IEEE Open Journal of the

Solid-State Circuits Society

Received 29 June 2021; revised 23 September 2021; accepted 27 September 2021. Date of publication 8 October 2021; date of current version 21 October 2021.
Digital Object Identifier 10.1109/0JSSCS.2021.3118668

Recent Advances in High-Resolution Hybrid
Discrete-Time Noise-Shaping ADCs

DONGYANG JIANG “ ' (Member, IEEE), SAI-WENG SIN “ 1 (Senior Member, IEEE),
LIANG QI 2 (Member, IEEE), GUOXING WANG * 2 (Senior Member, IEEE),

AND RUI P. MARTINS “ 13 (Fellow, IEEE)
(Invited Paper)

1 State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics
and Faculty of Science and Technology—ECE, University of Macau, Macau, China

2Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China

3|nstituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
CORRESPONDING AUTHOR: S.-W. SIN (e-mail: terryssw @ um.edu.mo)

This work was supported in part by The National Key R&D Program of China (File no. 2019YFB1310000), and The Science
and Technology Development Fund, Macao S.A.R (File no. 0052/2020/AGJ).

ABSTRACT High precision data acquisition requires very-high-resolution Analog-to-digital convert-
ers (ADC) for kHz speed or to keep a relatively high resolution for wider bandwidth (BW) around
the MHz range. Although widely used, noise-shaping (NS) in ADCs offers a high-resolution characteris-
tic, but obtaining good power efficiency and compact die area is still challenging. Recent literature showed
promising progress by utilizing hybrid Discrete-Time (DT) NS-ADCs with measured silicon results. This
paper focuses its analysis and discussion on two important trending classes: hybrid Incremental ADCs
(I-ADC) and hybrid Time-interleaved (TI) NS-ADCs. Furthermore, this paper presents a review and

addresses the benefits of those hybrid architectures.

INDEX TERMS ADC, analog-to-digital converter, DAC, digital-to-analog-converter, hybrid ADC, incre-
mental ADC (I-ADC), delta-sigma modulator, time-Interleaving, extrapolating, noise shaping, successive

approximation register, SAR.

. INTRODUCTION

IGH resolution ADCs are crucial building blocks in

consumer electronics, especially for high precision sen-
sors in the Internet of everything (IoE), audio codecs, and
wearable healthcare applications. Such ADCs usually pro-
cess signals around tens of kHz [1]. However, with the
rapid development of modern industry, some wide bandwidth
applications also raise the need for high-precision ADCs,
including ultrasound imaging systems, radars, and emerging
communications [2], [3].

The combination of oversampling and noise-shaping (NS)
techniques is traditionally a promising approach to imple-
ment high-resolution ADCs. Based on the circuit charac-
teristics, designers could divide NS-ADCs into two main
types: continuous-time (CT) or discrete-time (DT). As the
names suggest, the CT structure takes a continuous-time loop

filter, whereas the DT structure operates based on switched
capacitor circuits.

If high resolution is the primary consideration, Fig. 1 lists
a detailed comparison between CT/DT NS-ADCs. The CT
structure generally operates faster than the DT, leading to
a possible larger oversampling ratio (OSR). Besides, the
CT structure simplifies the analog front end by bringing
along the inherent alias rejection property and providing
an easy-driven resistive input. In this way, lower BW,
smaller slew rate amplifiers can be the interface between
the frontier stages and a CT-ADC. Similarly, the CT case
doesn’t need a reference buffer to fight against the large
switching current in the DT. However, the CT case limits
the linearity. Since CT’s DACs’ outputs error is directly
injected into the loop in continuous time without the
help of any noise shaping, the CT structure suffers from
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FIGURE 1. Pros/cons comparisons between CT/DT NS-ADCs.

