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ABSTRACT Safety and security issues for Critical Infrastructures are growing as attackers adopt drones
as an attack vector flying in sensitive airspaces, such as airports, military bases, city centers, and crowded
places. Despite the use of UAVs for logistics, shipping recreation activities, and commercial applications,
their usage poses severe concerns to operators due to the violations and the invasions of the restricted
airspaces. A cost-effective and real-time framework is needed to detect the presence of drones in such cases.
In this contribution, we propose an efficient radio frequency-based detection framework called URANUS.
We leverage real-time data provided by the Radio Frequency/Direction Finding system, and radars in order
to detect, classify and identify drones (multi-copter and fixed-wings) invading no-drone zones. We adopt a
Multilayer Perceptron neural network to identify and classify UAVs in real-time, with 90% accuracy. For
the tracking task, we use a Random Forest model to predict the position of a drone with an MSE ≈ 0.29,
MAE ≈ 0.04, and R2 ≈ 0.93. Furthermore, coordinate regression is performed using Universal Transverse
Mercator coordinates to ensure high accuracy. Our analysis shows that URANUS is an ideal framework for
identifying, classifying, and tracking UAVs that most Critical Infrastructure operators can adopt.

INDEX TERMS UAV, security, safety, drone, cyber physical systems, machine learning.

I. INTRODUCTION AND MOTIVATION
In the last years, Unmanned Aerial Vehicles (UAVs) com-
monly known as drones have become a crucial technology for
several types of applications such as environmental monitor-
ing [1], [2], [3], smart grids control [4], crime prevention [5],
[6], smart cities management [7], and the military oper-
ations [8]. According to authoritative marketing research
industries, the UAV market is estimated to be 500,000 units
in 2025 and is projected to reach 6.9 million units by 2030.
The global drone logistics & transportation market accounted
for US$24.58 million in 2018 and is expected to grow at a
Compound Annual Growth Rate (CAGR) of 60.6% over the
forecast period 2019− 2027, to account for US$1,626.98 mil-
lion in 2027 [9]. Factors including increasing developments

in the e-commerce sector [10] and rising acceptance owing
to various benefits offered are significantly driving the global
drone logistics [11] & transportation market [12].

Most commercial drones are autonomous or remotely con-
trolled vehicles, that leverage the standard Wi-Fi frequency
bands, i.e. 2.4 GHz [13] and 5.0 GHz [14]. They can be pro-
grammed to execute tasks that span from object tracking [15],
and delivery, to committing illegal activities such as privacy
violations, destroying critical infrastructures, and harming
public safety during crowded events [16]. Given the above
threats, several countermeasures [17] based on audio, video,
thermal, and Radio Frequency signals have been exploited in
the last few years for drone identification and tracking. How-
ever, the performance of these systems is affected when the
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surrounding environment is impaired (e.g. weather conditions,
noise, low light visibility). Indeed, most critical infrastruc-
tures adopt Radio Frequency / Direction Finding (RFDF)
and kinematics radar sensors that track all types of drones
by analyzing the reflected signals and comparing them to a
database for drone characterization. Due to the high number
of unauthorized UAVs operating in the skies, it is crucial to
deploy a system framework to track, classify and identify
timely, malicious UAVs by leveraging the data provided by
radar sensors.

In this paper, we design URANUS, a Machine Learning
(ML) framework that analyzes a dataset with data extracted
from two RFDF sensors namely Diana and Venus, and two
radar sensors namely Arcus and Alvira to (i) identify, (ii)
classify, and (iii) track drone(s) on a North Atlantic Treaty
Organization (NATO) military base (placed in the Counter
Unmanned Aerial System (C-UAS) test centre in the Nether-
lands).

Our framework is trained over a real dataset derived from a
data source of UAVs flights provided by NATO [18].

Our prototype adopts popular libraries and tools such as
PyTorch, scikit-learn and pandas, available online as open
source code [19].

Our main contributions include the following:
1) Identify, classification, and tracking of one or more fly-

ing drones;
2) Classification of fixed-wing and multi-copter drones;
3) Analysis of both RFDF, and kinematics sensors to detect

drones in Critical Infrastructure (CI);
4) Real-time framework execution.
The remainder of this paper is organized as follows:

Section II introduces the technical background. Section III
describes the reference scenario and adversarial model, while
Section IV details the dataset analysis. Section V shows the
proposed architecture, while experiments and results are de-
scribed in Section VI. Section VII reviews the related works,
and Section VIII concludes the paper.

II. PRELIMINARIES
In this section, we introduce some preliminary knowledge
adopted throughout the rest of the manuscript. Specifically,
Section II-A describes the coordinate systems adopted in this
work, while Section II-B and II-C describes the radar param-
eters and the ML models used in the URANUS, respectively.

A. GCS AND UTM COORDINATE SYSTEMS
The Geographic Coordinate System (GCS) [20] and the Uni-
versal Transverse Mercator (UTM) coordinate system [21] are
two standard techniques to represent locations on the Earth’s
surface. Coordinates systems often use a tuple of real numbers
(x1, x2) to identify an object’s unique location, where x1 ∈ R,
and x2 ∈ R.

Geographic Coordinate System (GCS): Latitude and longi-
tude are used to specify the location of a point on the Earth’s
surface. The latitude (1) measures the distance north or south
of the Equator, while the Longitude (2) measures the distance

east or west of the Prime Meridian:

Latitude = arcsin

(
Z√

X 2 + Y 2 + Z2

)
, (1)

Longitude = arctan

(
Y

X

)
, (2)

where X , Y , and Z , represent the Cartesian coordinates of
the object to track. Longitude and latitude are defined in the
Degrees Minutes Seconds (DMS) form or using Decimal De-
grees (DDs) values. An example with coordinates expressed
in DMS format is:

(−73◦ 58′ 2′′, 40◦ 44′ 58′′)
while the same place expressed in DD format is:

(−73.967385, 40.749598).

