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ABSTRACT Many edge/mobile devices are now able to utilize deep neural networks (DNNs) thanks to the
development of mobile DNN accelerators. Mobile DNN accelerators overcame the problems of limited
computing resources and battery capacity by realizing energy-efficient inference. However, its passive
behavior makes it difficult for DNN to provide active customization for individual users or its service
environment. The importance of on-chip training is rising more and more to provide active interaction
between DNN processors and ever-changing surroundings or conditions. Despite its advantages, the DNN
training has more constraints than the inference such that it was considered impractical to be realized on
mobile/edge devices. Recently, there are many trials to realize mobile DNN training, and a number of
prior works will be summarized. First, it arranges the new challenges of the DNN accelerator induced by
training functionality and discusses new hardware features related to the challenges. Second, it explains
algorithm-hardware co-optimization methods and explains why it becomes mainstream in mobile DNN
training research. Third, it compares the main differences between the conventional inference accelerators
and recent training processors. Finally, the conclusion is made by proposing the future directions of the
DNN training processor in micro-AI systems.

INDEX TERMS Backpropagation (BP), backward unlocking (BU), bit-precision optimization, deep neural
network (DNN) training, reading transposed weight, sparsity exploitation.

I. INTRODUCTION

ARTIFICIAL intelligence (AI) is already essential in
the current smart machines. For example, smartphones

now utilize AI-based face recognition for user authenti-
cation. Their AI voice assistant can improve convenience
for users because it can remove their manual device
operations. Still, AI applications used in commercial
products highly depend on the cloud server. However,
communication with the cloud can cause not only the
unreliable latency of the communication channel but also
a privacy problem because it transfers user data regardless of
the user’s intent. Many deep neural network (DNN) accelera-
tors [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13]

provided on-device inference to solve this problem. However,
they give limited applications with lower accuracy because
it just repeats the predetermined task based on the pre-
trained DNN. The user-specific environment cannot be
covered at the pretraining level and, for this reason,
the inference processor shows poor performance if it is
placed in an unexpected situation. Finally, the current AI
processors have weaknesses in providing user-friendly AI
services.
With the need for interactive AI, the demand for on-chip

training is increasing. On-chip training can give person-
alization functionality by tuning global knowledge to be
optimized to the user-specific datasets. In addition, on-chip
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training-based distributed learning can distribute the work-
load of the server. If we adopt the federated learning [82],
it not only protects individual privacy but also makes DNN
training easy to scale.
Even though the on-chip DNN training can have many

advantages, the realization of training in the micro-
AI systems seems challenging. Specifically, edge/mobile
devices must handle training with their limited comput-
ing resources and battery capacity. Since slow training
cannot quickly adapt to the ever-changing environment,
training should be performed reasonably fast while main-
taining high energy efficiency. Recently, there are many
trials [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34],
[35] to realize DNN training at the edge or mobile devices
but previous review papers [36], [37], [38], [39] did not
cover this new research area properly.
In this article, DNN training will be discussed in terms of

technical challenges. First, typical applications and require-
ments of the on-device training will be discussed in
Section II. New design challenges caused by computa-
tional characteristics of the training will be summarized in
Section III. After that, new features suggested by the recent
research will be examined through Sections IV to VIII.
Section IV surveys new hardware designs to support the
transpose-read of weight required at the error-propagation
(EP) stage. Sections V–VIII introduce: 1) sparsity-aware
acceleration; 2) bit-precision optimization; 3) memory access
optimization; and 4) backward unlocking (BU) method-
ologies. Section IX summarizes recently developed DNN
training processors and introduces design examples, HNPU-
V1 [29] and HNPU-V2 [80], with the design philosophies
of the inference and training processor design. This article
will be concluded with a discussion about future research
direction and new challenges which should appear in the
upcoming DNN training processors.

II. THREE MAJOR SCENARIOS OF ON-DEVICE
TRAINING
Training efficiency and speed is the key enabler of on-device
training but the detailed requirements can be varied according
to the target application. As shown in Fig. 1, we summarize
three major scenarios of on-device DNN training as follows:
1) evolution; 2) advancement; and 3) adaptation.

A. EVOLUTION: LONG-TERM DNN TRAINING
If we can collect the data with proper labels, a new DNN
application can be created. However, there are too much
data in the real world, and labeling all of them is challeng-
ing. In addition to labeling, it faces privacy-preserving issues
during the training data gathering. Although these two prob-
lems are the main barriers to enlarge DNN application, they
can be addressed using long-term DNN training such as fed-
erated learning [82]. After devicewise local DNN training,
individual weights are sent to the cloud and the weights are

FIGURE 1. Requirements of the DNN training processor according to the on-device
training scenarios.

aggregated for global DNN training. For this training pro-
cess, the individual device should support on-device training
for local training. It updates local DNN with enough user
data collected for some period and receives global DNN
after federated learning. This is an example of long-term
DNN training because communication to share parameters
occurs infrequently. The long-term training scenario, evolu-
tion, utilizes a large dataset such as ImageNet [81], unlike the
other two training scenarios. The AI processors for evolution
applications require reconfigurable logic to provide training
functionality but have no strict conditions for training latency.

B. ADVANCEMENT: MEDIUM-TERM DNN TRAINING
On-device training is important when the application needs
user-specific solutions. On-device training can make a small
student network which shrinks the original large teacher
network to focus only on user preference. It usually uti-
lizes quantization or weight pruning for the fast and efficient
acceleration of DNN on the micro-AI device. In addition
to network shrinking, it can add new classes which were
not considered in the original pretrained network training.
It needs to fine-tune the network which utilizes the original
big teacher network as a backbone but modifies its weight in
the user-specific dataset. These applications can be catego-
rized as advancement scenario which requires medium-term
DNN training. In the advancement scenario, it has a rela-
tively small dataset and the training should be finished at
midnight which is generally considered as the device charg-
ing and not in use. The training time constraint is more
strict than long-term DNN training cases but it still does not
need a real-time or ultrafast performance like the inference
applications. Instead, these training scenarios are important
to offer user-friendly applications. Moreover, it can optimize
networks using quantization or pruning for fast and efficient
inference on edge/mobile devices.

