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Methodology for Automated Design of Quantum-dot Cellular
Automata Circuits

Orestis Liolis, Member, IEEE, Vassilios A. Mardiris, Ioannis G. Karafyllidis, Sorin Cotofana, Fellow, IEEE,
and Georgios Ch. Sirakoulis, Member, IEEE,

Quantum-dot Cellular Automata (QCA) provide very high scale integration potential, very high switching frequency, and have
extremely low power demands, which make the QCA technology quite attractive for the design and implementation of large-scale,
high-performance nanoelectronic circuits. However, state-of-the-art QCA circuit designs were not derived by following a set of
universal design rules, as is the case of CMOS circuits, and, as a result, it is either impossible or very difficult to combine QCA
circuit blocks in effective large-scale circuits. In this paper, we introduce a novel automated design methodology, which builds upon a
QCA specific universal design rules set. The proposed methodology assumes the availability of a generic QCA crossbar architecture
and provides the means to customize it in order to implement any given logic function. The programming principles and the flow
of the proposed automated design tool for crossbar QCA circuits are described analytically and we apply the proposed automated
design method for the design of both combinatorial and sequential circuits. The obtained designs demonstrate that the proposed
method is functional, easy to use, and provides the desired QCA circuit design unification.

Index Terms—Quantum-dot Cellular Automata (QCA), Design methodology, Crossbar architecture, Nanoelectronics.

I. INTRODUCTION

QUANTUM-DOT Cellular Automata (QCA) have been
proposed in 1993 by Lent et al. [1] and QCA technology

potentially provides an avenue beyond Moore’s Law and von
Neumann architecture electronics. In QCA technology, the
logic states are not represented by voltage levels like in the
VLSI/CMOS technology, but defined by the Quantum dots
that are occupied by the individual electrons within a cell.
Due to their great potential many QCA circuits have been
proposed [2], [3], [4], [5], [6] and novel fabrication tech-
niques developed [7], [8], [9], [10], [11], which, even though
they need to be further developed, are providing a realistic
roadmap for future QCA based nanoelectronics. Moreover, a
programmable QCA crossbar architecture was introduced in
[12], which provides designers the means to obtain robust
and efficient QCA circuit designs. In this architecture, pro-
grammable logic gates are formed at crossbar cross-points,
which function can be determined via the programming lines
located at the crossbar top and bottom. Given that, at every
and every cross-point one of the universal set of Boolean
gates {OR, AND or NOT} can be instantiated, the architecture
provides support for the implementation of any digital circuit.
We, note that the crossbar architecture is considered as one
of the most promising solutions for nanoelectronic circuits
[13], because of its fabrication simplicity and the inherent
redundancy, which supports defect tolerance [14], [15], [16],
[17], [18]. However, state-of-the-art QCA circuit designs were
not derived by following a set of universal design rules, as
is the case of CMOS circuits, and, as a result, it is either
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impossible or very difficult to combine QCA circuit blocks in
effective large scale circuits.

In this paper, we address this problem and propose an
automated methodology for the design of combinatorial and
sequential circuits by making use of a programmable QCA
crossbar architecture [12]. The proposed methodology aims
to tackle one major QCA circuit design issues and provide a
design automation that enables compatibility between different
QCA circuits. We note that even if the combination of state-of-
the-art QCA circuits can be feasible in some specific cases, the
interconnection circuit overhead is usually overwhelming, be-
cause it can be even larger than the circuits themselves. These
compatibility issues result from the lack of universal design
rules. The proposed methodology is utilizing the fundamental
design rules of the programmable QCA crossbar architecture.
In addition, it introduces the universal QCA structural blocks
that can be used to design any combinatorial logic circuit.
Moreover, the presented methodology is successfully handling
the clock zone partitioning to resolve any corresponding signal
timing and robustness issues.