Universal Transverse Mercator (UTM): The Earth is seg-
mented into 60 longitudinal zones, each spanning 6 degrees
of longitude [22]. Within each zone, a transverse Mercator
projection is used to represent locations:

Easting = Zone Number× 105 + Easting Value, (3)

Northing=Northern Hemisphere Constant+Northing Value,
(4)

where Zone Number, Easting Value, and Northing Value rep-
resent the longitudinal zone, the distance east of the central
meridian in meters, and the distance north of the Equator in
meters, respectively. Further, the Northern Hemisphere has a
constant of 0, and the Southern Hemisphere has a value of
10,000,000 [22]. The Zone Number and the Hemisphere are
adopted to uniquely identify locations within the UTM grid.
An example of coordinates in UTM is:

18 N 587173 4511473

where 18 in the UTM zone, N is the Northern Hemisphere,
587173 is the Easting value and 4511473 is the Northing
value.

To the best of our knowledge, we are the first to highlight
better performances of an ML model that adopts UTM coor-
dinates instead of the canonical GCS. In our regression tests
with Random Forest (RF) models, the mean difference be-
tween real and predicted values is around 18 meters, a relevant
value. Furthermore, the minimum margin between real values
and positions provided by Radar Sensor Systems was set to 50
meters by project settings.

B. RANGE AND BEARING RADAR PARAMETERS
In radar systems, Range and Bearing are two fundamental
concepts used to determine the location of a target.

Range: The range refers to the distance between the radar
system and the target. It represents the radial distance from the
radar transmitter/receiver to the reflecting point on the target.
The range (5) is typically measured in units such as meters or
nautical miles, as follows:

R = c · TR

2
, (5)
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where c = 3 · 108 m/s is the speed of the light, and TR is the
transmitted pulse [23].

Bearing: In radar systems, bearing refers to determining the
direction from which a detected signal or echo comes. The
True Bearing, referenced to true north, for a radar target is the
angle formed between true north and a line directly aimed at
the target [24]. Radar systems determine bearing by analyzing
the angle at which the received signal is stronger. This latter
is usually achieved by using an antenna array or rotating the
antenna to scan the surrounding environment.

C. MACHINE LEARNING ALGORITHMS
This section introduces the ML algorithms adopted in our
framework.

Multilayer Perceptron (MLP): Multilayer Perceptron
(MLP), also known as Deep Feedforward Networks or Feed-
forward Neural Networks [25], it is a type of Artificial Neural
Network (ANN) [26] [25] widely used in Machine Learning
and pattern recognition tasks. Specifically, we adopted this
technique for the classification task. A MLP mimics how neu-
rons interact and work in the human brain. It is characterized
by a layered architecture consisting of multiple interconnected
nodes organized into three primary layers: the input layer,
one or more hidden layer(s), and the output layer. The hidden
and output layers have neurons connected to the neurons of
their preceding layers and network connections; further, the
topology can be fully connected or partially connected.

In MLP neural networks, each unit performs a biased,
weighted sum of inputs and passes this activation level
through a transfer function to generate output. The Rectified
Linear Unit (ReLU) activation function is the preferred default
activation function for most feed-forward neural networks.
When applied to the output of a linear transformation, it re-
sults in a nonlinear transformation.

MLPs have demonstrated outstanding capabilities in mod-
elling complex data patterns for several deep learning archi-
tectures. They can be customized with several hidden layers
and neurons to accommodate the complexity of different
tasks. Each unit resembles a neuron, i.e., it receives input from
many other units and computes its activation value.

By tuning the weights of the connections between the nodes
in the network, the model learns to predict the target out-
put. Further, an optimization algorithm is adopted to adjust
the weights (i.e. stochastic gradient descent). In particular, it
minimises the difference between the predicted and the actual
target output.

The MLP model is represented as a function f (x) that maps
the input data x to the output y. The function f (x) is expressed
as a composition of other functions, as shown in the following
equation:

fa(x) = fL ( fL−1(. . .( f2( f1(x, θ1), θ2). . .), θL−1), θL ) (6)

where fi is the nonlinear transfer function of the ith hidden
layer, θi represents the weights connecting the nodes in layer
i and layer i + 1, and L is the number of layers in the MLP.

Random Forest (RF): It is a typical ML algorithm [27], [28]
used for the regression task. A RF model is an ensemble of
decision trees that can handle high-dimensionality datasets.
Each decision tree is trained on a subset of the data and a
subset of the features. The output of the individual decision
tree is the average or mode for regression or classification,
respectively.

Let Sum of Squared Errors (SSE) be the sum of the squared
differences between the predicted and actual values of the
target variable. In the regression form, the splitting criteria for
node creation follows the largest reduction in the value of the
SSE for the predicted output. The splitting process continues
until a stopping criteria (such as a maximum tree depth or a
minimum number of data points in a leaf node) is defined. The
output of the RF for regression is the average of the predicted
values of the individual decision tree. The output value of a
RF for regression is:

ŷ = 1

M

M∑
i=1

fi(x) (7)

where ŷ is the predicted value of the target variable, M is the
number of decision trees in the RF model, and fi(x) are the
predictions of the i − th decision tree for the input features.
We adopt the Random Forest in URANUS for the coordinates
regression task.

