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ABSTRACT For energy-efficient accelerators in data centers that leverage advances in the performance
and energy efficiency of recent algorithms, flexible architectures are critical to support state-of-the-art
algorithms for various deep learning tasks. Due to the matrix multiplication units at the core of tensor
operations, most recent programmable architectures lack flexibility for layers with diminished dimensions,
especially for inferences where a large batch axis is rarely allowed. In addition, exploiting the data reuse
inherent within tensor operations for computing a single matrix multiplication is challenging. In this work,
an extension of a vector processor in 14 nm is proposed, which is customized to tensor operations. The
flexible architecture enables a tensorized loop to support various data layouts and different shapes and
sizes of tensor operations. It also exploits all possible data reuse, including input, weight, and output.
Based on the tensorized loop, fetch and reduction networks, which unicast or multicast with the ordering
of both input data and processing data, can be simplified using a circuit-switching-like network with
configured topology and flow control for each tensor operation. Two processing elements can be fused
to optimize latency for a large model or can operate individually for throughput. As a result, various
state-of-the-art models can be processed efficiently with straightforward compiler optimization, and the
highest energy efficiency of 13.4 Inferences/s/W on EfficientNetV2-S is demonstrated.

INDEX TERMS AI accelerators, convolutional neural networks, data reuse, depth-wise and group
convolution, inference, ML accelerator, ML processor, reconfigurable systems.

I. INTRODUCTION

MANY studies have considered how to improve
the energy efficiency of deep learning accelerators.

Supporting state-of-the-art deep learning algorithms is cru-
cial to increasing this energy efficiency, primarily because
deep learning algorithms are rapidly evolving to renew
state-of-the-art accuracy every few months, and the new
state-of-the-art algorithms usually achieve higher accuracy

with fewer parameters and computations. Therefore, an
architecture specialized for a specific model may achieve
high energy efficiency for that model, but it does not
show superior accuracy for a task and does not reflect
the energy efficiency developed in a new algorithm. For
example, EfficientNetV2 [1], one of the most efficient state-
of-the-art models, demonstrates an accuracy that cannot be
achieved with ResNet. If EfficientNetV2-B0 is compared
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with ResNet-152, which shows similar accuracy, the param-
eter size is eight times smaller. Therefore, to support the
present and near future state-of-the-art models, the acceler-
ator should be sufficiently flexible to efficiently support a
wide range of deep neural network (DNN) layers [2].
Flexibility affects not only energy efficiency from algo-

rithmic advances but also affects transistor-level and system-
wide energy efficiency. Because chips that support a wide
range of deep learning tasks cover many applications, they
can justify high development costs, enabling the develop-
ment of more energy-efficient chips that use more advanced
process nodes. In addition, supporting different tasks in data
centers means that many users can share hardware resources,
thereby increasing overall resource utilization.
To design an architecture that can accommodate various

shapes and sizes of DNN layers, the data must be flexibly
mapped spatially according to the specific shape and size of
the layer rather than mapped to a set of preselected dimen-
sions [2]. In a broader sense, flexible architectures must
support various types of data reuse inherent in tensor oper-
ations. Since data movement consumes more energy than
computation [3], [4] and often dominates the overall execu-
tion time in actual model execution [5], it is important to
minimize memory access and to maximize data reuse near
the computational unit to channel all given power to compu-
tation [6]. In addition, with only single data reuse, operands
with low or no reuse start to dominate energy consumption,
and overall energy savings can be limited [7].
Although many different specialized accelerators have

been proposed [8], [9], [10], only a few have provided
instruction set architectures (ISAs) and their programming
models to support various tasks, and most of their ISAs
have matrix multiplication instructions at the core of process-
ing tensor operations. The matrix multiplication unit, which
is often implemented as a systolic array [11], can utilize
N×N computations with O(N) bandwidth and support hor-
izontal and vertical data reuse, which enables more efficient
computation compared to vector instructions. This is very
suitable when most tensor operations can be partitioned into
multiple matrix multiplications for deep learning, especially
for training workload where a large batch size can be easily
exploited as one of the reuse axes. However, as inference
has different demands and often requires low latency, only
a single or small batch size inference is allowed [12], [13].
As a result, energy-efficient and compact layers, which have
diminished data dimensions, may not fully utilize the whole
matrix multiplication unit [2]. Data reuse across the matrix
multiplication boundary is also difficult. Tensor operations
usually have more dimensions than those used by single
matrix multiplication and have data reuse patterns that cannot
be covered by matrix operations.
To address these challenges, we propose a tensor

processor architecture, an extension of a vector proces-
sor [14], [15], [16], [17], [18] that is customized for
tensor operations used in deep learning inference. A vec-
tor processor provides vector instructions along with scalar

instructions. The vector instruction specifies operand vectors
and the vector length so that each operation can be applied
to span the full vector length. For example, if a vector C is
calculated by adding two vectors A and B, then this vector
operation is expressed as follows:

