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ABSTRACT This article presents a digital power amplifier (DPA) with a built-in AM–PM compensation
technique and a compact single-transformer footprint. The AM–PM distortion behavior of the current-
mode/voltage-mode power amplifiers (PAs) is detailed and an AM–PM compensation technique for both
modes is introduced. The proposed design utilizes one current-mode DPA as the main path PA and
a class-G PA voltage-mode digital PA as the auxiliary path PA, combined through a single-transformer
footprint. It provides enhanced linearity through built-in adaptive biasing and hybrid current-/voltage-mode
Doherty-based power combining. As a proof of concept, a 1.2–2.4-GHz wideband DPA is implemented in
the Globalfoundries 45-nm CMOS SOI process. The measurements show a 37.6% peak drain efficiency
(DE) at 1.4 GHz, and 21.8-dBm saturated output power (Psat) and 1.2×/1.4× power back-off (PBO)
efficiency enhancement, compared to the ideal class-B at 3 dB/6 dB PBO at 1.2 GHz. This proposed
digital PA supports 20-MSym/s 64-QAM modulation at 14.8-dBm average output power and 22.8%
average PA DE while maintaining error vector magnitude (EVM) lower than −23 dB without any phase
predistortion. To the best of our knowledge, this is the first demonstration of hybrid current–voltage-mode
Doherty power combining on a single-footprint transformer over a broad bandwidth (BW).

INDEX TERMS AM–PM compensation, CMOS, digital power amplifier (DPA), Doherty, hybrid, linearity,
load modulation, phase distortion, polar modulation, power back-off (PBO).

I. INTRODUCTION

MODERN communication systems adopt spectrally
efficient modulation schemes to enhance the link

throughput within a given frequency bandwidth (BW) at
the cost of a large peak-to-average ratio (PAPR). This poses
stringent requirements on the energy efficiency of RF power
amplifiers (PAs) for both peak output power and also at
power back-off (PBO) to ensure efficiency under modula-
tion. Therefore, there is an increasing interest in exploring
PBO efficiency enhancement techniques to achieve high
PA average efficiency under these high-PAPR modulation
schemes [1], [2], [3], [4], [5]. Doherty load modulation is
one of the widely used techniques to boost PA PBO effi-
ciency. However, when the Doherty PA’s main path and
auxiliary (Aux) path do not cooperate well together, they
have limited linearity and require a large area to support the
load modulation output matching network [6], [7], [8], [9].

Outphasing PAs support PBO efficiency enhancement but
require significant baseband computation to generate the out-
phasing signals often with limited dynamic range [10], [11],
[12], [13]. Envelope tracking (ET) PAs exhibit a tradeoff
for the envelope tracker’s own efficiency, dynamic range,
speed, and accuracy, which are unsuitable for high-speed
(>100 MHz) and high-PAPR signals [14], [15], [16], [17].
Analog PAs are widely used in modern wireless commu-

nication systems. However, their designs cannot be readily
transferrable across process nodes, benefit from device scal-
ing, or support direct synthesis. Thus, there is an increasing
interest in digital PA (DPA) research [18], [19], [20], [21],
[22], [23], [24], [25]. DPAs support the ability to imple-
ment multiple functionalities within one compact formfactor
block, extensive digital reconfigurability, and performance
and design tracking aggressive CMOS process scaling [26].
Such digital Pas would be a good solution for applications
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FIGURE 1. (a) Schematic of the proposed hybrid polar Doherty digital PA. (b) Routing line floorplan for the Main and Aux. (auxiliary) PA paths.

