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ABSTRACT The energy efficiency of analog-to-digital converters (ADCs) has improved steadily over
the past 40 years, with the best reported ADC efficiency improving by nearly six orders of magnitude
over the same period. The best figure-of-merit (FoM) is achieved with a limited class of ADC in terms
of resolution and speed, but the coverage of the best FoM ADC has been expended. Many ADCs with
the record FoM open up new applications and often incorporate multiple combinations of architectural
and circuit innovations. It would be very interesting to follow a path of relentless optimization that could
be useful to further expand the operating bandwidth of energy-efficient ADCs. To help along this path,
this review article discusses the design techniques that focus on optimizing energy efficiency, involving
successive approximation, pipelining, noise-shaping, and continuous-time operation.

INDEX TERMS Analog-to-digital converter (ADC), continuous-time (CT), delta-sigma modulation, energy
efficient, low power, noise-shaping (NS), pipelining, successive approximation.

I. INTRODUCTION

THERE have been remarkable innovations in analog-to-
digital converter (ADC) design, and all performance

metrics in ADCs have also been improved [1], [4], [5], [6].
Over time, the performance comparison between ADCs has
been made with the energy efficiency, with ADCs with high
energy efficiency becoming the most important [5], [6]. The
race for higher energy efficiency has led to constant innova-
tions in technologies, architectures, and circuits [6], taking
ADCs to levels of energy efficiency that people in the past
could not have imagined. As a result, the best reported ADC
efficiency has improved nearly by six orders of magnitude
over the past 40 years.
In addition, achieving best-in-class energy efficiency is

extremely important, as it defines the frontier of what is
possible and also opens up new applications. After a closer
look at the reported data, one can notice that the best

figure-of-merit (FoM) is only achieved with a limited class
of ADCs in terms of resolution and speed. However, the
coverage of the best FoM ADCs has been expended steadily
to higher bandwidth. Given this trend, it would be interesting
to take a look at recent examples of energy-efficient ADCs:
how their architectures and circuits are smartly arranged and
achieve such high energy efficiency, because they can be very
useful for further improvements.
In this review article, the focus is on architectures and

circuit techniques to achieve high power efficiency. In this
context, the generic ADCs’ basic functionality is omit-
ted, and many recent examples are described instead. In
Section II, the ADC FoM and the trend toward energy effi-
ciency are discussed to properly assess the design techniques.
Considering the ADC trends over the last decade, the tech-
niques for SAR ADCs are first discussed in Section III, since
SAR ADCs have become ubiquitous in scaled CMOS due
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to their superior efficiency. Next, the design techniques to
improve the resolution, pipelining, and noise-shaping (NS)
are covered in Section IV. Furthermore, Section V discusses
continuous-time (CT) ADCs, which are gaining popularity
as a successful alternative with many hybridizations. A brief
conclusion is drawn in Section VI.

II. ADC FIGURE OF MERIT
Over the last four decades, thousands of ADCs have
been published, sometimes with different motivations—
researchers, readers, designers, and reviewers, needed a way
to compare their performances. ADCs are probably among
the most specified building blocks for integrated circuits, and
no research paper today misses to state at least one FoM.
The two most commonly used FoMs are the Walden FoMW ,
proposed in 1994 [1], and the Schreier FoMS, described by
Schreier in his textbook published in 2005 [2] but proposed
as early as 1997 in [3]. The nowadays used expression for
those FOMs are

FOMW = P

2ENOB · fN (1)

FOMS = DRdB + 10 · log

(
BW

P

)
(2)

where P is the power consumption, ENOB is the effective
number of bits, fN is the effective Nyquist frequency, BW is
the useful signal bandwidth, and DR is the dynamic range
of the ADC. FoMS in (2) is essentially the same definition
as that in [3] that a × 2 in power, bandwidth, and DR are
equally weighted. In contrast, FoMW in (1), which is the
inverse of the original definition in [1], weights resolution
less, i.e. a × 4 in power and bandwidth are treated equally
to a × 2 in resolution. Thus, FoMW generally favors low-
resolution designs, whereas thermal noise-limited designs
exclusively use FoMS. Also, DR in (2) has been replaced
by the signal-noise-(distortion) ratio and, thus, effectively
again by ENOB, in order to take into account the increase
in noise-floor and distortion for full-scale input signals.
Many other FoMs have been proposed over the past two

decades, including supply voltages, technology, area con-
sumption, and more [4], [5]. Although the underlying idea
is valid that more parameters justify a good design, only
Walden- and Schreier-FoM are used today. As trend lines
indicate the majority of ADCs are now limited by thermal
noise, FoMS, which equally values bandwidth, resolution,
and power consumption, is the surviving FoM metric in the
most recent publications.
Today, Murmann’s ADC performance survey [6] covers

all ISSCC and VLSI publications on ADCs since 1997 and is
referred to in almost all publications on ADCs. Even larger
databases have been gathered in [5], where an overview of
ADC surveys can also be found. It has turned out over the
years that while individual, excellent, and even performance-
leading designs are missing when referring only to [6], the
general trend lines are well captured. It is though important
to keep emphasizing that a single number like the FoM does

FIGURE 1. FoMS versus fsnyq of published ADCs based on [6].

