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ABSTRACT Power delivery networks are responsible for supplying clean power to the integrated circuits.
Power supply noise plays a critical role in determining the performance of high-speed very large scale
integration circuits and systems. In order to maintain power integrity in high-speed systems, decoupling
capacitors are used to maintain low impedance of the PDN to eventually minimize power supply noise.
However, the discrete optimization problem of selecting decoupling capacitors becomes computationally
challenging in the systems having stringent power integrity (PI) requirements. In this work, a novel approach
using the Social-Learning Particle Swarm Optimization (SLPSO) technique along with Adaptive Region
Search (ARS) is used to tackle the Large-Scale Optimization Problem (LSOP) of decoupling capacitor
placement. Region Search (RS) is used to guide particles, followed by ARS to dynamical search for the
local best positions and for particles to move faster across the search space while maintaining the diversity
of the population. To demonstrate the proposed approach, three practical case studies are presented. The
obtained results are compared with current state-of-the-art approaches. The proposed approach drastically
reduces computation time and is consistent with better results than other approaches. This consistency of
improvement in CPU time in the results of all the examples validates the proposed approach.

INDEX TERMS Decoupling capacitor placement, metahueristic optimization, particle swarm optimization,
PDN, power integrity, social-learning particle swarm optimization.

I. INTRODUCTION
With the advancement in nanotechnology over the past few
decades, it has become possible to fabricate electronic switch-
ing devices in nano-dimensions. In the realm of modern Very
Large Scale Integration (VLSI) systems, it is desirable to have
consumer products having multiple features as well as having
very low cost. This has become possible by the nanometer-
scale size of the transistors, which enable very high operating
frequencies. Following Moore’s law, so far the size of the tran-
sistors continues to get smaller. The influence of nanoscale
dimensions, however, is considerably more noticeable than
any other feature in the current state-of-the-art high-speed
designs.

Signal Integrity (SI) and Power Integrity (PI) issues, in
general, are becoming much more prevalent with the advance-
ment of nanotechnology. In addition to the nano-dimensional
switching devices, nanotechnology has also advanced pas-
sive interconnects in nano dimensions. However, primarily
due to the bandwidth limitations of passive interconnects,
SI/PI issues come into picture. Therefore, it is very much
rational to relate SI/PI issues with nanotechnology. As due
to the dimensions of transistors/switching devices being in
nanoscale leads to a very narrow design margins; these nano
devices based Integrated Circuits (ICs) have to deal with a
number of signal integrity problems, including surface rough-
ness, electromagnetic interference (EMI) effects, crosstalk,
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and reflection. Studying how interconnects affect system per-
formance in terms of SI/PI is therefore very crucial [1], [2],
[3], [4].

With the increasing operating frequencies of high-speed
VLSI systems, demand for low-noise power supply to drive
active circuits of ICs has become more important than be-
fore. Power Delivery Networks (PDNs) are responsible for
supplying ideal DC-like (low noise) power to the load. PDNs
consist of Voltage Regulator Modules (VRMs), on-chip in-
terconnects, boards and package+die parasitics [5]. These
components of a practical PDN contribute to a non-ideal
impedance profile, which results in power supply ripples, also
referred to as Power Supply Noise (PSN). The major con-
tributor to PSN is Simultaneous Switching Noise (SSN) [6],
[7]. The SSN originates from the switching activity of mil-
lions of transistors in the core circuitry. As the supply voltage
decreases with the advancement of nanotechnology, PSN be-
comes more crucial to the performance of ICs at different
frequency ranges, impacting the signal integrity of the high-
speed systems significantly. As the technology nodes scale
down, the supply voltage also lowers down while the clock
frequency and density increases. Due to this increased com-
plexity as well as the reduced noise budgets, the tolerance
limits for power supply noise becomes much more relevant
in the lower technology nodes, compared to the technology
nodes having higher device dimensions. This work attempts
to reduce power supply noise by optimization in in-package
decoupling capacitors.