such as low-cost IoT, which uses appropriate power, small
size, and not too complicated modulation. In particular, in
the case of low-cost PA targeting such NB-IoT, it would be
reasonable to consider digital PA, which has good linearity,
not require DPD that increases complexity and cost.
A DPA can be generally divided into two categories based

on their power cells, the current-mode DPA such as the
class-D−1, and the voltage-mode DPA such as the switched
capacitor PA (SCPA). Current-mode DPAs typically support
higher output power levels for a fixed supply voltage as the
output voltage swing can exceed the supply voltage, but they
suffer from large signal nonlinearities due to distortion [27],
[28], [29], except for some recent designs which utilize
built-in analog compensation techniques, such as AM–PM
linearization [30]. Voltage-mode DPAs achieve good linearity
and efficiency but provide limited output power levels as their
output voltage swing is lower than the supply voltage [31],
[32], [33]. Recently, a hybrid technique that improves the lin-
earity by implementing the current-mode and voltage-mode
DPAs together has been demonstrated [34]. However, it sac-
rificed the peak drain efficiency (DE) of the current-mode
DPA by tuning on only half of its total power cells and suf-
fers from area overhead and major passive loss penalty by
connecting three transformers in series as its output matching
network.
While a large amount of research to increase the PBO

efficiency for complex modulation communication has been
conducted, the techniques applied typically deteriorate the
overall linearity [35], [36], [37]. Therefore, many digital PAs
inevitably use 2-D digital predistortion (2D DPD) tables or
models to compensate for their linearity. However, using
2D DPD comes with various limitations. First, it is neces-
sary to accurately characterize the PA and create an inverse
function in the 2-D space. Second, it increases the system

power consumption and complexity. Furthermore, it is often
incapable of sufficiently canceling all the PA nonlinearity. In
particular, output impedance variations may aggravate DPD
performance [38]. Therefore, it is essential to ensure intrinsic
PA linearity with built-in linearization.
To address the aforementioned issues, we propose a fully

integrated single-footprint hybrid current–voltage-mode digi-
tal Doherty PA [39]. In our proposed DPA topology, adaptive
biasing is implemented for the current-mode DPA to mini-
mize its AM–PM nonlinearity and the voltage-mode DPA
used a class-G DPA [40], which has its own AM–PM
compensation characteristic. In addition, the proposed DPA
used a single-footprint transformer to apply a hybrid self-
compensation technique consisting of a current-mode DPA
and voltage-mode DPA. Note this reported design differs
from the design in [34], in that it implements two paths
as a single transformer, utilizes all cells in the current-
mode DPA using the adaptive biasing scheme, and improves
linearity and efficiency using characteristics of class-G
DPA. This article is organized as follows. Section II intro-
duces the proposed hybrid polar Doherty DPA architecture.
Section III presents the analysis of AM–PM distortion within
the current-/voltage-mode DPAs and proposes methodolo-
gies to improve the linearity of both, and measurement
results are shown in Section IV. Section V concludes this
article.

II. PROPOSED ARCHITECTURE
Fig. 1 shows the system architecture of the proposed hybrid
(current/voltage) polar Doherty digital PA and routing line
floorplan for the Main/Aux. PA paths. The proposed architec-
ture consists of a current-mode DPA, a voltage-mode DPA,
phase modulation (PM) driver, AM driver, adaptive biasing
R2R DAC, and an AM buffer array and a single-transformer
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(a)

(b)

FIGURE 2. Proposed single-footprint transformer as the DPA output matching network. (a) Layout of the OMN. (b) Schematic of folded form of the OMN (Lp = 1.08 nH, Ls =
9.95 nH, k=0.713, Qp = 6.2, Qs =7.2, and n=2.975. Note the Main-path PA is current-mode, while the Aux-path PA is voltage-mode.

output network. 8-bit AM codes control both the output
power and adaptive biasing. The constant envelope PM car-
rier signal is buffered by a comparator and a digital driver
that then feed the two sub-PAs. The AM signal is digitized
to an 8-bit parallel AM control code and is then fed to the
PA to control the numbers of PA cells enabled. The main
path (C-DPA) and Aux. path (V-DPA), which are distributed
symmetrically along the output feedline, apply a fork shape
configuration to minimize the phase offset and deliver PM
signals evenly to the Main and Aux paths.