In order to design sequential logic QCA circuits, the pro-
posed methodology enhances the aforementioned set of QCA
structural blocks with a memory element block. As a result, the
design of a memory cell on the programmable QCA crossbar
architecture is considered as a prerequisite for the further
development of the introduced design methodology [19]. This
memory cell provides the means for creating 2n-bit memories
and, at the same time, provides effective programmability. This
means that the same QCA circuit in programmable crossbar
architecture can be either used as a memory cell or as a
processing unit. Such a design perspective is possible by
exploiting the features of the programmable QCA crossbar
architecture, to be analyzed in the next sections. Thus, in the
proposed methodology, the memory element block, along with
the combinatorial logic QCA blocks are employed to design
any sequential logic circuit, while both memory element
blocks and combinatorial logic blocks are implemented into
the same crossbar.
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The proposed methodology as clearly already stated focus
on automated QCA design and not on the proposed clocking
schemes. As a result, it shouldnt be compared with several
clocking schemes that have already been introduced earlier
in the literature [20], [21], [22], having also in mind that
the usage of a fixed distribution clocking scheme has several
advantages for the design and fabrication of a QCA circuits. As
a general comment, every clocking scheme has its drawbacks
and, as a result, the majority of the proposed circuits in the
literature do not follow any specific scheme. Furthermore,
even though these schemes are trying to tackle the clock
signal distribution problem, they cant be generally used for all
design problems. Just to name some of the open issues that
merit further investigation are the quantum-dot cells manual
placement, the random location of I/O quantum-dot cells in
the circuits and the overhead of the combination. These issues
can be overwhelming. Nevertheless, and for sake of clarity, it
should be mentioned that in the proposed design methodology,
the clock signal distribution is not random, as it is explicitly
stated in Section II, while the clock zones for each block are
defined properly, and the clock zones sequence is cascadable.

Apart of the methodology, we also present an automated
QCA circuit design software tool that automatically generates
the QCA circuit layout corresponding to a given user specified
logic function. Up to our best knowledge, no similar tool with
the similar abilities exists. To further demonstrate the capa-
bilities of the proposed methodology and the corresponding
tool, the design of various combinatorial and sequential QCA
circuits is delivered together with the corresponding simulation
results obtained by QCADesigner [23] based simulations for
a default cell size of 18 nm× 18 nm.

The structure of the paper is as follows: Section II intro-
duces the proposed methodology for automated combinatorial
QCA circuit design and Section III presents its utilization
for the design of two QCA circuit examples. Section IV
describes the software tool for automated QCA circuits design
and Section V, extends the proposed methodology for the
automated design of QCA sequential circuits. In Section VI,
two sequential circuits are presented and paper conclusions are
drawn in Section VII.

II. AUTOMATED QCA COMBINATORIAL CIRCUIT DESIGN

In this section, we introduce a novel methodology for
automated combinatorial QCA circuits design. As mentioned
in the introduction, the lack of a universal QCA circuit design
methodology results in compatibility issues between reported
QCA circuits and this is the very problem our methodology
is aiming to overcome. Namely, we propose a universal
design methodology that, given a combinatorial function F
and the generic programmable crossbar of quantum-dot cells
proposed in [12], can create a QCA circuit instance able to
evaluate F . The programmable QCA crossbar architecture
stability has been verified in [12]. This verification has been
made theoretically and with the most widespread and reliable
simulation tools found in the literature. In this section, only
the basic design rules of the architecture will be presented.
The programmable QCA crossbar architecture consists of an

array of quantum-dot cells (see Fig.1) and a set of rules that
can be employed to map any digital circuit onto the crossbar.
These rules define how to handle circuit inputs and outputs,
how to form logic gates at the crossbar cross points, and how
to (re)configure the logic gate operation even during circuit
operation. In particular, cross-shape majority gate [24] is one
of the very first and most used logic gates in digital design
in QCA technology. Using the majority gate, the OR and AND
logic gates can be implemented. More specifically, if one of
the three inputs is fixed polarized at −1 (i.e. logic ′0′ )the
majority gate is operating as an AND gate, and if one of the
three inputs is fixed polarized at +1 (i.e. logic ′1′) the majority
gate is operating as an OR gate. This fixed polarization input is
the programming cell. Namely, by polarizing this input either
at +1 or −1, the same cells topology operates either as OR
or AND gate, respectively. In addition, in [12] a cross-shape
inverter has been proposed. These cross-shape logic gates that
can be formed at the cross points of the programmable crossbar
are shown in Fig.1. As Fig.1 depicts, the programming cells
that are used to define the operation of the majority gates are
located to the top and to the bottom of the circuit, the inputs
are located to the left and the outputs are located to the right.

