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ABSTRACT Today’s mixed-signal SoCs are challenging to validate. Running enough test vectors often
requires the use of event-driven simulation and hardware emulation, which in turn necessitates the creation
of analog behavioral models. This paper reviews different approaches proposed to address that modeling
challenge, and shows how they can be divided by the methods used to solve for analog circuit values,
represent analog waveforms, and validate analog functional models. We illustrate the power of these
techniques as applied to a 16 Gb/s PHY, demonstrating a 10,000× speedup vs. SPICE simulation using
event-driven models in Verilog simulation, and a further 5,000× speedup using synthesizable analog
models in FPGA emulation.

INDEX TERMS Analog validation, behavioral modeling, event-driven simulation, equivalence checking,
linear abstraction, mixed-signal circuits, validation.

I. INTRODUCTION

FOR MANY reasons, including the increasing
performance requirements and low cost of digital

hardware, an increasing number of analog building blocks
have rich connections with digital logic that “controls”
their operation. These blocks depend on sophisticated
calibration/adaptation algorithms for proper operation. This
coupling of the analog and digital sections of an SoC makes
it necessary to validate their combined operation, which
is challenging because analog and digital circuits fail for
different reasons, and thus traditionally use different tools
and testing approaches for validation.
For digital systems, validation is all about test coverage.

This need to explore the entire state space arises because
the output result surface of a digital circuit isn’t smooth; an
incremental change in an input could completely change the
output, so one must look at all possible inputs to ensure correct
behavior. Thus, advanced testing strategies employ formal

methods to guide the exploration [1], try to find specific
inputs that violate assertions [2], use randomized testing, and
generally require complex validation frameworks.
Interestingly, analog circuits are nearly the opposite. Their

analog nature implies that their output surface is smooth, since
that is what makes them analog.1 In fact, for most analog
circuits, that surface is not only smooth but also nearly linear
with respect to primary analog inputs.2 The smooth result
surface means that the measured output of one set of inputs
provides a lot of data about what the output will be for a
different set of inputs. This means that generating a set of test

1. As Kim et al. showed in [3] this smooth response curve may not be
apparent when looking at the voltage (or current) vs. time waveforms. For
these analog circuits, one first needs to transform the domain of the input
and/or output of the system. For example, a VCO with a digital output
doesn’t seem linear, but if one looks at the phase of the generated output,
it is the integral of a (piecewise) linear function of the input voltage.

2. As will be described later, digital inputs can cause large changes in
the response and must be enumerated.
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vectors to cover a traditional analog circuit is not difficult.
Instead, the complexity in analog testing comes from the
non-discrete nature of the outputs. One needs to consider
many more circuit inputs (supply voltage/noise, temperature,
process, bias signals, etc.) and extract their effect on the
circuit. As a result, analog circuit validation has focused
more on creating the right high-fidelity model of the circuit,
and characterizing different “noise” sources.
Validating modern mixed-signal building blocks, which

use tightly-coupled analog and digital logic, is challenging
because analog behavior must be modeled in a way that is
compatible with the digital validation tools used to run test
vectors and exercise calibration/adaptation loops. This paper
reviews different approaches to address that challenge, using
signal flow or functional models of analog blocks. To set
up this discussion, the next section explores the validation
concerns for analog designs and shows how they can be
partitioned into issues handled by traditional analog simula-
tion/validation flows and issues addressed using fast analog
functional models.
These functional models are often called real number mod-

els [4] but differ widely in how they model the underlying
circuits. Section III-A presents a framework that charac-
terizes the different approaches and uses this structure
to discuss their advantages and limitations. Section III-B
focuses specifically on methods to automatically generate
functional models, and Section III-C describes how to vali-
date that a functional model matches the circuit it represents.
As the complexity of SoCs increases, final validation often
needs to run on an emulator, which requires synthesizable
analog models. While that is a hurdle by itself, it turns out
that the modeling strategies used in emulation also have to
be chosen carefully to avoid performance impacts. These
issues, and methods for addressing them, are described in
Section IV. Finally, we apply these methods to a high-speed
link and discuss the results in Section V.

II. ANALOG DESIGN
Like their digital counterparts, analog circuits are designed
and validated hierarchically. For digital designs, low-level
circuit checking is handled in the construction/validation of
standard cells and ERC checks that are performed as part of the
design flow; the designer only deals with functional models
extracted from that flow. For custom analog cells, however,
this circuit-level checking must be done for each design.

A. CIRCUIT SIMULATION
To estimate the behavior of circuits, one typically uses a
circuit simulation program that is a variant of SPICE [5],
such as Spectre [6] or HSPICE [7]. These simulators con-
tain sophisticated device models and solve for nodal voltages
using numerical integration with guaranteed error control to
provide accurate results. To validate the function of a cir-
cuit, the designer creates a set of testbenches to measure
the key properties of that circuit, for comparison with its
design specification. As we will see later, these testbenches

FIGURE 1. High-speed link architecture used as an example throughout this paper.

can also be reused for functional model extraction and
validation.
As one starts to aggregate more analog (and possibly dig-

ital) blocks together, the speed of SPICE simulation can
become an issue. There are two approaches to reduce sim-
ulation time: simplify the circuit model and simplify the
computation used. As we will see in the next section, sim-
pler circuit models, called macromodels, can enable much
simpler computational methods. Attempts at both types of
simplification started soon after SPICE was created [8],
[9]. Over the past few decades, a number of FastSPICE
products [10], [11], [12], [13] and parallel SPICE products
[14], [15], [16], [17] have been introduced. These products
provide significantly improved throughput and capacity with
a small decrease in the overall accuracy, allowing large
circuits to be simulated.
While modern simulators can easily handle the complexity

of individual analog blocks or a large collection of blocks,
they still run into issues for systems with slow digital cor-
rection loops. In these systems, such as the high-speed link
described next, analog blocks are validated individually with
SPICE simulation and then replaced with simplified models
for higher-level system validation.