all the DAC non-idealities [4], including the clock jitter.
Moreover, the CT structure is sensitive to the process, sup-
ply, and temperature (PVT) variations as well as inter-symbol
interference (ISI) errors [5], [6]. Furthermore, the CT NS-
ADC:s require auxiliary tuning circuits, which usually contain
a large capacitor bank to ensure an accurate RC time con-
stant in the integrator [7]. From another perspective, it is
well known that the DT structure is robust and less sensi-
tive to clock jitter and DAC waveform shapes [4]. Besides,
in DT, we use well-matched capacitor ratios to define the
integrator gains rather than resistor-capacitor (RC) products
in CT; hence we can obtain an accurate noise transfer func-
tion (NTF) in DT. In summary, it is straightforward that
DT NS-ADC responds more efficiently to high-resolution
demands. Therefore, this paper focuses on the discussion of
the recent trends in DT NS-ADCs.

Designers are always hunting for higher energy efficiency in
the design of NS-ADCs, while simultaneously satisfying high-
resolution or linearity requirements. Traditional DT NS-ADCs
could be tailed or mixed with other advanced architectures,
leading to hybrid ADCs. In this paper, we review two classes
of hybrid high-resolution NS-ADC architectures: 1) for sub-
MHz frequency, incremental ADC (I-ADC) has been widely
used for ultra-high-resolution designs [8]-[16]. This paper
takes a close look into the hybrid subsets, such as the zoom I-
ADC [9], [10], the linear-exponential I-ADCs [11]-[13], and
the sliced I-ADC [14], [15]; 2) to further extend the signal
bandwidth into the MHz ranges, a good approach is the
integration of Time-interleaved (TI) circuits with NS-ADCs.
This paper lists several works of hybrid TI NS-ADC struc-
tures, including the N-paths filter type [17], the cross-coupling
type [18], [19], and the extrapolating type [20], [21]. We
discuss their pros and cons in detail.

The organization of the paper is as follows: Section II
reveals the fundamental knowledge of I-ADCs, and then
presents an overview of various hybrid I-ADCs. Section III
discusses why and how the TI circuits can hybridize
with NS-ADCs, and highlights recent solutions that led to
breakthroughs. Section IV concludes the whole paper.

Il. HYBRID I-ADCS

A. FUNDAMENTALS OF I-ADCS

Fig. 2 (top) shows the typical block diagram of a
continuously running Delta-Sigma Modulator (DSM). The
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FIGURE 2. Continuously running delta sigma modulator (DSM) (top) vs. its
incremental counterpart (bottom).

architecture involves three major imperative components:
a DT loop filter, a quantizer, and a feedback DAC [22].
The modulator oversamples the moving analog input sig-
nal, and then the loop filter integrates the residue errors
between this input and the estimated output (from the
DAC). After the loop filter, the quantizer digitizes the
processed signal and provides the information through a
feedback DAC. The DSM continuously runs without reset-
ting the memory in the analog integrator, resulting in shaped
quantization noise. Consequently, filtering the out-of-band
quantization noise and holding the in-band signal power with
a lowpass digital decimation filter guarantees high in-band
signal-to-quantization-noise ratio (SQNR). Furthermore, a
higher loop’s order shapes more quantization noise out of
the band, resulting in a high-resolution performance.

Fig. 2 (bottom) shows that the I-ADC clears the memory
periodically by resetting the analog modulator and the digital
filter. In the I-ADC, the resetting operation breaks the loop’s
continuity but also brings the following advantages:

1) Simpler Decimator: The decimation filters of I-ADCs

exhibit simple structures (counter or cascaded counters).

2) Lower Latency: The complex digital filters necessary
for the decimation [1] significantly increase the DSM’s
latency.

3) Easier for Multiplexing: The I-ADCs do not contain
memory effects since they reset the memory after a
complete conversion. Therefore, they can easily share
the digital outputs among channels.

4) No Idle Tones: The idle tones are periodic sequences
generated by rational dc inputs [22]. Since the I-ADCs
reset the memory periodically, therefore prevent the
occurrence of those idle tones.