C. ADAPTATION: SHORT-TERM DNN TRAINING
Both long-term and medium-term training are important to
preserve users’ privacy while expanding DNN applications
to broad areas. However, their timing constraints are not that
strict compared with the DNN inference scenario. However,
real-time or ultrafast training is required when DNN needs
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environmental adaptation. There are two typical examples.
The first example is object tracking. Han et al. [34], [43]
utilized a light object detection network but supports object
tracking functionality by adopting online DNN training.
Since the shape of the target object can be deformed due
to its individual movement, it learns new shapes through
online DNN training. Furthermore, it adapts new illumina-
tions or occlusions to be robust to environmental changes.
Generally, object tracking targets real-time operation, the
online training process should be accelerated within 30 ms
not to degrade the performance of the conventional infer-
ence process. Adaptation after an unexpected situation, such
as a camera malfunction or abrupt domain change is also
important to prevent fatal operational errors. Han et al. [80]
showed that online DNN tuning performed right after an
unpredictable accident is one of the solutions to recovering
its original performance
As shown in both two examples, on-device adaptation

seems promising but it must be accompanied by an energy-
efficient and low-latency DNN training processor. Long
latency due to the training rather disturbs the DNN inference
and can cause other problems due to slow response. Although
it can collect only a small amount of dataset during the run-
time, it should realize the fastest training speed compared
with the other two training scenarios. Unlike both the evo-
lution and advancement scenarios, the adaptation scenario
requires ultrafast DNN training but it can lose the generality
of the original network by using only a small amount of
data collected every frame.
The design direction of the on-chip DNN training pro-

cessor can be varied according to the target DNN training
scenarios. In this article, we will introduce various DNN
training processors including these three target application
scenarios.

III. BACKGROUND: BACKPROPAGATION
Even though there are many DNN training methodologies,
backpropagation (BP, [40]) is the mostly used DNN training
method. Thus, distinct computing characteristics of the BP
compared with the inference will be briefly explained. We
will also introduce the main challenges for realizing fast and
energy-efficient training on micro-AI systems.

A. BP OF FULLY CONNECTED LAYER AND
CONVOLUTION LAYER
The BP is a loss minimization method based on gradient
descent by using the chain rule. It stores all intermediate
activations and errors generated in every layer and loads
them to calculate the new gradients. Unlike numerical gra-
dient descent, the BP-based training is one of the analytic
gradient descent methods, which can calculate accurate gra-
dients of the multiple parameters with just one inference.
Therefore, the BP can significantly reduce the computational
requirement, instead, it needs large storage to remember
entire activations and errors to update the weights.

FIGURE 2. Three training stages during BP: FF, EP, and
weight-gradient-update (WG).

As shown in Fig. 2, the BP generally consists of three
training stages: 1) feedforward (FF); 2) EP; and 3) weight-
gradient-update computing (WG). In the FF stage, the DNN
gets inference results with the predefined weights. After that,
the loss function is calculated to generate the error. In the
EP stage, this error is now propagated from the last layer
to the prior layers step by step. Finally, the gradient of the
weight is calculated by utilizing both activations and errors
generated in FF and EP stages. This training process is
general for any type of DNN, but the required computing
methods can be varied according to the target layer type.
In this section, we will explain the detailed computation
of the three training stages in two commonly used layer
types” 1) the fully connected layer (FCL) and 2) convolution
layer (CL).

1) BP OF FCL

When input and output neurons are fully connected in a layer,
we call it FCL and it is the most general layer type of
the DNN. For example, multilayer perceptrons and recurrent
neural networks use the stacks of FCLs to complete the
network architecture. Convolutional neural network (CNN)
also utilizes FCLs for classification or channel attention. The
FF stage of FCL is based on matrix multiplication of input
activation (IA) and weight. In the EP stage, the computation
method is similar but the input operands are replaced with
error and transposed weight. After both FF and EP stages, IA
and output error (OE) are multiplied to create the gradient of
the weight. The WG stage needs elementwise multiplication
in the single-batch gradient descent.

2) BP OF CL

Although the FCL needs matrix multiplication and ele-
mentwise multiplication for training, CL only needs the
convolution operation. Instead, the shapes of the weight
kernel are varied according to the training stages. It needs
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TABLE 1. Typical batch size used in training processors.

a 180◦-rotated kernel to propagate the errors. The position
of the input and output channel is also switched. Similar to
FCL, CL also needs the transpose-read due to this channel
switching. After the EP stage, the gradient of the weight is
calculated by the convolution of IA and OE. Unlike the FF
and EP stages, the WG stage needs large-kernel-size convo-
lution because the size of OE is almost the same as IA. As
a result, the distance of the spatial data-reusing at the WG
stage is not as long as in the other training stages.

B. CHALLENGES OF BP AT THE MICRO-AI SYSTEMS
The DNN training requires not only FF stage but also EP
and WG stages. Additionally, optimization methods of the
inference processors can be useless because they some-
times degrade the training quality. This difference induces
new challenges to design training processors and they are
summarized as follows.

1) READING OF TRANSPOSED WEIGHT

The EP stage reads the transposed form of the forward
weight (FW) before it computes the convolution. The CL
requires a 180◦-rotated kernel as well as a transposed kernel.
The reading of 180◦-rotated data can be realized simply
by reading data in reversed order. However, the reading of
transposed weight is not that simple because it reads discon-
tinuous data from the external memory where the weight is
stored. Discontinuous data access pattern caused by trans-
posed weight disturbs burst-mode read of DRAM, resulting
in slow and inefficient DNN computing.

2) MAXIMIZING THROUGHPUT EVEN WITH THE
LIMITED RESOURCES

DNN training requires a much larger amount of computations
compared with inference. It needs to perform additional two
training stages and repeats this training loop until the loss
curve is converged. It also utilizes batch gradient descent
which uses multiple inference results to generate a single
gradient.
The required batch size can be varied according to its tar-

get training applications. Generally, the batch size becomes
relatively small if the target network requires a large memory
size such as image-to-image translation networks. On the
contrary, as shown in Table 1, deep reinforcement learn-
ing (DRL) networks utilize large batch sizes because their
network size is relatively small. In the object classification
application, its training performance can be degraded signif-
icantly with the batch size < 4, but beyond 4, there is no
significant difference in training performance [Fig. 3(a)]. For
this reason, the conventional GP-GPU utilized large batch

(a)

(b)

FIGURE 3. Relationship between batch size and DNN training. (a) Training and test
accuracies of CIFAR-100 according to batch size and learning rate. (Blue star =
Highest accuracy among various learning rates) batch size and its best learning rate
show a positive linear correlation. (b) Analysis of DNN training at the GP-GPU (ResNet
@ CIFAR-100).

parallelism to reduce the overall training time [Fig. 3(b)].
However, this acceleration method is challenging in mobile
training processors with limited on-chip memory size and
external memory bandwidth. Instead, a novel throughput
improvement method is necessary for the training processors
to accelerate training even with the small-batch parallelism.