The straightforward information flow, the well-defined I/O
interface, the fixed position of the quantum-dot cells, and
the programmability feature make the programmable QCA
crossbar architecture the best candidate architecture for an
automated QCA design methodology, enabling both scalability
and productivity in QCA circuits design.

Even though the programmable QCA crossbar architecture
defines a universal design rules set, it does not provide a
generic design methodology that can automatically generate
the QCA circuit for any design case. Namely, there are still
many design problems that need be solved manually, e.g.,
circuit clocking, logic gate positioning, programming lines
distribution. Our design methodology is aiming to provide an
efficient and generic solution to these problems.

Fig. 1: Programmable QCA crossbar architecture.

The first step towards the development of a universal QCA
circuit design methodology is the definition of the circuit
information flow. In the proposed design methodology, the
information propagates from the left side towards the right side
of the circuit, which is achievable by the appropriate handling
of the clock zone partitioning. Note that clock zone partition-
ing is one of the most important QCA circuit design phase,
and adiabatic switching [25], [26] is currently considered to

This article has been accepted for publication in IEEE Open Journal of Nanotechnology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJNANO.2022.3223413

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 3

be the best clocking technique able to provide stability and
information flow control within QCA circuits. In adiabatic
switching, the electrons of every cell are pushed to either
neutral state or one of the two possible logic states. In the latter
case, the prevailing logic state depends on the polarization of
the neighboring cells. This adjustment of electron motion is
achieved through applied electric fields controlled by four-
phase clock signals, Switch, Hold, Release, and Relax, which
have a relative phase difference of 90◦. The quantum-dot cells
in a clock zone are all controlled by the same clock and, as
such, the information propagates from one clock zone cells to
their neighboring cells of the next clock zone.

To evaluate a given combinatorial function F by means of
the QCA technology we rely on fundamental QCA blocks
that are able to perform basic Boolean algebra operations, i.e.,
NOT, AND, OR. Thus, the first design step consists of rewriting
F in terms of Boolean algebra operations such that its QCA
implementation can be done by means of fundamental QCA
blocks only. Subsequently, the selected QCA blocks are to be
instantiated within the crossbar space.

Firstly, for blocks placement, we have to take into con-
sideration the logic operations hierarchy. For example, F =
(A·B)+(C·D) is implemented in two logic levels, as indicated
in Fig. 2, with two AND gates in level 1 and one OR gate in
level 2 with level 1 outputs being level 2 inputs.

The programming line within the crossbar architecture [12]
are located at array top and bottom, such that the upper
(lower) block makes use of the top (bottom) programming
lines. Consequently, each circuit level can accommodate at
most two blocks because extra blocks don’t have any avail-
able programming lines to utilize. In order to overcome this
problem, intermediate levels (sub-levels) need to be added. For
example, in order to implement F = (A·B)+(C ·D)+(E ·F )
the 3 AND-gates are placed on the two level 1 sub-levels and
the OR-gate in level 2, as depicted in Fig. 3. The number of
sub-levels of level i (NSLi) is defined as

NSLi ≥
NBi

2
, (1)

where NBi is the number of blocks at level i. In this particular
example, NB1 = 3 and NB2 = 1.

The proposed methodology can be also utilized to design
multi output QCA circuits, case in which each and every
function Fi has to be implemented separately, as suggested in
Fig. 4. Though, since one function is placed bellow the other,
we can utilize both top and bottom programming lines in every
function. Namely, in the example of Fig. 4 F1 is utilizing the
top programming lines and F2 is utilizing the bottom.
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Fig. 2: Diagram of function (A ·B) + (C ·D).
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Fig. 3: Diagram of function (A ·B) + (C ·D) + (E · F ).
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Fig. 4: Diagram of the implementation of more than one
function.

QCA blocks can be classified in two classes: (i) blocks
that implement basic Boolean algebra operations and (ii)
interconnect facilitators. Type (i) blocks can be further divided
into subcategories depending on their input cardinality. Figs. 5
- 7 present examples of the proposed type (i) blocks of the
proposed methodology, i.e., Fig. 5 depicts a 2-input block,
while a 3-input block and a 4-input block is presented in Fig. 6
and Fig. 7, respectively. We note that all circuits are designed
with QCADesigner design tool [23].

a

b

-1.00

out

Fig. 5: 2-input block evaluating a · b.