5) Nyquist Rate Output: Though the I-ADCs operate in an
oversampling manner, its digital output only depends
on the input samples during the Nyquist conversion
interval.

However, I-ADCs still suffer from some drawbacks. In

the first-order I-ADC, the required number of clock cycles
is 2N for an N-bit resolution. First-order structures are slow
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FIGURE 3. Block diagram of a zoom I-ADC proposed in [9].

due to the large required number of clock cycles. On the
other hand, a high-order structure can significantly reduce the
number of clock cycles. But, a high-order structure causes
monotonic decreasing sample weightings and results in an
input-referred thermal noise penalty as follows [13], [23]:
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Here C; is the total sampling capacitance, Vimml is the
total output noise, M is the total gain of the input sig-
nal accumulation, and W(i) are the weights for each of the
samples i. The above penalty similarly applies to the aver-
age effectiveness of the dynamic element matching (DEM)
performance for multi-bit DACs. The calculated penalty fac-
tors are 1.3/1.8/2.3 for 2"9/37/4"_order I-ADCs [13]. Based
on the above discussions, the I-ADCs attracted attention
from Nyquist rate applications for their low-latency and easy
multiplexing properties. As a trade-off, the noise/DAC lin-
earity penalty is severe for higher-order I-ADCs, limiting
their usage in wide bandwidth applications.

In the context of CT I-ADCs, the use of finite impulse
response (FIR) feedback is a popular solution to reduce its jit-
ter sensitivity, reduce the quantization noise being processed
by the integrators, and relax the slew rate requirement of
the opamps [24]-[27]. The FIR feedback can also appear in
the DT incremental ADC with the latter two benefits stated
above, especially for the single-bit quantizer.

6]

B. THE ZOOM I-ADC
The zoom ADC, first introduced in [9], combines the I-ADC
and the SAR ADC. The SAR ADC exhibits an excellent
energy efficiency, but it is relatively weak to obtain high
resolution. A subranging architecture can address such a
challenge in a zoom I-ADC. Fig. 3 shows a 6-bit SAR
followed by a fine 15-bit [-ADC. The SAR phase initially
makes a coarse conversion and determines the approximate
zoom range. Subsequently, the feedback of such prelim-
inary digitalized codes adjusts the reference of the fine
I-ADC, allowing the enhancement of the final resolution
to 20-bit. This work [10], designed in a 160nm CMOS pro-
cess, achieves 119.8-dB SNDR and 107.5-dB SNR in a 13 Hz
bandwidth. It dissipates 6.3uW under a 1.8V voltage supply,
which leads to a Schreier figure of merit (FoMs) of 182.7-dB.
However, this architecture suffers from an input-clipping
problem, as illustrated in Fig. 4. When the input signal moves
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FIGURE 4. Time domain illustration of an input-clipping problem in zoom I-ADCs.
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FIGURE 5. Block diagram of the coarse-fine operation in a zoom ADC.

at a faster rate, the adjusted reference of the I-ADC cannot
track the input signal well. To avoid it, an over-design of the
fine ADC is usually necessary to provide at least £1 LSB
of over-range [28], which leads to waste. Meanwhile, such
a 2"d-order I-ADC inherently suffers from a thermal noise
penalty with a factor of 1.3 (as discussed before).

Recent zoom ADCs also explored the DSM as the fine
stage [28]-[30] (Fig. S). Similar to the subranging ADC,
such zoom ADCs suffer from an interstage gain mismatch
between coarse and fine stages:

Yeoarse = X — Ql (2)
Yiine = Q1 - STF 4 Q> - NTF. 3)

Equations (2) and (3) give the final digital output as:
Y=X+ 0, NTF+Q; - (STF — 1). “)

The STF varies from unity when the ADC operates at high
frequencies. Thereby, a noise leakage of Q; in (4) results
in high-frequency spurs or interferers, which deteriorate in-
band performance and further overload the system [28].
Some filtering techniques realized in the digital or ana-
log domains can solve this issue. For example, [28] adopts
a digital matched STF filter to compensate for such mis-
matches. While in the analog domain, [30] proposes a residue
feedforward method to eliminate such STF peaking.