3) HIGH-BIT PRECISION REQUIREMENT

During the inference, the final decision of the DNN is mainly
affected by the large values of the IA [29]. For this reason,
it is easy to decrease the bit-width during the inference
acceleration. Unlike the inference, even the small values of
IA cannot be ignored in DNN training because they may
include important information for loss minimization. The
naïve quantization methods can destroy this information and
slow down the training. Furthermore, the errors computed
in the EP stage have a wider distribution compared with the
FF stage; thus, it is insufficient to be represented with low-
bit precision. As a result, training requires high-bit-precision
representation and this requirement becomes the main obsta-
cle to the realization of DNN training on mobile devices
because it totally decreases the efficiency of the processor.

4) MEMORY-INTENSIVE OPERATIONS DURING WG

As described in Fig. 2, intermediate IA and OE should be
stored until the weight gradient is calculated. In addition,
although data-reusing can be partially done in the CL, its
reusing amount is much smaller than in the other train-
ing stages. Computing in the WG stage becomes similar to
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FIGURE 4. Low training speed caused by the backward locking problem.

TABLE 2. Typical batch size used in training processors.

matrix multiplication that appears in the FCL. After gradient
calculation, it additionally loads the weight and momentum
to finalize the weight update process. It causes high arith-
metic intensity (the number of operations per byte) so that
its performance highly depends on its external and internal
memory bandwidth. Consequently, the reduction of memory
access during the WG is the most important optimization
method to accelerate its computation.

5) BACKWARD LOCKING PROBLEM

The BP propagates errors sequentially from the last layer to
the first layers as depicted in Fig. 4. Therefore, the weight of
the first layer can be updated only when the error propaga-
tion of the entire layers is completed. In other words, FF, EP,
and WG stages should be computed sequentially and cannot
be processed in parallel. It is called the backward locking
problem [34] and this sequential process has two disadvan-
tages. First, three training stages require the same weights
but the weights should be reloaded every training stage.
Second, it cannot hide the latency of the EP and WG stages
and significantly reduce the framerate during online DNN
training, such as object tracking [41] or temporal knowledge
distillation (TKD, [42]).

IV. SOLUTION OF TRANSPOSE-READ DURING EP
As summarized in Table 2, there are three categories of
transpose-read solutions: 1) software-level; 2) architecture-
level; and 3) circuit-level solutions.

A. SOFTWARE-LEVEL SOLUTION
Han et al. [43] tried to avoid transposed weight by using
a different EP method called feedback alignment [44]. This
algorithm is the same as BP but the backward weight (BW)
is substituted with the binary random matrix. However, since
this algorithm modification may degrade the training accu-
racy significantly, it can only be applied to limited DNN
applications.
Most DNN processors [22], [23], [29], instead, adopted

software-level data prefetching. They rearranged the
data stored in weight SRAM before it was used for the
main convolution operation. This method is straightforward
but needs additional time to rearrange the weight memory.
Therefore, it can be efficient only when the reordered weights
are reused repeatedly.

B. ARCHITECTURE-LEVEL SOLUTION
The transposable PE array suggested by Kim et al. [20]
releases the burden of the software by simple architectural
modification of the PE array. The transposable PE array uti-
lized both broadcasting and unicasting data flow to perform
matrix multiplication or convolution. It utilized the input
feature reuse during the inference with a single image, but it
adopted weight reuse by aggregating multiple images in the
EP stage. This method can convert its computing type by
using a simple instruction but it needs a local buffer for each
MAC unit, resulting in an efficiency drop in the PE array.
Another paper [30] added a weight transpose-reading unit

instead of modifying the main PE array. This additional unit
generated the transposed weights before they were fetched to
the PE array. Since the transposable PE array [20] assumed
regular patterns of rectangular-shaped weight, there is no
throughput improvement effect even with the pruned weight.
The weight transposer suggested by Lee et al. [30] adopted
hierarchical transpose-read and reduced memory access by
excluding the fetch of pruned weights. Even though the
weight transposer unit showed fast weight decoding speed,
it can rather induce low area efficiency due to the additional
large register file array.

C. CIRCUIT-LEVEL SOLUTION
Custom SRAM design [5], [25] is also a good solution that
can support both normal-read and transpose-read. It makes
both the main core architecture and software much simpler
but the memory density of the SRAM is degraded because
the SRAM cell architecture should be modified by adding
more MOSFETs or bit/word-line.

V. SPARSITY EXPLOITATION DURING TRAINING
The DNN training processor needs further optimization to
realize high-speed DNN training in the micro-AI systems. It
needs additional hardware features to maximize its through-
put even with the limited resources. Sparsity exploitation is
the key feature that increases throughput during the on-chip
training and it is summarized in Table 3.
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TABLE 3. Summary of sparsity exploitation DNN training processors.

A. CONVENTIONAL INPUT/WEIGHT ZERO SKIPPING
Most of DNNs utilize the ReLU activation function and it
makes the negative values of IA become zeros. Weight can
also have many zero values when the pruning is applied. Zero
operands do not affect the final output and many inference
engines [33], [45], [46] tried to speed up their operations by
skipping zeros in the IA or weight. Input and weight skip-
ping techniques are still effective for DNN training but it
shows limited performance improvement during the EP and
WG stages. At the EP stage, input sparsity disappears due to
the normalization layer. On the other hand, weight sparsity
disappears at the WG stage because the gradient is calcu-
lated by the convolution between IA and OE. DNN training
processor needs a different sparsity exploitation method com-
pared with the inference processor to utilize the advantages
of the zeros that appear during the training.

B. RELU-AWARE OUTPUT ZERO SKIPPING
DURING THE EP
Input sparsity cannot be utilized for the acceleration of
the EP stage. Instead, the derivative of ReLU activation,
dReLU(x)/dx, transfers only positive values to the prior
layer and induces output sparsity. With this motivation, some
DNN training processors [24], [27] exploit both input and
output sparsity to improve their throughput both in FF and
EP stages.

