
Received 9 August 2022; revised 30 October 2022 and 24 December 2022; accepted 6 February 2023. Date of publication 14 February 2023;
date of current version 10 April 2023.

Digital Object Identifier 10.1109/OJSSCS.2023.3244759

A 250-mW 5.4G-Rendered-Pixel/s Realistic
Refocusing Processor for High-Performance

Five-Camera Mobile Devices
PO-HAN CHEN (Graduate Student Member, IEEE), SHU-WEN YANG,

AND CHAO-TSUNG HUANG (Member, IEEE)
Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan

CORRESPONDING AUTHOR: P.-H. CHEN (e-mail: pohan@stanford.edu)

This work was supported in part by the Ministry of Science and Technology (MOST) under Grant 108-2622-8-007-017 and Grant 106-2221-E-007-120,
and in part by the NOVATEK Fellowship.

ABSTRACT Digital refocusing in multicamera mobile devices is becoming crucial. Realistic refocusing,
which is a subset of digital refocusing, provides physically correct quality; however, its intense compu-
tational complexity results in low processing speed and restricts its applicability. Moreover, its complex
computation flow requires substantial DRAM bandwidth and a large SRAM area, making it more chal-
lenging to implement in hardware. In this article, we present a high-performance refocusing processor
based on a hardware-oriented realistic refocusing algorithm. The proposed compact computation flow
saves 92% of the DRAM bandwidth and 32% of the SRAM area without noticeable quality degradation.
To support high-performance refocusing, we develop highly paralleled engines for view rendering. They
deliver 5.4G rendered-pixel/s throughput. The hardware accelerator improves the processing speed by
100× to 350× that of the original refocusing algorithm running on a general-purpose processor. The chip
is fabricated with 40-nm CMOS technology and comprises 271 kB of SRAM and 2.3M logic gates. The
chip processes Full-HD light fields up to 40 frames/s under 250 mW power consumption.

INDEX TERMS DRAM bandwidth reduction, high parallelism, light field, multicamera, refocus, view
synthesis.

I. INTRODUCTION

MULTIPLE cameras are deployed on modern smart-
phones. This multicamera setup enables more and

more novel camera features. Among these features, digi-
tal refocusing is crucially important. Refocusing creates a
shallow depth-of-field effect (known as bokeh) on images,
which is often used to direct the attention of viewers within
a photographic or cinematographic scene. In addition, many
computer graphics technologies, such as virtual reality, need
to provide a better sense of depth within a scene. This visual
sense can also be rendered by digital refocusing.
Fig. 1 illustrates the algorithmic concept of refocusing. A

conventional camera captures images with the bokeh effect
by carefully adjusting its focus position and aperture size.
On the other hand, refocusing algorithms allow users to take
pictures first and render the bokeh effect later. Also, these
algorithms do not need a thick lens to create the bokeh

effect. This feature makes refocusing preferable on devices
with mechanical constraints preventing a thick lens to be
installed.
Refocusing can be implemented for various input signals.

For 3-D models, view sampling techniques [1], [2], [3], [4]
provide decent depth-of-field effects. However, the computa-
tion is intensive and GPU acceleration is needed to provide
fast processing. With a single image and its depth map, refo-
cusing can also be implemented by applying depth-dependent
blur kernels to the image [5], [6]. This solution is widely
used in current mobile devices to create a bokeh effect in
the background. However, the single-image solution suffers
from the problem of missing information in the occluded
regions. As shown in Fig. 2, a blurred pixel is formed by
summing light rays coming from different surfaces including
those of the occluded objects. In a single-image setup, such
information is lost and refocusing algorithms have to make

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

52 VOLUME 3, 2023

HTTPS://ORCID.ORG/0000-0001-9760-9565
HTTPS://ORCID.ORG/0000-0002-9173-520X

FIGURE 1. Images with a shallow depth-of-field effect can be captured by a camera
with a big aperture. By using digital refocusing, such an effect can also be rendered
after taking the pictures. Conventional single-image refocusing methods, like
depth-dependent blurring, provide fast refocusing speed. However, it will present
boundary artifacts on blurred foreground objects. In contrast, realistic refocusing
uses multiple images and can achieve soft blur-like images captured by conventional
cameras. This work targets the hardware implementation of realistic refocusing.

FIGURE 2. Objects A–C all contribute light rays to a blurred pixel when the focus
plane is in the background. However, objects B and C are invisible in a single-image
setup because they are occluded by object A. To perform refocusing, algorithms have
a guess what is sitting in the occluded region created by object A.

a guess. A trivial guess or no guess (i.e., using foreground
information only) provides faster processing speed but suf-
fers from boundary artifacts like sharp edges (as shown
in Fig. 1 bottom right) [7]. Although a complicated view
synthesis algorithm can be adopted, it is still impossible
to perfectly recover what is occluded behind an object for
refocusing. Light-field images [8], [9], [10], [11] provide
the missing information of occluded regions. Methods using
light fields [12], [13] need densely sampled view points
to avoid aliasing. The resulting huge storage requirement
makes them impractical, especially for video applications.
Refocusing using sparse light fields [14] reduces the stor-
age. However, the computation of this method is too intensive
because the method needs to render hundreds of new images
to compensate for the sparsely sampled light field.
With more and more camera lenses being seen on mobile

devices, physically correct refocusing using light-field
images is becoming more achievable. This work aims at
verifying the hardware acceleration approach in terms of

FIGURE 3. BBRR algorithm overview.

performance, energy efficiency, and memory bandwidth.
This article extends the work of [15] and presents an inte-
grated circuit based on the block-based realistic refocusing
(BBRR) [14] algorithm using sparse light fields. Our main
contributions are as follows.