A. SINGLE FOOTPRINT BROADBAND LOAD
MODULATION NETWORK FOR HYBRID
VOLTAGE/CURRENT DPA
This design utilizes a single-footprint parallel-combining
transformer to achieve the broadband Doherty power com-
bining network [41]. The transformer occupies 430 μm ×
430 μm die area. Fig. 2 shows the proposed single-footprint
transformer load modulation output matching network. To
achieve the desired impedance transformation ratio and
enhance the quality factor, the three-coil parallel-combining
transformer is implemented with nine turns, of which three
turns are the two primary inductances (connected to the
Main and Aux. path PAs) and the other six turns are the
secondary inductance (connected to the 50-� antenna load).
The passive efficiency of this single-footprint transformer at
the peak PA output power is shown in Fig. 3. The definition
of passive efficiency can be described as the proportional
power delivered to the load to the power delivered to the

FIGURE 3. EM-simulated passive efficiency of the PA output network.

network, as shown in

Passive efficiency = Pdelivered to the load

Pdelivered to Network
=

[
1 + Rs

Rin

]−1

=
[

1 + Qloaded

Qunloaded

]−1

where Rs and Rin are the impedance of source and input,
respectively, and the loaded quality factor of the network is
defined as

Qloaded = 2π fL

Ropt
= 1

2π fCRopt

where Qloaded is the loaded quality factor of the series res-
onant network. Note that this proposed load modulation
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FIGURE 4. Simulated results of (a) PA efficiency, (b) load impedance, and (c) example of operation sequence.

architecture does not need a large switch in the Aux path to
provide a short, because the voltage-mode PA used in Aux
path provides a low impedance when turned off, supporting
a very compact formfactor. However, if a current-mode PA
is used in the Aux path, when the current-mode PA is turned
off, a switch is then required, because the current-mode DPA
shows high impedance when turned off, which will load the
PA output passive network and degrade its efficiency. To the
author’s knowledge, this is the first demonstration of power
combining current-mode and voltage-mode DPAs in a single-
transformer footprint by using a single-transformer-based
parallel combining network. Note this output passive network
is not designed to realize any impedance inverter properties
to ensure its broadband operation, since the turning-on
sequence of the voltage/current-mode PAs performs effective
Doherty active load modulations.
This is detailed as follows. The output voltage swing in

the differential current-mode [28] and voltage-mode [26]
PAs, with n out of N unit cells turned on are
as follows:

Vout_Current_mode = π
( n
N

)
× VDD, (1)

Vout_Voltage_mode = 4

π

( n
N

)
× VDD. (2)

The impedance at the main and aux PA output for a
Doherty PA can be derived as

ZMain = RL

1 + VAux
VMain

(3)

ZAux = RL

1 + VMain
VAux

(4)

where VMain and VAux are the Main and Aux amplifier volt-
ages, respectively. Replacing (1) and (2) into (3) and (4),

the impedance presented to each PA can be derived as

ZMain = RL
1(

1 + 4
π2 × 2n+m

2M−1

) (5)

ZAux = RL
1(

1 + π2

4 × 2M−1
2n+m

) (6)

where M is total number of bits for VDPA, and m and n are
the number of “ON” power cells of VDD mode and 2VDD
mode in VDPA, respectively. Thus, depending on the AM
turn-on sequence, each PA experiences proper active load
modulation, achieving deep PBO efficiency enhancement.

B. OVERALL OPERATION OF PROPOSED DPA
ARCHITECTURE
The proposed hybrid single-footprint transformer digital PA
combines one main path C-DPA and one Aux path V-DPA,
Class-G DPA, to achieve built-in AM–PM compensation and
PBO efficiency enhancement. In the low-power region, as
the output power increases, current DPA cells sequentially
turn on until 5.2-dB PBO. At this time, if the output voltage
of Main and Aux. path is equal, it would be 6-dB PBO
after all the cells of Main path are turned on like conven-
tional Doherty structure, however, the proposed architecture
has different output voltages and impedances between main
path and Aux path as shown in (1) and (4), thus when all the
cells of Main path are turned on, theoretically, it achieves
an efficiency peak at 5.2-dB PBO due to Doherty load mod-
ulation. After all the cells of the main path are turned on,
the unit cells of the Aux path are gradually turned on in
VDD mode. When the Aux path is fully turned on to VDD
mode, the overall PA achieves an additional efficiency peak
by class-G operation at 2.2-dB PBO, and then the Aux PA
cells are gradually turned on to 2VDD mode as well. Fig. 4
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(a) (b)

(c)

FIGURE 5. (a) Conventional current-mode DPA schematic. (b) Output voltage
swings according to each region. (c) Phase nonlinearity behavior of conventional
current-mode DPA.