To maintain minimum power supply noise, PDN impedance
should be controlled within the permissible limit. The worst-
case peak current and noise provide a limit for the highest
permissible impedance of the PDN. This highest permissible
impedance of a PDN is also known as target impedance, Zt ,
and is given as [8]:

Zt = �Vn

Imaxt

(1)

where Imaxt is the worst case transient current and �Vn is the
maximum tolerable voltage noise present in the system. The
probability of system functionality failure at a rated perfor-
mance depends on the PDN ratio, which is defined as the ratio
of PDN impedance (Zpdn) to the target impedance Zt . A value
of less than one for this ratio indicates a low probability of
PDN performance failure and vice versa. In practice, obtain-
ing the low values of the PDN ratio and the PDN impedance
is expensive, as it requires deploying more components and
more layers in the package/board. Using decoupling capaci-
tors (decaps) on the package or board to obtain a low PDN
impedance is a simpler and more cost-effective solution. The
decaps are selected based on the anti-resonance frequencies in
the impedance profile of the PDN [8]. However, having mul-
tiple ports to place decaps and having multiple capacitors to
choose from, increases the available decap-port combinations.
Hence, the intuitive placement of decaps is not viable since
placement and testing for each decap-port combination can
be very tedious. The aim is to select a set of capacitors and

FIGURE 1. Decoupling Capacitor Placement on ports.

corresponding ports on which they will be placed efficiently,
meeting the system requirement. Computational Intelligence
based methods have shown to be efficient and practical in
tackling such large-scale optimization problem (LSOP) [9],
[10].

A proven time-effective optimization strategy for the de-
coupling capacitor optimization problem is to use metaheuris-
tic algorithms [11]. Matrix-based metaheuristic optimization
has recently been used to speed up the process even fur-
ther [12]. There are many other metaheuristic algorithms for
optimization, but Particle Swarm Optimization (PSO) has
emerged as one of the best and quickest methods to solve such
problems [13], [14]. However, the primary limitation of this
technique is that PSO may take a very long time for large-scale
optimization tasks to converge to a solution. Such large-scale
optimization problems can be made time-efficient using adap-
tive region-encoded methods along with the PSO [15].

The rest of the article is as follows. Section II presents
the description of the system used and the problem state-
ment. Section III discusses the conventional PSO and SLPSO
algorithms. Section IV deals with a brief explanation of
SLPSO-ARS for the problem of optimization of decoupling
capacitors. Section V discusses the results obtained from the
experiments. Section VI concludes this paper.

II. PROBLEM DESCRIPTION
This study uses a practical system used earlier in [12], [16].
It’s a usual practice to select capacitors based on the anti-
resonance points in the PDN impedance profile and then
to place them as close to the core circuit as feasible [8].
This arrangement of capacitors help to achieve desired taret
impedance of the PDN.

Decap placement in the PDNs becomes extremely challeng-
ing when several ports are available, as shown in Fig. 1 and a
large number of capacitors are available to choose from. The
key objective of this work is to minimize the number of decaps
used while maintaining the impedance of the PDN lesser than
the target impedance (Zt ). As shown in Fig. 1, the power
plane and the ground plane are always in a pair. Ports are the
terminals that are used to place decoupling capacitors. Fig. 1
shows an example of such a power plane pair having multiple
ports: Port1, Port2, Port3 and Port4 available to place decaps
marked as C1, C2, C3 and C4, respectively. Based on the sys-
tem requirement more number of ports can be introduced.
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FIGURE 2. Self-impedance of PDN (without decoupling capacitors).

The self-impedance of the PDN under consideration, as
measured at the IC pad, is shown in Fig. 2. It represents the
total/cumulative impedance of all the components of the PDN:
Voltage Regulator Module (VRM) and interconnects present
on the package, chip and on the board. For the board and
package models, a commercial 3D solver is used to extract
s-parameters; and for the on-chip PDN, a Chip Power Model
(CPM) [17] is used. The dimension of the Zpdn considered
for this study is 21×21×1391, where number 21 refers to the
number of ports, and the number 1391 represents the number
of frequency points. Next, Z-parameters are derived from the
S-parameters. This work focuses on in-package decap opti-
mization since all the available ports are on the package.. As
shown in Fig. 2, the maximum self-impedance value of this
PDN when no decoupling capacitors are placed is 361.2 m�.