FIGURE 2. SNDR versus fsnyq of published ADCs based on [6].

not tell the whole story of an ADC; FoM comparisons should
be made between ADCs in the same performance range
and ideally between ADCs intended for similar applica-
tions. Furthermore, power consumed for calibration engines,
decimation filters, and input/reference buffers, which are
often neglected in reporting FoMs, have to be considered.
Fortunately, the recent state-of-the-art (SOTA) shows an
increasing focus on ADCs with easier drivability, implicit
filtering, better and calibration-free linearity, etc., rather than
just on the next record FoM.
Two charts are shown in Figs. 1 and 2. First, the reported

FoMS and second, the reported SNDR, both over the
achieved Nyquist frequency. In both plots, older designs are
separated from newer publications, and we separate Nyquist
(NQ) ADC from oversampling and NS (OS) ADC [6]. This
is done to show the current front of the SOTA. Moreover, in
the next sections, it allows for highlighting a few architec-
tures and designs defining this front. The charts also show
that it is very rare for a single ADC to outperform in more
than one performance plot and only [7], [8], and [9] achieve
this.
Both charts show data points split into an early and a

late time period and separate Nyquist-rate and oversam-
pling (or NS) ADCs. This allows us to see the tremendous
performance evolution over the last decade, which is partially
due to technology, but evenly important due to innovations
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FIGURE 3. P/fsnyq vs. SNDR of published ADCs based on [6].

on circuit and architectural levels. Moreover, when we look
at the evolution of ADC efficiency over reported SNDR, we
can see that even though Nyquist ADC has usually been out-
performed by NS ADCs, recent contributions impressively
show the opposite [9], [10], [11] (see Fig. 3).
The SAR ADC has become an essential part of energy-

efficient ADCs and is one of the most energy-efficient ADCs
to the fastest ADCs. The use of NS in SAR ADCs blurs the
distinction between delta–sigma (��) ADCs [12], and ��

ADCs also include the SAR ADC as a quantizer in SOTA
works [13]. Therefore, hybrid ADCs are gaining popular-
ity [14] and becoming a successful alternative to classical
architecture.

III. DESIGN TECHNIQUES FOR SAR ADC
In the last decade, the SAR ADC has dominated the develop-
ment of energy-efficient ADCs for low-to-medium resolution
applications, leveraging both technology scaling and circuit
techniques [15]. A SAR ADC consists of three main blocks:
1) the comparator; 2) the SAR logic; and 3) the DAC. While
the power consumption of the SAR logic benefits directly
from technology scaling, reducing the comparator and DAC
power consumption relies on various innovative techniques.
In this section, emerging techniques for energy-efficient SAR
ADCs are reviewed, with a focus on comparator and DAC
design.

A. LOW-POWER COMPARATORS
As the critical circuit block that converts the difference
between the input signal and the analog DAC voltage into
a digital output, the comparator directly determines the
SAR ADC performance. A comparator usually consists of
a preamplifier that amplifies the input signal, followed by
a latch to resolve the final decision. The strong-arm (SA)
latch is one of the most popular designs [16], [17], [18],
as shown in Fig. 4(a). When φa is low, the comparator is
turned off with the integration nodes VXP/VXN and output
nodes VOP/VON reset to VDD. When amplification starts, the
integration nodes are discharged at different rates depend-
ing on the input voltages. Eventually, the latch operates
and makes its decision. Over the past few decades, various

FIGURE 4. Schematic of (a) SA latch and (b) FIA [27].

techniques have been investigated to outperform the SA
latch. Schinkel et al. [19] introduced a two-stage dynamic
comparator that separates the latch stage from the pream-
plifier, thus accelerating comparison speed. However, the
latch’s input starts from in the triode region, equivalently
reducing the pregain and degrading the overall accuracy.
To address this, Miyahara and Matsuzawa [20] and van
Elzakker et al. [21] modified this by ensuring the latch’s
input transistor starts in the saturation region, reducing
the comparator offset and noise. Hsieh and Hsieh [22]
proposed cascaded input pairs for higher preamplifier gain
through vertical stacking of input transistors, resulting in an
improvement of energy efficiency.
Another observation is that the load capacitor CX of the

preamplifier (preamp) discharges completely during the com-
parison, thus consuming a fixed amount of energy: 2CX
VDD2. A large CX is usually required to suppress the noise,
and so this energy consumption often dominates in a low-
noise comparator design. Hence, there is a strong need to
improve the preamp’s energy efficiency. Liu et al. [23]
presented a bidirectional dynamic comparator to save the
preamp’s reset power. The preamp consists of nMOS and
pMOS input pairs. During the first half of the amplification,
the pMOS input turns on, and the preamp outputs are charged
up from the ground. Once the preamp outputs exceed VDD/2,
the pMOS side turns off and the nMOS pair continues the
second half of amplification, restoring the preamp outputs to
their initial state at the end of the amplification. This avoids
reset power, while still achieving the same gain and noise
performance as the conventional design.
Although only the initial portion contributes to the noise

performance, the preamp’s load capacitors are fully dis-
charged [24], [25]. Bindra et al. [26] proposed a dynamically
biased preamp to address this issue by incorporating a
degeneration capacitor at the source of the input pair. This
dynamically turns off the gate-source voltage VGS of the
input pair and prevents the load from being fully discharged.
In addition, the reduced VGS boosts the gm/ID, which
increases its gain, resulting in an improvement of energy
efficiency. Tang et al. [27] further improved energy effi-
ciency by introducing the floating inverter amplifier (FIA).
As shown in Fig. 4(b), a CMOS inverter is adopted as a
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preamp, but its power supply is connected to a floating reser-
voir capacitor that ensures a constant common-mode output
voltage. It elongates the amplification time and increases the
gain. It avoids the common-mode discharge of the loading
capacitor, resulting in significant energy savings. In addition,
the reservoir capacitor makes the gain insensitive to input
common-mode voltage and PVT variations and boosts the
preamp’s gm/ID similar to [26]. Therefore, a dynamic com-
parator with an FIA preamp showed a 7× improvement in
energy efficiency compared to the SA latch.

B. SYSTEM-LEVEL COMPARATOR POWER REDUCTION
TECHNIQUES
In addition to optimizing the standalone comparator, many
architecture-level solutions have been explored to reduce the
comparator power consumption. Note that only one of the
comparisons during SAR conversion has a differential input
that is less than half LSB. In theory, it must be ensured
that the comparator’s noise is minimal during this criti-
cal comparison. Given this, Harpe et al. [28] proposed a
judgment circuit to identify the critical comparison cycle by
detecting the comparison time. Once identified, it repeats the
comparison multiple times and adopts the majority result,
effectively reducing the comparator noise. Accordingly, a
comparator can be reconfigured into a low-noise mode for
critical decisions.
Another approach is to provide redundancy in SAR con-

version that can tolerate errors in earlier bits. Based on that,
Giannini et al. [29] proposed a two-comparator scheme,
where the low-power comparator in the early bits and
the low-noise comparator for the last few bits after the
redundancy. Harpe et al. [30] further simplified the com-
parator design by proposing a load-switching comparator
that dynamically changes the comparator’s loading capaci-
tor, thus changing its noise performance, without incurring
an offset mismatch as in the two-comparator approach. In
addition, statistical estimations were explored to improve
the energy efficiency of the comparator. By utilizing the
maximum-likelihood estimator (MLE) [31] or Bayes estima-
tor (BE) [32], the residue voltage of the comparator input
can be estimated, which is used to reduce the noise of SAR
ADCs effectively.