B. HIGH-SPEED LINK EXAMPLE
Fig. 1 shows the block diagram of a high-speed link that we
will use as an example throughout this paper. It consists of a
pseudo-random bit sequence (PRBS) generator that provides
data to a transmitter, a lossy physical channel, a variable gain
amplifier (VGA), a continuous-time linear equalizer (CTLE),
and a high-speed time-interleaved analog-to-digital converter
(ADC). The ADC is driven from 4 phases of a 4 GHz clock,
yielding a 16 GS/s conversion rate, and each phase of the
clock is generated through a phase interpolator (PI), which
allows each of the clocks to be placed anywhere in the clock
cycle.
This link uses a relatively small number of analog blocks:

the phase-locked loop (PLL), transmitter, channel, VGA,
CTLE, ADC, sampling network for the ADC, and PI. Each
of these circuits is simple enough that it can easily be sim-
ulated at SPICE-level with modern tools. For each block, a
set of testbenches is created to extract the critical parame-
ters of that block. For example, for the CTLE, one would
characterize the differential and common-mode gain of the
input (vs. frequency), how that gain depends on other inputs
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(e.g., gain adjustment inputs or process/voltage/temperature
variation), and the “gain” of other inputs (e.g., supply volt-
ages or bias lines) to the output. In some systems, the CTLE
can be nonlinear for large inputs, so one might also have
testbenches to extract parameters describing that behavior.
Running the testbenches for a given block allows designers
to determine whether the circuit matches its specification.
This link design uses extensive calibration and adapta-

tion loops that correct for gain/offset mismatch between the
ADCs, equalize the channel, set the parameters of the VGA
and CTLE, and make the sampling clocks track the incom-
ing data. These feedback loops take 100,000s of cycles to
settle, which is extremely slow to simulate, even when using
FastSPICE simulators. To evaluate the system at this level
requires higher-level functional models of the analog blocks.
Methods for creating those models are described next.

III. FUNCTIONAL MODELS
To speed up the validation of mixed-signal SoCs, one needs
to move from solving for voltages and currents that satisfy
device constraints (circuit simulation) to functional models
where input changes trigger output changes. This means all
functional models must address two challenges.
1) In a circuit, inputs and outputs have continuous, real-

valued waveforms, but in functional simulations, they
are values that change only at discrete times.

2) Devices/circuits are fundamentally bidirectional, but
functional model execution is unidirectional from
inputs to outputs. Circuit simulation finds the voltages
that make the circuit consistent, but in a functional
model, outputs must be a function of the inputs.

These challenges provide a framework for categorizing
different approaches used to create functional models.

A. FUNCTIONAL MODEL CLASSIFICATION
Since functional models only receive inputs and generate
outputs at discrete times, one must represent the shape of
analog waveforms in between those updates. To that end, a
variety of different feature vectors have been used to repre-
sent analog signals in functional models. The simplest feature
vector is a single value, and the simplest interpolation func-
tion is to hold that value constant until the next value arrives
(i.e., representing a piecewise-constant waveform).
This simple feature vector is the most widely used, usu-

ally in conjunction with a discrete-time model, as described
later in this section. Piecewise linear models [18] have been
used to better approximate waveforms, especially when using
non-uniform time steps between events. A piecewise lin-
ear waveform representation is a two-element feature vector
with a value and slope passed at each event. As we describe
in Section IV-B, for emulation we have found that using
a feature vector consisting of spline points can be effec-
tive [19]. Another approach is to express waveforms using
sums of complex exponential functions, which is a general
form for a linear system response [20]. In that case, the fea-
ture vector is variable-width, containing a set of eigenvalues

(i.e., pole frequencies and multiplicities) and their eigen-
vectors (i.e., magnitudes). This representation is adopted by
Scientific Analog’s XMODEL [21].
Given a representation of analog waveforms, we next

need a way to compute model outputs without requiring
circuit simulation. Almost all functional models use one of
two approaches: discrete-time modeling or piecewise lin-
ear modeling. In the discrete-time approach, the differential
equations used for circuit simulation are converted into a
set of finite difference equations, resulting in a discrete-time
model. By Nyquist’s Theorem, this conversion will yield an
equivalent model if the chosen time step is small enough to
sample signals faster than their Nyquist rates. Since a high
sampling rate is needed in these systems, they are often
referred to as oversampled models. The resulting set of dif-
ference equations can be easily represented as a discrete-time
FIR/IIR filter. While this approach is widely used, it can
be inefficient when modeling circuits with high bandwidth,
which need fine time resolution. In the high-speed link exam-
ple, this means we would need to have a number of samples
(6-10) during each bit period to achieve good fidelity, and
even more samples to model the effects of jitter. Thus, while
these models are popular, they cannot be used for all situa-
tions. In particular, they can dramatically limit the speedup
that is possible through emulation [19].
The main alternative to oversampling is to make func-