The second category contains blocks that can be utilized
for signal crossing and branching. The four crossing cases
and the two branching cases are presented in Fig. 8 and Fig.
9, respectively.

We note that blocks belonging to the same subcategory
are designed such that they exhibit the exact same delay,
namely, all 4-input blocks introduce a 7 clock zones delay,
all branching blocks a 3 clock zones delay, and so on.
This uniform delay block design policy eases the handling
of synchronization constraints at the circuit level. However,
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a

b

-1.00 -1.00

out

c

Fig. 6: 3-input block evaluating a · b · c.

a
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-1.00 -1.00

out

c

d

-1.00

Fig. 7: 4-input block evaluating a · b · c · d.

even though the earlier described blocks exhibit fixed and
known delays, in QCA circuits the signal propagation between
adjacent blocks is performed by binary wires, which induce a
wire length dependent delay overhead. Taking this into consid-
eration, QCA blocks placement and binary wires routing are
crucial parts of any design technique following QCA operation
principles, which seeks the realization of stable and functional
QCA circuits. The fact that blocks placed in the upper/lower
half of the circuit are utilizing the top/bottom programming
lines allows for the realization of different information flows
into the upper and the lower parts of the circuit, which are
both converging to the right center of the circuit, where the
circuit output is located. Moreover, circuit partition into levels
and sub-levels enables wire length minimization such that wire
induce delay becomes manageable.

The systematic block delays policy combined with inter-
connection wire length minimization allow the methodology
to properly address robustness issues also. Namely, since

a

b

out0

out1

a

b

out0

out1

a

b
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out1

a

b

out0

out1

Fig. 8: The blocks that implement the 4 different crossing
cases.

a out0

out1

a

out0

out1

Fig. 9: The blocks that implement the 2 different branching
cases.

interconnection wires are as small as possible, it is easier to
avoid kinks, i.e., occasions where a quantum-dot cell has a
different polarization than the expected one. The maximum
length of a QCA binary wire [27] in a specific clock zone is
given by

N ≤ e
Ek
kbT , (2)

where Ek is the kink energy, kb Boltzmann’s constant, and T
the temperature. The kink energy between two Quantum dots
is calculated as

Ei,j
k =

1

4πε0εr

qiqj
|ri − rj |

. (3)

Thus, to achieve stability any QCA circuit has to be divided
into as many clock zones as required while fulfilling Eq. (2).
On the other hand one compromise should be thought as the
more clock zones are utilized the larger the circuit delay.
The proposed methodology is handling all the above issues
and the obtained circuits have the smallest possible delay.
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To summarize, the proposed methodology encompasses the
following steps:
• Transform the to be implemented logic function expres-

sion such that it can be implemented by the predefined
basic QCA blocks.

• Partition the circuit into levels and sub-levels.
• Place the blocks onto the crossbar grid, while utilizing

the top and the bottom programming lines, as earlier
described.

• Connect the placed blocks, while taking into considera-
tion clocking and synchronization constraints.

III. DESIGN METHODOLOGY APPLICATION

In this section, we present two example designs, a 2 : 1
and a 4 : 1 multiplexer, derived by means of the methodology
introduced in the previous section.

Fig. 10: QCA 2 : 1 multiplexer.
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Fig. 11: Fig. 10 circuit simulation results.

The logic function that described the output of a 2 : 1
multiplexer is A · S′ + B · S. Fig. 10 depicts the QCA
circuit obtained by following the proposed QCA circuit design
methodology. The basic QCA blocks are located inside the
red boxes and as one can observe in the Figure the circuit
is divided into three levels. Initially the S signal is branched
in order to be utilized as input for both 2-input AND gates
in the second circuit level. The supplementary input for the
upper gate is A, while B is the second input for the lower
gate. These two QCA blocks are horizontally mirrored because
the programming lines of the first one are located at the

top, and the programming lines of the second one at the
bottom. The outputs of these two AND gates are inputs of
the 2-input OR gate located in the third and final circuit level.
The implementation makes use of 136 Quantum-dot cells that
occupy 0.16µm2 and has a 7 clock zones delay. In Fig. 11,
the simulation results that prove the circuit functionality are
presented. For the simulation of the 2 : 1 multiplexer as well
for all the other circuits that are presented in the following
sections, we made use of the QCADesigner [23]. All the
simulations were preformed with QCADesigner coherence
vector simulation engine default parameters and default cell
size, namely 18 nm× 18 nm.