1) A hardware-oriented realistic refocusing algorithm is
devised based on BBRR. Our algorithm simultane-
ously considers DRAM bandwidth, SRAM area, and
refocusing quality and is used to design a com-
pact computation flow. The flow reduces 92% of the
DRAM bandwidth and 32% of the SRAM area without
noticeable quality degradation.

2) Two highly parallel view rendering engines address
the computational intensity. Extensive parallel com-
puting is achieved by combining pixel-level, line-level,
and view-level parallelism. They together provide 5.4G
rendered-pixel/s throughput to support high-quality and
high-performance refocusing.

II. OVERVIEW AND PROFILING OF BLOCK-BASED
REALISTIC REFOCUSING
Fig. 3 shows the algorithm overview of BBRR. For inputs,
this algorithm takes a set of light-field images, a depth map,
and a few user-defined parameters. Then, it executes the
following two phases to generate a refocused image.

A. BLOCK PARTITIONING
We adopted block-based processing flow because it reduces
the overall computational complexity by adapting to local
blur statistics. The first step of BBRR derives the block
partitioning map from the input depth map. Multiple block
sizes of 8 × 8, 16 × 16, to 128 × 128 are used to con-
struct the map. Note that a block consists of a core block
region and its extended borders. Pixels in extended borders
are needed to compute output pixels at the block boundaries.
The size of the extended borders is calculated based on the

VOLUME 3, 2023 53

CHEN et al.: 250-mW 5.4G-RENDERED-PIXEL/s REALISTIC REFOCUSING PROCESSOR

FIGURE 4. Illustration of 1-D line-scan view interpolation. Here, we show an
example of interpolating one-pixel line at a new view v3 (where v0 and v4 are
reference views). It warps the pixels from the reference view to the new view based on
the depth map. It then uses the position information to interpolate the new values.

depth information to make sure it includes the needed pix-
els. BBRR then uses these variable-size blocks to build a
tree structure and analyzes the tree to determine a runtime-
optimized partition. The computation of this step is not
intensive because the tree analysis is accelerated by using
simplified math models. The images are then divided into
blocks according to the partition map and sent to the next
step for refocusing.

B. REFOCUSING
Refocusing is achieved by blending many views sampled
from different angles. Because BBRR uses sparse light fields
as input sources, view interpolation is required to render
more views before blending to avoid aliasing. BBRR uses
a center-based 1-D line-scan view interpolation algorithm
to render new views between the input light fields. Fig. 4
illustrates the interpolation process. The algorithm first finds
the positions of the reference pixels at the new view (called
warping). If a new pixel at the integer position (called a
grid pixel) is surrounded by two reference pixels, it inter-
polates from them. Otherwise, it is considered as a hole
and we warp the grid pixel to the other reference view
and do interpolation. Unlike many existing view synthesis
methods [16], [17], [18], [19], a sophisticated hole-filling
algorithm is unnecessary because the rendered views are
not the final outcomes in refocusing. Besides, this algorithm
only needs to reference the center depth map. It avoids stor-
ing multiple depth maps and reduces the storage. Finally,
blending is achieved by averaging the views with an aper-
ture weight. All of the refocused blocks then collectively
constitute a refocused frame.
Table 1 shows the software runtime profiling results of

BBRR executing on an Intel i7-8565U CPU. We executed
each test case with ten different focus positions and recorded

TABLE 1. Runtime profiling result of BBRR.

the average execution time in tP1 (phase 1, block parti-
tioning) and tP2 (phase 2, refocusing). Results showed that
refocusing accounts for more than 98% of the overall run-
time. For performance and energy concerns, this algorithm
is unsuitable for direct software implementation on mobile
devices. Although modern SoCs often integrate accelera-
tors (e.g., GPUs or neural network accelerators) to speed
up applications, they target workloads that have massive
and independent computation so multiple data points can
be processed in parallel. Our algorithm will not get much
performance and energy benefit from these accelerators
because its computation in phase 2 is heavily data depen-
dent. Hence, this work builds a hardware accelerator that
targets the refocusing phase of the algorithm. In this arti-
cle, we propose high-performance circuit architectures for
center-based 1-D line-scan view interpolation and aperture-
weighted averaging. In terms of rendered pixel throughput,
the accelerator chip is able to provide 5.4G pixel/s through-
put. Compared to software implementation, which provides
around 9–22M pixel/s throughput, our ASIC solution is 2
orders of magnitude faster.

III. HARDWARE-ORIENTED REALISTIC REFOCUSING
ALGORITHM
The original refocusing algorithm is not feasible for direct
hardware implementation for two reasons. First, it requires
huge DRAM bandwidth to load the input light-field images.
Second, its computation flow involves complex pixel scan-
ning directions which increases the usage of on-chip
memory. To overcome these design challenges, we propose
a hardware-oriented refocusing algorithm that addresses the
DRAM/SRAM issues and retains high refocusing quality.