tional models piecewise linear. Using this approach, until
a model is re-evaluated, its outputs (feature vectors) rep-
resent the response of a linear dynamical system to its
inputs (also described by feature vectors), which has a
closed-form solution. How these outputs are computed and
how often the model needs to be re-evaluated depend on
the model and the feature vector used. For example, with
the complex-exponential representation of XMODEL, the
output response can be computed in the Laplace domain
and expressed exactly using the same complex exponential
form [20]. Here the model would only need to re-evaluate
if its inputs changed, or if the model transitioned to a dif-
ferent linear operating mode. For a model with a simpler,
piecewise linear waveform representation, more evaluations
would be required, since the response of a linear system to
piecewise linear input is not generally piecewise linear. To
solve that problem, the model may project a piecewise linear
segment that approximates the true response, scheduling a
re-evaluation event at the end of the segment [22].
The piecewise linear modeling technique can be used on a

wide variety of circuits that may not seem linear at first [3].
As an example, consider the phase interpolator in the high-
speed link example, where the input and output voltages are
digital clock signals. If we think of those signals as being
in the phase domain, rather than the voltage domain, the
linear relationship between them becomes clear: the output
is a weighted average of the inputs. This same technique
can be used to model a more complex circuit like a PLL,
which is usually broken down into a phase detector (PD),
filter, voltage-controlled oscillator (VCO), and possible clock
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FIGURE 2. Identification of circuit clusters to convert a transistor-level circuit into a
signal-flow system.

dividers. The PD converts the input phase difference into a
voltage or current (which maybe pulsed). This signal then
passes through a linear filter and drives the VCO. In the
phase domain a VCO is simply a phase integrator, where the
time constant of the integrator is set by the control voltage.
Notice that all of these operations can be modeled by “linear”
systems. The output clock is generated by switching the
output value each time the phase of the VCO increases by
π , or by a more sophisticated scheme if the following circuit
depends on intermediate VCO output voltages. The same
technique can be used to create simple, linear models for
duty cycle adjusters and voltage-to-time converters, among
many others.
In addition to the waveform representation and choice

of discrete-time vs. piecewise linear system model, func-
tional models can also be classified by the granularity of the
circuits being modeled. In general, higher-level models are
more efficient because they avoid the computation of internal
signals that are not observable from a system perspective,
but these models require more specialized effort to create
and validate. As we will see in the next section, lower-level
models can be easier to generate automatically.

B. AUTOMATIC MODEL GENERATION
To auto-generate a functional model, a tool needs to have
three components: templates for functional models, a method
to tear a large circuit into smaller pieces that fit into those
templates,3 and a way of extracting template parameters from
each torn circuit piece such that its model will match its
behavior. To understand how this process works, we start by
describing the flow used by tools that generate functional
models from netlists.
Since functional models are unidirectional, we tear the ini-

tial netlist into element clusters that have strong couplings
within them and must be solved simultaneously [21], [23].
Fig. 2 illustrates the circuit clusters identified from an exam-
ple circuit. Each of the clusters can then be replaced with
an appropriate functional model. If no other information is
given about the circuit’s functionality, the tool replaces each

3. This component might be optional if it can be guaranteed that the
template can model the behavior of the entire circuit.

FIGURE 3. Piecewise linear modeling of a nonlinear transistor element.

of the transistors with a macromodel, builds the circuit equa-
tions for each cluster via modified nodal analysis [24], and
derives the Laplace-domain transfer functions from its inputs
to outputs [21], [25]. This transfer function is a parameter
of the functional model template and is used to create a
functional model for this subcircuit.
Different tools use different transistor macromodels and

model templates. For example, XMODEL models nonlin-
ear elements such as transistors and diodes as piecewise
linear, meaning that a circuit cluster may take different input-
to-output transfer functions depending on which operating
region it is in. Fig. 3 illustrates the basic piecewise lin-
ear model of a transistor used by XMODEL. The transistor
is modeled with a pair of forward and backward nonlin-
ear voltage-controlled current source (VCCS) elements, of
which VGS-to-IF and VGD-to-IR characteristics are modeled
using a piecewise linear function. Using this model and pre-
characterized parameters, XMODEL is able to compute the
transfer functions between the inputs and outputs of a given
cluster during runtime.
While these functional models extracted at the device level

provide performance gains, larger gains are possible with
higher-level analog macromodels. We found that a small
number of macromodel templates can cover a wide variety of
analog circuits commonly used in practice. Fig. 4 illustrates
a few of them; each can be regarded as a special case of a
multi-port network model.
The first template, in Fig. 4(a), is for circuits with a single

port, such as those that generate a voltage or current output or
serve as a load to others. It is basically a Thevenin-equivalent
model of the circuit (a Norton-equivalent counterpart is
also possible). The equivalent open-circuit voltage VPWL and
series impedance ZPWL(s) can take different values depend-
ing on the present value of the port voltage V1 to model
nonlinearities in a piecewise linear fashion (e.g., a current
source falling into a linear region when the output voltage
becomes too low). The series impedance ZPWL(s) described
in the s-domain can express any small-signal AC character-
istics. The values of VPWL and ZPWL(s) may also change
depending on the values of digital mode bits (e.g., digi-
tal inputs for power-down, reset, or parameter trimming).
For example, this template can be extended to model a
digital-to-analog converter (DAC), varying its output voltage,
current, resistance, or capacitance as a function of its digital
inputs.
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FIGURE 4. Examples of analog macromodel templates: (a) a single-port circuit, (b) a
multi-port network with passive impedances, and (c) an active circuit with multiple
inputs and outputs.