When decoupling capacitors are placed at the ports of the
PDN, the updated cumulative self-impedance of the PDN, Zeq,
can be computed as [17] :

Zeq =
(

Z−1
pdn + Z−1

decap

)−1
(2)

where Zpdn represents the Z-parameter matrix of the PDN
with dimension as Zp×p× f . The Z-parameter matrix for the
decoupling capacitors is represented by Zdecap, which is a di-
agonal matrix having the same dimension as Zpdn. Zdecap has
diagonal elements as impedance of the decoupling capacitors
indexed at the port number they are placed on. The alternative
formulation of (2) is:

Zeq = (
Ypdn + Ydecap

)−1
(3)

The objective of this optimization problem is to reduce the
maximum of self-impedance of the PDN in a given frequency
range, below the target impedance (Zt ). This is a minimizing
problem, hence the objective function for this study is the
maximum value of the self impedance associated with the
port, which is defined as :

Zob j = max(Zeq(i, i, f )) (4)

where f is some particular frequency and i is the port where
self impedance is measured. Objective function defined in (4)
is a function of two kinds of variables: the port numbers and
the capacitors which are placed on the corresponding ports.

III. THEORY
A. PARTICLE SWARM OPTIMIZATION
This optimization algorithm was first introduced by Kenndy
and Eberhart in 1995 [18]. Like many other optimization algo-
rithms, it is based on swarm intelligence behaviour. However,
unlike the popular metaheuristic algorithms, e.g. ant colony or
stochastic diffusion search algorithm, genetic algorithms [19],
[20] and virtual ant algorithm [21]; PSO does not need muta-
tion operators, which makes it relatively simpler. At its core, it
heavily relies on randomization and inter-particle communica-
tion. It becomes a lot simpler to implement PSO as, unlike the
genetic algorithm, the parameters are not encoded/decoded
into binary strings. Swarms are referred to as populations
in PSO, and each member of the population is known as a
particle. Particles are randomly placed in the defined search
space, and the positioning of the particle outputs a solution
to the target function which is to be optimised. Based on the
solution obtained by the particle, it is moved across the search
space with a velocity (V ), which depends on its historical per-
formance and the performance of other particles in the search
space. The movement of a particle in the PSO algorithm is
represented by its position (X ) and velocity (V ), which are
given as :

V l+1
id = V l

id + r1.c1.
(

X p
id − X l

id

)
+ r2.c2.

(
X g

id − X l
id

)
(5)

X l+1
id = X l

id + V l+1
id (6)

Here, d = 1, 2, . . ., D, where D represents the number of
dimensions and l represents the current iteration value. Here,
c1 and c2 are acceleration coefficients also known as cognitive
component and social component, respectively; while r1 and
r2 are randomly generated numbers in the range of [0,1]. The
local best (lbest) is a particle’s past position which gives the
best fitness value of that particle so far and is represented by
X p

id ; while X g
id represents the current global best denoted by

gbest which is the position having the best fitness value among
all the particles so far.

The inertia weight (ω) is an essential parameter of the
PSO algorithm, and its selection is relevant to the balance
between local and global search capabilities, impacting the
convergence performance of the algorithm. A recommended
value of ω uses the fewest number of iterations to discover the
best solution. The inertia weight value (ω) in an iteration can
be given as :

ω = ωmin + (ωmax − ωmin).