Likewise, Fig. 12 and Fig. 13 present the 4 : 1 multiplexer
design and simulation results, respectively. As the 4 : 1
multiplexer output behaviour is described by A · S1′ · S0′ +
B · S1′ · S0 + C · S1 · S0′ +D · S1 · S0 its implementation
requires four 3-input AND gate blocks and one 4-input OR gate
block. The implementation requires 2 levels, while the first
level that includes the 4 AND gates, has been implemented in
2 sub-levels. The resulting circuit consists of 1, 080 Quantum-
dot cells that occupy 1.06µm2 and exhibits a 19 clock zones
delay.
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1.00 1.00 1.00

out

S0

B
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S0

C

-1.00 -1.00

Fig. 12: QCA 4 : 1 multiplexer.

IV. AUTOMATIC QCA LAYOUT GENERATION

Based on the circuit design methodology introduced in Sec-
tion II we developed in C++ a QCA circuit design automation
tool. The user provides as input the logic function that she/he
wants to implement and the tool automatically generates
the layout of its QCA implementation in a QCADesigner
compatible format in file with .qca extension. The circuit
synthesis operation comprises the following five steps:

1) QCA blocks selection: The logic function F is analyzed
and the necessary QCA blocks for its circuit level
implementation are chosen.

2) QCA blocks position definition: The QCA circuit is
divided into levels and each level is further divided
into sub-levels, if needed, based on the methodology
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Fig. 13: Fig. 12 circuit simulation results.

discussed in Section II. Then, every block is placed at the
corresponding level following the feedforward logical
structure of F .

3) Wire placing and routing: Appropriate binary wires
are instantiated in order to connect the outputs of prior
blocks to the inputs of following blocks, from F ’s
primary inputs towards its primary output.

4) QCA circuit clocking: The circuit is divided into clock
zones from the left to the right, taking into consideration
stability and the other previously discussed constrains.

5) Quantum-dot cells placing: The Quantum-dot cells are
placed at their appropriate crossbar positions and clock
zones, according to the positions determined during the
previous steps.

Even though the tool relies on a Command Prompt User
Interface (UI), the simplicity of the requested actions makes
the tool user friendly. As mentioned before, the only required
user action is to specify the to be implemented logic function.
Fig. 14 depicts the QCA circuit layout for the evaluation of
a·b·(c+d) logic function, produced by the tool, without human
interference. The correctness of the circuit is verified by means
of QCADesigner simulations, which results are presented in
Fig. 15.

Fig. 14: QCA implementation of F = a · b · (c+ d).

Fig. 15: Fig. 14 circuit simulation results.

V. SEQUENTIAL QCA CIRCUIT DESIGN METHODOLOGY

The methodology of Section II can be utilized to derive
the QCA layout of the circuit that implements any given
combinatorial logic function. In this section, we introduce the
required modifications that enable its utilization for the QCA
implementation of sequential logic circuits.

Even though many memory designs have been pro-
posed [28], [29], [30], [31], [32], [33], [34] the majority of
them are not compatible with our targeted crossbar architec-
ture. Thus, for the extension of the circuit design methodology
to sequential logic we make use of the QCA memory cell
presented in [19], which combines the basic advantages of the
QCA technology with the capabilities of the programmable
crossbar architecture. The memory cell circuit that it utilized
by the proposed methodology is presented in Fig. 16.

-1: no write

1: read

1: no write

1: write

-1: no read

-1: write

select

1.00 -1.00

out

1.001.00

-1.00 -1.00

in

-1.00

1.00

Fig. 16: Crossbar mapped QCA RAM cell in writing mode.

In this implementation the memory cell operations, i.e.,
read and write, are controlled by the programming lines
located at the top and the bottom of the QCA crossbar.
More specifically, in the read operation the polarization of
the programming Quantum-dot cells value should alternate,
i.e., if the polarization of the first top programming cell is
−1 the polarization of the second should be +1 and vice-
versa. The same pattern applies to the fourth and fifth top
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and to the first two bottom programming cells. On the other
hand, in write mode all the top/bottom programming cells have
identical polarization, but the top cell polarization value is
different than the polarization of the bottom cells.