C. CDAC DESIGNS AND CDAC SWITCHING
TECHNIQUES
DAC switching is one of the power contributors in SAR
ADCs that often limits energy efficiency. To reduce switch-
ing energy, the capacitive DAC (CDAC) is commonly used
and should be sized to match the thermal noise limit to
achieve the best power and area efficiency. However, this is
usually impeded by the minimum capacitor size offered by
the foundries. The use of custom metal–oxide–metal (MOM)
capacitors is becoming increasingly popular. For instance,
Harpe et al. [33] reported a CDAC array with a 0.5-fF unit
capacitor, and Huang et al. [34] enclosed the top plate of the
CDAC with the bottom plate, reducing the parasitic effects

TABLE 1. Average Switching Energy of a 10-Bit SAR ADC [15].

associated with the top plate. A unit-length capacitor consists
of two strips, the capacitor value of which is defined by the
difference in the strip length, giving a unit capacitor of 125
aF [35].

Besides the capacitor size reduction, various switching
techniques for the CDAC array have been investigated.
The conventional switching technique is a trial-and-error
approach [36]. About 50% of switching energy goes into the
reset operation, which is quite power consuming. To over-
come these limitations, CDAC switching techniques have
been explored. Liu et al. [37] proposed the monotonic switch-
ing technique. By employing top plate sampling and resetting
the DAC’s bottom plates to Vrefp, the reset power and the
MSB switching power are eliminated. However, changing the
top-plate common-mode voltage can degrade the ADC lin-
earity due to the varying comparator offset [38]. Sanyal and
Sun [39] presented the bidirectional switching technique. The
MSB capacitors are reset to the opposite reference, reducing
the common-mode variation. Zhu et al. [40] reported the
Vcm-based switching technique. The DAC’s bottom plates
are connected to Vcm, eliminating the reset power and keep-
ing the common-mode voltage constant. To eliminate the
use of additional Vcm, Ginsburg and Chandrakasan [41]
split each capacitor into two equal subcapacitors that are
reset to Vrefp and Vrefn, respectively. This is equivalent
to the Vcm-based switching, but it brings reset power.
Tai et al. [42] introduced a more systematic approach called a
detect-and-skip (DAS) technique, where a small coarse DAC
resolves the first few MSB bits, while the large fine DAC
resolves the remaining LSBs. The MSB results are applied
directly to the fine DAC, avoiding unnecessary switching.
The DAS technique is widely used, especially for designs
requiring large DAC arrays. Table 1 compares the average
conversion energy, reset energy, and the total number of
required unit capacitor elements. The designers should also
notice that with the unit capacitor size reduction, capacitor
mismatches may become the limitation of the ADC lin-
earity. Powerful techniques have been proposed to address
this concern, including calibration [43] and mismatch error
shaping [44].

D. KT/C CANCELATION TECHNIQUE
The sampling kT/C noise represents a fundamental SNR
limit for discrete-time (DT) ADCs and the SAR ADC is
no exception. The limitation of the DAC switching energy
still comes from the DAC size, which is determined by
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FIGURE 5. Active sampling circuit with a 2-stage amplifier [46].

FIGURE 6. SAR ADC with kT/C noise cancelation [47].

the kT/C noise limit. Hence, it is highly desirable to fig-
ure out ways to reduce the capacitor size without incurring
a kT/C noise penalty. Kapusta et al. [45] proposed a sam-
pling circuit with a kT/C noise cancelation. Inspired by [45],
Li et al. [46] explored an active sampler, which decouples
the noise PSD and BW. This is achieved by using an active
sampling circuit with a specially designed two-stage ampli-
fier, as shown in Fig. 5. The input-referred noise PSD is
inversely proportional to the first stage gm1. By placing the
dominant pole at the second-stage output, the noise BW is
proportional to gm1ro1gm2, where ro1 is the first-stage output
impedance. It successfully decouples the noise PSD and BW
and, thus, the total integrated noise is presented in the form
of ro1gm2×kT/C. By introducing a switchable gm2 stage, this
work provides high bandwidth initially for signal sampling
and low bandwidth toward the end for noise reduction.
A more popular design is proposed in [47], as shown in

Fig. 6, which is also inspired by [45]. In a classic SAR
ADC, a capacitor C2 and a switch φ2 are added to form
an additional sampling stage at the preamp output. When
the φ1 phase is complete, the sampling kT/C1 noise across
C1 is represented as an offset at the preamp input. During
the φ2 phase, it is amplified and stored via the C2. Since
the C2 operates as an offset cancelation capacitor, the kT/C1
noise at the comparator input is canceled. The sampling
noise on C2 can be attenuated by the preamp gain. Hence,
both C1 and C2 can be small without introducing excessive
noise penalty. Although an additional preamp is required, it
is worth considering the substantial power and area savings
for the ADC input driver and reference buffer. Although the
kT/C cancelation technique is relatively new, it has been

FIGURE 7. Frequency response of a ring amplifier.

quickly adopted by the community and is widely used in
emerging energy-efficient ADC designs [48], [49], [50], [51].

IV. DESIGN TECHNIQUES FOR PIPELINING AND
NOISE-SHAPING
Pipelining and NS are effective ways to improve the res-
olution of ADCs. Especially in combination with SAR
ADCs, the high energy efficiency can be maintained even
for medium-to-high resolution applications. Such an ADC
requires two additional blocks: 1) the residue amplifier
for pipelining operation and/or 2) the loop filters for NS
operation. This section surveys emerging techniques for
implementing residue amplifiers and loop filters.