FIGURE 6. (a) Schematic of R2R DAC. (b) Simulated results of adaptive biasing.

illustrates the efficiency, load impedance, and overall turn-on
sequence of each PA operation.

III. THEORY OF AM–PM DISTORTION OF DIGITAL PA
There are two main sources of linearity distortion for PAs,
AM–AM and AM–PM [42]. Since AM–AM distortion can
be compensated through proper selection of the AM con-
trol code [30], we will focus on AM–PM distortion. The
principles for the occurrence of AM–PM distortion and the
methods to improve/compensate for it regarding the current-
mode DPA and the voltage-mode DPA, respectively, are
described below.

A. CURRENT-MODE AM–PM COMPENSATION
We will first review the behavior of conventional cur-
rent mode, class-D−1 PA, and its main causes of AM–PM

(a)

(b)

FIGURE 7. (a) Schematic of the proposed current-mode DPA with adaptive biasing.
(b) Simulated AM–PM distortion results.

FIGURE 8. Schematic of conventional SCPA.

distortion [27], [30]. Fig. 5 shows the schematic for class-
D−1 PA composed of N-bit segment binary-weighted cells.
The nonlinearity of the current-mode DPA is mainly caused
by the output capacitance Cd variations against output power
level [30]. Cd can be derived as Cgd + (1 − 1/|A|) × Cds,
where Cds is the total effective capacitance between the drain
and the source of M2 and A is the voltage gain of the cascode
transistor (M2) [43]. First, the Cgd of the cascode transistor
(M2 in Fig. 5) is varied according to the device operation
region as [44]

Cgd_triode = WLCox
2

+WCOV (7)

Cgd_saturation = WCOV (8)

Cgd_off = WLCOV (9)

where W is the cascode transistor gate width; L is the gate
effective length; Cov is the drain–gate overlap capacitance;
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FIGURE 9. Class-G AM–PM distortion operation. (a) VDD mode. (b) 2VDD mode.

and Cox is the gate-oxide capacitance. As more digital
cells are turned on, the output voltage swing of Vout node
increases. At this time, since the gate bias is fixed, as Vout
increases, M2 operates in the triode region for a longer
period, which increases Cd. In addition, when the power
cell is turned off, Cd = Cgd_off, since Cds is terminated with
high impedance, providing low capacitance. In summary, as
more cells are turned on in the conventional current-mode
DPA, more cells operate in triode for longer periods, hence
the total PA output capacitance increases as a function of
output power. This modulated capacitance shifts the reso-
nance frequency, which causes AM–PM distortion as shown
in Fig. 5(c). As the output power increases, the AM–PM goes
increasingly negative and we call it as lagging AM–PM [34].
To reduce the time period during the triode region, we use

adaptive biasing on the cascode device. As more cells are
turned on, the bias voltage is decreased as shown in Fig. 6(b).
This operation shortens the interval in the triode region,
which reduces the capacitance variation over output power.
As shown in Fig. 7, employing adaptive biasing reduced the
total AM–PM distortion from 11.3◦ to 6.7◦ at 2.4 GHz.

B. VOLTAGE-MODE AM–PM COMPENSATION
In this section, we analyze and show the AM–PM dis-
tortion behavior of voltage-mode digital PA, conventional
SCPA [26], and class-G [40]. As shown in Fig. 8, the con-
ventional single-ended SCPA consists of an M-bit binary
weighted unit cell and a bandpass matching network [26].
The output power level is determined according to the num-
ber of cells turned on by the AM code selected (m), whose
bottom plates are switched between VDD and GND at the
carrier frequency. The capacitance of the unswitched cells

FIGURE 10. Simulated results of class-G about (a) DE and (b) AM–PM distortion.