Ci = Ai + Bi, i = 0, . . . ,VL − 1

where VL is the vector length.
Implementing data parallelism and pipelining is relatively

easy in the vector processor owing to the independence
of vectors; instruction fetch and decode overhead can be
amortized because one instruction is executed VL times.
In addition, since memory accesses are in regular patterns,
the maximum bandwidth of multiple memory banks can be
utilized, and prefetching is straightforward.
However, the vector processor is efficient only when the

data parallelism is regular, which is the case for the work-
loads of deep learning since they are given from frameworks
that handle predefined tensor operations. Additionally, the
compiler can maximize the memory bandwidth by lowering
tensors for optimal bank access.
Since dot product operations occupy most of the opera-

tions in deep learning, dot product pipelines can be provided
in addition to vector processing pipelines. In particular, by
allowing the stream of tensors to be reused for multiple dot
product operations, not only energy efficiency is improved
but also the compute/memory operation balance can be
increased by the number of data reuse times.
Moreover, since DNN computations are more specialized

in tensor operations with N dimensions, we can further
optimize such an architecture to fit deep learning infer-
ence. A tensorized loop rather than a vectorized loop is
utilized with N dimension length and stride, and arithmetic
units can operate on multiple accumulators and register files
according to streaming data to exploit all possible data reuse
patterns while removing unnecessary complexity. The main
contributions of this work are as follows.
1) A metamorphic tensor processor is proposed that sup-

ports a tensorized loop and exploits all possible data
reuse, including input, weight, and output. It has a
flexible MAC datapath to support various data reuse
patterns and to support various data layouts, such as
NHWC or NCHW, with configurable temporal and
spatial accumulation units, as different tensor opera-
tions have different optimal data layouts. This enables
efficient support of a group or depth-wise convolution
on top of the commonly used channel direction only.
Many architectures do not support depth-wise convo-
lution efficiently resulting in significant execution time
increase [19], [20].

2) This processor also has a transpose engine and a
vector engine with N-dimension indexing to support
tensor manipulations and the various vector operations
required by deep learning models.

3) ISA provides an asynchronous load and store that
enables the full utilization of computation units while
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FIGURE 1. Slice with a TUS and the neural processor.

hiding memory latency for a large model, which needs
to be stored in external DRAMs.

4) A single processing element (PE) has 64 slices, which
comprise an SRAM and a compute pipeline. Whole
slices can be configured as a single unit that can
utilize all of its MACs using a single tensorized
loop, simplifying communication among slices and
easing compiler optimization compared to hundreds
or thousands of cores that require its own individual
instruction stream.

5) Two PEs in the neural processing unit (NPU) can
operate separately or as one unit in fused mode to
support the optimal number of slices that could dif-
fer depending on the model. In particular, when the
model is large, the fused mode is more efficient
compared with the use of separate PEs by reduc-
ing memory usage and communication overhead. Our
fetch and reduce networks among the slices allow
multiple PEs to be fused easily with a simple datapath
connection.

The proposed processor is flexible enough to support
extensive tensor operators such that it supports more
than 30 models, including FBNet [21], MobileNet [22],
ResNet [23], SSD [24], EDSR [25], and even the state-of-
the-art EfficientNetV2 [1], on various tasks, such as image
classification, object detection, and super resolution. In addi-
tion, this work demonstrates a much smaller chip area
and power consumption compared to edge-oriented accel-
erators, despite having the same data center performance
level.

II. ARCHITECTURE OVERVIEW
The NPU comprises two PEs (Fig. 1). Each PE can process
instructions individually with a Controlflow engine, which
is a custom-developed in-order core with a custom ISA. In
particular, the ISA has a tensor ISA (T-ISA) that controls data
memory (DMEM) and a tensor unit (TU). Tensors processed
by TU can be sliced and stored in DMEM as an optimal data
layout to be distributed and processed by slices of TU. Each
TU slice (TUS) includes a DMEM and computes pipeline,
a TU is composed of 64 slices.