(
lmax − l

lmax

)
(7)

Here, ωmax and ωmin represent the starting and ending val-
ues of ω during iteration l , while lmax represents the maximum
number of iterations. With increasing maximum number of
iterations (lmax), inertia weight ω decreases. During the early
operations, when l is small, the algorithm’s searching ability is
strong due to the large value of ω. As the number of iterations
increases, the local search becomes more refined as the value
of ω is smaller than that during the initial movement. Consid-
ering inertia weight while the particle across search space, the
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Algorithm 1: Particle Swarm Algorithm for Decap Opti-
mization.
Input: Ypdn = Yp×p× f ,Ym× f , Zt , NP, Nitr, c1, c2, ωmin

and ωmax

Output: Zob j,C, P
1: while (Zob j > Z j) do
2: Nd = Nd + 1; l = 0;
3: Generate initial population X l=0 and velocity vector

V l=0

4: Update initial personal best population X p

5: Check initial global best (minimum) Zob j

6: while (l > lmax) do
7: l = l + 1;
8: for i = 1, 2, . . ., NP do
9: for d = 1, 2, . . ., Nd do

10: Update velocity (V l
i,d ) as per (5)

11: Update position (X l
i,d ) as per (6)

12: Check for boundary conditions
13: end for
14: Compute Zl

ob j,i for new position X l
i

15: Update lbest position X p
i accordingly

16: end for
17: Check current gbest position Zob j and X g at

Zob j

18: end while
19: end while
Output: Zob j = max(Zeq(1, 1), where

(Zeq ) f =
(
Y −1

pdn + Y −1
decap

)−1

f
, ∀ ∈ [0, fmax], X g = [P C]

velocity of a particle is given as :

V l+1
id = ωV l

id + r1c1

(
X p

id − X l
id

)
+ r2c2

(
X g

id − X l
id

)
(8)

After initializing particles randomly in the search space and
updating their positions with the help of their velocities, the
objective function is evaluated for each particle. The lbest and
gbest are updated based on the calculation of fitness values of
the particles from the objective function as

X p
i = X l

i , if Zl
ob j,i < Z p

ob j,i (9)

X g = X l
i , if Zl

ob j,i < Zg
ob j (10)

Fig. 3 depicts the process of update of velocity and position
of a particle in PSO. The presented optimization problem
discussed in Section II is computationally expensive, as its
objective function requires the inversion operation of a large-
size matrix. However, this work aims to propose a method that
minimizes the number of fitness evaluations needed without
compromising the convergence of the population in global
optimum. The flow of the PSO algorithm used for decap
placement can be well understood by Algorithm-1, where C
and P are optimum capacitors and their corresponding ports.

FIGURE 3. Position update of a particle in PSO.

B. SOCIAL LEARNING PARTICLE SWARM OPTIMIZATION
Large-scale optimization (LSOP) problems are the ones that
contain large number of variables (dimensions), have a vast
search space and may contain many local optima, mak-
ing it challenging to solve them with typical evolutionary
computation (EC) techniques. Among the several large-scale
optimization algorithms, the Social Learning Particle Swarm
Optimization (SLPSO) has been proven to provide consis-
tence results [22]. SLPSO updates each particle (excluding the
best particle) by learning from any particle within the current
swarm that has a better fitness value than the particle itself,
helping SLPSO to maintain the diversity of the swarm. How-
ever, large scale optimization problem (LSOP) demands that
the algorithm retain diversity to look for the optimal global
solution in a large search space and has a faster convergence
rate.

The SLPSO has been proven to perform well with
LSOPs [22]. Each particle in SLPSO, excluding the best one,
learns from any particle that gives better fitness vale than
itself. SLPSO lets particles learn from other particles rather
than simply gbest and pbest , as in regular PSO. As a result,
SLPSO can boost population diversity as particles are not too
much influenced by gbest , allowing them to avoid prematurely
approaching the local optima. At the start of each generation,
particles in the current swarm are sorted based on their fit-
ness ratings, from the worst to the best. The particles will
then update each dimension of them by learning from only
one particle (excluding the best particle) having better fitness
value than it.

