph dataframe format. This unique
dataset format features independent graph dataset of cir-
cuits, which allows using this graph representation in any
ML library independent of saved graph dataset. Since there
are many graph ML libraries like pytorch-Geometric [62],
DGL [63], Keras [64].. etc, the final step in the algorithm
is to process the dataset to be in a compatible format.
Pytorch-Geometric GNN library was chosen to build the
GNN structure.

D. DIFFERENT CIRCUIT EXAMPLES USING PROPOSED
METHODOLOGY
This section shows some examples from different areas
where the proposed methodology is applicable to many ML
applications.

1) EXAMPLE 1: POWER SYSTEM

Power systems (PS) area have a lot of research where ML
methodologies has bee applied. Recently GNN has been on
the spotlight for application in PS, and many publications
utilizing GNN in power systems have emerged. A compre-
hensive overview of GNN applications such as fault scenario
application, time series prediction, power flow calculation,
and data generation are reviewed in [65]. In [66], [67] the
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provided network learns to solve load flow problem on ran-
dom power grids whose size range from 10 to 110 buses. A
method to identify the topology of a PS network is proposed
in [68] based on GNN, avoiding errors in Traditional knowl-
edge graphs in the case of errors or informational conflicts
in the data. All previously mentioned research empirically
transform the PS network into graph without following a
circuit-laws-consistent formulation. Fig. 8(a) shows a PS
network example and its graph equivalent with node features,
following the proposed methodology.

2) EXAMPLE 2: TWO-STAGE AMPLIFIER

Fig. 8(b) shows a two-stage amplifier that was used in [10]
as a circuit layout. The equivalent graph representation
proposed in this work was arbitrarily transformed into a
graph by representing every transistor, resistor and capacitor
as nodes connected to each other by edges, disregarding the
original connection or the physical/electrical consequences
of such connections. The Fig. also shows the proposed graph
representation includes component and connection nodes, in
addition to node features for each node.

E. GRAPH CONVOLUTION NETWORK
NN have many variants like GCN [69], GraphSage [70],
Gated Convolution [71], Transformer convolution [72] and
many more, but the most common is GCN. GCN was chosen
for the following reasons:

• Unique ability to extract latent information from graph
data compared to other GNN structures as reported
in [73].

• Most practical circuit GNN based applications in
Table 3 utilize GCN as their main network model or
a part of the model, hence the results from this study
can be fairly compared to previous ones.

• Simple construction and implementation, which can
be beneficial if implemented as digital twin on a
microcontroller [74]

The selection of GCN as the engine for the proposed
GNN has allowed better focus on other hyperparameters
and eventually led to better circuit representation. GCNs
obtain updated features by inspecting neighboring nodes, and
aggregating current node information to other neighbours
through message-passing process then updating the node
state. Eventually, all the nodes in graph obtain knowledge
about self and surrounding neighbor information. Fig. 10
shows three layer message passing applied to a single node
(node of type 1) of class 1 circuit. A deeper level of neighbor
nodes exploration and better awareness of self node posi-
tion can be gained by adding an additional GCN layer, at
the expense of additional computational effort. Three layer
GCN network is utilized in this paper as a mid point between
exploration depth and computational efficiency. Node fea-
tures are repetitively aggregated through the GCN layers
via multiple message passing layers. At the end of this pro-
cess, the final node embeddings contain self and all neighbor
information.

FIGURE 9. Examples of proposed concept in different applications: a) Power
system example b) 65 nm 2 stage amplifier example [10].

Mathematically, this initial embedding function is rep-
resented by equation (1). The aggregation layer has
multiple Graph Convolution Networks (GCN) that performs
multiple message passing leaps to collect information about
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FIGURE 10. Rooted subtree showing message passing applied to node of type 1 in
the circuit of class 1 in Fig. 2 with three GCN layers.

neighbouring nodes and keeps updating the latent dimen-
sional vector with dimension d, which is mathematically
represented as in equation (2).

X(0) = E(X) (1)

X(l+1) = σ
(
D̂− 1

2 ÂD̂− 1
2Xl�l

)
(2)

where �l is a weight matrix for the l-th neural network layer
and σ is a non-linear activation function like the ReLU, Â=
A + I, where I is the identity matrix and D̂ is the diagonal
node degree matrix of Â. This allows the GCN to scale well,
because the number of parameters in the model is not tied
to the size of the graph.