FIGURE 2. Optimal data flow for the K × K convolution.

A. TENSOR PIPELINE
The T-ISA is an extension of a vector processor [15] used
to process tensors, and it has fetch, operation, and commit
pipelines for N-dimensional tensors. When these pipelines
are configured, the whole pipeline consecutively executes
computation on the entire tensor operator. Configuration
refers to the indexing structure of the fetch, operation, and
commit units. For example, the fetch unit generates an
address toward what the fetch sequencer will fetch. The fetch
sequencer can generate indexing through, but is not limited
to, height, width, and input channels. Such an indexing struc-
ture is specialized for tensor operators but is flexible enough
for most tensor indexing patterns. Each slice performs the
aforementioned pipeline, which is individually controlled by
the same special function register (SFR) configuration. The
Controlflow engine core writes or broadcasts to SFRs of
slices.
For example, let us consider a K × K convolution algo-

rithm. H, W, and C represent the tensor’s height, width,
and channel direction size, respectively [6]. Fig. 2 illustrates
which datapath would be the most efficient considering how
it may be formed from the algorithm perspective. This can
be considered as dividing the pipeline into fetching data
from SRAM, running the operation, and then committing
the data. To compute the output, input activation and weight
are repetitively utilized. Ideally, the fetch unit will fetch input
activation only once from the SRAM. The fetched data will
be fed to the operation unit.
The operation unit can reuse the feed data to the extent

of the multiplied results of the filter width, filter height, and
output channel. For reusability in the filter width direction,
the feed data can be shifted. To reuse one feed data multiple
times, the partial sum must be maintained by using many
accumulators on the various outputs that use the feed data.
As explained earlier, maximizing the data reuse will mini-
mize the power of data movement and latency. Depending
on the shape of the tensor and target operation, various
reuses of input, weight, and output are possible. The data
that completed the accumulation needs to be sequentially
delivered to the commit unit and stored in designated loca-
tions. The accumulator-related units will be explained later.
Depending on the tensor size, a TU can process millions
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FIGURE 3. Distributed MACs controlled as a single unit with tensors partitioned,
distributed, and stored into multiple slices.

of operations per single SFR configuration. Supported by a
fetch sequencer that generates addresses, the fetch unit pro-
vides complex memory access and computations, such as
padding and de-quantization.

B. FETCH NETWORK
Slices are interconnected with a fetch network (FN). Ideally,
the memory near the slice could minimize idle cycles for
optimal performance, but this limits tensor operations since
the same data may need to be stored repeatedly. In this
work, tensors can be partitioned, distributed, and stored
into multiple data memory slices (Fig. 3), and the FN can
multicast the same data into multiple slices simultaneously
during the execution stage to reuse the data in the MACs.
While the data are actually sent in packet units, they are
sent in consistent and preconfigured source-to-destination
routes, which is comparable to circuit switching as a fixed
topology while each packet has a destination address and
is routed and flow-controlled independently in conventional
packet switched networks. A circuit-switched FN assumes
that each source always delivers data to the same destination
or destinations while one tensor operation is in progress. In
other words, during one operation, each source is connected
to the designated destinations, and the FN router for the con-
nections is preconfigured on how to route and flow control.
In addition, data ordering from multiple sources is main-
tained. Hence, the operation unit can sequentially process
the fetched data straightforwardly. Moreover, as the entire
tensor operators are delivered in a consistent pattern, almost
the full bandwidth can be utilized, whereas simple flow con-
trol is used with lightweight routers without a virtual channel.
In the measurement, predictable latency and throughput are
observed as expected. In other words, the distributed MACs
are controlled as single units rather than as individual cores.
Through these processes, no replication in SRAM is required.
For each slice, the DMEM size is 0.243 mm2 and the FN
occupies 0.012 mm2, which is only 4.95%. Therefore, the
area and power saving is significant since SRAM does not
have to store copies of required data locally. In addition,
during the overall tensor operation, the data are transferred
in a simplified and efficient manner in an established con-
figuration. As a comparison, a conventional packet-switched
network incurs a large variation in latency. To mitigate or
hide unpredictable latency, large buffers or thread contexts