A. DRAM BANDWIDTH OPTIMIZATIONS
The system DRAM bandwidth is huge because each refo-
cused frame needs to input and process 17 RGB light-field
images. To address the bandwidth issue, we proposed three

54 VOLUME 3, 2023

FIGURE 5. With HW-oriented algorithm optimizations, we reduced the DRAM
bandwidth by 69%, 58%, and 40%, respectively. Overall it saves the off-chip traffic
by 92%.

techniques to reduce the input data size. As shown in Fig. 5,
they together save 92% of total DRAM bandwidth.

1) REDUCTION OF INPUT VIEWS

The original algorithm requires 17 images to form a
star-shaped light field for refocusing. However, the most
important views are the surrounding images because they
capture more occluded pixels from wider angles. Internal
views can be interpolated by our algorithm with the depth
map and the surrounding views. Our experiments show that
we can achieve almost the same quality by using only five
views. Hence, only the center, top, bottom, right, and left
views are kept in our hardware-oriented algorithm. For the
missing views that are essential during refocusing, we use a
view extrapolator in our system to generate them beforehand.

2) REDUCTION OF SURROUNDING VIEW SIZE

The input views are used as references for view interpolation.
In this work, a center-based view interpolation algorithm is
adopted which means most of the rendered pixels are warped
from the center view. The surrounding views (top, bottom,
left, and right) are only referenced when hole filling is
necessary. Because these views are referenced much less
frequently compared to the center view, they are downsam-
pled by a factor of 2 to reduce the size. Downsampling the
surrounding views enables another 58% bandwidth reduc-
tion. Note that a 2× image upsampler is included in our
system to recover the surrounding views’ original resolution
before processing.

3) REDUCTION OF PIXEL SIZE

To further reduce the input bandwidth, the size of the pixels is
compressed by chroma subsampling because human eyes are
less sensitive to chroma components. This technique is also
widely used in image/video compression tasks. In this work,
the images are stored and transmitted in YUV420 format.
Compared to RGB444 format, it uses 50% less memory
size. Because the depth map cannot benefit from chroma

FIGURE 6. SRAM usage optimization by removing diagonal scanning directions.

subsampling, the overall bandwidth reduction for this step
is 40%. To retain sufficient quality, our system will upsample
the chroma components back before refocusing.

B. SRAM USAGE OPTIMIZATIONS
In order to implement a high throughput system, multiple
pixels are accessed in parallel and the access patterns depend
on the scanning directions. In the original algorithm flow,
pixels are scanned in eight different directions to synthe-
size a 2-D aperture. This flow induces additional memory
usage because it needs multibank SRAMs to realize par-
allel pixel accessing. As shown in Fig. 6, for horizontal
and vertical directions, their access patterns cover the same
group of pixels. However, the access pattern for diagonal
direction requires different groups of pixels. Those pixels
must be stored in separate memory banks to support hori-
zontal, vertical, and diagonal access patterns. It is possible
to approximate diagonal scanning by horizontal scanning
plus vertical scanning. The final refocused image using this
approximation also has high quality because the algorithm
blends all of the views in the aperture and the approximation
error is amortized over these views. Hence, we proposed to
remove the diagonal scanning directions. With only hori-
zontal and vertical scanning, the access patterns can fully
overlap and the pixels belonging to the same access can be
stored to an entry of a single-bank SRAM. This saves the
SRAM area by 66% through sharing the memory peripheral
circuits. It also enables a view generation flow with simpler
system scheduling.

C. QUALITY ASSESSMENT
All of the algorithm revisions made here are designed under
strict quality constraints. Fig. 7 shows the quality assessment
results of each modification. The PSNR value is calculated
with respect to the frame-based algorithm using 17 input
views in RGB444 format. Experiments show that each mod-
ification only introduces negligible quality degradation. The
largest PSNR drop of 1.8 dB was found in the RGB444 to
YUV420 conversion. Except for this, all the other PSNR
drops are controlled within 1 dB.

VOLUME 3, 2023 55

CHEN et al.: 250-mW 5.4G-RENDERED-PIXEL/s REALISTIC REFOCUSING PROCESSOR

FIGURE 7. PSNR value after each modification of the refocusing algorithm. The
experimental results show that our hardware-oriented algorithm offers almost the
same quality compared to the original algorithm (all PSNR > 43 dB).

FIGURE 8. SSIM comparison between hardware-oriented algorithm and the original
algorithm at different focus disparity (dfocus). The SSIM value of the color image is
computed by the weighted sum of the individual SSIM value of its Y, Cb, and Cr
components. The coefficients are 0.8 for Y, 0.1 for Cb, and 0.1 for Cr as suggested in
the original SSIM paper. The worst SSIM in each test case is marked by a red circle
and they all sit above 0.99.

To show the quality assessment that is closer to per-
ceived quality, we compare our hardware-oriented algorithm
to the original algorithm using structural similarity (SSIM)
index [21]. Fig. 8 presents the SSIM comparison results

FIGURE 9. System architecture of the refocusing processor.

for each test case that focuses on different target disparity
dfocus. The SSIM value is greater than 0.99 in all of our
test cases (an SSIM value of 1.0 means a perfect match).
The results show that our revised algorithm can generate
refocused images that closely resemble those created by the
original algorithm.