D. PREPROCESSING PRIMITIVES
This section introduces the preprocessing primitives used to
transform the original data for the ML models [29].

Dataset Standardization: It is an essential preprocessing
step in ML, suitable for algorithms sensitive to the scale of
input features [30]. In order to identify patterns and relation-
ships with high accuracy, input features should have the same
scale. Input data should be adapted to have 0 mean and a
standard deviation equal to 1. To this aim we apply 8 to every
single feature of the initial dataset:

xs f = x − μ

σ
(8)

where, x is the considered feature value, μ and σ represents
the mean and the standard deviation of the feature, and xs f is
the final scaled feature value.

One-hot Encoding: It is a widely used technique [31], [32]
for converting categorical data into a binary matrix format
suitable for ML models. Different algorithms require numeri-
cal input, and the one-hot encoding makes the representation
of discrete categories as unique binary vectors.

Specifically, the 9 shows how this technique encodes cate-
gories:

bi, j =
{

1 if i = j

0 otherwise
(9)

The vector and category index are represented by i and j,
respectively, while the output is a binary vector namely b̄. For
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FIGURE 1. Scenario assumed in this work.

any given observation, the binary vector b̄ column correspond-
ing to its category is marked with a 1, while all other columns
are set to 0. This representation ensures the avoidance of
incorrect relational order between categories.

Label encoding: This widely used technique converts cate-
gorical data into numerical form [25] and makes it machine-
readable, as algorithms work exclusively with numerical data.
In this approach, each unique category or label within a fea-
ture is assigned a distinct integer value. For instance, for a
categorical variable with values like low, medium, and high,
label encoding might assign these categories values of 0, 1,
and 2, respectively. The primary advantage of label encoding
is its simplicity and ability to retain a compact dataset repre-
sentation.

III. REFERENCE SCENARIO AND ADVERSARIAL MODEL
This section introduces the scenario and the adversarial
model considered in our work. Specifically, Section III-A de-
picts the system model and describes the assumptions, while
Section III-B describes the adversary model.

A. SYSTEM MODEL AND ASSUMPTIONS
The scenario assumed in this work is depicted in Fig. 1. We
consider the problem of tracking, classifying, and identify-
ing one or multiple drones (multi-copter or fixed wing) in a
No-Drone Zone [33]. It is worth noticing that we refer to the
scenario described by NATO in [18].

The main components of the considered scenario are the
following:
� No-Drone Zone (NDZ) - The Federal Aviation Adminis-

tration (FAA) introduced the term NDZ to describe an
area that does not allow to operate by using a drone
or unmanned aircraft system. Examples of NDZ areas
are airports, restricted airspaces, government agencies,
or also temporary flight restrictions areas such as sports
events, presidential movements, and security-sensitive
areas.

� Drone - The drone(s) assumed in this scenario are classi-
fied with the features reported in Table 1. Each drone is

TABLE 1. Classification and Characteristics of the Drones

TABLE 2. Description of the Sensor Types With Their Respective Positions

characterized by the commercial name, a code field, and
a unique identifier assigned during the drone configura-
tion phase. The airframe represents the type of drone, i.e.
a multi-copter or a fixed-wing drone; the weight specifies
the maximum weight of the drone, and velocity indicates
the maximum speed of the drone. Radar cross-section
(RCS) or radar signature measures how much energy the
drone reflects towards a radar, i.e. the area seen by radar.
Frame Cross Section Frontal (FCSF) defines a frame of
the frontal measurement of the cross-section.

� RFDF-Radar Sensor Network - The No-Drone Zone is
monitored by two RFDF sensors, namely Diana and
Venus, and two radar sensors i.e. Arcus and Alvira
(all of them are fictitious names). From one side, Di-
ana and Venus sensors acquire data such as time-of-
arrival (timestamp), Receiving Signal Strength (RSS),
and beamforming to localize the target. Diana adopts a
linear array antenna to estimate the bearing of an inter-
cept; it only reports detections in a 180◦ sector even if
the target is located in the opposite sector. Venus uses
a circular array antenna with no bearing ambiguity and
provides no range information. Conversely, Arcus and
Alvira sensors are 2D radar and 3D radar, respectively.
These sensors provide crucial information such as lati-
tude, longitude, altitude, and timestamp, as well as the
bearing and range of the drone during the flight. Table 2
summarizes the name, the type, and the sensor location
(latitude and longitude coordinates).

� Counter Unmanned Aerial System - It is a central server
unit adopted to collect and process (via URANUS) the
data generated by the sensor network. The system is
used to detect, identify and track the presence of any
unauthorized or malicious drone in the No-Drone Zone.

As mentioned above, our scenario assumes the presence
of a C-UAS operator in a NDZ, e.g., the one controlling a
generic critical infrastructure. Such operators are interested
in monitoring the critical infrastructure, looking for malicious
and unauthorized UAVs approaching a sensitive area. To this
aim, the operators adopt an RFDF Radar sensor network to
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TABLE 3. Drone(s) Model Involved in Each Scenario

capture crucial information in the monitored area to identify,
classify and track the owner of the UAV. In this paper, we
consider three macro-scenarios as follows:
� Scenario 1.1, 1.2, 1.3, and 1.4. In these scenarios, we

assume a single UAV (multi-copter) is flying in the NDZ.
� Scenario 2.1 and 2.2. In these scenarios, we assume two

UAVs (multi-copter) are flying in the NDZ.
� Scenario 3. In this scenario, we assume one UAVs (fixed-

wing) is flying in the NDZ.
Each flight scenario involves one or more drones with in-

dividual flight patterns. According to Table 3, the various
scenarios include different drones.