FIGURE 4. Distributed point-wise convolution through 16 slices with 4 in the height
direction and 4 in the channel direction.

are needed. Another approach is the static compilation of the
network, which induces a complex problem for the compiler
to resolve [26].
Fig. 4 demonstrates how the input tensor passes through

the MAC and its output tensor. The input tensor is sliced in
the directions of channel and height. The diagram shows how
16 slices are stored, with four tensors sliced in the height
direction, and four tensors sliced in the channel direction.
The MACs that compute the respective output channels from
input channels by receiving four sets of data receive the
aforementioned data by multicast and execute computation in
a parallel manner. The computation results are again stored
in the slice SRAM. In another example, the FN can be
configured into multiple rings while executing one tensor
operator [Fig. 5-1.(a)]. The pattern in Fig. 5-1.(c) supports
the depth-wise separable or group convolution such that the
highest distributed SRAM bandwidth utilization is expected
for these operations, and conventional convolutions are also
supported [Fig. 5-1.(a) and (b)].

C. OPERATION UNIT
Data are transferred to the operation unit after being fetched
by the FN. The operation unit consists of a dot product
engine (DPE) that includes multiple INT8 MACs, a feed
unit (FU), a vector engine, and a transpose engine, as shown
in Fig. 6. The DPE conducts the dot product computation,
which takes up most of the neural network computations.
There are 16K of MAC units in total. An FU can supply
the same data to a DPE multiple times, with the capability
of shifting the data left or right with various strides. Depth-
wise separable convolution often has 10× lower compute
density than regular 2-D convolution, and the FU enables
depth-wise convolution with data reuse of both the width and
height. This flexibility enables data reuse of the kernel size,
which then enhances energy efficiency and performance in a
given SRAM bandwidth. Multiple accumulators set as out-
put stationary in a DPE temporally accumulate into multiple
output channels or rows by reusing input data. Accumulators
support nonlinear computations using the feed data as table
indices. Table entries are precalculated and stored in the
accumulators’ registers. A DPE can perform a partial sum
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FIGURE 5. FN and operation examples for transferring the 1.(a) same data to the
same height index configured into multiple rings, 1.(b) same data to the same channel
index, and 1.(c) data only to its own slice for depth-wise separable convolution.

spatially depending on the tensor shape and operation using
an adder tree. The compiler can find optimal temporal and
spatial configurations and suitable memory layouts of ten-
sors on DMEM, such as NCHW or NHWC. Weights or
activations can be preloaded into the tensor register file
and reused during the entire tensor operation. The DPE can
also provide a spatial sum using a depth-configurable adder
tree. By providing both temporal and spatial accumulations,
all computations can be supported, including width-last and
channel-last, according to the tensor operator. In depth-wise
convolution, the width-last can be used, which reuses data
in the width direction, thereby utilizing the compute unit as
much as possible within the given SRAM bandwidth. For
a stride of N, we can set the adder tree depth as logN
and achieve efficient computation. In the case of single sta-
tionary data reuse from input, weight, and activation reuse,
energy consumption from nonstationary data increases sub-
stantially [7]. To resolve this issue, this work is designed to
provide all types of data reuse, including input, weight, and
activation. In instances where all the computation cannot be
done in one slice or where computation is divided across
several slices, the DPE output may pass through the global
adder tree (GAT), which is distributed among slices and has
configurable depth. We can execute a reduction of the partial
sum or finding of the maximum computed by several slices
through the GAT, and the output can be routed to a desired
slice, as shown in Fig. 7. The GAT is connected in a ring
topology as the FN. Since the GAT is pipelined, its latency
is hidden by a pipeline that streams entire tensors which is
similar to other units’ latencies. Therefore, all types of com-
munication patterns are supported through FN and GAT. FN

FIGURE 6. DPE with multiple MACs, an FU, and a local adder tree.