A. LOW-POWER RESIDUE AMPLIFIERS
A pipelined SAR ADC typically consists of two low-
resolution SAR ADCs coupled with a residue amplifier.
However, the use of a conventional OTA-based amplifier con-
sumes a significant amount of power and, thus, the design of
an energy-efficient residue amplifier is essential to improving
energy efficiency.

1) RING AMPLIFIER

Hershberg et al. [52] proposed a ring amplifier, which is
essentially a three-stage inverter-based amplifier, but the dif-
ferentiated stabilization strategy makes the ring amplifier
more efficient than conventional multistage OTAs. The mul-
tistage OTAs typically use frequency compensation to form
the dominant pole at the first-stage output and push the other
poles of subsequent stages to sufficiently higher frequencies,
requiring a significant power consumption, thus leading to
their efficiency reduction. A ring amplifier employs an oppo-
site stabilization strategy for higher energy efficiency. In
the steady state, a ring amplifier forms the dominant pole
at the last stage output (wp3(subth) in Fig. 7) by operating
the last stage in the subthreshold region, while maximiz-
ing the bandwidth of internal amplifier nodes (wp1,2 in
Fig. 7). This subthreshold operation minimizes the static cur-
rent and also provides the benefit of relatively higher stage
gain and near rail-to-rail output swing. It also provides a
reasonably constant open-loop gain. On the other hand, dur-
ing its slewing, the ring amplifier fully drives to achieve
maximum drive strength from the last stage. This dynamic
operation provides the core benefit of the ring amplifier:
slew-based charging. Even with small last-stage transistors,
the ring amplifier can still produce a high slew rate, which
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FIGURE 8. Ring amplifiers in the literature. (a) First [52], (b) Self-biased [55], and
(c) CMOS switch biased [55], [58].

means that the second stage can be loaded minimally and,
thus, a nondominant pole is easily formed. Furthermore,
the multistage configuration enables high gain. To achieve
the dynamic biasing of the last stage, the first ring ampli-
fier [52] splits the second stage into two paths and applies
an offset voltage to the second-stage inputs using float-
ing capacitors, as shown in Fig. 8(a). However, the offset
voltage is sensitive to PVT variations and, thus, requires
additional trimming or digital calibration [53]. This offset
voltage is later moved to the third-stage inputs without split-
ting the second stage [54] to control the last-stage bias more
precisely.
Lim and Flynn [55] eliminated the need for an external

bias by using a resistor placed between the drains of the
second inverter, as shown in Fig. 8(b). The resistor dynami-
cally generates the last-stage biases by using the short circuit
current of the second stage. The self-biasing technique is fur-
ther employed in the fully differential version [56], which
consists of a current-reused differential pair for the first
stage. This demonstrates robustness to variations in supply
voltage and temperature. The self-biasing technique is also
applied to the first stage with a reverse offset to improve
the bandwidth and slew rate of the second stage [57], [59].
However, it relies on absolute resistance, which can lead to
instability due to small offset, or slow settling and reduced
gain due to excessive offset. To address this issue, a tun-
able resistor based on a CMOS switch [55], [58] was used,
as shown in Fig. 8(c). However, extra care is required to
achieve PVT robustness, such as monitoring the ring ampli-
fier behavior using an on-chip stochastic ADC [60], [61], or
background digital calibration [62]. To achieve robust PVT
biasing, instead of a self-biasing resistor, a floating current
source is used like a class-AB biasing circuit [49], [63]. The
second-stage inputs are individually biased with the current
mirrors during the sampling phase, and the bias voltages are
stored on capacitors.

FIGURE 9. (a) Dynamic amplifier with common-mode voltage detector [65] and
(b) operation waveform.

For high-resolution ADCs, a composite ring amplifier [54]
has been introduced, consisting of a coarse ring amplifier
with fast slew but low gain, and a fine ring amplifier with
high gain but slow slew. The coarse ring amplifier auto-
matically turns off after slewing, and then the fine ring
amplifier takes over high gain amplification. It achieved
75.9-dB SNDR at 20 MS/s and consumed 2.96 mW, result-
ing in 171.2-dB FoMS. A similar strategy is applied in [64],
utilizing two parallel output stages. The ADC achieved
91-dB SNDR at 15 MS/s and consumed 9.8 mW, resulting
in 179.8-dB FoMS. For high-speed operation [58], [59], [60],
[61], [62], [63], the gain of the ring amplifier is compromised
to achieve a high slew rate and wide bandwidth, but this is
also aided by the gain calibration. A single-channel ADC
using ring amplifiers [58] achieved 58.1-dB SNDR with first-
order gain calibration at 600 MS/s and consumed 14.5 mW,
resulting in 161.9-dB FoMS. The linearity of the fast ring
amplifier is further improved in [59], and the ADC achieves
57.1-dB SNDR at 1 GS/s while consuming 24.8 mW.

2) DYNAMIC AMPLIFIER

Most dynamic amplifiers [65], [66], [67], [68], [69], [70],
[71], [72], [73] are basically Gm-C integrators that stop
integration when the integrated output reaches a desired
gain. This can be used as an energy-efficient open-loop
residue amplifier. One of the early approaches to control the
integration time is the technique of detecting the common-
mode voltage at the output [65], as shown in Fig. 9(a).
The dynamic amplifier operation is described in Fig. 9(b).
When a clock is low, the output load capacitors CL are
precharged to the supply voltage. As the clock goes high,
the tail current source (M1) turns on, and as a result, the
outputs start discharging and integrating the differential out-
put current of Gm×VIN on the load capacitors, where Gm
is the transconductance of the input transistors (M3 and
M4). The integration continues until the output common-
mode voltage reaches the desired common-mode voltage
(VCOM). The common-mode voltage detector then stops the
tail current, thereby finishing the integration. The gain of
the dynamic amplifier is expressed as Gm×Tint/CL, where
Tint is the integration time. The dynamic amplifier also fil-
ters out the input noise with the integrator noise bandwidth
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FIGURE 10. (a) Schematic of the capacitively degenerated dynamic amplifier [74]
and (b) its timing diagram.