We highlight that the aforementioned scenarios are only a
reference for the considered dataset. Our framework can be
applied to other potential environments, such as surveillance
towers in critical infrastructures, military bases, ports, and
airports.

B. ADVERSARY MODEL
In all the scenarios, we assume that an adversary E has the
capabilities to radio-control a single drone or a swarm of
drones, and it is interested in reaching a target inside a NDZ.
The aims of the adversary can be manifold, e.g., violating the
privacy of the area by recording video and/or taking photos of
a sensitive area, using it as a bomb in critical infrastructures
such as airports, oil&gas industries, nuclear power plants,
water treatment facilities, ports, telecommunication networks,
or to threat people safety by carrying explosives or radioactive
materials or colliding with airplanes during the take-off and
landing procedures. Moreover, the adversary E can control a
drone in several ways: (i) through a wireless remote controller,
(ii) remotely via the Internet (i.e. the drone supports embedded
Subscriber Identity Module (SIM), standard SIM, and cellular
Long Term Evolution (LTE) or 5 G technology), (iii) by pre-
programming it through way-points to enable the autonomous
flight. Conversely, we assume that the drones broadcast data
(for several purposes) via the onboard radio transmitter for the
whole flight [34].

IV. DATASET ANALYSIS
In this section, we describe the data source used to develop
the URANUS framework. Further, we outline the challenges
and the proposed techniques to make the dataset suitable for
the training and testing phases for our ML models.

Dataset Preprocessing: Preparing raw data for ML anal-
ysis and modelling is a critical step. This step is crucial to
guarantee that the data are (i) consistent, (ii) flawless, and
(iii) complete. These characteristics allow ML models to learn
efficiently from the data and make highly accurate predictions.
We considered a data source provided by NATO containing
real UAV flight measurements recorded in 2020.

The data source is available online as Comma-separated
Values (CSV) format [18] which contains 65 files (366 MBs)
organized in two main sub-folders, namely training and test
folder.

Due to the lack of label information, the test data folder
is not considered in our work. We leveraged only the training
folder data that contains 37 files (194 MBs) organized in seven
scenarios. In detail, for each scenario, we have data related
to (i) radar and RFDF systems sensor and (ii) UAV flight
parameters. Specifically, Table 4 and Table 5 report data ex-
amples from log and sensor data files. It is worth noticing that
for every single drone, the log file records UAVs parameters
such as the timestamp, latitude, longitude, speed, altitude, and
drone type.

Furthermore, the sensor data features such as the RCS, RF,
and the UAV parameters are stored along with the related
timestamp. Accordingly, the timestamp is adopted as the in-
dex of each data sample to merge and correlate the sensor
readings and the drone data logs.

Dataset Generation: This procedure includes a summary of
the operations performed in the dataset generation. The steps
are detailed in Algorithm 1 as following:

1) For each scenario, the algorithm starts by loading the
log file of the drone and filtering the data considering
the sample window of 1 sec, used as the index. Suppose
multiple samples are associated with the same times-
tamp index (i.e. when the difference between each of
them is less than 1 ms). In that case, the algorithm
considers the first one appearing in the CSV file of the
log file being analyzed.

2) After selecting the row from the log, the algorithm scans
the CSV file of each radar and RFDF system of the same
scenario to bind the rows found based on the value of
the timestamp index. If multiple samples are selected,
the algorithm filters consider the closest one to the log’s
timestamp; otherwise, the algorithm inserts a blank row.

3) Data enhancement operations are performed on ev-
ery sample, i.e. (i) the conversion of the coordinates
from the GCS to UTM coordinates system, (ii) adding
columns with extra data valuable to help training al-
gorithms or (iii) the number of expected drones in the
scenario or its classification. Table 6 shows an example
of coordinates conversion from the GCS system to the
UTM system.

The final dataset consists of 5,685 samples with 57
columns, used for the dataset analysis described in Section VI.
Table 7 shows the full list of the columns of the merged
dataset, while Table 10 shows a small dataset sample with a
subset of its real columns.
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TABLE 4. Data Sample From Drone Log of Scenario 1.1

TABLE 5. Data Sample From Radar Sensor ARCUS, in Scenario 1.1

FIGURE 2. Proposed model architecture.

TABLE 6. Example of Coordinates Conversion From GCS to UTM

V. PROPOSED ARCHITECTURE
In this work, we propose a real-time ML framework called
URANUS to identify, classify and track UAVs. As shown in
Fig. 2 the input is a vector x̄ with the processed information
coming from radar and RFDF systems. At the same time, the
output is the identification, classification, and position of an
UAV, represented as y = [class, coordx, coordy]. In particular,

the class can assume the following values {0, 1, 2, 3, 4, 5, 6},
where 0 defines the case in which no drone is inside the NDZ,
and the remaining values outline the presence of drones. More
information are detailed in Section VI-VI-A.

In the following sections, we describe each part of
the model schema shown in Fig. 2. Specifically, in Sec-
tion V-A, we present dataset preparation steps, while in Sec-
tion V-B, we describe the several components adopted in the
framework.

A. DATASET PREPARATION
Let us consider as input vector x = {alvt ∪ arct ∪ diant ∪
vent } ∈ R1,n, where alvt, arct, diant, vent are the vector
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Algorithm 1: Algorithm for Dataset Generation.
Functions:
� load_log_ f iles(i): It loads the log file(s) of i-th

scenario.
� load_data(i): loads the CSV files related to Alvira,

Arcus, Venus, and Diana of i-th scenario.
� load_sample_data_close_to_t imest p(k): It scans

the scenario CSV files of Alvira, Arcus, Venus, and
Diana and considers, for each of them, the sample
with the closest timestamp of the considered one.