F. GCN TIME COMPLEXITY AND GRAPH SCALABILITY
LIMIT
Generally speaking, there are no limitation on the size of the
circuit fed to the ML model (theoretically, the circuit order
can be infinite). However, the computation time and RAM
consumption are the main concerns when feeding circuit
graphs to model, which mainly depends on how the model
was built, the libraries used to build the model (pytorch
or keras or tensorflow . . . .etc), the layers depth, operating
system used, the model architecture and the output size,
. . . etc. From a GNN designer prospective, Graph circuit for
a GNN input can be represented in two ways:

• sparse: As a list of nodes and a list of edge indices
• dense: As a list of nodes and an adjacency matrix

For any graph G with N vertices of feature vector length
F and E edges, the sparse version will operate on the nodes
of size N*F and a list of edge indices of size 2*E. The dense
representation in contrast will require an adjacency matrix
of size N*N, with node degree of d.
The choice of dense or sparse representation not only

affects the memory usage, but also the calculation method.
Dense and sparse graph tensors require graph convolutions
that operate on dense or sparse inputs (or alternatively as seen
in some implementations convert between sparse and dense
inside the network layer). Sparse graph tensors would operate
on sparse convolutions that use sparse operations. Generally,
dense computations would be more expensive but faster than

sparse, because sparse graphs would require processing of
operations in the shape of a list. For simplicity, we assume
the node features at every layer are size-F. As such, �l is
an F × F matrix. The time complexity of the convolution
operation can be decomposed as:

• Equation (1): which is a dense matrix multiplication
between matrices of size N × Fl and Fl × Fl+1. We
assume for all l,Fl = Fl+1 = F. Therefore, this is
O(NF2).

• Equation (2): which is a multiplication between matri-
ces of size N × N and N × F, yielding O(N2F) time
complexity. Hence, the neighborhood aggregation for
each node therefore requires O(dF) work, with a total
of O(NdF) = O(EF).
σ(·): is the activation function which is an element-wise
function, so its cost is O(N).

Over L layers, this results in computational time complex-
ity of:
O(LNF2+LNdF+LN) = O(LNF2+LNdF) = O(LNF2 +

LEF)

G. OPTIMAL NODE AND EDGE FEATURES
EXPLORATION
To determine the optimal representation of circuit com-
ponent values, twelve experiments were performed on the
continuous circuits of Fig. 2 and the results are shown in
Fig. 11–Fig. 14. The dataset contained 6000 graphs repre-
senting the seven circuit types. 70% of the dataset was used
for training. The data is shuffled before being applied to
the model, and there was no mutual data between training
and testing. Cross entropy loss function is used in train-
ing the model with Adam optimizer [75] with learning rate
of 0.02. Twelve experiments were conducted in order to
obtain conclusions and a paradigm of how the node and edge
features should represent the circuit parameters. These exper-
iments were divided into four sets. Each set contains three
experiments and a conclusion based on observations from
these experiments. The conditions/modifications applied on
the dataset when fed to the classifier are listed on the left
of each set. The purpose of these experiments is to identify
the effect of different component representations, and how
would that affect the ML task. Figures also show the clas-
sifier problem evolution ranging from three class to seven
class classifier problem, along with physical circuit elements
representation as features.
The purpose of the upcoming experiments is to explore the

highest impact features on task accuracy. However, since fea-
tures are hyper-parameters, some result obtained from edge
features may eventually update how the node features are
expressed. In the first set of experiments shown in Fig. 11,
edge features are explored and the problem is limited to three
classes classifier, edge weights are separately tested as nor-
malized frequency (

circuitFrequency
resonanceFrequency ) vs. being set as ones,

vs. being the circuit frequency. This experiment is concluded
with the highest accuracy achieved is when edge weights
were set as normalized frequency and as ones. As frequency
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FIGURE 11. First experiment set. Edge weights are set as: a) Frequency, b) value of one, c)Normalized frequency.

FIGURE 12. Second experiment set. a) No change in node features, b) Capacitive element representation is 1
C , c) Capacitive element representation is −1

C .