C. THE LINEAR-EXPONENTIAL I-ADC
Several works [11]-[13] proposed and implemented hybrid
two-step linear-exponential conversion in the I-ADC, to fur-
ther reduce the thermal noise and mismatch penalty while
retaining an efficient accumulation. Fig. 6 (left) depicts the
basic two-phase switching principle:

In phase one, the I-ADC operates in a 1%-order linear
mode with uniform weightings. Though uniform weighting
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FIGURE 6. The linear and exponential transformation in I-ADCs (left) and the
theoretical resolution of an exponential I-ADC and traditional order-based I-ADC
versus OSR (right).

has a slower accumulation, it can fully utilize the OSR
on in-band thermal noise suppression [16]. In phase two,
the I-ADC operates in an exponential mode to boost the
SQNR. The theoretical resolution leads to:

1+ k)N
Rzlogz(%) tlog,(L—1)—1). (5

e

Based on (5), Fig. 6 (right) demonstrates the relation-
ship between resolution, the accumulation coefficient k, and
the oversampling ratio N (assuming a one-bit quantizer).
Compared with the traditional order-based I-ADCs, the expo-
nential scheme digitizes the signal faster and can achieve
higher resolution within fewer clock cycles.

Fig. 7 (a) illustrates the I-ADC’s exponential mode with
its corresponding digital reconstruction filter. In terms of cir-
cuits implementation, there are two topologies to realize the
exponential accumulation in the analog part. Reference [11]
adopts a traditional integrator with an additional positive
feedback path to generate the exponential transfer func-
tion. Usually, such an implementation of positive feedback
requires a different capacitor-injection path into the integra-
tor’s virtual ground, as shown in Fig. 7 (b). However, we
can reuse the feedback DAC to obtain the exponential inte-
grator, when the modulator separates the sampling capacitor
and the feedback DAC to avoid the detrimental reference
noise caused by the signal-dependent loading of the refer-
ence driver [27]. The circuit presented in [11], fabricated in
65nm CMOS technology, achieves an SNDR of 86.02-dB
with 500kHz BW. The power consumption is 20mW under
a 1.2V supply.

On the other hand, [12], [13] apply the noise cou-
pling (NC) technique to achieve exponential accumulation
equivalently. From Fig. 7 (c). we can observe that the DAC
output subtracts the internal ADC’s input to obtain the quan-
tization noise &, in the analog domain. Later, ¢, is amplified
by 1 + k., and then feedback to the ADC’s input node with
one cycle delay. Accordingly, the noise transfer function is
11—+ ke)zfl)eq, as desired. Compared to the previous
positive feedback case, this scheme has less penalty since
the extra NC capacitors and adder are in the backend and
consume less power and area. With the same 65nm CMOS
process and 1.2V supply, the ADC in [13] achieves an
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realizations: (b) positive feedback structure proposed in [11] and (c) noise coupling
structure proposed in [12], [13].

SNDR of 100.8-dB with 20kHz BW, and dissipates 5500.W,
resulting in an FoMs of 176.4-dB.

D. THE SLICED I-ADC

In most I-ADC:s, the first integrator needs to drive a thermal-
noise-determined capacitor and fulfills a fast operational
amplifier’s (OTA) settling. In that way, the first integra-
tor (and possibly the adder, for some architectures) [32]
consumes most of the power. For the last stages, the gain
of the preceding stages relaxes their performance; thus, the
sampling capacitors can have smaller sizes. Therefore, the
OTAs in the back-end consume less power. With a traditional
3"_order I-ADC in [14] as an example, the 1% integrator
consumes 80% while the 2"9/3"_stage integrators occupy
10% and 7% of total power, respectively.