� preprocess_data(k): For each element of the k-th
sample, this function applies the Standard Scaler and
the Label Encoder.

� enhancement_operat ions(k): It enhances the k-th
sample with extra information (e.g. conversion of
coordinates or information related to the scenario).

Inputs:
� li: log file(s) of the i-th scenario.
� ti: sensor Data, coming from Alvira, Arcus, Venus,

and Diana, of the i-th scenario.
Output:
The dataset T is used to train ML models.
1: procedure DatasetGeneration
2: i← 0
3: for i← 0 to len(scenarios) do
4: li ← load_log_ f iles(i)
5: ti ← load_data(i)
6: k← 0
7: for k← 0 to len(li ) do
8: if (t imest pk − t imest pk+1) ≥ 1 s then
9: load_sample_data_close_to_t imest p(k)

10: preprocess_data(k)
11: enhancement_operat ions(k)
12: end if
13: k← k + 1
14: end for
15: i← i + 1
16: end for
17: end procedure

data of Alvira, Arcus, Diana, and Venus at time t , respec-
tively. Specifically, n is the sum of the columns of the
vector data provided by the aforementioned sensors. The
output vector is y = [class, coordx, coordy] ∈ R1,3, where
class ∈ N, coordx ∈ R and coordy ∈ R. The parameter class
represents the identification and classification of an ob-
ject, while coordx and coordy depict the position of an
UAV.

The features from the sets x1,i, x2,i, x3,i, x4,i where i is
the scenario index—sourced from Arcus, Alvira, Diana, and
Venus, respectively—are combined with the two log files l
namely l1,i (log file of the first drone) and l2,i (log file of the
second drone). The goal is to build a consolidated dataset,
namely T , for training ML models. Table 8 summarises the
notations throughout this article.

B. MODEL SETTINGS
The developed framework is designed to perform multiple
operations to identify, track, and classify potential drones. The
main tasks of URANUS performed in real-time are:
� The framework starts by collecting all the information

from the available sensors (both the Radar systems and
the RFDF systems).

� Then URANUS identifies if there is a drone in the NDZ
zone, using a binary classification, i.e., DRONE - NO
DRONE.

� When a drone is detected, the framework shows its posi-
tion on a map and classification information.

Moreover, we verify the the design of the proposed ML
model to achieve a high performance. After evaluating differ-
ent network configurations, the final setting is the following:
� Radar Sensor Data: This module communicates with

information sources - radars and RFDF systems, specif-
ically - to collect data and make it available for subse-
quent modules.

� Dataset Filter: It is composed of a Label Encoder and a
Standard Scaler [35], as described in Section II-D. This
module converts the input sensor data to values compat-
ible with the network, for instance, adapting numerical
values to be more suitable for ML models or converting
raw categorical data into numbers. This module is also
responsible for selecting specific parts of the input fea-
tures provided as input to ML models according to their
needs.

� MLP Network: This network performs the identification
and classification tasks, returning an output indicating
whether a single drone or multiple drones are present
within the NDZ. As depicted in Fig. 3, the network is
defined by 12 input neurons, 218 (512× 512) hidden
neurons, and 7 output neurons. Further we adopt the
One-Hot encoding [32] in order to represent the 7
categorical classes (CASE_UNKNOWN, CASE_FIXED_
WING, CASE_MAVIC_PRO, CASE_PHANTOM4_PRO,
CASE_MAVIC2, CASE_PHANTOM4_PRO_MAVIC2,
CASE_PHANTOM4_PRO_MAVICPRO—further details
are described in Section VI). For example, the scenario
that involves the presence of two drones in the NDZ
(CASE_PHANTOM4_PRO_MAVICPRO) will be encod-
ed with the array [0,0,0,0,0,1].

� RF Regressor: This model has 250 estimators used to
predict the position of the identified drones, and it uses
a mix of information from the dataset T and the MLP
network.

� Output: This module interacts with both the MLP Net-
work and the RF Regressor, consolidating their out-
comes in a single output array. The results are then
displayed on the interface, such as on a map.

According to the proposed defined model (Fig. 2), the MLP
layer only accepts standardized data (for continuous values)
or categorical data expressed using a Label Encoder (for cat-
egorical values), whereas the RF Classification and Regressor
layer accepts raw, unprocessed data.
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TABLE 7. Full Representation of the Columns in the Merged Dataset
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TABLE 8. Notation and Brief Description

VI. EXPERIMENT AND RESULTS
In this section, we summarize the rationale of the dataset
analysis, the metrics and the results, and the implementation
details of the URANUS framework. In Section VI-A, we
present the preliminary analysis. In this step, we estimate
the useful and exploitable information of the dataset T and
some details regarding the labelling procedure required to
train the considered ML models. Next, in Section VI-B,
we evaluate the performance of the MLP and RF trained
models. Finally, we provide the implementation details in
Section VI-C.

A. RATIONALE OF THE ANALYSIS
As depicted in Fig. 1, RFDF sensors are positioned close
to each other in the center of the test field, while radars
are positioned at the edges of the NDZ. Radar sensors pro-
vide data on the classification, position, bearing (degrees),
range (meters), and reflection of the flying entities. These
data are based on the kinematic and reflectivity characteris-
tics of the radar. RFDF sensors, on the other side, contribute
to identify UAVs (or the drone controller) based on the RF
signature. Before the design phase of ML algorithms used
in URANUS, a preliminary analysis phase is performed in or-
der to (i) estimate the number of useful information used, (ii)
set project parameters, and (iii) split the dataset into subsets
(train, validation, and test).