C. PRUNING-AWARE OUTPUT ZERO SKIPPING
DURING THE WG
Weight sparsity exploitation core is still effective during the
EP stage but it cannot be applied during the WG stage
because it calculates matrix multiplication or convolution
between IA and OE. Instead, the gradients of the pruned
weight should be discarded and it gives the possibility of
skipping that calculation. It results in output sparsity dur-
ing the WG stages. Output sparsity exploitation during the
WG stage has big benefits thanks to both useless com-
putation avoidance and memory access removal. For this
reason, recent energy-efficient training processors [26], [31],
[51], [78] supported triple sparsity exploitation by combining
iterative pruning.

D. IN- AND OUT-SLICE SKIPPING
Dual or triple sparsity exploitation is proposed recently for
zero-skipping-based DNN training but they induce complex
data-path leading to low efficiency at dense data com-
puting. In addition, the activation functions used for a
recent DNN architecture have been varied such as leaky-
ReLU [52] and mish [53]. It wastes lots of energy if there
is no sparsity during the DNN training. Han et al. [29], [80]
focused on this drawback and utilized bit-slice (4 bit) level
sparsity. Moreover, Han et al. [29] skipped partial accumu-
lation slices which should be truncated before it is used
for the next layer. Thanks to the in- and out-slice skipping
it simplifies the sparsity exploitation data path and utilizes
slice-level sparsity in the entire training stage.

VI. BIT-PRECISION OPTIMIZATION
Even if the training processor adopts sparsity-exploitation, its
energy efficiency is still lower than the conventional mobile
inference processors because it requires high-bit-precision
representation. Previously, it was considered that the DNN
training requires ≥ 32 bit but the required bit precision is
now continuously decreasing thanks to the research on the
low-bit-precision training. We will introduce recent research
to reduce the required precision during the training.

A. NEW NUMBER REPRESENTATION
The first trial was the floating-point (FP) 16-bit IEEE
754 standard format. However, naïve FP16-based training
sometimes degrades training accuracy because the exponent
bit-width is too low to fully represent the weight gradient.
There were many substitutions proposed for better DNN
training.

1) NEW FLOATING-POINT REPRESENTATION

As shown in Table 4, there are three new FP representa-
tions that have a wider data representation range thanks
to the high-bit-width exponent. The bit-width of the expo-
nent in Bfloat16 [14] and TensorFloat [54] is the same as
the original FP32 to give high compatibility with FP32.
However, their energy efficiencies are still low because
they need more than 16 bit for data accumulation. The
DLFloat [17], [18], [19] was proposed to unify the data rep-
resentation method of both input operand and accumulation.
Flexpoint [55] tried to substitute FP with the fixed-point
(FXP) representation using a shared exponent management
algorithm together for the simplification of MAC design,
but it failed to reduce the required bit precision to less than
16 bit.
Nowadays, FP-based training can be realized with less

than 16 bit by utilizing the narrow distribution that
appears in each of the tensors [28], chunks [56], or train-
ing stages [57], [58]. The required representation range can
be reduced by dividing computation through the shared
exponent [28], chunkwise accumulation [56], and hybrid
representation among different training stages [57], [58].
Although the successful bit-precision reduction is observed
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TABLE 4. Summary of FP representation for DNN training.

during the multiplication, accumulation still needs high-bit
precision and it requires additional hardware units to manage
hybrid representation [57] or two-phase rounding [58].

2) NEW FIXED-POINT REPRESENTATION

FXP representation needed much higher bit
precision compared with the FP. The required bit
precision can be reduced dramatically when dynamic
FXP (DFXP) [3], [29], [34], [80] is adopted. It adjusts the
required integer length to fit the layerwise narrow distribu-
tion instead of considering entire layers. Even though the
DFXP shows a remarkable performance improvement, it still
needs higher bit precision (> 8 bit) compared with the FP
because the low-precision FXP has a limited representation
resolution. Stochastic rounding (SR, [59]) was proposed
to increase its virtual representation resolution. In addition
to SR, stochastic thresholding (ST, [29]) was co-designed
to further increase representation resolution by loosening
its overflow judgment and removing outlier data. A com-
bination of SR and ST successfully demonstrated a 43%
bit-precision reduction in the CIFAR-100 dataset [29].

B. LOW BIT-PRECISION TRAINING ALGORITHM
Not only new number representation but also new algorithms
were also proposed for low-bit-precision training. One of
them is fine-grained-mixed-precision (FGMP, [21]) which
divides IA into two different bit-width formats. The majority
of data is placed near zero and it is enough to be repre-
sented by the low-bit-precision data. However, ignoring the

precise representation of the outlier data degrades its training
performance significantly. To solve this problem, the FGMP
represents only outlier data with high-bit precision while
maintaining low-bit precision for the majority of data.
Layerwise adaptive precision scaling (LAPS, [29]) fur-

ther reduces the required bit precision by using automatic
bit-precision tuning during the training. Required precision
can be varied according to the training scenario but it is
hard to predict the optimal bit precision at the beginning
of training. The LAPS continuously monitors the similarity
of high-precision and low-precision convolution results and
increases the bit-width if the difference becomes larger. Bit
precision found by LAPS can be varied according to the
dataset and network complexity.

C. HARDWARE ARCHITECTURE FOR BIT-PRECISION
OPTIMIZATION
Hardware architecture and PE circuit should be modified
to support the new number representations and low-bit-
precision optimization algorithms.

1) MULTIPLE-PRECISION CONFIGURABLE
MULTIPLY–ADD UNIT

To accommodate the new FP representations, the design of
the MAC unit should be modified. Since the required bit
precision of the training is usually higher than the infer-
ence, training processors showed lower efficiency compared
with the inference processors. Multiple-precision config-
urable multiply–add units can support both high-precision
and low-precision computing and it becomes a common way
to reduce the efficiency gap between inference and training
processors.

2) ACTIVE TRAINING SUPPORTING UNIT

Both FGMP [21] and DFXP [3], [29], [34], [35], [80]
need streaming data analysis units that can calculate the
mean/variance or overflow ratio of the OA. Based on the
analyzed tensorwise statistics, the FGMP converts more than
90% of FP16 accumulation results to FP8 operands dur-
ing the ResNet-18 training. In DFXP-based computing, it
increases the integer length of the corresponding layer if the
overflow ratio exceeds the predetermined threshold [3]. The
LAPS [29] performed it in a peripheral unit that calculates
the difference and counts only large differences. The new bit
precision is determined by an internal finite-state machine
and then it is applied from the next training iteration. The
bit-precision reduction algorithms usually require an addi-
tional unit to monitor output distributions and give useful
information for runtime bit-precision optimization.