To reduce the power consumption of the first integrator,
the ‘split’ concept is introduced into all transistors inside the
first OTA and the feedback/sampling capacitors. With the
first OTA’s input/output nodes still connected, such hybrid
architecture leads to the proposed sliced I-ADC in [15],
dynamically reconfiguring the input loop filter stage with
a slight signal power weakening.

Fig. 8 depicts the simplified schematic of the 3rd-order
sliced I-ADC by utilizing the property of the input weighting
function. As the figure illustrates, it has the first integra-
tor split into four identical slices independently activated.
Each slice, realized as a standalone switched-capacitor (SC)
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integrator, employs bottom-plate sampling and uses boot-
strapped switches. The four slices operate during ko clock
cycles, three slices in ki, two slices in kp, and one slice
operates in k3 cycles. With the optimized clock cycle param-
eters (ko123 = 40,30, 10,70), this prototype consumes
1.65-mW/1.098-mW without/with the slicing technique from
a 3V supply, which results in only 0.7dB/0.8dB loss in
SNR/SNDR, respectively. This ADC, fabricated in 180nm
CMOS, has a peak SNDR of 86.6dB in a 100kHz BW,
achieving a FoMs of 171.1 dB.

However, there is a trade-off between the first integrator
power and the input signal power. Specifically, the effective-
ness of the integrator slicing technique depends on the signal
weighting function. Moreover, this work has to use a single-
bit quantizer to keep the linearity. Otherwise, if the quantizer
is multi-bit, it will induce DAC mismatch errors that are
difficult to handle due to the square-decreasing weight-
ing function. Consequently, the first stage must contain a
power-hungry opamp architecture for a large output swing.

lll. HYBRID TI NS-ADCS

Fig. 9 illustrates a comparison of SNDR vs. input frequency
for recently published state-of-the-arts ADCs [33], with TI-
ADC in blue squares and NS-ADC works in red triangles. We
can find that: NS-ADCs dominate the high-resolution region
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of the plot. However, for high input frequency cases, the data
points for NS-ADCs quickly diminish while the TI-ADCs
points almost dominate the whole area. Such distribution
leaves a blank area spanning medium SNDR (70-90dB) with
moderate bandwidth (10-100MHz), near the green contour
line denoted jitter=0.1ps_rms. Considering such observation,
those data points suggest that it is possible to create a hybrid
TI NS-ADC architecture to extend further the sampling
frequency of the lower speed single channel NS-ADC. The
purple circle in Fig. 9 indicates such a target area.

A. FUNDAMENTALS OF TI NS-ADCS

As mentioned above, TI architecture is the most com-
mon solution for wideband applications. For time-interleaved
ADCs, we need to use multiple ADCs to sample the input
signal and handle multi-phase clock relationships. A fun-
damental principle is that the effective sampling rate can
increase by a factor of M with M ADCs.

The most significant drawback of TI is the mismatch
between channels. Those mismatches are complicated and
will generate interleaving spurs. Typically, there are four
kinds of mismatches in TI circuits: 1) Offset, 2) Gain,
3) Timing-skew [34], and 4) Bandwidth [35] mismatches.
The frequency locations of the mismatch-induced artifacts
are determined by the sampling frequency f; of the ADC
system, the number of channels M, and the input signal
frequency fj,. Here, we list all possible mismatch artifacts
based on [36]:

J;
foﬁset_spurs =k x ]T; (6)
Js
ﬁ‘iming, bandwidth & gain_spurs = iﬁn +k x —= (7)

N

where kK = 1,2,3...N — 1. Consequently, for TI Nyquist
ADCs, those mismatch spurs would be harmful and usually
need extra calibration [37]. On the other hand, for a TI-DSM,
it is only important to care about the performance inside the
interesting band, due to the OSR. This means that if we place
those mismatch tones outside the bandwidth, we will finally
filter them out, thus not hurting the SFDR and the total
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SNDR performance. However, as a trade-off, we still have
to consider that those spurs limit the overall tuning range.