In order to train the MLP network using a supervised pro-
cedure, the reference_classification column is added to the

dataset during the preprocessing phase, as shown in Table 7.
The adopted procedure assigns one of the following values for
every row of the dataset T :
� CASE_UNKNOWN: No drone is identified.
� CASE_FIXED_WING: The Parrot fixed-wing drone is

identified.
� CASE_MAVIC_PRO: A multi-copter DJI Mavic Pro is

identified.
� CASE_PHANTOM4_PRO: A DJI Phantom 4 is identi-

fied.
� CASE_MAVIC2: A DJI MAVIC 2 drone is identified.
� CASE_PHANTOM4_PRO_MAVIC2: Both a Phantom 4

Pro and Mavic 2 are identified.
� CASE_PHANTOM4_PRO_MAVICPRO: Both a Phantom

4 Pro and a Mavic Pro are identified.
The classification highlighted corresponds to the position

detected by the radar sensor systems, specifically Alvira
and Arcus. If the position of the identified object by the
radars is within a deviation of 50 meters from the drone’s
current position - recorded in the log file(s) - then the
procedure assigns to the highlighted row a category rang-
ing from CASE_FIXED_WING to CASE_PHANTOM4_PRO_
MAVICPRO, depending on the nature of the identified ob-
ject(s). If not, it assigns CASE_UNKNOWN. Specifically, fixed-
wing and quadcopters (also known as multi-rotor drones)
show specific differences. Indeed, the adopted classification
procedures take into account their different properties, such
as (i) speed, (ii) flight time, and (iii) manoeuvrability. For
instance, fixed-wing drones fly faster than multi-rotor drones,
making them ideal for exploring large sites quickly. Based on
these assumptions, it is possible to estimate the number of
useful samples to train ML algorithms, as shown in Table 9.
In particular, the table shows a summary of the information
available in the generated dataset T , starting from the (i) drone
logs, (ii) radar sensor data, and (iii) RFDF sensors data.

As the dataset is divided into scenarios and not all samples
contain helpful information for training, the amount of useful
information is considerably limited. Indeed, on average, only
31% of the dataset contains a real drone position that is useful
for our training.

B. METRICS AND RESULTS
This section describes the training and design procedures
to build the modules that process the raw input data. We
introduce the metrics and the results for the MLP classi-
fier in Section VI-B1, as well as for the RF regressor in
Section VI-B2.

1) MLP CLASSIFIER
The first network trained during our development phase is the
MLP classifier. In general, a large amount of data is required
to train MLPs for minimizing the selected loss function and
train them on how to generalize from the input dataset. The
initial 5,685 samples of the dataset T are split into three
sets: 70% for training, 1.5% for validation and 28.5% for
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TABLE 9. Study of the Useful Information Exploitable for the ML Models for Each Scenario

TABLE 10. Representation of a Portion of the Generated Dataset as an Example With Some Rows and Columns

testing. A standardization procedure is employed to enhance
the network’s training process, and a Label Encoder is used
to encode categorical data in numerical values. For the output
layer, One-Hot encoding is applied to represent the categories.

The training procedure aims to minimize a loss function
evaluated during the training process on the train and val-
idation sets. At the end of the process, the final network
performances are evaluated on the test set. For the MLP net-
work classifier, the selected loss function is the Categorical
Cross-Entropy Loss, defined by 10. The predicted probability
distribution for each input is a vector of C values, where C is
the number of classes. Each value represents the probability
of the input belonging to a specific class. The true probability
distribution for each input is also a vector of C values with the
same meaning. The categorical cross-entropy loss is defined
as:

CE = −
C∑

i=1

yi log(ŷi ) (10)

where CE is the value of the Categorical Cross-Entropy Loss,
yi and ŷi are the true and predicted probability of the input
belonging to class i, respectively.

The training procedure is performed during the develop-
ment phase for 50 epochs, specifically with a mini-batch size
of 5 and a Learning Rate of 0.003. Further, we adopt the Adam
optimizer [36] to provide adaptive learning rates for faster
and more stable convergence of our Deep Learning (DL)

FIGURE 3. Schema representation of a MLPs network used in the
URANUS framework for classification task. The considered version is
structured with 12 neurons in the input layer, 218 (512 × 512) neurons in
the hidden layer(s), and 7 neurons in the output layer.

model. Fig. 4 shows the evolution of the loss value with the
epochs.

The final values of the loss for the last epoch are 0.18
and 0.13, for the training and validation phases, respectively.
Table 11 shows a summary of the final performances of the
MLP classifier, while Fig. 5 shows its Confusion Matrix.
Specifically, the Confusion Matrix is used to evaluate the per-
formance of classification models by summarizing the counts
of true and false positives and negatives. The four metrics
derived from the confusion matrix are Precision, Recall, F1-
score, and the Support of each class, represented in (11),(12),
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FIGURE 4. Training and Validation losses for the MLP classifier used for
the Identification and Classification tasks.

TABLE 11. Summary of the Performances of the MLP Classifier Network

FIGURE 5. Confusion matrix of the MLP network classifier.

(13), and the number of samples in each class, respectively.

Precision = T P

T P + FP
(11)

Recall = T P

T P + FN
(12)

F1 = 2× Precision× Recall

Precision+ Recall
(13)

In details, the True Positive (TP) represents the model ac-
curately predicts the presence of a drone, False Positive (FP)
provides the inaccurate prediction of a drone’s presence, and
False Negative (FN) depicts an inaccurate prediction of a
drone’s absence.