The second template, in Fig. 4(b), is for circuits with
multiple ports that can be described using a set of passive
impedances between the ports, such as an RC interconnect,
a power grid, the LC tank of an oscillator, etc. As with
the first template, each port-to-port impedance can change
as a function of digital mode bits, in which case the tem-
plate can also model a network of switches, such as analog
multiplexers/demultiplexers.
The third template, in Fig. 4(c), models active circuits with

inputs and outputs such as amplifiers, filters, current mirrors,
etc. The circuit may have an arbitrary number of input and
output ports; the first template is used to model the DC
nonlinear and AC linear characteristics of each input/output
port. For each pair of input port VIN,i and output port VOUT,j,
a VCCS element with a transfer function GPWL,ij(s) and a
DC current source with a value IPWL,ij model the transfer
function from VIN,i to VOUT,j as a piecewise linear system.
Again, all model parameters can change as a function of
digital mode bits.
These macromodels are used to simplify the circuits which

the nodal analysis needs to analyze. Raising the abstraction
level even higher, to functional blocks, yields even faster
models. The problem is that the best modeling approach
often depends on the circuit function. In the prior section
we described how to use the transfer function of a piecewise
linear system to generate an output feature vector from input
feature vectors. While the complete link can be modeled this
way (with a functional model for each component) there are
better modeling approaches.
For example, in a link, the transmitter, channel, VGA,

and CTLE are often modeled as a linear time invariant
(LTI) system. LTI systems can be represented completely
by a single step response. Since the input into this system
is binary (but with jitter the transitions occur at different
times) and the output is sampled, the output sample can

be quickly computed by simply adding several time-shifted
step responses, where each is shifted according to the
time difference between the transmitter transitions and the
receiver sample point. Outputs are calculated on-demand
when required by the digital clock at the output. This model
is only activated when either the transmit or receive clock
fires and is extremely efficient. This method requires no
analog-only timesteps, and the accuracy of the output voltage
is completely independent of the digital timestep.
To allow users to leverage these efficient functional models,

we need a system that encapsulates thesemodeling approaches
into flexible templates that can handle awide variety of circuits
with the same function. For example, while an amplifier
is a very basic building block, its actual implementations
vary widely because of the different possible sets of inputs
adjusting the offset, common-mode level, gain, bandwidth,
etc. The templates illustrated in Fig. 4 address this need to
some degree by supporting a variable number of input/output
ports and changing the parameter values with the digital mode
bits, but they may not be sufficient to model how a circuit’s
characteristics, such as gain, bandwidth, and nonlinearity,
vary as continuous functions of analog control inputs.
To deal with these issues, Lim and Horowitz [26] proposed

creating a library of model templates, each representing a
basic analog function. For each of those functions, he real-
ized that the only effect of additional pins would be to alter
its behavior. Thus, he created templates that can extract the
dependence of analog functions on user-added pins. In this
approach, the user breaks a circuit into blocks (which usually
are subcircuits in the schematic), picks which template to
use for each block, and provides the tool the acceptable input
ranges. From this information and the circuit implementation,
the tool generates a functional model.
Returning to the amplifier example, a template was created

to model its characteristics including gain, offset, nonlinear-
ity, dynamics, noise, etc. If there are additional input pins
added to the amplifier, they may affect one or more of these
characteristics. The template contains a set of testbenches that
can measure these amplifier characteristics and their depen-
dence on the user-added pins. Fig. 5 shows how this amplifier
template applies to a differential amplifier with a calibration
mode, separate calibration inputs, digital differential offset
correction, and gain-controlling current bias. The next section
describes these templates’ testbenches in more detail.
Since functional models are valid only within the con-

ditions from which their parameters were extracted, it is
important for the models to include assertions that check
whether these conditions are being met [25]. These asser-
tions verify whether the input ranges assumed during the
parameter characterization are respected and can prevent the
models from being used in situations in which they are not
validated.

C. VALIDATION OF FUNCTIONAL MODELS
The goal of validation is to check that the functions of
a model correctly match the operation of the circuit it
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FIGURE 5. (a) Top-down functional model of an ideal differential amplifier, with 4
adjustable parameters: A, B, C, D. (b) Simple differential amplifier circuit, and the
corresponding model with parameter values that might be extracted. (c) Differential
amplifier circuit with adjustable current bias, 3-bit offset cancellation, and calibration
mode. To the right is the model and set of parameters that might be extracted; note
their dependence on optional pins.