Fig. 10 (a) depicts an example with details. Once we oper-
ate interleaving at the circuit level (here we set M = 4), the
total sampling speed increases 4 times. According to (6)-(7),
it generates offset tones as well as gain, timing, and band-
width mismatch images in Fig. 10 (b). Still, as we control the
bandwidth in a specific narrow range, all those TI mismatch
spurs would fall outside the BW. Specifically, if the signal
range covers from DC to BW, the closet spur will be at
fs/N-BW. Therefore, we can deduce the constraint condition
which makes all the artifacts fall out of band [19]:

R=—— > M. (®)

In this way, TI NS-ADCs can be immune to the inherent
mismatch problems of TI Nyquist ADCs. It is an excel-
lent benefit with such a hybrid architecture since a TI
NS-ADC does not need power-hungry and complicated cal-
ibration circuits to alleviate the channel mismatches. Recent
works [17]—-[21] based on TI NS-ADC:s utilized such charac-
teristics to develop fast and high-performance ADC circuits.
Fig. 11 summarizes three kinds of NS-ADCs, which we will
discuss in the following few sections.

Similarly, the FIR feedback is also a popular solution in
recently developed CT NS-ADCs. The CT implementations
in [38]-[41] utilized TI FIR feedbacks for their TI quantiz-
ers, with the CT front-end stages. Although the application of
such techniques are in CT, they are also applicable in the DT
counterpart, with the benefits of reducing the high-frequency
quantization noise in the integrators, relax the opamp’s slew
rate requirement, and also the distribution of the FIR filter
tap coefficients along different interleaving paths.

B. TI NS-ADC BASED ON AN N-PATH FILTER

It is well known that the TI paralleling in N paths allows a z
to zN transformation of the NTF in a NS-ADC. An example
is: if a single path’s loop filter is Hp(z) = 1 —z~!, then the
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N-path transfer function intrinsically develops as:
Hyodifiea = Hp (zN ) —1-7 )

The NTF brings a noticeable band-stop feature when we
apply a larger number of paths. Naturally, [17] presents
an N-path (N = 8) Bandpass (BP) TI NS-ADC for wide-
band base station receivers. This ADC can achieve 78.9-dB
SNDR in a 3.5-MHz BW with 5.04-mW power consump-
tion. Each of the eight channels operates at 56.25 MHz; thus,
the effective sampling frequency fs equals 450 MHz for the
whole ADC. The used CMOS technology is 40nm, and the
operating voltage is 1.2V.

A BP-ADC is usually more effective when placed at the
intermediate frequency (IF) in RF systems, which turns out
to be an excellent trail to simplify the signal chain [42].
This design mainly solves two challenges: 1) We can eas-
ily achieve the required shaped NTF with an N-path filter,
2) Traditional closed-loop BP solutions need power-hungry
amplifiers to cover the IF frequency [43], as a substitute, this
TI NS-ADC adopts dynamic-amplifier (DA) based NS-SAR,
leading to excellent power efficiency.

Fig. 12 illustrates a systematic block diagram of [17].
The N-path TI structure up-modulates the NTF to the IF
frequency. This ADC can achieve multiple pass/stop bands:
the STF is selective while the NTF is sharp and friendly
scaled between channels. In the circuit implementation,
a good combination is the re-utilization of the sampling
capacitor of the N-path filter as the SAR’s CDAC. This
innovation not only reduces the total capacitance but also
avoids the input signal attenuation. The 10b SAR in
Fig. 12 adopts top-plate sampling. To ensure accuracy, the
floating inverter-based amplifier (FIA) provides relatively
high voltage gain [44] and reduces the size of the subsequent
multi-input comparator.

Overall, [17] presents a BP 8X TI NS-ADC, which
hybridizes the N-path filter and the NS-SAR, eases the
design of analog blocks, including the front-end sample-
and-hold circuits and operational amplifiers. Due to these
characteristics, this BP architecture is an advanced solution
for simplifying the receiver chain in many RF systems. But,
this N-path TI NS-ADC only suits BP designs. The dupli-
cated hardware is another issue, which leads to a total area
of 700 x 270 pm?2.