2) RF REGRESSOR
Considering the RF network, we filtered the main dataset T by
obtaining a sub-dataset with 1,343 samples. The 80% (1,074
samples) are used for the training phase, and the 20% (269
samples) for the test phase. It is worth noticing that we do not
adopt any standardization procedure in this case, unlike what
is done for the MLP classifier. We use the Label Encoder only
for the categorical input columns in the derived subset of the
initial dataset to manage them as numbers.

The final training results for the RF regressor are evaluated
by using the Mean Squared Error (MSE), Mean Absolute Er-
ror (MAE), and R2 metrics as depicted in (14), (15) and (16),
respectively:

MSE = 1

n

n∑
i=1

E [(ŷi − yi )
2] (14)

MAE = 1

n

n∑
i=1

|ŷi − yi| (15)

R2 = 1−
∑n

i=1(yi − ŷi )2∑n
i=1(yi − ȳ)2

(16)

where n is the number of data points, yi is the i-th observed
value of the dependent variable, ŷi is the i-th predicted value
of the dependent variable, and ȳ is the mean value of the
dependent variable across all observations.

The MSE , MAE , and R2 amount to 0.29, 0.04, 0.93, re-
spectively. The results confirm the robustness and validity of
the chosen model to perform this regression task.

Further, to assess the performance of the regressor, the
trained model uses each scenario of the dataset T as input
to estimate the medium difference between the real positions
of the drone(s) and the predicted ones. Fig. 7 shows the mean
differences between predicted and real drone positions in each
scenario. In all the considered scenarios, the mean regression
error is below 100 meters, and the models perform better when
there is only one drone in the scenario. This behaviour is
highly predictable, given the low number of sensors available
for training the models and detecting drones.
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FIGURE 6. Screenshot of the proposed framework in real-time mode. The
blue icon depicts the real position of the drone, while the red icon
represents its predicted position. Meanwhile, the other radar icons depict
the static positions of both radars and RFDF sensors.

FIGURE 7. Mean differences (in meters) between predicted and real drone
positions in the various scenarios.

C. SETUP AND IMPLEMENTATION
The development and test phases are performed on a custom
desktop machine running Arch Linux with the Linux Kernel
6.2.11 and CUDA 12.1 [37]. The hardware includes an AMD
Ryzen 7 2700X Eight-Core Processor with 32 GB of RAM
and an NVIDIA 1080 GPU.

For the ML models design and implementation, we devel-
oped the solution in Python 3. In particular, we adopted the
following libraries:
� PyTorch 1.13.1 [38]: machine learning framework used

for developing and training neural network-based deep
learning models in Python. We used this library to model
the MLP network.

� sklearn 1.2.2 [39]: for the Standard Scaler and Label En-
coder, the train/test dataset split and the Random Forest
algorithm implementation.

� numpy 1.24.2: a common Python library useful to work
with arrays and matrices.

� pandas 2.0 [40]: a common Python library, particularly
for the DataFrame object.

� matplotlib 3.7.2: used to show and save graphs.
� PyQt 6.5 [38]: the binding of the Qt libraries for Python.

This library has been used to create the application’s
main Graphical User Interface (GUI), exploiting its
cross-platform nature.

� Leaflet 1.9.4 [41]: the Javascript Geographic Information
System (GIS) library used to show real and predicted
objects on the interactive map of the base.

Fig. 6 depicts the main functionalities of the URANUS
framework, such as drone(s) identification, classification, and
real-time tracking on the map.

VII. RELATED WORK
In this section, we review the state of the art on the Radio Fre-
quency (RF) machine learning and deep learning approaches
adopted to detect, identify and track drones. Table 12 sum-
marizes the information of related literature and presents the
main features of these methods.

For instance, Al-Sa’d et al. [42] collected, analysed, and
recorded raw RF signals from several types of drones in
different states. Furthermore, they leveraged a deep learning
technique to detect and identify malicious drones and their
flight mode. The authors designed three Deep Neural Net-
works (DNNs) to (i) detect the drone, (ii) detect the drone and
recognize its type, and (iii) detect the drone, and recognize
its type and its state. The authors do not consider fixed-wing
drones, and they do not perform any path-tracking operation.

Basak et al. [43] focused on the development of (i) RF
drone signal detection, (ii) spectrum localization, and (iii)
drone classification by using a two-stage technique. In the first
stage, they adopt the Goodness-of-Fit (GoF) sensing for drone
detection and the Deep Recurrent Neural Network (DRNN)
framework for drone classification. In the second stage, they
use the You Only Look Once - lite (YOLO-lite) framework
to perform the combined drone RF signal detection, spectrum
localization, and drone classification. However, neither multi-
ple detections of drones nor trajectory tracking on a map are
considered.

Al-Emadi et al. [44] proposed a real-time RF drone de-
tection and identification framework to inspect the radio
spectrum between the drone and its controller. The solution
adopts a Convolutional Neural Network (CNN) to train and
test an RF dataset released by [42]. The experimental results
show the effectiveness and feasibility of using RF signals in
combination with a CNN to detect and identify a drone. The
proposed solution achieves an F1 score of 99.7% for drone
identification. Nevertheless, the authors do not consider fixed-
wing drones and drone path-tracking operations.
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TABLE 12. Comparison and Overview of Related Contributions on Drones RF Identification, Classification, and Tracking Using Machine Learning and Deep
Learning Techniques

Allahham et al. [45] investigated deep learning techniques
to perform (i) drone detection, (ii) drone detection and
type identification, and (iii) drone detection, type and state
identification by using a three multi-channel 1-dimensional
CNN. The dataset adopted in the experiments is Drone RF
dataset [51]. The performance for (i) shows an average accu-
racy of 100%, while (ii) has an accuracy of 94.6%, and, finally,
the last one (iii) presents an accuracy of 87.4%.