VII. WEIGHT GRADIENT STAGE ACCELERATION
Sparsity-aware WG acceleration assumes that it adopts
weight pruning. Acceleration of the WG stage without
weight pruning is still challenging because the bit precision
of the gradient and primal weight should be higher than
the bit precision used during the FF and EP stages.
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Further optimization of the WG stage is essential for a
high-performance training processor; thus, we summarize
the existing methods for the WG stage.

A. GRADIENT BIT-PRECISION REDUCTION
Data compression is the mostly used WG acceleration
method because the WG stage suffers from the memory-
intensive computation. Seide et al. [60], Alistarh et al. [61],
and Wen et al. [62] suggested ultralow-bit gradient quan-
tization but their main purpose was to reduce the gradient
communication among the multiple-edge devices during the
distributed learning. Since the primal weight still needs full
precision (16 bit), the quantized gradient should be con-
verted to the original bit-width during the weight update
operation. In addition, a large portion of memory access is
still required due to the data movement of the primal weight
and momentum from the memory.

B. SPARSE GRADIENT CALCULATION
Gradient compression can be realized by not
only quantization but also gradient sparsification.
Lin et al. [63] and Strom et al. [64] accumulated weight
gradients every iteration and updated only when the
accumulated gradient became larger than the predetermined
threshold. These methodologies require a large internal
buffer to store all weight gradients, which is not practical in
training on micro-AI systems. Another sparsification [65]
updated the weight only when it had a large gradient or the
target confidence was low [66]. Large-gradient-only or low-
confidence-only weight update showed great compression
ratio but they can cause a slow training curve. Furthermore,
they are not easy to be applied to other complicated DNN
applications, such as object detection and image-to-image
generation.

C. SELECTIVE DNN TRAINING
Although bit-precision reduction or sparsification during the
WG stage shows a higher efficiency than the naïve gradi-
ent calculation, it still requires a large buffer to store all
intermediate IA and OE that appear during the FF and
EP stage. Cai et al. [83] suggested bias-only fine-tuning
which freezes weights and updates new bias to remove stor-
age of intermediate IAs. Another method is selective layer
training [32] which focused on a few layers but skips mem-
orizing the IA and OE of the useless layers. Both methods
can reduce the required memory footprint significantly but
drops training quality due to aggressive gradient calcula-
tion skipping. Lin et al. [84] newly suggested channelwise
gradient skipping and also utilized both bias-only tuning
and selective layer tuning to further optimize the training.
To minimize the accuracy degradation, it predicts the accu-
racy loss and the reduced hardware cost during the compile
time. Finally, selective training is a key enabler of on-device
training by minimizing required memory access due to
IA and OE.

TABLE 5. Comparison of typical BU methodologies.

VIII. BACKWARD UNLOCKING
The consideration of backward locking is still chal-
lenging and there are few proposals to solve this
problem. Li et al. [68] proposed an out-of-order schedul-
ing mechanism that performs inference of CL before the
training of FCL is finished. However, balancing the work-
load between CL and FCL is challenging and FCL still
suffers from backward locking problems. BU without algo-
rithm modification is difficult because the BP itself has serial
computation characteristics.

A. BACKWARD UNLOCKING WITH DELAYED
BACKPROPAGATION
There are several BU methods [69], [70] using the delayed
BP. Decoupled delayed gradient [69] divides DNN into
multiple groups and performs BP only within a group to
loosen the backward locking problems. The gradient calcu-
lated by each group is transferred to the prior group at the
next iteration. Since it adopts an intergroup pipeline during
the BP, multiple gradients can be computed at the same time,
but each group utilizes the FF results obtained at a different
time step. Thus, it should copy the weights of the multiple
different time steps for parallel gradient computation.
Another method, fully decoupled gradient [70], copies

intermediate IAs instead of weights. Not only EP but also
the FF stage is divided into multiple groups and makes
a big pipeline structure among them. Each group updates
its weight with the delayed IAs and performs FF operation
as soon as it completes the weight update. It can further
decrease processing time thanks to the pipeline structure of
both FF and EP stages.
In spite of their success, both methods are considered only

in multi-GPU processing because they need a large buffer to
store all weights or IAs of the delayed batches. Therefore,
a memory-efficient BU method is necessary for the micro-AI
systems.

B. DIRECT FEEDBACK ALIGNMENT-BASED
APPROACHES
Direct feedback alignment (DFA, [71], [72], [73], [74])
described in Fig. 5 can propagate the errors of the last layer
to the entire prior layers simultaneously. The problem of
backward locking can be released in DFA-based training
because the next inference can be started right after this
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FIGURE 5. Typical BU method: DFA.

direct error propagation. As shown in Table 5, it shows the
minimum memory accesses compared with the other two BU
methods. The only extra cost is that it needs additional BW
which is independent of the FW. It now turns out that the
overhead of the BW can be reduced by a maximum of 96.9%
when using binarization [72] or sparsification [73]. Thanks
to the lowest memory requirement, the DFA algorithm was
selected by the recent on-chip training ASIC [34], [80] and it
successfully demonstrated DFA-based online training in the
object tracking or object detection application. It constructed
a pipeline structure among the three training stages and also
hid latency caused by EP and WG. Thanks to the pipelined
DFA (PDFA), it showed at least 2× higher training speed
compared with the BP-based acceleration.

IX. DNN TRAINING ACCELERATOR EXAMPLES
In this section, the real chip implementation results of the
DNN training processor will be discussed. First, we will
introduce the examples of training processors and clar-
ify their target applications. The reason why the algorithm
co-design is necessary for mobile-oriented DNN training pro-
cessors will be explained with practical examples. Finally,
a design example of DNN training will be introduced with
the key differences in accelerator design between inference
and training.