of 1/2Tint. However, the gain of this dynamic amplifier is
relatively small (≤10) due to the limited output common-
mode voltage swing range. Furthermore, the open-loop gain
is sensitive to PVT variations and, thus, requires continu-
ous background analog or digital calibration for the residue
amplification [66], [67], [68], [69], [70].
There are several approaches to improve the gain of

dynamic amplifiers, suitable for residue amplifiers. The
cascode integrator [68] increases gain by extending the effec-
tive output common-mode voltage swing through two-step
integration. The cascode device automatically switches the
integration current between two integration capacitors as
soon as the first integration turns on the cascode device.
The resulting dynamic amplifier gain is about 16×, which
is applied in an 80-MS/s pipelined SAR ADC, achiev-
ing 68-dB SNDR and 172.3-dB FoMS with background
digital gain calibration. Another approach is to add fixed
bypass currents [71], which reduce the common-mode charg-
ing current of the CL, thus increasing the integration time
and gain. The resulting gain is 13.3×, which is applied
in a 132-MS/s 5-MHz bandwidth NS SAR ADC, yielding
79.74-dB SNDR and 180.1-dB FoMS.

A PVT-stabilized dynamic amplifier has been actively
investigated. Huang et al. [72] eliminated the need for
background gain calibration and achieved impressive PVT
robustness; low gain variation of 1.5% and 1.2% at a sup-
ply voltage ranging from 1.25 to 1.35 V and a temperature
ranging from –5 ◦C to 85 ◦C, respectively. The Tint of the
dynamic amplifier is determined to be proportional to CL/Gm
using the slew rate of a replica amplifier. The technique is
applied in a 330-MS/s pipelined SAR ADC, which achieves
a 67.7-dB SNDR and 171.9-dB FoMS with only foreground
analog gain calibration.
Akter et al. [74] introduced a capacitively degenerated

dynamic amplifier (Fig. 10) which is a completely differ-
ent approach. The weak inversion input pair provides an
exponential V–I relation, and a charge transfer-based ampli-
fication occurs with a degeneration and load capacitors
(CDEG and CL). After capacitors are reset, CDEG is charged
with ID and VS is started to increase (gain (A(t)) expand-
ing). As CDEG is charged, it becomes strongly degenerating

FIGURE 11. Schreier’s FoMs versus speed of NS ADCs from 2012 to present
according to loop filter implementation based on [6].

the input pair, and A(t) exhibits compression. The crossing
point between expanding and compressing (topt) ensures lin-
ear signal-independent gain A(topt) of CDEG/(2nCL) (n =
weak inversion slope-factor). Kim et al. [75] investigated
a weak inversion slope-factor (n) compensation to further
improve the linearity. By adding a degeneration MOS pair
cross-coupled to the outputs, it achieves 11.4-dB SFDR
improvement compared to [74]. A PVT-robust capacitively
degenerated dynamic amplifier was introduced in [76] which
is used as a residue amplifier of pipeline SAR ADC. The
ADC achieves 65-dB SNDR and 79.8-dB SFDR at 50 MS/s,
and 0.7/1.86-dB SNDR variations over 0.8–1.0-V supply and
0 ◦C–100 ◦C temperature variation using an on-chip timing
generator.

B. LOW-POWER LOOP FILTERS
The loop filters are one of the key building blocks in NS
ADCs that determine energy efficiency and are implemented
in different ways depending on the target applications. The
loop filters of NS SAR ADCs can be simplified than ��

ADCs, because they normally process a small residue, and
many recent NS SAR ADCs are implemented without OTAs.
In �� ADCs, however, active integrators are dominantly
used, which normally aim for a higher SQNR, and the loop
filters handle a large residue with a small number of quan-
tizer bits, compared to NS SAR ADCs. Fig. 11 shows NS
ADCs (BW ≤ 50 MHz) that have been presented at ISSCC
and VLSI symposium [6]. They can be classified by their
implementations: 1) passive integrator; 2) active integrator;
and 3) VCO-based integrator.

1) PASSIVE INTEGRATORS

The passive integrators have advantages over the others in
the perspective of simplicity, PVT robustness, and power
consumption. However, they suffer from insufficient gain
and a lack of driving capability. Therefore, the recent
advances in energy efficiency are being made in NS SAR
ADCs rather than �� ADCs. There are three strategies
for passive integrators: using 1) a multi-input comparator;
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FIGURE 12. NS technique using capacitor stacking and buffering [12].

2) a capacitor-stacking technique; or 3) an interstage gain
(or buffer) between passive integrators. Fredenburg and
Flynn [77] introduced the use of a multi-input comparator.
The multiple signal and residue inputs are matched to the fil-
ter’s coefficients and added to the current domain, allowing
for improved NS with the passive integrators. Although the
additional input path results in increased noise, it is simple
and power efficient, and is therefore becoming popular [78],
[79], [80], [81], [82], [83], [84], [85]. The noise penalty
of the multi-input comparator can be avoided by using a
capacitor-stacking technique [86]. Each residue is sampled
into multiple capacitors and stacked in a series configura-
tion to obtain the desired gain. The parasitic capacitance of
the stacked capacitors can limit the number of stacking (and,
thus, the gain) and contribute to gain error. Therefore, careful
design is required to minimize top/bottom parasitic capaci-
tance. A few outstanding NS ADCs show up, achieving an
FoMS of 178 dB [87]. An interstage gain (or buffer) has
been used in [12], [88], [89], and [90], allowing cascading
of passive integrators without gain loss and implementation
of a high-order NS. In particular, Liu et al. [12] implemented
a fourth-order NS using a unity-gain buffer and a capacitor
stacking technique for the residue integration and achieved
93.3-dB SNDR and FoMS of 182 dB. Fig. 12 shows a sim-
ple first-order example, where the integration is realized by
stacking a residue capacitor (CRES) and an integration capac-
itor (CO or CE) and the stacking result is stored on the output
capacitor (CE or CO) of the buffer. Even and odd phases are
achieved by shuffling CE and CO. In this way, four groups
of capacitors and buffers achieve the fourth-order NS, which
is very energy efficient and robust to PVT variations.