represents. There are two approaches for this check. One
is to use self-checking testbenches, which ensure that both a
circuit and its model match the circuit’s specifications [27].
The other is to use testbenches that extract model param-
eters and ensure that the parameters from the circuit and
model match. In the latter approach, the parameters extracted
from the circuit can be passed to a template to generate a
functional model. Thus, testbenches associated with auto-
generation of model templates are able to extract everything
needed to describe the model’s behavior, and therefore are
able to do a complete circuit/model comparison. In this sec-
tion, we will discuss what a testbench is, and how to write
an effective set of testbenches for any model.
A testbench consists of three parts: stimulus generation,

model/circuit simulation, and response analysis. Stimulus
generation creates the test vectors that drive the circuit,
which may be as simple as an explicit input waveform,
but is generally a piece of code that generates a set of
input waveforms and denotes which measurements should
be made. Simulation is the job of a SPICE, SystemVerilog,
or VerilogAMS simulator, taking explicit input vectors and
returning the corresponding output vectors. Finally, response
analysis converts the raw measured results to model parame-
ters, and may be as simple as plotting the result vectors, but
generally is a piece of code that extracts high-level features
from the simulation results.
As we argued in [28], stimulus generation for analog

circuits is easy because, in the correct domain, an analog
circuit’s outputs are smooth functions of its inputs. Thus, to
generate a set of test vectors spanning the circuit’s inputs,
the designer or testbench generator can simply choose points
distributed throughout each dimension of the inputs. Using
Latin hypercube sampling and orthogonal sampling ensures
that the input vectors are evenly distributed throughout each

dimension and represent the entire multi-dimensional space.
For a differential amplifier, the dimensions might be dif-
ferential and common-mode voltages, while for a phase
interpolator, the inputs might be the input frequency, phase
difference, and interpolating ratio. When testing the model,
it is also important to include some test vectors outside the
acceptable input range to ensure that the model reports an
issue. Once the input vectors have been chosen, they must
be converted from the original domain to the voltage/current
vs. time domain to be passed to the simulator.
Some additional complexity is added to the stimulus gen-

eration by control inputs. If the controls are analog, such
as a bias voltage, they can simply be added to the list of
input dimensions for the circuit. For some digital controls
such as sleep or calibrate pins, the entire circuit behavior
must be re-extracted from scratch for each of the 2N com-
binations of N such input pins. But for other digital inputs,
such as the bits in a DAC’s input code, the effect of one pin
adds to others in a linear fashion. For N such inputs, it is
only necessary to check on the order of N+1 combinations,
not 2N . Examples of these two types of digital inputs can
be seen in the cal and adj inputs, respectively, in Fig. 5.
For validation, the designer specifies the type of each digital
pin, but the testbench creates enough vectors to validate that
their specification is correct.
Typically, the circuit and the functional model run on

different simulators, which means that the testbench needs
to create inputs for and read outputs from both. One solution
is to find an analog/mixed signal (AMS) simulator that can
run both models. An example is to run a transistor-level
circuit and its SystemVerilog analog model on a Verilog-
AMS simulator. Otherwise, to prevent writing the testbench
twice, Kundert suggested writing the testbench in a high-
level language and compiling it to run on various supported
simulators [29]. We have been using the open-source test
compiler fault [30] in our work. In fault, a user can write
input stimuli in Python, which are translated to one of the
supported simulator decks.
One more advantage of using a compiler from a high-level

language, rather than a universal simulator, is the ability to
write all parts of the testbench in a single language. For
example, fixture [31] is a model generation tool based on
the work of Lim et al. [32] and uses fault to translate the
input stimuli to the target simulation languages. This allows
the stimulus generation and the analysis code to be written
in the same Python file and allows for easy reuse of helper
code, such as domain translators, between testbenches.
Once a simulation has been run on both the circuit and

model, the template extracts parameters that describe the cir-
cuit’s behaviors, as was done for modeling in Section III-B.
With this method, two separate checks must be made. First,
the extractor must ensure that the model matches the speci-
fied behavior to within some error tolerance. For example, a
tool to extract the gain of an amplifier may work by finding
a best-fit line for the input vs. output data. This tool must be
sure to check the RMS error of the fit to catch errors such
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as a circuit with unintended gain compression. Second, for
comparison checks, the parameter extracted from the circuit
and extracted from the model are compared to each other.
For self-checking templates, both results are compared to a
specified value/range. In both the extraction and comparison,
the designer must specify a reasonable error margin (e.g., as
a percentage error), that is considered valid for that partic-
ular feature of the model. The comparison is only slightly
more complex when control inputs are present. In this case,
rather than extracting a single gain parameter, a gain equa-
tion that is a function of the control parameter (as shown in
Fig. 5(c)) is extracted for both circuits and compared.
Sometimes the designer does not have a parameterizable

representation of all the important circuit behaviors, and
therefore cannot extract parameters for comparison. In this
case, another option is to bound the output waveform within
acceptable regions. These regions can be handwritten if the
user is writing a specification for both the circuit and model
to follow. For comparison checks, the user can check that
the model’s waveform matches the circuit’s waveform within
some specified bounds (�V and �T). For example, Cadence
amsDmv implements this function [33].
Of these approaches, we strongly recommend comparing

extracted model parameters for circuit vs. model validation.
Two circuits meeting the same specifications don’t necessar-
ily have the same behavior, and ensuring complete coverage
is hard with waveform comparisons.