IV. SYSTEM ARCHITECTURE
The overall system architecture of the refocusing processor
is shown in Fig. 9. It is a highly parallelized view rendering
and accumulation accelerator that loads five view blocks
and its depth map to output a block that focuses on a target
depth. The refocused blocks are collected and assembled in
external memory to become a complete refocused frame.

A. VIEW RENDERERS
View renderers are the core processing engines implementing
the center-based 1-D line-scan view interpolation. They are
highly parallelized to generate new views and are pipelined
by single-port ping-pong SRAMs. To balance the system
pipeline, the multiview renderer is designed with higher par-
allelism because it is in charge of generating around 70%
of the new views. Note that the single-view extrapolor is
a simplified version of the single-view renderer. It is used
to generate the missing corner views in the first stage of
view generation. A detailed discussion on the implementa-
tion of these highly paralleled view renderers will be given
in Section V.

B. HIERARCHICAL PIPELINE SCHEDULERS
To enable efficient view rendering, the view generation flow
breaks down into three hierarchies: 1) block; 2) quadrant;
and 3) column, as shown in Fig. 10. These hierarchies allow
parallel processing and are controlled by a pipeline scheduler.

56 VOLUME 3, 2023

FIGURE 10. Hierarchy breakdown and corresponding timing diagrams.

1) BLOCK SCHEDULER

An image frame is partitioned into multiple blocks and
processed sequentially. There are three stages for block pro-
cessing. First, the light field and the depth map of a block
are loaded into the chip via a DMA controller. Second, they
are processed by the core refocusing engines to generate new
views and accumulate the results. Finally, a refocused block
is produced by a weight divisor and written out to external
memory. Note that a view upsampler is required if the block
is processed in the downsampled domain (i.e., L = 1, 2).

2) QUADRANT SCHEDULER

The view generation flow divides an aperture into four
quadrants. They are processed in a counter clock-wised man-
ner and each quadrant will go through two stages. First,
an extrapolator creates a new corner view and two depth
maps which will be used as references in the next stage.
Furthermore, if this block is processed in its original reso-
lution (i.e., L = 0), an upsampler should be used to recover
the resolution of downsampled surrounding views. Second,
all the views inside the quadrant will be generated column
by column using the view renderers in the next hierarchy.

3) COLUMN SCHEDULER

Inside each quadrant, the views are generated in a column-
wised order. There are two stages for a column to be
generated. First, the views on the two tips of a column
are generated by the single-view renderer. Next, the inner
views between the tips are generated using the multiview
renderer and accumulated afterward.

V. HIGHLY PARALLEL VIEW RENDERER DESIGN
Based on the characteristics of the 1-D line-scan view inter-
polation algorithm, parallel computing can be implemented
in pixel, line, or view level. A view synthesis engine (VSE)

FIGURE 11. Algorithm concept and block diagram of single-view VSE. The view
synthesis is implemented by pixel warping and linear interpolation in this engine.

realizes the view interpolation algorithm. It implements the
pixel-level parallelism by scanning and analyzing multiple
pixels in each cycle. A VSE can also adopt view-level paral-
lelism by generating the results at multiple view points. Such
kind of VSE is called a multiview VSE; otherwise, it is called
a single-view VSE. Multiple VSEs can be combined into a
group called view renderer which implements the line-level
parallelism by operating on multiple lines simultaneously.
The amount of required parallelism is determined based

on the system throughput specification. In our test set, it
typically needs to render 100–300 million pixels for one
Full-HD refocused frame. In the worst cases, the system
needs to render 9 billion pixels per second to achieve the
frame rate goal of 30 frames/s. It means the chip has to
render 45 pixels per cycle when it operates at 200 MHz. The
final parallelism decision is 64 after considering the ramp
up, ramp down, and idle overhead. The amount of pixel-
level parallelism is restricted because of its data-dependent
computation. The circuit cannot process more than 5 pixels
in parallel in one line; otherwise, it fails to meet the timing
specification. Finally, we chose parallelism to be 4 for each
of the three (pixel, line, and view) parallelism levels. They
together enable a 4 × 4 × 4 = 64 parallelism in our system.

A. SINGLE-VIEW VSE
A single-view VSE (as shown in Fig. 11) renders a new
line in three steps. First, it warps the pixels from the center
view (view number 0) to the new view (view number i). A
pixel with a disparity value of D means that it will shift D
pixels toward the left in the right view (view number k).
Warping is done by using the disparity of a pixel and the
ratio of view numbers (i/k) to compute its pixel shift (Di/k)
in the new view. Second, it analyzes the warping positions
and determines how to generate the integer pixel grids. If a
pixel grid is surrounded by two close warped pixels, then the
value of the grid is computed by the pixels from the center
view. Otherwise, the grid is considered as a hole and VSE
will warp it again to the right view. The value of the grid
is then computed by the surrounding pixel grids in the right