A. APPLICATIONS AND EXAMPLES OF TRAINING
PROCESSOR
1) APPLICATIONS OF DNN TRAINING

Training processors reported from the industry [14], [15],
[16], [17], [18], [19] mainly focused on general-purpose
DNN training. On the contrary, training processors from the
academy [20], [21], [22], [23], [24], [25], [26], [27], [28],
[29], [30], [31], [32], [33], [34], [35] mainly targeted local
training which fine-tunes DNN to be more accurate in user-
specific datasets. In-situ personalization is also suggested to
fit the network to the user-specific tasks. However, these
applications were not sensitive to the training speed because

local dataset optimization and personalization should col-
lect behaviors of users and experiences for a long time and
train the network when the device is not in use, usually at
midnight.
Super-fast training is required when online DNN training

is necessary. One of the ASICs [34] showed an example that
utilized online training to extend the role of object classi-
fication networks to object tracking. It learned the shape
of the first bounding box and decided whether the sur-
rounding boxes were similar to the target. Since it updates
the network to learn the continuously moving target, it
can achieve robust tracking under the shape deformation
and illumination changes. Another example was TKD sug-
gested by Farhadi and Yang [42] and Han et al. [80]. It
realized energy-efficient but accurate object detection by
adopting online knowledge distillation to the lightweight
DNN. The lightweight network itself has been considered
impractical due to its poor performance. This problem can
be solved if the network is trained by data with labels gen-
erated by heavyweight teacher network inference. It needs
the inference of a heavy teacher network, but this process
is performed infrequently and consumes significantly less
energy compared to the direct use of the teacher network.
These examples show that DNN training can be used as not
only for long-term user customization but also for short-term
domain adaptation to further improve its functionality and
performance.

2) EXAMPLES OF TRAINING PROCESSOR DESIGN

The majority of processors [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30], [31], [32] adopted the homogeneous
core design and they were programmable to be applied
in various types of networks and applications. Moreover,
they also emphasized a new FP-number-representation-
based PE design by utilizing a new number representation
method and adopted precision-configurable MAC for energy-
efficient inference and training [15], [16], [17], [18], [19],
[21], [22], [24], [26]. Mobile training processors are
mainly developed by the academy and they were con-
tinuously evolved. First-generation mobile training proces-
sors [20], [22], [23], [25], [35] focused on giving on-chip
training functionality by supporting transpose-read and
reconfigurable data path. The second-generation proces-
sors [21], [24], [27], [31] were designed by combining
sparsity exploitation or low-bit-precision training schemes to
improve their throughput and efficiency. It is now evolved
into third-generation processors [26], [29], [30] which fur-
ther improved the performance by proposing the adaptive
methods of bit precision or pruning ratio control even when
the training is in progress.

B. ALGORITHM-HARDWARE CO-OPTIMIZATION IN
TRAINING PROCESSOR
Most training processors adopted algorithm-hardware co-
design and it becomes an inevitable trend for realizing DNN
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(a)

(b)

(c)

FIGURE 6. New algorithm and its dedicated hardware architecture for training.
(a) GANPU [24]: Exponent-only ReLU speculation algorithm and adder-only light
convolution supporting hardware. (b) PNPU [26]: New iterative pruning algorithm and
core architecture to exploit both coarse and fine-grained sparsity. (c) OmniDRL [30]:
GST algorithm with reconfigurable core architecture to support both weight reuse and
skipping.

training in micro-AI systems. Since the naïve BP-based train-
ing requires large hardware resources, the algorithmic co-
optimization is essential for high-speed and energy-efficient
training.

1) NEW ALGORITHM AND ITS DEDICATED HARDWARE

Some algorithms are not that efficient in conventional
DNN accelerators and require completely different hard-
ware designs as shown in Fig. 6 Nevertheless, when they are
co-designed with their optimized hardware, it shows much
higher efficiency compared with the naïve implementation
of DNN training.
The GANPU [24] of Fig. 6(a) sought co-optimization

by proposing a hardware-friendly output sparsity prediction
algorithm for the FP number system to support fast training.
Sign and exponent bits, which represent the scale of data,
are used to speculate whether the ReLU result will be zero.
Given that multiplications between exponents are mathemat-
ically identical to integer additions, a dedicated speculation
unit was able to be integrated on-chip with minimal resource
overhead and it helped the main convolution core to exploit
both input and output sparsity simultaneously at the FF stage.

The PNPU [26] of Fig. 6(b) proposed a new iterative
pruning algorithm that utilized both coarse-level and fine-
level pruning for efficient training acceleration. It approx-
imated similarity calculation among the output channels
through random channel sampling. The PNPU designed its
dedicated pruning core and construct a pipeline structure
between the main core and the pruning core to support
iterative pruning without PE utilization drop. In addition to
the pruning unit, the main core is designed to support triple
sparsity exploitation and its hardware complexity could be
reduced by utilizing coarse-zero skipping.
Pruning-aware training processors [26], [31] were effi-

cient only when the pruning ratio became high enough. The
low pruning ratio that appeared at the beginning of training
disturbed pruning-aware acceleration, resulting in significant
performance degradation. OmniDRL [30] of Fig. 6(c) solved
this problem by utilizing block-circulant-based weight group-
ing and the pruning of small weights together in the
initial training phase. The new algorithm, group-sparse train-
ing (GST), induced both repeated patterns and sparsity in
the weight. GST core (GSTC) suggested by Lee et al. [30]
improved training performance by enabling both grouped
weight reuse and zero-weight skipping through a weight
router and prefetcher.

2) HARDWARE PERFORMANCE IMPROVEMENT
THROUGH THE ALGORITHM COMBINATION

Algorithms introduced in Fig. 5 were newly proposed for
energy-efficient DNN training acceleration but it is effective
only when its dedicated hardware exists. Unlike these exam-
ples, there were ASICs that have greater synergy when the
algorithm is combined.
The first example was LNPU [21] of Fig. 7(a) which

combined the input-zero-skipping core and FGMP-based
training. The required computation is linearly increasing
when the naïve FGMP is applied. However, the IA of each
bit precision shows high input sparsity because of the zero
paddings. Computation including zeros wastes many com-
puting resources because zero paddings do not affect final
computing results. The LNPU [21] adopted the input spar-
sity exploitation core to skip zeros induced by ReLU or
FGMP. It not only exploits data sparsity but also reduces
the burden of high-bit-precision computing to obtain a great
synergy effect.
The second examples were ASICs [27], [29] which

adopted bit-scalable core architecture. Bit precision can be
varied according to layer number and the bit-scalable core
architecture could remove useless operations during low-
bit-precision training and maximize both training speed and
efficiency. In addition to these purposes, it was able to realize
a ReLU prediction algorithm [27] by performing MSB-only
computing. After MSB-only prediction, it skipped the LSB
computations of which results would have the zero-expected
value. Output-slice skipping [29] was another algorithm that
shows synergy with the bit-scalable architecture. It could
compensate for the throughput degradation problem during
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FIGURE 7. Examples of algorithm-HW co-design in DNN training ASICs.
(a) LNPU [21]: Combining IA zero-skipping core and FGMP. (b) HNPU-V1 [29]:
Combining bit-scalable core and LAPS. (c) DF-LNPU [34]: Combining fully
heterogeneous core and PDFA.