IV. EMULATION
Computer simulation is the workhorse for block-level func-
tional verification but is often too slow for top-level
verification tests and pre-silicon firmware/software develop-
ment. Hardware emulation is an effective strategy to address
that limitation. For example, IBM found that FPGA emula-
tion provided a five-order-of-magnitude speedup in verifying
Linux boot-up on a custom processor, thus reducing a
multi-year simulation to a few minutes [34].
Emulation can be performed directly on FPGAs, or

on commercial emulation platforms such as Cadence
Palladium [35], Synopsys ZeBu [36], and Mentor
Veloce [37]. In all cases, the design under test (DUT) must
be synthesizable in order to be mapped to the emulator
resources. This is problematic for many SoCs because, unlike
digital blocks described by register transfer logic (RTL),
AMS blocks are not synthesizable.
Today, the emulation of AMS blocks is often accom-

plished using basic logical models that are sufficient only
for verifying high-level protocols and top-level connectiv-
ity. Since AMS blocks often interact with digital blocks and
firmware through complex feedback loops, this rudimentary
modeling approach severely limits both verification cover-
age and firmware feature validation. Several approaches have
been proposed to address that limitation.
The most comprehensive AMS emulation model is a test

chip containing all AMS blocks, which interacts with the
SoC digital functions emulated on an FPGA. When such a

test chip is available, it can be used to build a very fast
and accurate emulator. Sanchez et al. [38], for example,
emulated an ADC-based high-speed link design using a TI-
ADC test chip, where the digital parts of the design were
implemented on an FPGA. The result was a 1 Gb/s high-
speed link emulator – five orders of magnitude faster than
the fastest reported RTL simulation of high-speed link (Lim
and Horowitz [22]).
Unfortunately, that approach is often rendered impractical

by two main factors: (i) rapid development cycles dictate that
analog circuits are developed in parallel with the digital cir-
cuits that interface with them, and (ii) bandwidth limitations
between the AMS test-chip and the emulator FPGA limit
emulation speed. Hence, the rest of this section focuses on
fully virtual AMS emulation, where the entire chip design is
modeled within an emulator. That requires analog blocks to
be replaced by synthesizable models, as we describe next.

A. OVERSAMPLING
Oversampling, described in Section III, is the modeling
approach most commonly used for emulation. In the con-
text of emulation, oversampling is implemented by having
each “tick” of an emulator clock correspond to a fixed-size
timestep. Analog circuits are then implemented as fixed-
coefficient discrete-time filters, which map efficiently to
emulator resources.
An example of oversampled emulation is work by

Bhattacharya et al. [39], who created a synthesizable model
for a DC-DC buck converter on an FPGA. The switching
frequency of the buck converter was 200 kHz and the emu-
lation timestep was 50 ns, corresponding to 100 timesteps
per switching cycle. With the intent to operate in real-time,
Bhattacharya set the emulator clock frequency to the inverse
of the timestep, i.e., 20 MHz. However, in general, emula-
tors can operate faster or slower than real-time, depending
on the relationship between the timestep and the emulator
clock frequency.
Once a timestep is selected, analog dynamics are dis-

cretized to that timestep, resulting in a system of discrete-
time equations. A common method is to convert transfer
functions from the s to the z domain using Euler’s method, as
Bhattacharya did; alternatives include the bilinear transform
and the zero-order hold approximation. These approaches
can also be used when analog dynamics are more readily
described using a system of differential equations.
A subset of nonlinear dynamical systems can be dis-

cretized with a simple extension: if a system’s dynamics
switches between various linear operating modes, then each
of those modes can be discretized individually at compile-
time (formalized in later work by Bhattacharya et al. [40]).
When the emulator is running, the appropriate mode is
chosen in each emulation cycle, using the same underly-
ing set of state variables. For example, a buck converter
topology can be modeled with four linear operating modes,
corresponding to all on/off combinations of the high- and

190 VOLUME 1, 2021



low-side switches, and two state variables, corresponding to
the capacitor voltage and inductor current.
When using oversampling for emulation, different sam-

pling intervals can be used for different parts of a design.
For example, Fernandez-Alvarez et al. [41] built an emulator
in which analog parts of a design were implemented by an
on-FPGA processing system (PS), while digital parts were
implemented in the FPGA’s programmable logic (PL). Since
the PS couldn’t keep up with the PL on a cycle-by-cycle
basis, the analog models had to be updated less frequently,
and therefore with a larger timestep, so that the two domains
would stay synchronized.

B. VARIABLE TIMESTEP METHODS
Oversampling in emulation, as in simulation, typically
requires multiple samples between digital events to achieve
reasonable accuracy. However, the performance impact of
these “analog-only” timesteps is generally worse in an emu-
lator. When emulating an SoC design that is mostly digital,
as many are, emulator resources are mostly committed to
representing digital circuits, yet those resources sit idle dur-
ing analog timesteps. Hence, a single oversampled analog
model requiring fine time resolution can decimate an emula-
tor’s capacity to accelerate digital logic simulation, because
most of its resources will end up sitting idle for most of the
time.
A solution is to avoid analog timesteps, instead having

the emulator step directly from one digital event (e.g., clock
edge) to the next. For the link example, we would start
with the efficient step response model of as much of the
system as possible, since this model only evaluates on digital
clock edges. However, if part of the system were nonlinear
we would need another approach. We proposed a scheme
to handle these nonlinear cases, coupling an event-driven
emulation engine with a method to project the shape of
analog waveforms between digital events.
As discussed in Section III-A, there are many options for