FIGURE 7. GAT with the partial sum and output paths distributed across multiple
slices.

enables unicast and multicast both weights and activations,
whereas GAT enables unicast partial sums and activations,
thereby supporting all types of communication patterns.
The data that have undergone dot product computation,

if necessary, may selectively pass through the vector com-
putation pipeline. The vector engine, even without DPE,
along with the fetch unit and commit unit, can be used to
perform standalone pipelined computations, such as ReLU,
vector addition, subtraction, multiplication, shift, and clip.
The vector engine resembles a vector processor in many
ways. For example, vector processors, such as RISC-V RVV
or ARM SVE, can pipeline vectors by setting the vector
length. Similarly, the vector engine is configured by SFRs,
processing data through a pipeline. However, the difference
is that vector processors process 1-D variable vector length,
whereas the proposed architecture supports N-dimensional
variable length tensors. In addition, the proposed architec-
ture processes vector operations in a parallel manner across
multiple slices, according to the configurations. In other
words, TU could in itself be seen as an extension of the
vector processor specialized for N-dimension tensors and
dot products.
The computation results should be reshapable so that they

can be easily used for the next computation. Depending on
the tensor operator, some operators are optimal in channel-
last, whereas others are optimal in width-last. Hence, tensors
must be transposable in relation to subsequent computations.
Various tensor manipulations, such as split, concatenation,
and reshaping, may also be needed. The transpose engine
supports the transpose for the last axis of the tensors.
The commit unit can, among others, transpose, split, and
concatenate tensors, except for transposing the last axis
of tensors. The transpose engine and commit unit can
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FIGURE 8. PE fusion.

process the aforementioned computation results on-the-fly,
so a separate operator for tensor manipulation is not
needed.
In summary, communication among multiple slices and

the pipeline within each slice are described. Regarding this
overall pipeline, the objectives are as follows.

1) Minimizing SRAM usage.
2) Minimizing SRAM access to one time only.
3) Efficiently multicast only to neighbor slices for parallel

computation.
4) Exploiting every data reuse within the DPE.
5) Supporting any axis type in tensor operation to enhance

computation efficiency.
6) A single configuration controls whole tensor operations

via SFRs, thereby minimizing the control overhead.
7) The architecture must be flexible enough to support

most indexing patterns in tensor operations and tensor
manipulations.

D. PROCESSING ELEMENT FUSION
One PE has a TU comprising 64 slices. This equates to
a peak performance of 32 TOPS and 16-MB SRAM per
TU. Two PEs in the NPU can operate separately or as one
unit in the fused mode when the control, FN, and GAT are
connected, as shown in Fig. 8. In the fusion mode, one core
controls the fused TU entirely, which comprises 128 slices,
as if they were one PE. The routing ID is extended by
tagging one bit of the PE ID to the slice ID. For some
models, even if all 128 slices are utilized, the performance
does not scale linearly. However, for some other models,
the performance is enhanced in a superlinear fashion with
more slices. This is because when a model is large, the fused
PEs can reduce memory usage by reducing the replication of
weights or activations and, in turn, reduce the communication
overhead, programming complexity, and execution latency.
In other words, fused PEs can handle tensor parallelism
natively within a chip for large models.

III. IMPLEMENTATION AND MEASUREMENTS
The chip comprises four subsystem blocks, as depicted in
Fig. 9.
The CPU subsystem consists of quad RISC-V U74

cores [27]. Each core has 32 kB of L1 I-Cache, 32 kB of
L1 D-Cache, and 2MB of L2-cache shared among the core
complexes. The maximum operation frequency for each core
is 1.0 GHz. The CPU core can perform 4-channel platform
DMA (PDMA) and preprocessing or postprocessing for some

FIGURE 9. Top-level block diagram showing various subsystems: CPU, PCIe,
memory, peripherals, and neural processor.

specific models. It also manages and maintains the chip under
various external server conditions. It reads the on-chip tem-
perature sensors periodically and performs dynamic voltage
and frequency scaling (DVFS) accordingly by controlling
PMIC voltages through GPIO and by controlling internal
PLLs. Various peripherals are also integrated, and PWM
controls fan speed.
The PCIe subsystem has a PCIe Gen4 controller and a