high-precision computing by excluding LSB accumulations.
Finally, it could be combined with the runtime bit-precision
optimization algorithm, LAPS, as shown in Fig. 7(b). The
HNPU-V1 [29] minimized the overhead of difference calcu-
lation between high-precision and low-precision convolution
results by performing only LSB accumulations. The bit-
scalable architecture used in [29] finally minimized the
extra time required for bit-precision searching, and at the
same time, optimized training with the discovered precision
numbers.
The last example is DF-LNPU [34] of Fig. 7(c) which

adopted a heterogeneous core design. The heterogeneous
core design can optimize each training stage and minimize
hardware resources to support training but has the problem
of core utilization drop. The DF-LNPU [34] adopted a het-
erogeneous core design but no longer suffered from low
core utilization problems by utilizing PDFA-based BU. The
PDFA-based optimization enabled parallel processing of
three different training stages. Combination with the BU
algorithm compensated for throughput degradation caused
by backward locking while retaining the advantage of the
heterogeneous core design.
The main challenges illustrated in Section III-B can be

solved effectively when the algorithm is co-designed with
the training hardware. These examples clarify that algorithm-
hardware co-optimization plays an important role in realizing

(a)

(b)

(c)

FIGURE 8. PQ plot of ResNet-9, ResNet-18, and ResNet-34 (Green box: >73.0% and
Blue box: >77.0 %). (a) Test accuracy of ResNet-9 after retraining for pruning and
quantization. (b) Test accuracy of ResNet-18 after retraining for pruning
and quantization. (c) Test accuracy of ResNet-34 after retraining for pruning and
quantization.

DNN training at the edge device, even with limited hardware
resources.

C. RELATIONSHIP OF SPARSITY AND QUANTIZATION
DURING DNN TRAINING
Sections V and VI introduce typical examples of spar-
sity exploitation and quantization method for on-device
DNN training. In this section, we will discuss the relation-
ship among these optimization techniques. We construct the
experiment of three different ResNet training in the CIFAR-
100 dataset. In this experiment, we pretrained the network
with FP32 and retrain them after weight pruning and DFXP-
based quantization. During the quantization, we modified bit
precision of weight, IA and OE but maintains high accu-
mulation bit width. To analyze the relationship between
pruning and quantization, we introduce a new graphical dis-
play, Pruning-quantization (PQ) plot, which visualizes the
test accuracy according to varying training conditions to
help designers to select optimal pruning and quantization
level during the on-device training. Fig. 8 shows three PQ
plots obtained from our experiment. Green and blue boxes
in Fig. 8 indicate acceptable conditions with two differ-
ent accuracy thresholds. Within the accuracy boundary, the
on-device training designer can choose the best condition
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FIGURE 9. Tradeoff between weight pruning and quantization.

based on the hardware characteristics of the training
processor.
There are two key observations obtained from the PQ plot

as summarized in Fig. 9. First, DNN shows a low pruning
ratio and high bit precision if the network capacity is small.
Second, there is a tradeoff relationship between pruning and
quantization. If a designer selects a high pruning ratio, high-
bit precision must be used to maintain original high accuracy.
The optimal design point can be varied whether the target
processor has the functionality of zero-weight skipping or
bit-reconfigurability.
Another minor observation is about IA sparsity.

Fig. 10 summarizes the layerwise average IA sparsity after
pruning or quantization. As shown in this figure, IA spar-
sity increases when it has a higher pruning ratio or lower
bit precision. However, the IA sparsity within the accuracy
boundary (indicated as a green or blue box) shows a small
variance; thus, there is no expectation of additional through-
put improvement through input sparsity exploitation when
considering both pruning and quantization.
Fig. 11 shows an example of a DNN training execution

comparison. We compare the ideal performance of the two
DNN accelerators which support both weight-skipping and
bit-reconfigurability but have different bit-granularity. The
optimal design point of the coarse-grained bit-reconfigurable
accelerator shows a higher pruning ratio than the fine-
grained bit-reconfigurable accelerator (FGBRA). Instead, the
FGBRA shows faster training in this experiment even with
the lower pruning ratio. To sum up, the PQ plot can be use-
ful for training processor designers to select optimal design
hyperparameters. Utilizing both pruning and quantization
is the best way to improve efficiency but needs to avoid
lopsided optimization.

D. DESIGN EXAMPLES: HNPU-V1 AND HNPU-V2
As illustrated in Section II, the design of the on-device train-
ing processor can be varied according to their target training
scenarios. There were two typical processors: 1) HNPU-
V1 [29] and 2) HNPU-V2 [80], which utilized the same
amount of hardware resources but were optimized differently
due to their target application. Their key characteristics are

(a)

(b)

(c)

FIGURE 10. IA sparsity of ResNet-9, ResNet-18, and ResNet-34. (a) IA sparsity of
ResNet-9 after retraining for pruning and quantization. (b) IA sparsity of ResNet-18
after retraining for pruning and quantization. (c) IA sparsity of ResNet-34 after
retraining for pruning and quantization.