C. CROSS-COUPLING TI NS-ADC

The previously mentioned z to z transformation in the TI
BP NS-ADC spreads the NTF zeros to DC locations and the
multiples of fs/N. To reconstruct the NTF for Lowpass (LP)
designs, it is better to move all the NTF zeros to DC by the
cross-coupling technique, which has been introduced into
TI NS-ADCs through polyphase decomposition [45], [46].
Nevertheless, when we implement those coupling feedback
paths between channels, the major problem is the causality
restrictions or the delay-free paths [47]. This situation occurs
when one TI NS-ADC channel needs the adjacent previous
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channel’s output. Such traveling is impossible since the
previous channels did not completely generate the outputs
when the current channel begins to convert.

To realize the circuits in a causal way, [18], [19]
proposed a multi-phase midway feedback TI NS-SAR. As
SAR conversion naturally consists of multiple phases [48],
the cross-coupled paths could be implemented during the
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conversion, making midway feedbacks. Fig. 13 (a) reveals
the prototype’s time sequence. During the whole conversion
process, only one channel generates the error, with the
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residue sent to other channels with scaled coefficients,
therefore making a feasible analog routine. Finally, those
feedback delays create a ‘free’ 4™ order FIR loop filter.
Fig. 13 (b) leads to an NTF as:

NTF = (1 - O.Sz_l)4. (10)

The asynchronous SAR inside each channel, based on the
error-feedback structure [49], has a unique charge redistribu-
tion CDAC. Fig. 13 (c) draws the pre-amplifier with a residue
summation function. Such a pre-amplifier has multiple inputs
for different channels, and its low gain requirement allows a
single-stage open-loop structure. Yet, to prevent the overload-
ing for the summation, the SAR has to arrange 6 redundant
bits for 10b SAR core, which is the cost for combining
cross-coupled feedback loops.

Looking back at the transfer function, Eq. (10) uses a
coefficient of 0.5 since the resulted coefficients are easier
implemented with the SAR conversion capacitance array.
The NTF sets all zeros inside the unit circle in the z-plane.
The benefit is, even with PVT variations, all shifted zeros
will not exceed the unity circle, resulting in a stable NTF. On
the contrary, this NTF is not aggressive enough to achieve
higher SQNR without zero optimization. Hence, the final
SNDR is only 70.4-dB with 50 MHz BW. The effective
sample frequency reaches 400 MHz with an OSR equals
to 4. Fabricated in 40nm CMOS technology and operated
under 1V supply, this work consumes 13mW.

D. EXTRAPOLATING TI NS-ADC

To further avoid hardware redundancy, another attempted
approach to generate TI NS-ADC is extrapolating, which
was introduced in [50], [51]. This method is based on the
NS-ADCs’ inherent recursive operation. Specifically, we can
write the integrator states in the time domain as a set of
difference equations, establishing the relationship between
samples. Thereby, the designer can explicitly use one chan-
nel’s information to extrapolate the other channels. Like this,
we can remove redundant analog blocks and possible delayed
cross-paths, thus implementing the TI NS-ADC in a more
straightforward and neat methodology.

Based on the extrapolating concept, a 4X TI NS-ADC was
presented in [20], [21]. Fabricated in 28nm CMOS tech-
nology, each channel’s clock is 520 MS/s, which leads
to an equivalent sampling rate of 2.08GS/s. In NS-ADCs,
the increased sampling frequency results in two possible
directions: 1) increase the OSR but with a fixed BW or
2) increase the BW with a fixed OSR. This implementation
is the latter case. Such ADC increased the effective out-
put OSR from 52 to 208 with the BW fixed at SMHz. The
achieved peak SNDR is 86.1-dB. The ADC consumes a total
of 23.1-mW with 1/1.15/1.5V power supplies.