PHY with eight lanes. The PCIe internal DMA is used for
large data transfer between the host DRAM and the device
DRAM, and it supports a bandwidth of 16GB/s.
The memory subsystem has four LPDDR4x memory chan-

nels. The width of each channel is 32-DQ with 4266 MHz,
meaning that each channel supports 17GB/s, and the four
channels provide 67GB/s of aggregated bandwidth in an
interleaved mode. For efficient bandwidth utilization, the
internal interconnect bus provides memory channel interleav-
ing. Each application can choose 1-channel (no interleaving),
2-channel, or 4-channel interleaving. The interconnect bus is
implemented with a TileLink bus with TileLink protocols.
The neural engine subsystem comprises two PEs and a

neural engine controller (NEC) to control the PEs. NEC has
two dedicated PLLs, glitch-free clock dividers, and multi-
plexers such that the clock can be adjusted according to
the DVFS table based on the workload and temperature.
The dynamic clock change also stabilizes the power supply
rails. For example, if a heavy workload is executed, multiple
MACs operate concurrently and incur large in-rush currents.
The large current, in turn, can cause a large voltage drop
on the power supply rails. Therefore, the warm-up period
is supported to prevent this by incrementally increasing the
clock with a programmable warm-up time.
As each PE has 8K of MAC units and 16MB of data

memory, it is quite challenging to operate all synchronously
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FIGURE 10. Five types of slices placed as an 8×8 matrix in a ring topology and the
fusion path with clock domain crossings (CDCs) and terminal access points (TAPs).

at 2.0 GHz. Operating the MAC and memory simultaneously
can also cause large voltage drops on power rails, so PE is
implemented using multiple TUSs. The performance and
TUS size need to be decided upon considering the tradeoff
between the physical implementation feasibility for the large
size and the communication overhead for the small size. As a
result, 64 slices per PE are implemented, and the gate count
of one slice is approximately 4M to ensure that the place-and-
route iteration time is reasonable. However, as mentioned
previously, dividing the PE into multiple slices requires data
transfer between them, and the entire PE is designed to
be synchronous so that the complexity of the interconnect
network routers is reduced and PE execution is predictable
cycle-accurately.
The aforementioned two dedicated PLLs drive a tensor

clock (TCK) of 2.0 GHz and a memory clock (MCK) of
1.2 GHz, and TCK drives the logic and MCK drives the
memory. Because they are generated from two individual
PLLs, clock frequency selection is more flexible. TCK and
MCK are fed into slices with separate clock trees and are
individually synchronous across all slices in the TU but are
asynchronous inside the slice, which reduces the implemen-
tation overhead, while the communication path between the
slices is synchronous for the deterministic communication
latency. Slices inside the TU are connected by networks
that can support up to 1 TB/s. All networks are in a ring
topology, and each ring size is configured according to
the network type. The ring topology is chosen since it is
efficient in multicast while keeping data ordering to the des-
tination nodes. This enables predictable data feeding to the
destination with high throughput for the traffic pattern of
the FN. Sixty-four slices are tiled as an 8×8 matrix, as
depicted in Fig. 10. For short connections without detour
and minimum latency by abutting slices and for simplicity
in place-and-route, five types of slice macros are gener-
ated, even though their functions are the same. The internal
memory is distributed among the slices, and the total size is
32MB.
A clock spine structure is implemented to synchronously

operate the TU, which has a size of approximately 50 mm2

as shown in Fig. 11(a), which enables flexible arrangement
and an interconnected topology. The purple line depicts

(a)

(b)

FIGURE 11. PE. (a) Floor plan of 64 slices per PE and (b) clock distribution to
operate the TU synchronously.

both TCK and MCK. Internally, there are asynchronous
FIFOs between the TCK and MCK domains, such that
the two domains are asynchronous, as shown in Fig. 11(b).
However, the connections between slices are synchronous.
FN, GAT, and control networks are all synchronous to
TCK, whereas the data network is synchronous to MCK.
64 slices are connected with synchronous TCK and syn-
chronous MCK individually, as explained above. Slices are
connected through each side only owing to ring topology
interconnection, so the clock skew is minimized by max-
imally extending the common clock path. For example,
meeting the timing requirements between the source reg-
isters of slice 0 and the destination registers of slice 1 is
easy since clock ports are near the IO for both slices, and
that between slice 7 and slice 8 is also easy since the rel-
ative clock network delay is small while most of the clock
network is common.
The nominal core voltage and frequency are 0.8V and

2.0 GHz, respectively. The voltage and frequency can be
chosen dynamically according to the workload to optimize
power and performance. The software controls thermal throt-
tling with internal temperature sensors to prevent excessive
junction temperatures. As shown in Fig. 12, the constant
junction temperature (Tj) of approximately 104 ◦C is mea-
sured in a limited cooling environment while the workload is
executed approximately starting at 70 s and ending at 2100 s.
The average power consumption of PEs in this interval is
29W. There are 15 temperature sensors across the chip,
including the PE core, DRAM controllers, PCIe controllers,
and CPU. The average is used to control the frequency and
voltage in the 1-s interval. In Fig. 12, the voltage used is
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FIGURE 12. DVFS.