VOLUME 3, 2023 57

CHEN et al.: 250-mW 5.4G-RENDERED-PIXEL/s REALISTIC REFOCUSING PROCESSOR

view. Finally, it uses linear interpolation (ax+ by/a+ b) to
find the values of the grids. Because the process of linear
interpolation involves cascading a multiplier (8b × 3b), an
adder (11b + 11b), and a divider (12b/4b), it becomes the
critical path of the system (around 5 ns). Note that the full-
function divider can also be implemented with a fixed entry
lookup table followed by a multiplier, but we found they
have very similar delay so we use a divider IP directly.
To realize pixel-level parallelism, the modules for warping,

position analysis, and linear interpolation are duplicated four
times. However, a VSE will not always consume four input
pixels nor generate four output pixels in every cycle even if
it wants to. Some pixels will warp to the occluded region
and they do not contribute to the outputs. In this case, the
input and output data throughput will not be four pixel/cycle.
We denote the remaining pixels that are less than four as
incomplete pixels. These pixels make parts of the engine
idle and result in low hardware utilization. We proposed
to include a 7-taps register FIFO at all I/Os to solve this
problem. It allows smoother data streaming by buffering the
incomplete pixels. Input FIFOs are used to constantly serve
four pixels to the engine to keep it busy. Output FIFO is used
to pack incomplete pixels and constantly streams four pixels
out. In general, an N pixel parallel engine needs N+(N−1)

taps register FIFOs to enable high hardware utilization.
Pixel-level parallelism cannot be too aggressive because

the operating frequency will be limited when it tries to com-
pute too many pixels in parallel. Since the warping position
analysis of a pixel depends on the result of the previous pixel,
the analysis chain grows with the parallelism. Besides, the
input FIFOs need the analysis results to update its content
so there exists an iteration bound which prevents us from
using pipelines to reduce the timing path. Finally, pixel-level
parallelism is implemented in four so the combinational path
can fit into a 5-ns clock period.

B. MULTIVIEW VSE
A multiview VSE is a downstream hardware of a single-
view VSE. It takes two views generated by a single-view
VSE to generate all the new views between them. To
achieve higher data throughput, it combines pixel-level par-
allelism and view-level parallelism inside. One trivial way
to implement view-level parallelism is to duplicate several
single-view VSEs and assign them to process different views.
However, each engine needs one exclusive SRAM because
they operate independently and have different data through-
put. This indicates lots of redundant storage because all
those SRAMs are holding the same view data. We proposed
to compute multiple views inside a VSE using the concept
of pixel splatting. Instead of using two reference pixels to
interpolate a new grid, the engine splats the value of each
reference pixel to its nearby grids. Since the warping posi-
tions for neighboring views are similar, it is easy to splat
a reference pixel to the grids in multiple views with little
cost.

FIGURE 12. Algorithm concept and block diagram of multiview VSE. New views are
generated by splatting a reference pixel’s value to the neighboring pixels. The
accumulated results should be normalized to ensure equal intensity.

As shown in Fig. 12, the FIFO interfaces are kept because
pixel-level parallelism is still adopted. The reference pixels
from the FIFOs are now warped to four adjacent views to
realize view-level parallelism. The multiview warping posi-
tions are then used to analyze the splatting information, such
as target splatting pixels and splatting weights. The splatting
values are computed based on this information and accu-
mulated in a splat buffer array. Inside the array, there are
4×13 accumulation units where 4 comes from the view par-
allelism and 13 comes from the maximum splatting range of
a pixel. Because the accumulation units may receive contri-
butions from multiple pixels, the results should be weighted
averaged to have a normalized intensity. Finally, pixels are
weighted summed across four views and streamed out. The
proposed pixel splatting architecture integrates pixel- and
view-level parallelism together and saves 73% SRAM area
compared to trivial implementation.
Unlike the backward warping method used by the original

1-D line-scan view interpolation algorithm, pixel splatting
uses the forward warping method. In most cases, forward
warping is mathematically equivalent to backward warping.
When more than two source pixels can contribute to a tar-
get pixel (known as racing), the forward warping method
performs weighted averaging on all of the candidates, but
the backward warping method only uses the nearest two
source pixels to perform weighted averaging (i.e., linear
interpolation). Both methods can be used in refocusing. To
quantitatively show the perceptual difference of the refo-
cused image, we generate refocused images using forward
and backward warping and calculate their SSIM index with
respect to the ground truth. Table 2 shows the worst-case
SSIM for every test case. Results show that both forward and
backward warping can generate images with SSIM scores
greater than 0.99 and the difference between their SSIM
scores is small. The results match our expectation that both
methods produce almost identical refocused images because
the small difference caused by the warping methods should
be amortized over many other views to be blended.

58 VOLUME 3, 2023

TABLE 2. Quality evaluation of backward warping versus forward warping. Both
methods build on top of the hardware-oriented algorithm in Section III. Their SSIM
values are computed with respect to the frame-based unmodified algorithm in
Section II. We pick the worst-case SSIM to show negligible quality impact brought by
both warping methods.

FIGURE 13. Architecture of view renderer. Multiple VSEs are grouped together to
enable line-level parallelism.