2) ACTIVE INTEGRATORS

Loop filters using active integrators provide high gain and
driving capability, which offers lots of freedom in architec-
ture development. Since the first integrator has a substantial
influence on the overall ADC performance, the research
efforts aimed at improving the 1st integrator’s noise, linearity,
and energy efficiency. An inverter-based integrator is widely

FIGURE 13. CT �� ADC with OTA stacking [111].

used because of its simplicity and noise efficiency [31], [91],
[92], [93], [94], [95], [96], [97], [98], [99], [100], [101],
[102]. It was first investigated in �� ADCs [91], [92] and
remains popular today, regardless of DT or CT loop fil-
ters. Recently, an inverter-based dynamic integrator has been
investigated to improve energy efficiency [14], [50], [103],
[104], [105]. For example, Tang et al. [14] used a two-
stage FIA as a loop filter, allowing an aggressive NTF with
PVT tolerance. Wang et al. [50] introduced an error-feedback
(EF)-CIFF loop filter with an open-loop FIA to obtain third-
order NS, thus achieving outstanding FoMS of 182 dB. This
is further developed into a fourth-order loop filter [103].
Liu et al. [104] used an FIA in an incremental zoom ADC
to realize self-timed operation. A single-stage FIA using the
correlated level shifting (CLS) technique was introduced by
Hu et al. [105] to increase the loop filter’s gain.
Steiner and Greer [97] introduced integrator-stacking to

improve energy efficiency. However, it requires a high
supply voltage and extra effort to deal with the inte-
grator’s mismatch. In [106], a dynamic power reduction
in an incremental �� ADC is introduced by utilizing
nonuniform weights in a cascade-of-integrator (CoI) filter.
Using the same principle of nonuniform CoI filter weights
as [106], [107] has implemented a single-bit to multibit
reconfigurable incremental DSM taking advantage of a first
phase intrinsically linear single-bit DAC and a second phase
multibit operation with low quantization noise, in order to
achieve 104-dB DR and 106-dB SFDR. Chandrakumar and
Markovic [108] added a capacitively coupled gain stage
before the 1st integrator in the ��-loop, which effec-
tively reduces the noise and power of the loop filter. An
OTA-stacking introduced in [109] improves the noise-current
tradeoff [110]. Mondal et al. [111] used stacked OTA in
the first integrator, as shown in Fig. 13. The AC-coupled
inverters are stacked and reuse the current, and they are
differentially decoupled with their source nodes, effectively
shorted. Therefore, with a 3-stack OTA, the CT �� ADC
obtains 3× Gm-boosting, thus achieving a SOTA FoMS of
183.3 dB.
Jang et al. [112] introduced a negative-R (NR) assisted

integrator. By including NR at the integrator’s virtual ground,
OTA noise (both thermal and 1/f noise) is attenuated and
the integrator’s distortion is also canceled, thus significantly
improving the energy efficiency. To reduce 1/f noise for
narrowband applications, the chopped OTAs are widely used,
but chopping in CT �� ADCs causes quantization-noise
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FIGURE 14. CT �� ADC with chopped NR [114].

folding [113]. In [114], the chopped NR is applied to the
first integrator (Fig. 14). The OTA noise is attenuated by the
NR [115], and then NR is chopped to remove its 1/f noise.
With the chopped NR, the Q-noise aliasing can be reduced
by 30 dB compared to the chopped OTA [116]. Therefore,
the CT �� ADC with the chopped NR achieves an FoMS

of 181.9 dB.
Lee and Moon [117] proposed the single-ended ring ampli-

fier with the pseudo-pseudo-differential (PPD) architecture
in the first integrator. The pole of the first stage is placed
out-of-band so that the stability of the second and third
stages is not compromised. The steady-state bandwidth is
also kept low to filter the noise in the first stage, which pro-
vides additional area and power savings. The DT �� ADC
with PPD-based ring amplifier [118] achieves an FoMS of
185.3 dB with an area of 0.0375 mm2.

3) LOOP FILTERS WITH VCO INTEGRATORS

Loop filters using VCO integrators are relatively new and
offer several advantages over the active or passive integra-
tors in the perspective of infinite dc gain, power efficiency,
and scaling friendliness. However, the VCO integrator usu-
ally suffers from VCO nonlinearity that limits the linearity
performance. Therefore, architectural development and cir-
cuit techniques to improve VCO linearity or circumvent this
issue have been investigated.
A VCO-based integrator in [119] consists of two pseudo-

differential Gm-CCOs and their calibration unit. The use of
an open-loop Gm-CCO limits the NS to the first order and
requires its calibration to cancel out the large nonlinearity.
In [120], the VCO is placed in a feedback loop, which
significantly improves the linearity. In [121], a third-order
loop filter was implemented with VCO-based integrators,
which however suffers from VCO nonlinearity and limits
the ADC linearity. In [122], passive and VCO integrators
were combined by using a parasitic capacitor at the VCO
input. While a second-order loop filter was achieved, its
SNDR was still limited to less than 70 dB.
More recently, Huang et al. [123] introduced differential

pulse-code modulation (DPCM) to make the VCO processes
a small error, thereby minimizing VCO nonlinearity. With
an OSR of 32, –40-dB signal attenuation was achieved at the
VCO input, significantly improving its linearity and achiev-
ing –105-dB THD. However, this requires a high-resolution
11-bit DAC and is truncated to 9 bits, resulting in a trunca-
tion error and, hence, SQNR leakage. To address this issue,

FIGURE 15. VCO-based �� ADC with PVG feedforward technique [125].

a noise shaping of truncation error was introduced in [124],
and excellent efficiency was achieved.
Pochet et al. [125] implemented a third-order �� ADC

with VCO-based integrators, whose nonlinearity is leveraged
with a pseudo-virtual ground (PVG) feedforward technique
(Fig. 15). The VCO-based integrator uses a Gm-CCO fol-
lowed by a phase-frequency detector (PFD) that extracts
the integrator’s phase difference and whose outputs con-
trol the current in the next-stage CCO. The first integrator
input, i.e., the PVG node of the ADC, is tapped and for-
warded to the other integrators’ outputs using Gm-cells,
which reduces the signal swings significantly. As a result, it
achieved 92.1-dB SNDR with a 1.8-V input and a FoMs of
179.6 dB.