If multiple particles are better than a given particle, the
current particle will choose one particle randomly to control
its update. The particle may also consider position of other
particles to guide its different dimensions. Thus, the popula-
tion becomes more diverse since each particle may learn from
several particles that give better solutions than itself. Particle i
selects some particle k to learn from it in its dth dimension as

vt+1
id = r1v

t
id + r2

(
xt

kd − xt
id

) + εr3.
(
x̄d

t − xt
id

)
(11)
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xt+1
id =

{
xt

id + vt+1
id , if rand (0, 1) < Pi,

otherwise.
(12)

In (12), r1, r2 and r3 are three random numbers in [0,1], x and
v are position and velocity vectors, respectively; while t rep-
resents the current generation; ε is known as social influence
factor and x̄t

d is the average value of position vector in dth

dimension. Here, k is distinctly selected for every dimension,
however, k has to be a particle better than the current particle.
Pi, also known as learning probability, controls whether or not
the particle needs to be updated. It is related to the the rank of
the particle. Each particle has a distinct learning probability,
and better particles will have lower learning probabilities.
Since particles are sorted from the worst to the best, Pi is
calculated as :

Pi =
(

1 − i − 1

NP

)μ log
(⌈

D
M

⌉)
(13)

where, i is the ith particle from the population, NP and D
represent swarm size and the dimension of the problem re-
spectively; μ and M are set to 0.5 and 100, respectively,
(accordingly to [15], [22]). Pi signifies the probability of learn-
ing for a particle with different fitness values. One with a
worse fitness value tends to have a larger learning probability
(as particles are sorted from the worst to the best) and value of
i will be lower for that particle, thus higher chances to get its
position updated. These particle search for a better solution
and vice-versa for a particle with a higher index or with a
relatively good fitness value. Pi also depends on the dimension
of the problem. When D is large, value of Pi will decrease to
retain the population diversity in the search plane, avoiding
early convergence to a local solution.

IV. SLPSO-ARS FOR DECAP OPTIMIZATION
Even as SLPSO is reported to deliver good results for LSOPs,
it often results in a slow convergence. Since, to maintain di-
versity among particles, it uses different learning information
to guide different particle positions and dimensions. Also,
not all the particles are updated in each generation, which
is a drawback. In order to improve the convergence speed, a
local search strategy named Adaptive Region Search (ARS) is
used, combined with a region encoding scheme (RES). This
encoding scheme and local search strategy with SLPSO form
SLPSO-ARS [15].

A. REGION ENCODED SCHEME (RES)
RES forms a radius ri around a particle i which is no longer a
single point xi = {xi1, xi2. . .xiD} but enclosed space with some
radius ri. Radius ri has xi as the center of the region. This
allows the particle to give a region-based solution rather than
a point-based solution. This region allows covering a wide
range in the search space.

Point-based encoding scheme and region-based encoding
scheme are compared in Fig. 4(a) and (b). In Fig. 4, solid dots
represent particles pi = {p1, p2, p3, p4, p5}. As in Fig. 4(a), a

particle holds one single position in a point-based encoding
scheme; however, in region based encoding scheme, as in
Fig. 4(b), each particle pi has its own region defined by a ra-
dius ri. Every particle in region search (RS) can search locally
in its region within radius ri and finds the best position for the
particle in that region. This method often helps in improving
the convergence faster as local search in large spaces is more
efficient than an evolutionary operation search.

If conventional PSO is used, the particle xi learns from other
particles with better current position but are in proximity to
a local optimum solution, drawing the particle i towards the
near local optima. To avoid convergence to a local optimum,
RES comes in handy to find global optimum and improves the
convergence speed of the algorithm.

B. ADAPTIVE REGION SEARCH (ARS)
ARS is established on RES, improving the chances of the
particle obtaining a better solution by region search. Region
search allows the radius ri of the region of the particle xi to
change and adjust adaptively.

In Fig. 4(c), the ARS strategy is shown in which five
particles p1, p2, p3, p4 and p5 are placed randomly and the
optimization problem is to search for the top position of
the landscape. The arrows represent the directions that the
particles are about to follow. When comparing to Fig. 4(b),
the particles p2, p3 and p5 have found better position pnew

2 ,
pnew

3 and pnew
5 , respectively, in the current generation. So, they

move to the new positions and their radii ri are increased as
these new better positions indicate that the optimum position
is near by and therefore increasing radius would let the par-
ticles move faster to the desired optimum position. Particles
p1 and p4 cannot find better positions compared to the orig-
inal ones which indicates that their current positions are in
promising regions, and a large radius may make the particle
overstep the optimal solution. ARS strategy therefore reduces
the radius r1 and r4 to rnew

1 and rnew
4 , respectively.