FIGURE 13. Third experiment set. Edge weights are set as: a) Scaling factor, b) value of one, c) value of one but different inductive element representation.

can be included as edge features, it can be tested if capacitive
elements can to be expressed as ( 1

normalizedFrequency ), which
is the purpose of the second experiment set.
Fig. 12 is the second set of experiments, where edge

weights were set as the normalized frequency, while
nodes that represents capacitive elements were set to have
( 1
normalizedFrequency ) as edge feature. Another experiment is
to test whether negative component values would increase
the accuracy, or setting the capacitive components as 1

C .
These experiments are reflection from circuit analysis as
Xc = −j

Frequency×C . However, the results shows that neg-
ative capacitive element value and its edge feature as
( 1
normalizedFrequency ) have negative effect on the accuracy
of the classifier, while setting capacitive elements as of

inverted value ( 1
C ) had a significant training accuracy boost

to 91.12%. It is imperative to modify node features expres-
sion for capacitive elements. Eventually, circuit graph dataset
was modified to include this change in the third experiment
set. Also, from the first experiment set, edge features set
as one had the highest accuracy score. The next experiment
aims to explore if the concluded node and edge features
modifications can enhance the accuracy.
In the third experiment set, the highest accuracy of 100%

was achieved in training and testing when edge weights were
set to ones and capacitive elements has node feature values
of ( 1

C ). The first experiment tested whether edge feature can
be used as a scaling factor substituted by the node feature.
The second one tested whether edge weights can be set to
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FIGURE 14. Fourth experiment set. a) Four-class, b) Five-class, c) Seven-class classification problem.

FIGURE 15. Circuit classifier structure [1].

one, while the third experiment tested if inductive elements
can be set as ( 1

L ). From results shown in Fig. 13, it can be
concluded that utilizing edge features for scaling deteriorates
the classification accuracy as well as representing inductive
elements as ( 1

L ). The optimal edge feature can be defined
to be one, without embedding any circuit characteristics or
parameters.
In the last set of experiments in Fig. 14, all outcomes

and recommendations that was concluded from previous
experiments were taken into consideration, while increas-
ing the classification problem difficulty to four, five and
seven classes classification problem to further verify the
optimal representation. In a four-classes problem, the classi-
fier scored a training accuracy of 92.3%, while in five-classes
problem the training accuracy score was 95.92%. Lastly, the
seven-classes problem resulted in training accuracy score of
97.37%. The discrepancy of accuracy scores while using the
same feature representation is due to the change in dataset
number of circuits. The result is a graph of a circuit with
connection nodes and element nodes each has its own fea-
tures. Nodes are connected by edges having edge features
of one.

VII. CASE STUDY
As a proof of concept, the proposed approach is applied to
map two types of topologies: i) continuous circuits and ii)
switching circuits, to a ML compatible representation. Seven
resonant circuit topologies of circuit orders ranging from sec-
ond to fourth order as shown in Fig. 2, and three switching

circuit topologies in CCM and DCM shown in Fig. 3 are
fed to a classifier to show the applicability of the proposed
methodology to any ML task. Following the sequence illus-
trated in Fig. 7 and same steps presented in this paper and
in [1] and [2], converters are converted to graph form and
computer simulations are used to assign normalized node
features of the generated graph according to Section VI-C1.
Steady state simulations are run for multiple instances at
multiple operating points for all circuits including different
component values and circuit conditions and circuit behavior
is recorded and stored. The circuit simulation sampling rate
is a measure of the accuracy of the circuit simulations in the
continuous circuit classifier case. In this case study, a dataset
of 6000 graphs with 6000 steady state simulations have been
normalized to a common base. This helps to ensure that each
feature vector is consistent and not overly sparse. The nor-
malized values vector is then used to provide a representation
of the circuit simulation data that is accurate and reliable.
To ensure that the sampling rate is accurate, the graphs are
divided into a number of subsets based on circuit class, and
each subset is simulated separately. Each of these subsets
is tested for accuracy, and any discrepancies are noted and
addressed. After all the subsets have been tested and cor-
rected, the overall sampling rate of the circuit simulations
can be determined. Once the sampling rate has been deter-
mined, the normalized values vector is concatenated with
element ID to complement the feature vector. Fig. 15 shows
a block diagram of the classifier structure. Three GCN layers
are used to get information about 3rd level neighbors. The
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classifier output layer computes a probability score for the
class of each topology.