(2M − (m+ 1)) × Cu is shorted to ground, while the capac-
itance looking into the switched-on cells is m × Cu. Hence,
the equivalent capacitance (Cout) looking into the PA con-
tinues to be (2M − 1) × Cu regardless of the number of
cells turned ON. Hence, the inductance (Lind) continues to
resonate at the same frequency, and we can assume there is
the same phase between Vx and Vout. On the other hand, the
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FIGURE 11. Simulated results of AM–PM distortion according to their operation region.

equivalent capacitance Cin observed by the PA cells changes
as a function of the number of cells turned on as follows:

cin = m(2M − (1 + m))

2M − 1
× Cu (10)

where M is the total number of bits of the SCPA, and
m is the number of “ON” SCPA power cells. The charg-
ing/discharging time (�t) of Cin can be expressed as
follows:

�t = Cin × Vx
mI

(11)

where I is the current driving strength of the SCPA unit
power cell. Cin is substituted in (11) and as a result, the
transition charging/discharging time (�t) at Vx can be further
derived as [34]

�t = Cu ×
(

1 − m

2M − 1

)
VDD
I

. (12)

As shown in this equation, the larger the number of unit
cells (m) turned on, the shorter the transient time, corre-
sponding to a positive frequency shift, and a corresponding
leading behavior, which is inverse from the current-mode
DPA AM–PM distortion. We can expand this concept to the
class-G DPA. A voltage-mode amplifier can be represented
as a capacitive divider, and Fig. 9 shows the VDD mode
and 2VDD mode of class-G operation. In class-G VDD
mode, AM–PM distortion demonstrates a leading behavior,
the same as the conventional SCPA. However, when operat-
ing in the 2VDD mode, it can be expressed as a capacitive
divider with two input sources as shown in Fig. 9(b) and

it can be expressed by the following charging/discharging
equation:

Cin = CVDD + C2VDD (13)

�t = Cu ×
(

2M + n+ 1

2M − 1

)
VDD
I

(14)

where n is the number of tuned on unit cells as 2VDD.
As summarized in Fig. 9, for VDD mode, as the number of
VDD cells (m) turned on increases, the charging/discharging
time becomes shorter, which illustrates the leading AM–PM
distortion behavior. However, in the case of the 2VDD mode,
as the number of unit cells (n) transitioning from VDD to
2VDD is increased, the output power increases, the charg-
ing/discharging time becomes longer, and lagging AM–PM
distortion behavior occurs. Looking at the simulation results
of class-G operation, as shown in Fig. 10, the efficiency
improves at 6-dB PBO thanks to class-G operation [40], and
at the same time, the AM–PM distortion direction transitions
from leading to lagging, and hence compensates itself. The
magnitude of leading AM–PM distortion of the V-DPA can
be manipulated by the driving strength of the SCPA power
cells and the size of Cu, which is a direct tradeoff with the
efficiency and output power [34].

C. AM–PM OPERATION OF PROPOSED ARCHITECTURE
The AM–PM nonlinearity as a function of the output power
level is self-compensated by the proposed architecture. First,
the AM–PM distortion of current-mode DPA has a lag-
ging (negative) behavior according to output capacitance.
However, it is mitigated by adaptive biasing. Second, as the
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FIGURE 12. Simulated result of AM–AM response.

FIGURE 13. Chip microphotograph.

DPA in the voltage-mode DPA is turned on in the VDD
mode, the direction of AM–PM distortion is changed to the
leading (positive) behavior, opposite to the previous current
mode, which is a characteristic of the hybrid (current/voltage)
operation. Third, the AM–PM distortion behavior changes
its direction back to lagging as the cells in the Aux path
change to the 2VDD mode. Fig. 11 illustrates the simula-
tion results of the AM–PM distortion, and Fig. 12 shows the
simulated results of the AM–AM response that changes as
each mode is operated in the proposed architecture.