FIGURE 11. ResNet retraining experiment in the CIFAR-100 dataset.

summarized and the differences are highlighted in Fig. 12.
The HNPU-V1 mainly focused on long-term and medium-
term DNN training, thus, it introduced automatic precision
search during the training for minimization of total train-
ing time and energy consumption. Moreover, it combined
not only DFXP and SR but also ST to make a stable train-
ing curve even with the precision change caused by the
LAPS. On the contrary, the HNPU-V2 targeted short-term
DNN training, which performs online tuning for real-world
environmental adaptation. It adopted the predetermined static
bit precision during the online DNN tuning and removed ST-
related circuits in its PE architecture. The higher bit-precision
requirement of HNPU-V2 due to input data uncertainty could
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FIGURE 12. Examples of algorithm-HW co-design in DNN training ASICs.

disturb the realization of low-latency training. To resolve this
problem, it adopted pruning-aware training and DFA-based
BU to reduce training latency. Since it does not require ST
logic, it further optimized SR circuits by using the low-
cost random number generator. In the same online tuning
scenario, the HNPU-V2 can achieve 56.1% higher through-
put and 66.5% higher energy efficiency than HNPU-V1.
Although the training method of HNPU-V2 can be lossy
to be used in other training tasks, it successfully realized
low-latency DNN tuning for fast environmental adaptation.
In contrast, the HNPU-V1 can support any long-term or
medium-term training without accuracy loss by adopting
changing precision during the training. Thanks to precision
search, it can minimize required internal/external memory
access compared with HNPU-V2 while training most of the
network without loss. As shown in this example, the design
methodology of the DNN training processor can be var-
ied according to the target application, which may require
different optimization schemes.

E. COMPARISON OF THE INFERENCE & TRAINING
PROCESSOR DESIGN
Table 6 compares the main features of inference and train-
ing processors. Conventional inference processors focused
only on the fast and efficient execution of well-trained
networks while they do not consider whether the train-
ing of the network becomes slow or not. In contrast, the
training processor should achieve high performance both in
inference and training without compromising the training
accuracy.

TABLE 6. Comparison of inference and training processor.

1) PE/CIRCUIT-LEVEL DIFFERENCES

The inference processor can take advantage of ultralow-bit
quantization because the network can be retrained multiple
times in advance to compensate for accuracy degradation.
Ultralow-bit quantization enables look-up-table-based com-
puting [3], [4], [10] for energy-efficient inference accelera-
tion. Furthermore, an inference processor can utilize analog-
domain computing [8] if it repeats retraining after adding
noise components to a prewell-trained network. However,
both ultralow-bit quantization and mixed-mode computing
can cause accuracy degradation during the DNN training
and slow down the training curve. For this reason, the major-
ity of training processors adopt precision-configurable MAC
units which can also support high-bit-precision FP. It some-
times uses BW binarization [34], [43] but only in limited
applications.

2) ARCHITECTURE-LEVEL DIFFERENCES

The training processor shows differences also in the
architecture-level features. In the inference processor, they
sometimes adopt fused-layer-based acceleration [12], [75]
to remove external memory access that appears during
layer-by-layer computing. The fused layer is less effec-
tive in the training processor because all intermediate IAs
and OEs should be stored and reloaded at the WG stage.
Moreover, the training processor shows a more complex
data-path architecture due to the transpose-read of weights
or WG operation. It utilizes additional features, such as
the transposable PE array [20] and output sparsity exploita-
tion [24], [26], [27], [31] to compensate for efficiency drop
caused by complex data path.

3) ALGORITHM-LEVEL DIFFERENCES

Training processors also show different design methods
from inference processors during the algorithm-hardware
co-optimization. Recent application-specific inference pro-
cessors [75], [76] adopt DNN early-stopping. It skips
computations of the posterior layers if it judges them useless
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at the prior computation steps. Branch-net-based inference
prediction [75] uses layerwise binary classifiers to determine
whether the remaining layers should be computed or not.
Similarity maps generated in the Siamese network inform
important spatial positions and it can also exclude the com-
putation of useless tiles in the remaining layers [76]. Another
feature is output ReLU prediction [24], [27] which predicts
virtual output zeros by using only the minimum amount
of precomputation. It helps the sparsity exploitation core to
skip both input and output sparsity during the inference sce-
nario. However, these two features cannot be used during
the training because the wrong prediction can disturb the
training of the original backbone network. Instead, the train-
ing processor utilizes features to compensate for the drop
in energy efficiency during the inference. Runtime quanti-
zation [27], [29] and pruning automation [26] are unique
features of training processors even though they are useless
to inference processors.

X. CONCLUSION
The current AI system is smart only for the given applica-
tions but what we expect for AI is not to simply provide
the predetermined routine passive processing. AI will coop-
erate together with human beings through active interaction.
The purpose of the DNN training processor is to pro-
vide an AI system with dynamic adaptability. However, the
design of the training processor is not that easy because
it has more challenges compared with the inference pro-
cessors. Training processors should support transpose-read
of the weight during the EP stage. It needs to exploit
three different types of sparsity: 1) input; 2) weight; and
3) output sparsity. The new bit-precision optimization meth-
ods are also required to realize training in the micro-AI
systems. Unlike inference, it needs to reduce the required
storage for IA and OE for efficient training on compact
devices. Furthermore, the additional EP and WG stages
should be finished as soon as possible to minimize the delay
of next inference. As analyzed in Section IX, the design
of the training processor should be accompanied by the
algorithm-hardware co-optimization and it has unique design
methodologies compared with the conventional inference
processors.
In spite of the many realizations of DNN training, there are

still challenges. First, current training processors showed few
optimization methods during the WG stages. Primal weight
needs high bit precision to maintain its training performance.
Moreover, it shows memory-intensive computation because
of the elementwise multiplication and large kernel convolu-
tion. To release the memory burden of the WG stage, both
a new algorithmic approximation and hardware architecture
are needed. The second issue is backward locking. Even if
the acceleration of each layer becomes much faster, back-
ward locking will eventually be the major obstacle to fast
training. BU should be studied with the new algorithm to
replace conventional BP-based training.

The majority of training processors adopted long-term
personalization or customization for their target appli-
cations by training with personal datasets. However, in
future AI research, online training will become main-
stream. Han et al. [34], [80] already revealed that the DNN
trained by general knowledge showed a poor performance
in an unexpected situation. Moreover, in the 6G wireless
communication network, the online training will be essen-
tial because the pretrained network cannot respond to the
nonstationary nature of real-world situations to find optimal
spectrum and base station [77]. Only online training can
achieve such complicated real-time adaptation to realize the
reliable 6G system. The application shift to online train-
ing will further highlight the necessity of an ultrahigh-speed
and ultralow-power DNN training processor and system-level
optimization.
In conclusion, the DNN training processors for micro-

AI systems establish their own research area and show
unique characteristics compared with the conventional infer-
ence processors. In order to improve the intelligence of the
device, research should be extended to the training proces-
sor. The DNN training may not be the only answer for AI to
reach human intelligence, but it will lead to the harmonious
coexistence of AI and human beings.
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