C. VSE GROUP
To further boost the data throughput, we group multiple
VSEs (they could be single-view or multiview version) into
a view renderer as shown in Fig. 13. Each view renderer
contains four VSEs and they are assigned to process different
lines to achieve line-level parallelism. Since each VSE also
implements four-pixel parallelism, a view renderer would
require 16 pixels (4 pixels × 4 lines) per cycle. To serve
this memory request, we glue these pixels together in one
SRAM entry and call it a tile. Because a tile is accessed with
different directions during view generation, a multiplexer
is placed before each VSE to select pixels of the correct
direction.
One biggest problem of grouping multiple VSEs is that

they have different processing speeds so they may want to
access different SRAM entries in the same cycle. Placing
line buffers before and after the engines can solve the
memory conflict issue. To retain data throughput, two single-
port SRAMs can be used to implement double buffering.

FIGURE 14. Die photograph and chip specifications of the refocusing test chip.

However, these line buffers take too much area. In a single-
view renderer, each VSE needs six SRAM instances which
account for 40% of the renderer area. Double buffering
also introduces additional control cycles when it switches
between lines. These cycles are hard to remove because it
cannot switch and prefetch the next line until all of the VSEs
in a group finish processing. In terms of performance, these
cycles create significant overhead because it only takes a
few cycles to generate a line due to its parallel architecture.
In order to reduce the area and performance overhead, we

removed the input line buffers. In replacement, the memory
access conflicts are resolved by a round-robin arbiter. It ana-
lyzes the SRAM requests from all VSEs and serves distinct
requests sequentially. When there are K distinct requests, the
instant throughput of the renderer drops to 1/K. However,
based on the statistics, 58% of the lines have exactly the
same requests and they do not need the arbiter. For those
lines suffering from memory access conflicts, 78% of them
only need 2 cycles to resolve the conflict. This is because
neighboring lines tend to have a similar disparity distribution
which results in the same memory access.
Removing the input line buffers reduces the SRAM area

by 70% in a renderer. We also remove the control overhead
by prefetching lines. Although this architecture suffers from
infrequent throughput drop, the average throughput of a ren-
derer increases 7.7% compared to the one using input line
buffers.

VI. IMPLEMENTATION RESULTS
A. CHIP IMPLEMENTATION RESULTS
Fig. 14 shows the die photograph and the chip specifications
of the refocusing test chip. The test chip is fabricated in a
40-nm CMOS technology comprising 2.3 million NAND2
equivalent logic gates and 271-kB on-chip memory. The
chip can be operated at 0.9 V and 200 MHz to achieve its
peak performance that renders full-HD resolution refocused
images up to 40 frames/s. The test results show that it con-
sumes 250 mW on average which justifies its applicability
to most edge devices with strict energy constraints.
Fig. 15 shows the area and power breakdown of the test

chip. Most of the chip area goes to the memory because lots

VOLUME 3, 2023 59

CHEN et al.: 250-mW 5.4G-RENDERED-PIXEL/s REALISTIC REFOCUSING PROCESSOR

FIGURE 15. Area and power breakdown.

of intermediate views are generated and stored locally. The
multiview renderer implements 64× parallelism to generate
most of the views and it represents 39% of the chip area.
On the other hand, the single-view renderer implements 16×
parallelism to generate the source views for a multiview
renderer so it only takes 8% of the chip area. The single-
view extrapolator is a simplified version of the single-view
renderer which has approximately half of the logic gates.
The power breakdown shows similar distribution to the area
breakdown. The multiview renderer presents slightly less
power because most of its accumulation units are not active
when they are not splatted by the reference pixels.

B. EVALUATION
To assess the performance of the chip, we define two kinds
of pixel as follows.

1) Rendered pixels refer to the pixels that are generated by
the view renderers. Because these pixels are the direct
outcome from hardware engines, they are primarily
used to measure the chip’s computing ability.

2) Refocused pixels refer to the final output pixels which
are generated by blending the rendered pixels. For
example, a full-HD refocused frame has around 2 mil-
lion refocused pixels (1920 × 1080) and they are
typically merged from hundreds of millions of rendered
pixels.

The chip was tested by the full-HD image sequences in
Table 1. Each of them was programmed to focus at eight
different target depths distributed within its possible depth
range. Testing results showed that the chip can generate
5.4 billion rendered pixels per second on average. For each
refocused image, it requires the different number of rendered
pixels to blend. This can be observed in Fig. 16 which shows
the statistics of the test case Camera. The frame rate of a
refocused image depends on how fast the chip can generate
all the rendered pixels. Test cases with less rendered pixels
tend to have better frame rate and refocused pixel energy
efficiency. For example, Camera at dt = 176 has best frame
rate and energy efficiency compared to other dt because it
has lowest total number of rendered pixels. Although the
refocused pixel performance is mainly determined by the

FIGURE 16. Statistics of total rendered pixels and refocused pixel energy efficiency
of test case Camera. A big gap can be found at dt = 176 because it focuses too close
to the front and almost everything in the scene is blurred and downsampled by the
algorithm.