1) CLASSIFIER PROBLEM FORMULATION

Circuit topologies in graph forms (G) are fed to the classi-
fier. Each circuit graph has number of nodes (N) along with
their corresponding node features (X) each has dimension
(din). The adjacency matrix (A) defines connections between
each node. The classifier outputs a probability (Y) of a con-
verter to belong to a certain class (C). Sub-GCN networks
are embedded in each GCN layer, allowing aggregation
processes between feature vectors in the neighboring nodes.
Hyperbolic tangent (“tanh”) is used as the non-linear activa-
tion function, while being slower than the Rectified Linear
Unit (ReLU) activation function, it helps to avoid the dying
ReLU problem due to the very different values of both inputs
and outputs [76]. The global mean readout (GM-Read out)
layer returns graph level outputs by averaging GCN pro-
cessed node features. A fully Connected (FC) linear layer
is a score function for each circuit, while (Softmax) output
layer is used to calculate the probability, in range of [0-1],
of each circuit belonging to a certain class. The Softmax
function formula σ() is stated in equation (10). The clas-
sifier uses training datasets and updates weights or GCN
layers and linear layers by minimizing the cross entropy
loss function, which is shown in equation (11), where:

• M - Number of classes
• log - The natural log
• Y - Binary indicator (0 or 1) if class label c is the
correct classification for observation O.

• p - Predicted probability observation O is of class C.

A mathematical formulation of the transformations of the
designed classifier is stated as:

Y = classifier(X,A) (3)

where

X ∈ R
(N)×din (4)

Y ∈ R
C×1 (5)

GCN(k) : RN×din �→ R
N×d, k ∈ {

0, 1, .., k − 1
}

(6)

GM − Readout : RN×d �→ R
1×d (7)

FC : R1×d �→ R
1×C (8)

Softmax = R
1×C �→ R

1×C (9)

where

σ(zi) = ezi∑K
j=1 e

zj
for i = 1, 2, . . . ,K (10)

CrossEntropy = −
M∑
c=1

yo,c log
(
po,c

)
(11)

2) RESULTS AND ANALYSIS

a) Continuous Circuit Classifier: Training and testing accu-
racy after 1200 epochs are shown in Fig 16, scoring

FIGURE 16. Circuit classifier accuracy.

FIGURE 17. 2-D embeddings of circuit graphs.

TABLE 7. Continuous circuits classifier assessment metrics.

97.37% and 97.10%, respectively. 70% of the dataset con-
taining 6000 graphs representing the seven circuit classes
was used for training. Cross entropy loss function is used in
training the model with Adam optimizer with learning rate
of 0.02. Fig. 17 shows the 2-D embedding of the classi-
fier testing dataset output. It can be clearly seen that graphs
falling in the same class cluster together.
The confusion matrix shown in Fig. 18 is used to analyze

the classifier behavior and obtain insights about its func-
tionality. The array gives an insight about overlaps/errors
in class predictions. Other classifier assessment metrics are
listed in Table 7, which shows the precision, recall, F1
and support metrics. The following notations are used to
assess binary classifiers performance, but are also extended
to multi-classification problems.

• Positive: The graph is classified as a member of the
circuit class the classifier is trying to identify.

• Negative: The instance is classified as not being a
member of the class we are trying to identify.
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FIGURE 18. Confusion matrix for seven classes circuits.

True or false can be added to Positive or negative to indi-
cate whether the classifier has correctly predicted the class
or misclassified it. Generally, precision is a measure of true
positive instances, which shows how many of the positive
predictions made are correct. Recall aka sensitivity, is a mea-
sure of how many of the positive cases the classifier correctly
predicted with respect to the over all the positive cases in
the data. The F1 score is the percentage of correct class
predictions. A mathematical formulation of the evaluation
metrics are listed in equations (13-14).

Precision = TP

TP+ FP

= No. of correct predictions belonging to specific class

Total No. of predictions belonging to that class
(12)

Recall = TP

TP+ FN

= No. of correct predictions belonging to specific class

Total No. of correct predictions in the dataset
(13)

F1score = 2 × Precision× Recall

Precision+ Recall
(14)

Class two and three have F1 scores of 0.87 and 0.89, respec-
tively. Since F1 score embeds precision and recall into one
computation, the weighted average of F1 should be used to
compare classifier models, not global accuracy. The Recall
of class 2 is 0.77, indicating a misclassification occurs. On
the other hand, the Recall score of class three is 1, indicating
all class 3 circuits were correctly classified. This analysis
indicates misclassification of 52 class 2 circuit graphs as
class 3, resulting in a precision measure of 0.8. Additional
observations from confusion matrix, classifier metrics and
the 2-D vector mapping can be summarized as follows:

• Circuits with similar connections are distinctly classified
but the clusters appear close in the 2-D vector mapping.
Classes (four and six) are fourth order circuits but are
dissimilar in physical connection, hence are mapped in
the same vicinity but close. Similarly are classes (Zero
and one), follow the same principle. On the other hand,
classes (two and three) are second order circuits sharing

FIGURE 19. Confusion matrix for DC-DC converters.