Thereafter, RS is performed on the first P particles which
give best fitness values. The dimension of a particle is per-
turbed inside the region with radius ri centred at particle
with a probability ρ, also known as perturbation probability.
In simpler words, it is a search in proximity of particle xi

within radius ri. Suppose, a better solution is found while
perturbation of a particle, the current position of the particle
is replaced by perturbed position and the region with radius ri

centres around the new position. This change of radius allows
the population to move across the local optimum positions and
thus increases the speed of convergence in LSOPs. The dth

dimension of the particle which is perturbed is generated as :

x′
i =

{
xid + N (0, 1).ri, if d == n or rand (0, 1) < ρ

xid , otherwise.
(14)

Here x′
i and xid are dth dimension position of the perturbed

particle and the original particle, respectively. The ri is the
radius of the region enclosed by the particle i, and n is a
randomly generated integer uniformly distributed in [1, D],
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FIGURE 4. (a) Point-based encoding scheme. (b) Region Encoding Scheme. (c) Adaptive Region Search strategy.

where D being the dimension of the problem (it checks that
the perturbed particle x′

i is not same as the original particle
xi). N (0, 1) is a randomly generated Gaussian distributed
value. Perturbation probability (ρ) determines if the position
dimension of the particle is changed or not while region
search. Since we only select a subset of the best P number
of particles according to the fitness values, from the current
swarm to do a region search, these particles may already
have very valuable information in most of the dimension of
the position of a particle, and a perturbation in all dimen-
sions may be damaging. Hence, a relatively low value of ρ

is advantageous to assure the best particle properties sub-
stantially, and most of the favourable dimensions will not be
lost.

Suppose, the value is set too high for ρ in that case, the
best particles will have more dimensions modified, which will
cause the perturbed particles to perform poorly because of the
more significant difference from the original best particles.
As a result, the value of ρ in SLPSO-ARS is not very large.
Fitness value of a perturbed particle x′

i decides the value of xi.
If the fitness value of x′

i is better than that of xi, it is replaced
with x′

i . This process is repeated for T perturbed particles in
the search region with radius ri.

After T times of region search, if no perturbed particle that
is better than the original particle is discovered, the original

particle might just have discovered an approximate global or
local optimal solution, which can also be seen as an optimal
solution in its defined region. In this case, the radius of the
region enclosed by the particle will be reduced. If not, the
radius of the region enclosed by the particle will be expanded
to seek the optimal solution across a larger search region. The
radius of the ith particle is updated as :

ri =
{

ri.c, Among T particles, no better particle is found

ri/c, otherwise.
(15)

Here c is the scaling parameter lying in range of (0,1). The
radius of the region enclosed by the particle, ri has a maximum
value, denoted by rmax. Set ri = rmax if the value of ri exceeds
rmax. Over the course of evolution, the value of rmax gradually
decreases. rmax can be determined as :

rmax = r0.
FEmax − FE + 1

FEmax
, (16)

here radius is initialized with radius r0. FEmax and FE rep-
resent maximum number of fitness evaluations and current
number of fitness evaluation, respectively.
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C. SLPSO-ARS
In order to enhance the effectiveness of SLPSO for fast
convergence in LSOPs, SLPSO-ARS is proposed in [15]. It
incorporates the novel local search technique known as ARS,
with SLPSO which can speed up swarm convergence despite
preserving population variety. The evolutionary process pri-
marily uses SLPSO in SLPSO-ARS, but the key modification
is adding the ARS strategy for guiding the movement of the
particles. All of the particles in the current swarm are ranked
from the worst to the best according to their fitness values
at the end of each generation. After that, a region search is
conducted using the top P particles. Given that, choosing only
a relatively small portion of the population to perform RS, the
algorithm maintains the property of the original population to
a considerable extent to preserve the diversity since other par-
ticles are unchanged. The algorithm will also choose the top
P particles to perform RS based on a rank, which has a better
probability of looking for adjacent optima. As a result, the
ARS method can help accelerating population convergence to
a global optimum.