TABLE 3. Comparison with other view synthesis works.

total number of rendered pixels, sometimes the disparity
map also affects the performance especially when there are
too many occlusions in the scene. Some of the refocusing
results are presented in Fig. 17.
It is possible to increase the frame rate and energy effi-

ciency of a refocused image by reducing the total number of
rendered pixels. This can be done by limiting the maximum
blur radius (�dmax) of the input disparity map. However,
the objects in the defocused region will be less blurred due
to this restriction. An example is shown in Fig. 18. We can
see the decrease in total rendered pixels and the increase in
frame rate after changing �dmax from 32 to 16. This change
also makes the background (keyboard) become less blurred.

C. COMPARISON
Because the main computation inside the refocusing pro-
cessor is view synthesis, we compare this chip to other
previous view synthesis works [22], [23], [24] and present
the results in Table 3. Our highly paralleled engines enable
superior rendered pixel throughput. For on-chip memory,
because view synthesis results are not the final product of

60 VOLUME 3, 2023

FIGURE 17. Realistic refocusing results generated by the test chip. The target focusing depth can be configured through the programmable parameters of the chip. Objects
will be blurred if they are not in the target focus depth (number 1 and number 4 for example).

FIGURE 18. Limiting �dmax can reduce total rendered pixels and improve the frame
rate at the cost of refocusing quality.

refocusing, they need to be stored on the chip for later blend-
ing. Hence, more SRAMs are used compared to other view
synthesis works whose synthetic views are their final out-
come. In terms of gate efficiency, our work greatly surpasses
the others because a customized and hardware-friendly view
synthesis algorithm is adopted. Finally, our work also shows
great rendered pixel energy efficiency even with additional
energy spent on refocusing.

VII. CONCLUSION
In this article, we proposed an ASIC solution to acceler-
ate the view generation part and the view averaging part of
the realistic refocusing algorithm [14]. A revised hardware-
friendly algorithm is proposed to reduce DRAM bandwidth
and SRAM usage without noticeable quality degradation.
A hierarchical system pipeline is developed to maximize
the hardware utilization during the view generation flow.
The core VSEs are designed with three levels of paral-
lelism to achieve ultra high pixel generation throughput. The
test chip is implemented in 40-nm CMOS technology and
achieves 100× to 350× runtime improvement compared to
pure software implementation. The chip can generate full-HD

realistic refocused images up to 40 frames/s while consuming
250 mW. This ability justifies its applicability to low-power
edge devices with multicamera setups.

ACKNOWLEDGMENT
The authors would like to acknowledge chip fabrication sup-
port provided from Taiwan Semiconductor Research Institute
(TSRI).

REFERENCES
[1] R. L. Cook, T. Porter, and L. Carpenter, “Distributed ray tracing,”

in Proc. 11th Annu. Conf. Comput. Graph. Interact. Techn., 1984,
pp. 137–145.

[2] M. Pharr and G. Humphreys, Physically Based Rendering, 2nd ed.
San Francisco, CA, USA: Morgan Kaufmann, Jun. 2010.

[3] J. Lehtinen, T. Aila, J. Chen, S. Laine, and F. Durand, “Temporal
light field reconstruction for rendering distribution effects,” in Proc.
ACM SIGGRAPH Papers, 2011, pp. 1–12.

[4] K. Vaidyanathan, J. Munkberg, P. Clarberg, and M. Salvi, “Layered
light field reconstruction for defocus blur,” ACM Trans. Graph.,
vol. 34, no. 2, pp. 1–12, Mar. 2015.

[5] P. Rokita, “Generating depth-of-field effects in virtual reality appli-
cations,” IEEE Comput. Graph. Appl., vol. 16, no. 2, pp. 18–21,
Mar. 1996.

[6] Y. Taguchi, A. Agrawal, A. Veeraraghavan, S. Ramalingam, and
R. Raskar, “Axial-cones: Modeling spherical catadioptric cameras for
wide-angle light field rendering,” ACM Trans. Graph., vol. 29, no. 6,
pp. 1–8, Dec. 2010.

[7] J. Demers, Depth of Field: A Survey of Techniques. Boston, MA, USA:
Addison-Wesley, 2004, ch. 23, pp. 375–390.

[8] M. Levoy, “Light fields and computational imaging,” Computer,
vol. 39, no. 8, pp. 46–55, Aug. 2006.

[9] B. Wilburn et al., “High performance imaging using large camera
arrays,” ACM Trans. Graph., vol. 24, no. 3, pp. 765–776, Jul. 2005.

[10] R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan,
“Light field photography with a hand-held plenoptic camera,”
Dept. Comput. Sci., Stanford Univ., Stanford, CA, USA, Research
Rep. CSTR 2005-02, Apr. 2005.

[11] K. Venkataraman et al., “PiCam: An ultra-thin high performance
monolithic camera array,” ACM Trans. Graph., vol. 32, no. 6,
pp. 1–13, Nov. 2013.

[12] J. Fiss, B. Curless, and R. Szeliski, “Refocusing plenoptic images
using depth-adaptive splatting,” in Proc. IEEE Int. Conf. Comput.
Photogr. (ICCP), 2014, pp. 1–9.

VOLUME 3, 2023 61

CHEN et al.: 250-mW 5.4G-RENDERED-PIXEL/s REALISTIC REFOCUSING PROCESSOR

[13] C.-K. Liang and R. Ramamoorthi, “A light transport framework for
lenslet light field cameras,” ACM Trans. Graph., vol. 34, no. 2,
pp. 1–19, Mar. 2015.