V. TECHNIQUES FOR CONTINUOUS-TIME ADCS
A. LOW POWER �� ADCS
�� ADCs have classically been used for highest resolution
ADCs and achieved the best energy efficiencies in their class.
Over the past two decades, their operating frequencies have
expanded from classical narrowband audio and sensor read-
out applications to wideband applications [126], mainly due
to the benefits of their CT implementation. While a few years
ago, there was a distinct Nyquist gap for high-efficiency and
high-resolution ADCs, i.e., there were mainly �� ADCs in
the leading front. It is very interesting to note that concerning
energy efficiency Nyquist rate ADCs are in the lead across all
frequency ranges in Fig. 1 nowadays. �� ADCs still domi-
nate the high-resolution domain from narrowband up to about
1-GS/s Nyquist frequency, but a few outstanding Nyquist
converters appear in the 1–10-MS/s conversion range [9].
Next, we take a look at the leading front, discussing which
architectures promise the best power efficiency in the nar-
rowband and wideband, and which techniques yield the best
resolution (see Figs. 1–3).

1) TECHNIQUES FOR NARROWBAND �� ADCS

Over the last few years, several zoom ADCs have been
reported that achieve both high energy efficiency and high
resolution. Chae et al. [94] originally proposed for a quasi-
static input, where a coarse SAR ADC performed a single
conversion per Nyquist clock cycle that set the reference
levels of an incremental �� ADC. This operation origi-
nally defined the name zoom ADC. On the contrary, more
recent zoom ADCs justified as the coarse ADC runs on
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the same clock frequency as the �� ADC, which allows
continuous updating of the reference and, thus, uses wider
bandwidth. This implementation achieved outstanding reso-
lution and efficiency in [98], where a dynamic zoom ADC
was proposed over a 1-kHz band, in [101] over an audio
bandwidth, and over a 50-kHz band in [127]. From an
architectural point of view, the zoom ADC is the same as
the 0-X MASH ADC. The fact that they achieved such a
leading position is actually very interesting, as this is also
observed in very wideband designs, as will be discussed
in Section V-B.

The audio ADC in [128] actually dates from 1997 and
still has a distinct spot in SNDR versus fnyq comparison.
In Fig. 2, the work competes with the much more recent
work from [126] but achieves an FoMS of only 158 dB,
about 25 dB worse than the leading SOTA today. Three
more energy-efficient audio ADCs are mentioned here, first,
the work of Lee and Moon [117], where a DT single-loop
�� ADC is implemented using ring-amplifier-based inte-
grators in a mature 180-nm CMOS process. Lo et al. [129]
proposed a CT �� ADC, which offers easier drivability
and an implicit anti-aliasing filter, in contrast to [117]. It
uses a tri-level DAC like [128] but is based on a current-
steering DAC. Similarly, Jang et al. [114] also used a CT
�� ADC with a trilevel DAC but additionally employed an
FIR DAC [130], [131] and a chopped negative resistor to
increase the energy efficiency.
In the sensor and industrial frequency range, we can then

highlight a few further designs. First, Theertham et al. [132]
implemented again a CT �� ADC employing an FIR
DAC and chopping, where the chopping artifacts advanta-
geously fall into the FIR notches, as also originally proposed
in [130]. Also, this design is implemented in a mature
180-nm technology.
The incremental ADC of Hsieh and Hsieh [10] has a dis-

tinct spot in the efficiency comparisons. As an incremental
�� ADC is actually a Nyquist ADC, but it should not
be mentioned in comparison to the �� ADC. The design
is very low voltage with only a 400mV supply and uses an
opamp-less time-domain loop filter. This is an example of the
recent trend to employ time-domain signal processing that
scales nicely with technology. Finally, the until now fastest
published incremental �� ADC shall be mentioned [133],
which employs an incremental SMASH architecture and vari-
able bit-width to achieve 2 MS/s and an intrinsic linearity
of 97 dB.

2) TECHNIQUES FOR WIDEBAND �� ADCS

Wideband �� ADC obviously has different demands
than narrowband implementations. The excessive sampling
frequency is usually avoided, as it poses severe challenges
to clock generation, decimation filter operation, and signal
integrity in the overall system. From the beginning, there-
fore, techniques were used that allowed a reduction of the
oversampling ratio. Most wideband �� ADC are nowadays
multibit designs [126], as they come with intrinsically better

FIGURE 16. Block diagram of the CT dual-loop SMASH in [13].

resolution, more aggressive NS, and about 3–4-dB higher
maximum stable amplitude (MSA). Only a few exceptional
designs have shown that single-bit implementations can com-
pete with the efficiency and performance of their multibit
counterparts [134]. Moreover, almost exclusively wideband
�� ADC are implemented with CT loop filters. The CT
loop filter not only offers better drivability due to its resis-
tive or Gm-based input [135] but also features implicit signal
filtering; often reduced to an implicit anti-aliasing filter.
It also allows the attenuation of out-of-band interference
signals [136], which can be even enhanced by embedding
analog [137] or mixed-signal filtering [138]. It is worth not-
ing that such features can lead to significant advantages for
a system’s complexity and power consumption, but are not
covered in any FoMS in Figs. 1 and 2.
Looking at the front of the SOTAs, it is worth mentioning