FIGURE 13. Die micrograph.

0.875V, except at 1.5 GHz of core frequency when a lower
0.850V is used. The 181-mm2 chip is implemented in 14-nm
FinFET CMOS technology, as shown in Fig. 13.
Since the NPU supports INT8, the FP models need to be

converted to the INT8 models by quantization-aware train-
ing or post-training quantization in TensorFlow or PyTorch.
The custom compiler supports models exported in TFLite
and ONNX, and the generated binary can be executed by
Python, C++, or Rust API, similar to the conventional exe-
cution flow. To generate the final binary that can compute
the model in the NPU, multiple steps of intermediate rep-
resentation (IR) are generated, and each IR requires various
optimization steps, such as network partitioning, memory
optimization, memory prefetch, and memory layout. A cus-
tom runtime library loads binary into instruction memories
in PE once. For every inference, runtime transfers only input
data into DRAM by DMA. The inference is then executed
with input data loaded into DMEMs. NPU can improve
energy efficiency by pinning weights into DMEMs according
to model size. Multiple PEs can perform inferences inde-
pendently while sending and receiving data asynchronously.

TABLE 1. Measurement comparison of ResNet50 per layer.

Therefore, the compiler can use data or model parallelism
according to the mode size and the required computation.
The architectural advantage of the proposed work is

demonstrated by measurements of some of the first layers
of ResNet50 [23] as shown in Table 1. For the first step of
power consumption measurement per layer for a deep learn-
ing model, the task was split at the compiler level for each
layer as a unit. Then, each layer was continuously iterated
for approximately 10 000 times. Latency was calculated by
averaging profiling results. At the same time, the average
current and voltage of NPU were measured at the power
source, and then unit power consumption per layer was cal-
culated. Finally, layer-by-layer energy was calculated as a
multiplication of power consumption with previously calcu-
lated latency. The results are better or comparable to the
performance of the previous work [28].
INT8 performances are measured using various models,

such as EfficientNetV1B4, ResNet18, ResNet50, SSD-
MobileNet, SSD-ResNet, and EfficientNetV2, which is a
state-of-the-art model, to demonstrate flexibility. ImageNet
datasets and post-training quantization are used. Mainly the
edge-oriented processors with data center-level performance
and the standard quantization scheme in TensorFlow and
PyTorch are compared without pruning, as shown in Table 2.
Calibration and measurements are based on inference rules
for the closed division of MLPerf [29], which limits the
lower bound of the quality to 99% of FP32. Before process-
ing by the NPU, input images are resized to 224 × 224 × 3
and then lowered to a 256 × 256 × 4 tensor with padding
by the host CPU. The performances are measured with a
custom-designed PCIe card that is plugged into a server, as
shown in Fig. 14. The total power of the card is measured,
including DRAM and even voltage conversion losses. Each
PCIe card has one chip mounted with a heat sink, and six
cards are plugged into a server. The results for this work are
measured at 0.8V and 2.0 GHz.
Fig. 15 shows the power breakdown of a TUS by sim-

ulation and efficiencies on EfficientNetV2-S across core
voltages by the measurements where the frequency has been
swept in 100 MHz steps. Almost half of the power is con-
sumed by the MAC, and register files consume 30.1%. The
NPU can operate between 0.75 and 0.90V with a maximum
core frequency of 1.3–2.2 GHz accordingly.
In Table 2, system-level metrics of Inferences/s and

Inferences/s/W are included on top of the low-level met-
rics, such as TOPS and TDP, to assess the software

226 VOLUME 2, 2022



TABLE 2. Performance summary and comparison to prior works.