[14] C.-T. Huang, Y.-W. Wang, L.-R. Huang, J. Chin, and L.-G. Chen, “Fast
physically correct refocusing for sparse light fields using block-based
multi-rate view interpolation,” IEEE Trans. Image Process., vol. 26,
pp. 603–618, 2017.

[15] P.-H. Chen, S.-W. Yang, S.-Y. Huang, L.-D. Chen, and C.-T. Huang,
“A 250mW 5.4G-novel-pixel/s photorealistic refocusing processor for
full-HD five-camera applications,” in Proc. Symp. VLSI Circuits, 2019,
pp. C154–C155.

[16] S. C. Chan, H.-Y. Shum, and K.-T. Ng, “Image-based rendering and
synthesis,” IEEE Signal Process. Mag., vol. 24, no. 6, pp. 22–33,
Nov. 2007.

[17] T. Georgeiv, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and
C. Intwala, “Spatio-angular resolution tradeoffs in integral photog-
raphy,” in Proc. 17th Eurograph. Conf. Rendering Techn., 2006,
pp. 263–272.

[18] C.-K. Liang, T.-H. Lin, B.-Y. Wong, C. Liu, and H. H. Chen,
“Programmable aperture photography: Multiplexed light field acqui-
sition,” ACM Trans. Graph., vol. 27, no. 3, pp. 1–10, Aug. 2008.

[19] B. Huhle, T. Schairer, P. Jenke, and W. Straßer, “Realistic depth blur
for images with range data,” in Proc. DAGM Workshop Dyn. 3D Imag.,
2009, pp. 84–95.

[20] S. Wanner, S. Meister, and B. Goldluecke, “Datasets and benchmarks
for densely sampled 4D light fields,” in Proc. Vis. Model. Vis., 2013,
pp. 145–152.

[21] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, pp. 600–612, 2004.

[22] Y.-R. Horng, Y.-C. Tseng, and T.-S. Chang, “VLSI architecture for
real-time HD1080p view synthesis engine,” IEEE Trans. Circuits Syst.
Video Technol., vol. 21, no. 9, pp. 1329–1340, Sep. 2011.

[23] M. Schaffner, P. Greisen, S. Heinzle, F. K. Gürkaynak, H. Kaeslin,
and A. Smolic, “MADmax: A 1080p stereo-to-multiview rendering
ASIC in 65 nm CMOS based on image domain warping,” in Proc.
ESSCIRC, 2013, pp. 61–64.

[24] P.-K. Tsung et al., “A 216fps 4096×2160p 3DTV set-top box SoC
for free-viewpoint 3DTV applications,” in Proc. IEEE Int. Solid-State
Circuits Conf., 2011, pp. 124–126.

PO-HAN CHEN (Graduate Student Member, IEEE)
received the B.S. degree in electrical engineer-
ing and computer science and the M.S. degree
in electrical engineering from National Tsing Hua
University, Hsinchu, Taiwan, in 2016 and 2018,
respectively. He is currently pursuing the Ph.D.
degree with Stanford University, Stanford, CA,
USA.

From 2018 to 2020, he was a Design Engineer
with MediaTek, Hsinchu, developing circuit archi-
tectures for camera ISP. His research interests

include designing high-performance and energy-efficient circuits for com-
puter vision and computational photography algorithms.

Mr. Chen was a recipient of the NovaTek Fellowship from 2016 to 2018.

SHU-WEN YANG received the B.S. and M.S.
degrees in electrical engineering from National
Tsing Hua University, Hsinchu, Taiwan, in 2015
and 2018, respectively.

In 2018, she joined MediaTek Inc., Hsinchu,
where she has been involved in the Silicon Product
Development. Her research topic was photorealis-
tic refocusing processing for Full-HD multicamera
applications.

CHAO-TSUNG HUANG (Member, IEEE) received
the B.S. degree in electrical engineering and
the Ph.D. degree in electronics engineering from
National Taiwan University (NTU), New Taipei,
Taiwan, in 2001 and 2005, respectively.

He is an Associate Professor with the
Department of Electrical Engineering, National
Tsing Hua University (NTHU), Hsinchu, Taiwan.
Prior to joining NTHU, he was a Postdoctoral
Associate with the Massachusetts Institute of
Technology, Cambridge, MA, USA, from 2011 to

2012 and then with NTU from 2012 to 2013. From 2005 to 2011, he was
with Novatek Microelectronics Corporation, Hsinchu, for developing multi-
standard image and video codecs. His research interests include light-field
signal processing and deep convolutional networks, especially from algo-
rithm exploration to VLSI architecture design, chip implementation, and
demo system.

Dr. Huang was a recipient of the Young Scholar Innovation Award from
Foundation for the Advancement of Outstanding Scholarship in 2020, the
Outstanding Young Electrical Engineer Award from CIEE in 2019, the
Outstanding Young Scholar Award from Taiwan IC Design Society in 2019,
and the Junior Faculty Research Award from the College of EECS, NTHU,
in 2017. He serves as an Associate Editor for IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY and Circuits, Systems
and Signal Processing (Springer). He is also a member of DISPS Technical
Committee of IEEE Signal Processing Society.

62 VOLUME 3, 2023

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