feature vectors to represent a complex waveform between
events; we found that a spline representation works well
for emulation. Within one analog timestep we explicitly cal-
culate a small number of evenly-spaced sample points and
implicitly connect them using a spline interpolation. The
value of the spline only needs to be calculated explicitly
when the signal is sampled by a digital clock. Fig. 6 shows
an overlay of the spline model of a waveform on top of
a SPICE simulation of the same waveform. Although the
frequency of analog timesteps is slower than the system’s
dynamics, the flexibility of the spline allows it to capture
high-frequency behavior. Calculating the update from one
set of spline points to the next requires more computation
than taking several smaller time steps sequentially; however,
with the spline interpolation the calculation is parallelizable
so the FPGA’s cycle time can stay short and analog-only
time steps are not needed [19].
In addition to reducing or eliminating analog timesteps, it

is also important that analog computation does not increase

FIGURE 6. Comparison between SPICE waveform and implicit spline representation
from the model. Note that the SPICE waveform is nearly hidden because the two
overlap. Dots show emulator timesteps; between each dot the emulator explicitly
calculates 4 values in parallel. The smooth emulator line is the implicit spline
interpolation through those 4 values, which is evaluated only on-demand [19].

the FPGA cycle time. Floating-point multiplication is gen-
erally slow on an FPGA, so we use a tool called svreal to
map real values in a fixed-point format [42]. svreal auto-
matically keeps track of signal ranges and maps real values
appropriately in order to take full advantage of the lim-
ited bit width of FPGA digital signal processing (DSP)
blocks. By using the DSP blocks we are able to perform
analog computation with few sequential multiplies, such
as a multiply-accumulate operation, with FPGA cycle time
similar to the digital emulation.
This spline-based approach yielded a 100× reduction in

the number of timesteps required to emulate analog parts of
a high-speed link, including a lossy channel and multiple
CTLEs with saturation nonlinearities. Thus, it sped up the
FPGA emulation greatly. We discuss more examples and
results using this approach in [43].

C. AMS EMULATION TOOLS
Various tools have been used in constructing oversampled
AMS models. Bhattacharya, for example, used Xilinx System
Generator [44] to implement manually-derived discrete-
time filters representing analog blocks. For AMS-specific
abstractions, others (e.g., Mishra et al. [45]) used Simscape
Electrical [46], which converts schematics of linear and
“switched linear” devices into oversampled synthesizable
models.
Other AMS emulation tools have been described in publi-

cations, but have not been released. For example, Tertel and
Hedrich [47] built a library of oversampled models including
RC filters, amplifier stages, rectifiers, and a sample-and-
hold. These models were integrated using a netlist format.
Wu et al. [48] took a generator-based approach, building a
tool called WaveACE to construct wave digital filters for
transistor-level circuits.
Nothaft et al. [49] tackled the problem of re-using

AMS simulation models (behavioral Verilog) in emula-
tion. He developed a tool that converted floating-point
numbers in existing models to fixed-point, using anno-
tated range/resolution information. The tool was successfully
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FIGURE 7. Framework of FPGA AMS emulation model generation [43].

applied to emulate a commercial cellular modem IC on
Cadence Palladium, yielding a 120× speedup as compared
to RTL simulation.
Unfortunately, of the tools described, only Xilinx System

Generator and Simscape Electrical are publicly available, and
they do not represent a complete emulation flow. This moti-
vated us to develop and release what we believe is the first
publicly available, complete framework for AMS emulation.
The free, open-source framework consists of msdsl [50],
a Python tool for generating synthesizable AMS models,
and anasymod [51], a simulator-like abstraction of FPGA
boards. A standalone synthesizable fixed- and floating-point
library, svreal [42], discussed in Section IV-B, is used in
the model generation process. The flow of creating mod-
els for FPGA emulation [43] is depicted in Fig. 7. msdsl
provides a set of functions that allows users to describe
AMS blocks as differential equations, netlists, transfer func-
tions, or switched systems, etc. The generated synthesizable
HDL then leverages svreal to switch between fixed-point and
floating-point representation to allow the flexible trade-off
between accuracy and emulation throughput. anasymod pro-
vides emulation infrastructure that manages the emulation
timestep, emulation clock speed, and test interfaces; it also
communicates with EDA tools to generate the FPGA emula-
tion bitstream for a given FPGA board. Details and examples
of how to use the emulation framework are described in [43].
This framework supports event-driven emulation with a

spline-based analog waveform representation, as described
in Section IV-B. It has been successfully applied to six
commercial designs, including an automotive magnetic sen-
sor [52], and one academic design, a high-speed link
receiver [53]. Speedups across these applications were typ-
ically two to three orders of magnitude as compared to
existing simulations.

V. DRAGONPHY EXAMPLE
To demonstrate the capability of the modeling techniques
described in this paper, we present our results using them
to validate DragonPHY [53], a synthesizable high-speed
link we recently designed in TSMC’s 16nm technology.
DragonPHY4 is similar to the link described in Section II-B,
except it doesn’t contain the CTLE/AGC, and feeds the
channel output directly to the interleaved ADC.

4. Both the design and the emulator variants described in this section
are available as open-source on GitHub (https://git.io/dragonphy).

FIGURE 8. Architecture of DragonPHY, our synthesizable high-speed link receiver,
which served as a test case for the modeling techniques described in this paper.