FIGURE 14. Six PCIe cards mounted with the chips and passive heat sinks are
plugged into a server.

and system aptitude of the processor [30]. Latency and
power are measured with a single batch, which is impor-
tant for the data center [12]. The MAC utilization is
the highest except A2 and SSD-MobileNet of Xavier.
The energy efficiency of EfficientNetV2-S, ResNet50, and
SSD-MobileNet is 13.4, 27.84, and 71.96 Inferences/s/W,
respectively; this is the highest among the comparisons.
The average power consumption for each case was 43.9,
50.6, and 38.6W. As shown in Fig. 16, the energy effi-
ciency of EfficientNetV2-S is 2.31× higher than Nvidia A2,
and 6.29× higher than Nvidia A30 in INT8. The latency and
throughput of EfficientNetV2-S are the best with 1.70 ms

FIGURE 15. TUS power breakdown and efficiencies on EfficientNetV2-S and the
maximum core frequency across the core voltage sweep. TOPS/W in the figure is peak
architectural TOPS/W.

FIGURE 16. Performance comparison to prior works on EfficientNetV2-S.

and 588.2 Inferences/s, respectively. The energy efficiency of
128.1 Inferences/s/W is comparable to the on-chip resistive
RAM implementation of 132.3 Inferences/s/W [38], whereas
the throughput is 202× higher.
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IV. CONCLUSION
The proposed work shows that an extension of vector
processors customized for tensor operations can maximize
performance by exploiting every parallelism of models in a
single or small batch. By maximizing data reuse, this work
utilizes computation units, even for operators such as depth-
wise convolutions that require high SRAM bandwidth. In
addition, SRAM access and data movement are minimized,
and the data reuse contained in tensor operators is maxi-
mized. In other words, the models can be run efficiently with
high accuracy and fewer operations. The proposed architec-
ture is flexible enough to support the extensive indexing
patterns contained in tensor operators, given that it is spe-
cialized for tensor operators. The compilers simply need to
define these indexing structures; thus, compilation is easy.
Based on user models and needs, it is easy to provide data,
pipeline, and tensor parallelism. A compiler-friendly archi-
tecture without sacrificing performance would be the most
important aspect of the future NPU. This approach can be
further scaled to higher computation power systems.

REFERENCES
[1] M. Tan and Q. V. Le, “EfficientNetV2: Smaller models and faster

training,” 2021, arXiv:2104.00298.
[2] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible

accelerator for emerging deep neural networks on mobile devices,”
IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 9, no. 2, pp. 292–308,
Jun. 2019.

[3] R. Hameed et al., “Understanding sources of inefficiency in general-
purpose chips,” ACM SIGARCH Comput. Archit. News, vol. 38, no. 3,
pp. 37–47, Jun. 2010.

[4] M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in IEEE ISSCC Dig. Tech. Papers, Feb. 2014, pp. 10–14.

[5] Y. Ju and J. Gu, “A 65nm systolic neural CPU processor for combined
deep learning and general-purpose computing with 95% PE utilization,
high data locality and enhanced end-to-end performance,” in IEEE
ISSCC Dig. Tech. Papers, Feb. 2022, pp. 248–249.

[6] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional neu-
ral networks,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[7] R. Venkatesan et al., “MAGNet: A modular accelerator generator
for neural networks,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design (ICCAD), Dec. 2019, pp. 1–8.

[8] S. Davidson et al., “The Celerity open-source 511-core RISC-V tiered
accelerator fabric: Fast architectures and design methodologies for fast
chips,” IEEE Micro, vol. 38, no. 2, pp. 30–41, Mar./Apr. 2018.

[9] P. Vivet et al., “2.3 A 220GOPS 96-core processor with 6 chiplets 3D-
stacked on an active interposer offering 0.6ns/mm latency, 3Tb/s/mm2

inter-chiplet interconnects and 156mW/mm2@ 82%-peak-efficiency
DC-DC converters,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2020,
pp. 46–48.

[10] F. Zaruba, F. Schuiki, and L. Benini, “Manticore: A 4096-core RISC-V
chiplet architecture for ultraefficient floating-point computing,” IEEE
Micro, vol. 41, no. 2, pp. 36–42, Mar./Apr. 2021.

[11] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor pro-
cessing unit,” in Proc. 44th Annu. Int. Symp. Comput. Archit. (ISCA),
Jun. 2017, pp. 1–12.

[12] M. Anderson et al., “First generation inference accelerator deployment
at Facebook,” 2021, arXiv:2107.04140.

[13] Y. LeCun, “1.1 deep learning hardware: Past, present, and future,” in
IEEE ISSCC Dig. Tech. Papers, Feb. 2019, pp. 12–19.
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