The authors in [46] developed an RF machine-learning
drone detection and identification system by analyzing the
low-band RF signals emitted by the flight controller. They
proposed three machine learning models based on eXtreme
Gradient Boosting (XGBoost) algorithm to detect and identify
(i) the presence of a drone, (ii) the presence of a drone and
type, and (iii) the presence of a drone, type and the operational
mode. The accuracy achieved by the three models is 99.96%,
90.73%, and 70.09%, respectively. The higher the model com-
plexity, the lower the model accuracy. This latter implies the
low effectiveness of using the frequency components of a sig-
nal as a signature to detect the activities performed by drones.
From the results achieved by the models, we deduced that
using the frequency components of a signal as a signature to
detect drone activities is not very effective. Trajectory tracking
on a map is not considered in this case.

Sazdić-Jotić et al. [47] proposed RF detection and identi-
fication algorithms to detect and identify single or multiple
drones. They built an RF dataset by considering scenarios
with (i) a single drone, (ii) two drones, and (iii) three drones.
They detect and identify a single drone with an accuracy of
99.8% and 96.1%, respectively, while the results of detecting
multiple drones show an average accuracy of 97.3%. The
deep learning algorithms used are mainly Fully Connected
Deep Neural Networks (FC-DNN). Although the approach
performs well, the authors do not consider path tracking.

The authors in [48] presented a DRNN that classifies
different drone signals in single-drone and multiple-drone

scenarios. The authors built an RF dataset with nine com-
mercial drone types, and further, they evaluated the proposed
model in Additive white Gaussian noise (AWGN) and mul-
tipath conditions. The model achieved roughly 99% clas-
sification accuracy for single and simultaneous multi-drone
scenarios. However, The described approach does not take
into account drone path tracking and fixed-wing drones.

Ibrahim et al. [49] presented a UAV identification and
hierarchical detection approach by leveraging an ensemble
learning based on K-Nearest Neighbor (KNN) and XGBoost.
The proposed solution can (i) check the availability of a UAV,
(ii) specify the type of the UAV, and (iii) determine the flight
mode of the detected UAV. This approach reaches a classifi-
cation accuracy of around 99%. However, the authors do not
consider drone path tracking.

Wei et al. [50], proposed a drone detection and identi-
fication system based on WiFi signals and high-frequency
RF fingerprints. The system (i) performs UAV detection, (ii)
extracts the features Fractal Dimension (FD), (iii) Axially
Integrated Bispectra (AIB) and Square Integrated Bispectra
(SIB) (iii) adopts the Principal Component Analysis (PCA)
algorithm for the feature dimensionality reduction, and (iv)
applies the Neighborhood Component Analysis (NCA) al-
gorithm for metric learning. Finally, the authors test KNN,
Support Vector Machine (SVM), and RF to identify UAVs.
They verified their model in two different scenarios, i.e.,
indoor with a Signal-to-Noise Ratio (SNR) of 10 dB and
outdoor with a SNR of 3 dB. In the indoor scenario, the
average identification accuracy of FD, AIB, SIB is 100%,
97.23%, and 96.11% respectively. In the outdoor scenario, the
identification accuracy of the same features is 100%, 95.00%,
and 93.50%, respectively. The authors do not consider drone
trajectory tracking.

To sum up, the discussion above confirms that despite
there are several contributions to the state-of-the-art, none of
them analyze and evaluate the proposed techniques on both
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fixed-wing and multi-copter drones for the (i) detection, (ii)
classification and (iii) simultaneous tracking, as well as the
drone path tracking. Such constraints make previous solutions
unsuitable for this problem and call for new domain-specific
approaches. Moreover, none of the approaches in the current
literature perform tracking, identification, and classification in
real-time, but only offline.

VIII. CONCLUSION
In this paper, we proposed URANUS, a framework to prevent
and detect unauthorized UAVs for Critical Infrastructures.
URANUS can identify, classify, and track multi-copter and
fixed-wing drones in real time. Our solution leverages two
components: (i) a network of Radio Frequency/Direction
Finding radar sensor network distributed in the No-Drone
Zone, and (ii) Counter Unmanned Aerial System, a system
adopted to collect and process the data generated by the radar
sensor network and detect the presence of any unauthorized or
malicious drone. URANUS features several properties such
as: (i) it relies only on the wireless data collected from the
RFDF sensor network; (ii) it can be extended to detect, clas-
sify and track different aerial vehicles at the same time; and
(iii) it can be integrated with pre-existing drone detection
solutions in compliance with the existing regulations. At the
same time, our model has been trained on a dataset comprising
UAV flights provided by NATO [18]. Our results show that
the trained models achieve a good accuracy of 90% for the
identification and classification tasks, and we can discriminate
between UAVs and fixed-wings. The MLP model achieves an
accuracy of 90% with a True Positive Rate (Recall) of≈ 0.71,
and a True Negative Rate of ≈ 0.98. The RF model achieves
a MSE ≈ 0.29, MAE ≈ 0.04, R2 ≈ 0.93 on the final dataset.
Finally, we highlight that we also released the source code of
URANUS as open-source to foster the replicability of our re-
sults, encourage the deployment and extension of URANUS,
and check the viability of further research directions.
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