TABLE 8. DC-DC converters classifier assessment metrics.

almost identical circuit connection, hence are mapped
very close to each other.

• The same concept is applied to circuits with dissimilar
circuit structures, as they are clustered far from each
other in the 2-D map, i.e., classes 0 and 5.

• The similarity between classes two and three in connec-
tion and number of nodes causes 2.63% classification
inaccuracy. Further tuning of the weights of the linear
layer can improve the classifier selectivity.

b) Switching Circuit Classifier: The trained classifier
scored 100% for training and testing data, when trained
for 200 epochs. In Fig. 20, a 2-D output representation of
1800 test dataset graphs are plotted and colorized accord-
ing to their predicted class. Circuits of the same topology
are distinctly identified and clustered together. Further, the
operating mode of each of the circuits (CCM or DCM) is
also identified. The different loci of the 2D plot from every
class is a result of convolution operation taking all graph
properties representing circuits like component values, type
and switches duty cycle and converting it to a lower dimen-
sion (2-D). It is also noted that graphs of the same converter
topology form groups and cluster in close proximity.

VIII. DISCUSSION AND FUTURE WORK
This methodology of circuit representation allows incorpo-
rating ML techniques in many applications, and can serve the
purpose of generating application-specific circuits. Machine
learning and neural network models in general are heavily
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FIGURE 20. a) training and testing data classification accuracy, b) 2D embedding of
the three converters in CCM and DCM after classification.

dependent on hyper-parameter tuning. Several aspects are to
be included when circuit designer incorporate ML model in
circuit design like network depth, number of neuron, activa-
tion functions, pooling layers etc. These uncertainties in ML
models adds more burden when incorporating ML techniques
in circuit design. Eventually, a network update is a must at
some point of the design process, and eventually designer
must fine tweak the ML based design tool. The proposed
method can be applied to a wide range of applications
such as, power electronic converters condition monitoring
and prognostics, since the developed representation maps
the circuit structure and thus voltage stresses at each node
and current stresses in each branch can be evaluated and
tied to a component/converter reliability function. Another
application is network structure and fault detection in large
power systems [77]. Circuit design is another application that
fits the proposed methodology, where circuit performance
parameters are set, and the GNN model can generate a cir-
cuit topology that meets the input criteria. Moreover, this

study can be further developed to for the purpose of linking
finite element modelling software in AI assisted design of
magnetic components for the purpose of optimal component
values/shape design. Additionally, the proposed methodology
has very high potential in circuit obfuscation and reverse
engineering when it is required to identify/obscure circuit
structure [78]. One idea works on the circuit side utilizing
the GNN capability of learning the proper transformation
function of the converter, i.e., can obtain a mathematical
transformation of every circuit component and eventually
all circuit behavior. On the application side, the end goals
whether they are gain, current ripples, magnetic design.. etc,
are transformed into a fictitious statistical domain, and the
purpose of the GNN is to generate circuits with similar
statistical domain. This can be beneficial to train AI to gen-
erate application specific converters, which eventually will
help reduce component size, increase power density, speed
and efficiency. This methodology is also applicable in power
system applications such as network reconstruction and fault
detection and load flow estimation· · · etc.

IX. CONCLUSION
In this paper a graph representation of electric circuits
is proposed. This method enables a dynamically scalable
interface of different circuit aspects including physical con-
nections, component values and mode of operation, to the
machine learning domain. Applying the circuit graphs as
inputs to a GNN different circuit modeling, design and
optimization tasks can be performed. The effect of bond
graph feature selection, scaling and formulation was also
analyzed. Optimal feature representation results in a more
well defined feature matrix and consequently a more accu-
rate circuit and operating mode identification. As a proof of
concept case studies of classifiers of continuous and switch-
ing circuits were presented where, the proposed algorithms
were proven to distinctly identify with high accuracy circuit
types based on physical connectivity as well as identify-
ing their mode of operation based on parameter values and
control variable values.
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