that most of the leading designs are MASH �� ADCs. The
early design in [139] is a multibit cascaded 2-2-0 �� ADC
and keeps a distinct spot in the SNDR versus bandwidth (see
in Fig. 2). Cenci et al. [100] achieved excellent efficiency
for a wideband �� ADC, where a coarse SAR ADC and a
fine �� ADC were used to achieve 0-X MASH, effectively
the same architecture as a zoom ADC. Also, Liu et al. [140]
employed a 1-1-1 MASH for the incredibly wideband design,
achieving a sweet spot in energy efficiency. Qi et al. [13]
aimed for extended linearity, where a 3-0 sturdy MASH ADC
was employed (Fig. 16), achieving 90-dB linearity without
calibration. It was based on a noise-coupled SAR ADC in the
first stage and a requantization in the second stage to build
the CT Sturdy MASH loop filter. This achieves a leading spot
in the resolution comparison, leaving alone that the uncal-
ibrated linearity is not even reflected there. These designs,
some of which are at the front of SOTAs in the SNDR
or efficiency comparison, suggest that the MASH concept
offers distinct advantages.
Nonetheless, other architectures also achieve outstanding

performance. He et al. [141] implemented a CT �� ADC
with excellent linearity. Its third-order multibit loop filter
not only uses DAC mismatch correction, but also allows on-
chip calibration for unequal DAC rise and fall times and,
thus, ISI reduction. Finally, the outstanding wideband designs
of Shibata et al. [7] and Shibata et al. [142] should be
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mentioned. Shibata et al. [142] was the most wideband ��

ADC at the time of its publication and allowed to expand the
possible performance goals for �� ADC into the GHz range.
It employs a sixth-order loop filter that can be reconfigured
from lowpass to band-pass operation. However, two external
inductors were employed for efficient bandpass filtering.

B. CT- AND DT HYBRID ADCS
Classically, the multibit quantizer in wideband CT��Ms
consists mainly of flash ADCs. In this case, the design com-
plexity increases rapidly to increase the quantization bits. It
can be leveraged by the energy-efficient ADCs and, thus,
early hybridization starts with replacing the flash ADC with
the SAR ADC [143], [144], [145], [146]. By embedding
the SAR ADC, the quantizer bits are rapidly increased, thus
reducing the loop filter order and OSR. However, the intro-
duction of the SAR ADC inevitably brings additional delays.
A dedicated delay compensation path is often developed for
stability reasons [147]. Also, multibit feedback DAC suffers
from mismatch errors that require calibration or dynamic
element matching [148].
More hybridization at the architectural level can be con-

sidered to further improve performance. Wu et al. [149]
introduced noise coupling (NC) in the SAR quantizer. In
a SAR operation, the quantization error is naturally pro-
duced at the comparator input, which can be easily extracted
and fed back into the loop filter for extra NC. It fur-
ther improves the NS effect and loop-filter stability can be
co-designed between the NC SAR and the remaining con-
ventional loop-filter. As a result, it realized a sixth-order NS
with a fourth-order loop filter and a second-order NC and
achieved a 75.3-dB SNDR at 45-MHz-BW with a low OSR
of 10. Jang et al. [150] explored the NC implementation in
a digital domain, further simplifying the loop filter design.
The researchers also tried to leverage the recent NS SAR

ADCs. Liu et al. [151] proposed to embed a second-order NS
SAR in the loop filter and, hence, only one OTA is required
to realize the third-order noise shaping. Shi et al. [152]
further extended the design by combining a single-amplifier-
biquad (SAB) loop filter with a second-order NS SAR. It
realizes a fourth-order noise shaping with only one OTA,
resulting in exceptional efficiency. Note that the stability of
the hybrid fourth-order CT-DT �� ADC is similar to a
second-order CT ��M, which greatly simplifies the loop
filter design.
To take full advantage of CT ADCs, some traditional DT

architectures are being converted to their CT counterparts.
Gubbins et al. [153] proposed incorporating a CT-ADC as the
first stage of a pipelined ADC. Together with anti-aliasing
filtering, the use of resistive input can greatly simplify the
system design. The CT pipeline stage has two delay paths;
one comes from the input as the fast path, and the other
goes through the first-stage quantizer as the slow path, as
shown in Fig. 17. Path delays must be matched to avoid
signal overflow in the following stages. Usually, either a
positive delay in the fast path [154] or a negative delay

FIGURE 17. Continuous-time pipeline architecture.

(prediction) in the slow path [153] can be added. However,
the analog delay suffers from PVT variations and requires
careful design. Removing the sampling process improves
the ADC conversion speed, e.g., the design in [154] runs at
9 GS/s.
Similarly, Shen et al. [155] introduced the CT 1st stage

to the SAR design. With the sampling operation removed, it
does not suffer from kT/C noise and, thus, the 13-bit SAR
only requires a small DAC of 120 fF. The first stage operates
at high speed, minimizing slow path delay. Together with the
built-in redundancy, no additional delay is required for path
matching. This concept has been extended to other advanced
architectures. Li et al. [156] implemented a CT NS SAR for
inherent anti-aliasing filtering from the CT front-end and
achieved great energy efficiency from the NS SAR. A duty-
cycled integrator is adopted to deal with the timing conflict
between the NS SAR and the CT integrator.
In the past few years, researchers have explored vari-

ous CT-DT hybrid architectures. The first stage is usually
implemented with CT front-ends that feature easy driving,
sampling-free, and anti-aliasing filtering. The DT quantizer
is used to increase energy efficiency.

VI. CONCLUSION
Over the last ten years, the energy efficiency of ADCs has
improved substantially thanks to constant innovations in both
architectures and circuits. The available bandwidth of the
best FoM ADCs has been expanded by almost the same
factor. In this context, the energy efficiency of ADCs is still
improving, and these trends are exacerbated by hybrid ADCs.
The clear distinction between ADC architectures becomes
blurred when looking at the best FoM ADCs that lever-
age the architecture combinations. Due to many advantages,
CT ADCs are gaining more and more attention, and addi-
tional hybridization with CT and DT promises successful
alternatives to classic architectures.
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