SLPSO-ARS only chooses a small number of particles with
higher rank to carry out RS, which not only helps in saving
FE but also has a greater likelihood of discovering the close-
by optimum solutions. The region is initialized with radius r0

as :

r0 = ubound − lbound

10
, (17)

where lbound and ubound represent the lower and upper
bounds of the search space, respectively.

D. PROPOSED APPROACH
As described and discussed above, SLPSO-ARS significantly
reduces the computation time for LSOPs. Therefore, in this
work it is proposed to solve the present optimization problem
using SLPSO-ARS. The complete flow of SLPSO-ARS can
be understood by Fig. 5.

Using the flow given in Fig. 5, the optimization problem is
mapped to SLPSO-ARS. The steps used to solve the problem
is summarised in Algorithm 2. Further, the pseudo-code in
Algorithm-2 presents a step-by-step algorithmic structure of
SLPSO-ARS. The algorithm takes the admittance matrix (Y
= Z−1) of PDN as input along with target impedance, the
number of perturbed particles and other SLPSO parameters.
The particles are distributed across the search space, which in
this case are the sets of the capacitors and the ports on which
they are place on.

SLPSO-ARS restricts the movement of these particles to
search for local optimum in their respective regions which
are adaptively expanded or reduced in accordance with the
better fitness values of other particles and its own perturbed
particle. A particles selected to perform perturbation is based
on its current fitness value. This selective choice of particles
to be perturbed in the population reduces the total number of
fitness evaluations (FE ) to be performed. A particle moves
to a new position of its perturbed particle if the fitness value

Algorithm 2: SLPSO-ARS Algorithm for Decap Opti-
mization.
Input: Ypdn = Yp×p× f ,Ym× f , Zt , N, r1, r2 and r3

Output: Zob j,C, P
1: N = 100; ε = 0.1; P = 5; T = 5; ρ = 0.01;

c = 0.5;
2: Randomly generate N particles, calculate the fitness

value of each particle and set initial radius to r0

3: For SLPSO, sort all the particles from the worst to
thalgorithme best fitness value;

4: FEs = FEs + N;
5: while FEs ≤ maxFEs do
6: for i = 1 to N − 1 do
7: if rand (0, 1) ≤ Pi then
8: for d = 1 to D do
9: k = randi_int (i + 1, N );

10: Update the particles using (11) and (12);
11: end for
12: Calculate the fitness value of particle i;
13: FEs = FEs + 1;
14: end if
15: end for
16: Sort all the particles according to the fitness

values and select the top P
17: particles;
18: // ARS
19: for i = 0 to P do
20: for j = 1 to T do
21: n = rand_int(1,D);
22: for d = 1 to D do
23: Perturb the particle according to (14);
24: end for
25: if f (x′

i) < f (xi ) then
26: xi = x′

i;
27: end if
28: FEs = FEs + 1;
29: end for
30: Modify the region radius ri of the particle i

according to (15).
31: end for
32: Sort all the particles based on the fitness values

from the worst to best.
33: end while
Output: Zob j = max(Zeq(1, 1), where
(Zeq ) f = (Y −1

pdn + Y −1
decap)−1

f , ∀ ∈ [0, fmax], X g = [P C]

obtained is better than its own fitness value, which in present
optimization problem is the maximum impedance of the PDN
over entire frequency range of interest. Outputs of the pro-
posed SLPSO-ARS algorithm are the capacitors required to
maintain desired impedance along with their corresponding
ports and the maximum impedance which can be achieved
across the frequency range of interest.
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FIGURE 5. Flowchart for genral SLPSO-ARS.