As shown in Fig. 8, DragonPHY uses 16 time-interleaved
ADCs organized into four banks, with each bank driven by
one phase interpolator (PI). The PIs are essentially digitally-
controlled phase rotators and are adjusted by changing the PI
control codes so that they produce four equally-spaced clock
phases. The ADCs in each bank are activated sequentially,
with one sample taken on each rising edge of the PI clock.
The ADC consists of a voltage-to-time converter (V2T) and a
stochastic time-to-digital converter (STDC). The PI consists
of an open-loop delay chain and a phase selection network
followed by a phase blender. The DragonPHY architecture
is split between an analog core, which contains the ADCs,
PIs, and a bias generator, and a digital core, which contains
DSP circuits to recover the transmitted data from the ADC
samples. It is an open-source circuit generator, so we built
a design verification suite that contains automatic regression
tests to check block performance, and an FPGA emulator to
check the full link performance.
The automatic regression tests are realized by using func-

tional model templates. The regression tests are triggered
every time a user makes changes to any part of the design.
For example, if the SPICE netlist of the voltage-to-time
converter changes, the new circuits are then extracted to
the analog functional models. The functional models with
updated parameters will be used for system-level simulations
to validate the design change automatically.
Several analog functional models have been created for

DragonPHY. For functional simulation we created five func-
tional models: 1) V2T; 2) sample-and-hold (SnH); 3) phase
blender; 4) bias generator; and 5) channel model. The V2T,
phase blender, and bias generator use an amplifier template.
For the V2T the bias voltage changes the voltage-in to time-
out gain, and the PI works in phase space with the digital
input controlling gain. The sample-and-hold uses a sampler
template which has a filter before a sampler. The channel
model uses the channel template to take advantage of its
digital drive.
Only two analog models are used for the emulator. The

entire analog signal chain from digital data into the trans-
mitter to the sampled digital values were combined into one
augmented channel model, and PIs were used to create the
receiver’s digitally controlled oscillator.

192 VOLUME 1, 2021



FIGURE 9. AC simulation results of the DragonPHY ADC. (a) SPICE simulation with
extracted SPF. (b) Verilog simulation with extracted SDF.

To create these models, we followed the general flow
described throughout this paper for converting a SPICE
netlist into a functional model.
1) Choose the type of model template to use; exam-

ples of model types are described in Sections III-A
and III-B in addition to the emulation-specific models
in Section IV.

2) Run a simulation of the SPICE circuit to extract param-
eters for the model. Sections III-B and III-C discuss
testbenches for the characterization of SPICE netlists.

3) Validate that the extracted model matches the
SPICE netlist behavior. Validation is discussed in
Section III-C.

Fig. 9 shows the Verilog simulation results of the proposed
ADC slice as an example of the proposed flow. Note
that using functional models reduced simulation time by
more than 10,000× as compared to the conventional SPICE
simulation while providing sufficient accuracy.
While the functional models allowed the validation of the

analog core, they started to run into speed issues when we
tried to simulate the clock recovery and channel equaliza-
tion loops for the full link. As described earlier, this required
hundreds of thousands of cycles to settle. To enable valida-
tion of these loops, and test for bit error rates (BER), we
created emulation models using the tools and flow described
in Section IV-C.
One would immediately realize that there are different

possible levels of abstraction when creating the emulation
models for DragonPHY. We experimented with AMS emu-
lation tools and created two emulation implementations for
DragonPHY: a “low-level” emulator that swapped in syn-
thesizable models for the ADCs, PIs, and channel, and a
“high-level” emulator that lumped all of those behaviors
together into a single model. The “low-level” architecture
used variable timesteps that were determined at runtime, and
its AMS models had a one-to-one mapping to the models
that would be used in a conventional CPU-based simulation.
The “high-level” architecture conceptually computed all 16
inputs and sampled outputs in parallel (once it knew the tim-
ing of the transmit and receive clocks), which made better
use of parallelism and also had simpler event handling.In

FIGURE 10. The BERs predicted by both emulation models closely match those of
the CPU simulation, despite running orders of magnitude faster. We originally
presented these results, along with more details, in [43].

bit error rate (BER) measurements, both emulation models
matched the CPU model within 7.5% over multiple jitter
and noise conditions (Fig. 10) [43]. The low-level model
ran at 5 Mb/s, and the high-level model ran at 80 Mb/s,
allowing the full link training to complete within a second.
At 80 Mb/s, this performance was more than 5,000× faster
than our functional models [19], [43].

VI. CONCLUSION
The continued intertwining of analog and digital systems
makes functional modeling of analog blocks more critical
than ever, not only in the context of simulation but for emu-
lation as well. Two main approaches have been proposed
to create such models: fixed-timestep oversampling and
event-driven modeling with analog waveforms represented
by feature vectors. Oversampling is the traditional approach
but suffers from poor performance because it generates many
additional simulation/emulation events. Although the event-
driven approach can be more complex, it has the potential
to achieve high modeling fidelity while reducing the number
of required events. This is especially important in emulation,
where analog events have a stronger impact on performance
as compared to simulation.
It is critical to ensure that analog functional models closely

track the behavior of the circuits they represent. The first step
towards that goal is to create a testbench that extracts model
parameters from a circuit of interest. Those parameters can
then be passed into a flexible model template in order to
generate a functional model. Finally, the generated model
can be validated by extracting its model parameters with the
same testbench and comparing them to those extracted from
the circuit itself.
Applying these techniques to a high-speed link design has

enabled us to run a full link validation, using both simulation
and emulation, in a fraction of the time needed by more
conventional approaches.
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