Fig. 14 (a) illustrates the conventional analog extrapolating
approach widely used in [52], [53]. The desired channels’
outputs can be extrapolated by the input X, and integrator
outputs P; and P;. Though such extrapolation effectively
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simplifies the whole scheme with single-channel hardware,
the signal overloading phenomenon becomes serious. As the
paths’ number grows, the signal swings before the quantizers
accumulate to an unbearable level. The situation becomes
increasingly complicated for additional channels and higher-
order cases.

The digital feedforward extrapolation in Fig. 14 (a) solves
the problem by firstly digitizing the essential analog nodes’
information (i.e., X, Py, and P;) from one channel and
then fully extrapolating the other channels in the digital
domain. This operation removes all burden analog adders
and bypasses stringent matching requirements between the
analog/digital extrapolating gains. As a trade-off, the quan-
tization noise produced by the feedforward quantizers will
also pass the same extrapolating process, thus increasing the
final output error.

As a result, this 2" order extrapolating TI NS-ADC
only requires two op-amps to realize four TI paths, which
significantly saves analog hardware and power overheads.
Fig. 14 (b) presents the system-level architecture of the
ADC. Meanwhile, a dithering circuit with rotational ref-
erences is applied to the input sampling quantizer to
reaching high linearity. There is a link between the dithering
signal frequency and the channel’s sampling frequency.
Nevertheless, those high-frequency deterministic dither tones
will be out of the interesting band and not affecting the
in-band performance.

IV. CONCLUSION

High-resolution ADCs have primarily been achieved by
Noise-shaping techniques. Table 1 presents a performance
overview of published hybrid NS-ADCs. Among them,
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TABLE 1. Performance summary of previously published works.

Architecture | Hybrid NS-ADCs for <MHz BW Hybrid NS-ADCs for >MHz BW
Reference JSSC'21 | JSSC'19 | JSSC'19 |ISSCC'21 | JSSC'19 | JSSC'21
[30] [13] [15] [17] [19] [21]
Tech. (nm) 160 65 180 40 40 28
Supply (V) 1.8 1.2 3 1.2 1 1/1.15/1.5
Fs (MHz) 3.5 10.24 30 450 400 2080
BW (MHz) 0.02 0.02 0.1 3.5 50 5
OSR 87.5 256 150 64 4 208
SNDR (dB) 106.5 100.8 86.6 78.7 70.4 86.1
DR (dB) 109.8 101.8 915 79.8 7.7 90
Power(mW) 0.44 0.55 1.098 5.04 13 231
Area (mmz2) 0.27 0.113 0.363 0.19 0.061 0.07
*FOM; (dB) 183.1 176.4 1711 167.1 166.3 169.5

+* FOMg = SNDR + 10log10(BW /Power)

I-ADCs rules the frontier of the state-of-the-art works near
kHz frequency range. This paper summarized three hybrid
I-ADCs: 1) The zoom I-ADC that can boost the SQNR by a
quickly range-determined coarse SAR and an accurate fine
I-ADC; 2) The linear-exponential I-ADC that combines the
excellent thermal noise/linearity property of the first-order
I-ADC and the faster accumulation property of the exponen-
tial I-ADC; 3) The sliced I-ADC that presents a dynamic
power scheme which optimizes the most power-hungry first
integrators.

For higher input frequency beyond MHz, this paper inves-
tigated three hybrid TI NS-ADCs to enhance the sampling
frequency: 1) The N-path type TI NS-ADC that natu-
rally builds a bandpass NTF; 2)The cross-coupling type
TI NS-ADC that presents a new attempt to realize arbi-
trary NTFs; The drawbacks of the above TI NS-ADCs
are more complicated hardware and layout, which con-
sequently posed challenges in the circuit implementation;
therefore 3) The extrapolating type TI NS-ADC resolves
such dilemma by extrapolating the TI channels in the digital
domain. Finally, those insights about the hybrid TT NS-ADCs
open broader perspectives for the future research direction
of high-resolution-oriented designs.
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