The obvious advantage of this implementation is pro-
grammability, as the same circuit layout can be utilized in
many applications by just changing the polarization of the
programming Quantum-dot cells. This makes this RAM imple-
mentation promising, since the same circuit can be utilized for
different applications with different storage and performance
requirements. This RAM structure flexibility and adaptability
make it quite attractive for QCA implementations. Last but
not least, this approach provides the possibility to implement
a given size memory on a prefabricated QCA crossbar, while
other RAM QCA technology implementations require from
scratch fabrication, which is a great advantage in view of the
challenging nature of the QCA circuits fabrication process.

To extend the methodology from combinational to sequen-
tial circuit we extend the basic block with the QCA memory
block presented in Fig. 16. The memory cell is always in
writing mode and the select signal determines the to be stored
data value. Fig. 17 presents the generic structure of a QCA
circuits designing with memory, which combinational part can
be generated by the approach introduced in Section II and the
storage part by means of the previously discussed RAM block.

Logic Functioninputs

Memory 
Block

.

.

.

select

Fig. 17: Generic QCA circuit with memory.

VI. AUTOMATED DESIGN METHODOLOGY FOR
SEQUENTIAL LOGIC APPLICATIONS

To further clarify the implementation to digital circuits with
memory elements on the generic QCA cell crossbar let we
assume that the logic function that is computed and stored in
Fig. 17 is a + b + (c + d). Fig. 18 presents the QCA circuit
obtained after the application of the proposed methodology.
In the Figure, the red boxes delimitate the memory block
and the two logic blocks and the blue boxes the two crossing
blocks. Fig. 19 depicts the corresponding simulation result that
demonstrate proper circuit functionality.

We also considered the design of a classic sequential
electronic device, i.e., a 4-bit shift register, which has a serial
data input and the second one that triggers data shifting.
The QCA 4-bit right shift register circuit created by the
proposed methodology is presented in Fig. 20, where the
four memory blocks that have been used in the design are
located inside the red frames. Fig. 21 presents simulation result
and by comparing the four output waveforms produced by
QCADesigner with Table I data, one can conclude that the
QCA circuit behaves as expected.

Fig. 18: a+ b+ (c+ d) QCA circuit with memory element.
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Fig. 19: a+b+(c+d) with memory element simulation results.

VII. CONCLUSIONS

This paper addressed one of the QCA technology major
issues, the lack of universal design methodologies and archi-
tectures, and by implication the unavailability of software de-
sign tools that can facilitate the design of large (with thousands
quantum-dot cells) QCA circuits. We introduced an automated
design methodology that makes use of a generic programmable
QCA cell crossbar architecture to derive the implementation
of any Boolean logic function. We utilized our proposal for
the design of several Boolean logic circuits, which correct
behavior was verified by means of the QCADesigner design
and simulation tool. Moreover, we extended the methodology
for the design of sequential circuits and utilized it for the
QCA design of a 4-bit shift register. Furthermore, a software
designing tool based on the proposed automated methodology
was presented, which automatically generates the QCA circuit
layout corresponding to a given user specified logic function.

Even though the proposed methodology constitutes the best
solution to deal with the well-known QCA design challenges,
future research issues could be considered aiming to continu-
ous improvement of the proposed methodology towards even

TABLE I: Example of 4-bit right shift register operation.

Shift Enable 1 1 0 0 0 0 0 1 0 1
Input data 1 0 X X X X X 0 X 1

Out 0 1 0 0 0 0 0 0 0 0 1
Out 1 0 1 1 1 1 1 1 0 0 0
Out 2 0 0 0 0 0 0 0 1 1 0
Out 3 0 0 0 0 0 0 0 0 0 1

more fabrication friendly solutions. In particular, the proposed
methodology should be considered as the first step towards the
resolution of an important drawback of QCA technology once
the fundamentals of automated design are established. The
combination of the methodology with other clocking schemes
could be the second step to that direction since this would
make the clock signal distribution even more straightforward.
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