V. RESULTS
As described in [8], [23], [24], S-parameters are found to
be more accurate than RLC parameters for impedance mod-
elling; hence this work uses S-parameter data from PDN
and decoupling capacitors for formulating the optimization
problem. Three case studies are performed with their respec-
tive datasets of decaps. All three case studies contain the
same PDN data but have different dimensions of the decaps
datasets. The dimesnsions of the datasets are as following:
� Case-study 1: 1000 × 1391
� Case-study 2: 2000 × 1391
� Case-study 3: 3348 × 1391
In these case studies, the datasets have 1000, 2000 and 3348

decaps to choose from for placement. The dimension of Zpdn

used for this study is 21×21×1391, where the number of ports
is represented by 21 and 1391 denotes the frequency data
points. Port-1 is chosen to measure the self impedance Z11,
to keep the equivalent self-impedance minimum. As Port-1 is
used to measure self-impedance, rest 20 ports are available for
the placement of decoupling capacitors. To meet the system
requirements, Zt is kept as 60 m�.

FIGURE 6. Optimal Impedance of PDN for Case-study 1 .

FIGURE 7. Optimal Impedance of PDN for Case-study 2.

FIGURE 8. Optimal Impedance of PDN for Case-study 3.

The population size for MPSO and PSO is set to 50, while
for algorithm using SLPSO-ARS it has been set to 100. Max-
imum fitness evaluation performed (FEmax) is set at 1000
for SLSPO-ARS. These studies are done using MATLAB
R2019b and executed on a system with Intel Xeon 6 cores
3.6 GHz and 64 GB of RAM. The inertia weight parameter
of PSO and MPSO: wmax = 0.9 and wmin = 0.4, while accel-
eration coefficient are set at c1 = 1.49 and c2 = 1.48. Results
for 10 separate runs performed for all three case studies are
shown in Table 1. Table 1 consists of the CPU time required
for computation, T (in sec), and the decaps used for obtaining
desired impedance i.e. Nd .

The optimum value of the self impedance of the PDN
obtained by three algorithms using the minimum number of
decaps is shown in Figs. 6, 7, and 8. Fig. 6 shows impedance
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TABLE 1. Simulation Results for 10 Independent Runs

TABLE 2. Performance Summary of Algorithms

FIGURE 9. Average computational time comparison of PSO, MPSO and
SLPSO-ARS for all case studies.

for Case-study 1 along with impedance of PDN without using
any decap. The impedance profile obtained from all the case
studies are similar in all approaches, however, the computa-
tion time differs. The proposed method of SLPSO-ARS has
reduced computation time significantly, as shown in Fig. 9.

Performance comparison is presented in Table 2 for all the
case studies. Navg and Ndmin represent the average number of
decaps required and the minimum number of decaps required
in the runs in Table 1, where T is the average CPU run time.
Gain in CPU run time of 61.35%, 62.45% and 65.96% are
achieved when compared to PSO for Case-study 1, Case-study
2 and Case-study 3, respectively, and a CPU run time gain
of 57.81%, 57.19% and 56.61% is observed when compared
to MPSO for Case-study 1, Case-study 2 and Case-study 3,
respectively, as shown in Table 2.

In the presented case studies, the average decoupling capac-
itors required to meet the required impedance are 6 and 7, as

shown in Table 2. However, except in the PSO algorithm in
Case-study 3, the least number of decaps required for system
performance comes out to be five decaps.

In practice, more capacitors can be available for place-
ment, and more capacitors may be required to achieve PDN
impedance within the permissible range, which increases the
dimensions in the problem. The gain in computation time
for SLPSO-ARS will significantly improve as the problem
increases its dimensionality.

VI. CONCLUSION
A method for effective selection and placement of decou-
pling capacitors in a power delivery network is discussed
in this study. The proposed method uses Social Learning
Particle Swarm Optimization (SLPSO) and Adaptive Region
Search (ARS) to improve the computation time of LSOP of
decoupling capacitors placement compared to the conven-
tional metaheuristic algorithms. The SLPSO-ARS optimiza-
tion strategy outperforms traditional metaheuristic algorithms
in terms of computational time efficiency. This study con-
siders a practical power distribution network, and the target
impedance of the system is achieved using the least number
of decoupling capacitors. Three case studies that compare the
performance of the conventional and proposed methodologies
are also provided.
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