IV. MEASUREMENT RESULTS
A proof-of-concept hybrid polar Doherty DPA is imple-
mented in the Globalfoundries 45-nm CMOS SOI process
with a chip size of 2.57 mm × 1.98 mm, including all
decoupling capacitors and electrostatic discharge (ESD) I/O
pads (Fig. 13). This is a fully integrated DPA design with
C-DPA and V-DPA power cells, adaptive bias, output passive
network, and AM and PM drivers. The chip is mounted on
an FR4 PCB board and wire-bonded to facilitate the probing-
based testing. The dc supplies are 1.1 and 2.2 V for class-G
operation.
We first characterize the DPA using continuous wave

(CW) signals with a 50-� standard load. A single-ended PM
signal is first converted by an off-chip balun (Krytar4010180)
to generate the differential signals and fed to an input
PM driver. The AM sequence is controlled using a USB-
1024LS with a custom LabVIEW code. The amplified
single-ended output signal is measured by an RF power

(a)

(b)

FIGURE 14. CW simulated and measurement results. (a) Output power. (b) DE
according to frequency.

FIGURE 15. CW measurement DE results at 1.2 GHz.

meter (Keysight N1913A). Fig. 14 summarizes the CW mea-
surement results. The measured Peak Pout is 21.8 dBm
at 1.2 GHz and 1-dB BW is 1.2–2.4 GHz, which frac-
tional BW of 66%. The peak DE is 37.8% at 1.4 GHz and
DE is 33.8%/29.3%/20/4% for the peak/3 dB/6 dB/PBO at
1.2 GHz, which demonstrates 1.2×/1.22× PBO efficiency
enhancement, compared to the ideal class-B as shown in
Fig. 15.
The PA is then characterized with modulations. Desired

complex modulation signals are synthesized in an advanced
design system (ADS) and decomposed into their correspond-
ing AM and PM signals for polar operation. The memoryless
1-D AM–AM lookup table (LUT) for each PA is made
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TABLE 1. Comparison of state-of-the-art DPAs at GHz RF frequencies.

FIGURE 16. Modulation measurement with 20 Msys/s 64 QAM at 1.2 GHz.

based on the characterized CW test, and a pattern generator
(Keysight 16822A) generated the 8-bit AM control LUT.
The PM signals are generated by the arbitrary waveform
generator (AWG) (Tektronix AWG7002A). Since the timing
alignment between AM path and PM path is very critical for
the modulation performance [45], we use a pulse function
generator (Agilent 81160A) to generate the trigger pulses for
AWG and pattern generator to synchronize the AM and PM
signal with a fine control delay. The output signals from the
PA are demodulated by a real-time oscilloscope (Keysight
MSO840A).
Fig. 16 shows the demodulated 20-MSym/s single-carrier

64-QAM signal at 1.2 GHz without any phase predistor-
tion. It achieves 14.8-dBm average Pout and 22.8% average
DE, 23.48-dB EVM and −25.36-dBc ACLR. Table 1 shows
the comparison of the proposed hybrid single transformer
with state-of-the-art RF CMOS digital PAs. This proposed
the single-transformer footprint hybrid current–voltage dig-
ital Doherty PA achieves broadband operation compared to
the state of the art.

V. CONCLUSION
This article presents a compact broadband hybrid current-
/voltage-mode digital Doherty PA with a single three-coil
transformer as its output network and built-in large-single
AM–PM distortion compensation, which is capable of
supporting large-PAPR high-speed modulation signals with-
out any phase predistortion. An adaptive biasing scheme
is proposed to minimize the current-mode DPA’s inher-
ent AM–PM nonlinearity. Class-G operation within the
voltage-mode PA is introduced to achieve efficiency enhance-
ment and AM–PM nonlinearity reduction. A current-
/voltage-mode DPA architecture is proposed to support
AM–PM cancelation, removal of unnecessary switches,
and support load modulation within a single-transformer
network.
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