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ABSTRACT Driver Monitoring Systems (DMS) represent a promising approach for enhancing driver
safety within vehicular technologies. This research explores the integration of neuromorphic event camera
technology into DMS, offering faster and more localized detection of changes due to motion or lighting
in an imaged scene. When applied to the observation of a human subject event camera provides a new
level of sensing capabilities over conventional imaging systems. The study focuses on the application of
DMS by incorporating the event cameras, augmented by submanifold sparse neural network models (SSNN)
to reduce computational complexity. To validate the effectiveness of proposed machine learning pipeline
built on event data we have opted the Driver Distraction as a critical use case. The SSNN model is trained
on synthetic event data generated from the publicly available Drive&Act and Driver Monitoring Dataset
(DMD) using a video-to-event conversion algorithm (V2E). The proposed approach yields comparable
performance with state-of-the-art approaches, achieving an accuracy of 86.25% on the Drive&Act dataset
and 80% on comprehensive DMD dataset while significantly reducing computational complexity. In addition,
to demonstrate the generalization of our results the network is also evaluated using locally acquired event
dataset gathered from a commercially available neuromorphic event sensor.

INDEX TERMS Distraction recognition, driver monitoring system driver monitoring system (DMS), event
based vision, neuromorphic sensing, submanifold convolutions, computational complexity.

I. INTRODUCTION
In recent years, the integration of computer vision technolo-
gies into the automotive industry has gained momentum,
driven by goals of improved driver safety and enhanced
human-vehicle interactions [1], [2]. Within driver monitoring
system, detecting distractions holds pivotal importance due to
its role in traffic accidents [3]. Conventional camera sensors,
including visible cameras, radar, and lidar, encounter a notable
challenge arising from the temporal gaps between frames
recorded by these sensors [22]. This “undersampling” can
cause important information to be lost between frames [22],
which is crucial for accurately detecting driver distraction.

Presently, the industry is directing its efforts towards
advancing driver monitoring systems by leveraging neuro-
morphic vision technology [8]. This new approach takes
ideas from neuromorphic event-based vision sensors to bring
fresh perspectives to driver monitoring [6], [7]. These sen-
sors operate differently from traditional cameras, capturing
changes in brightness instead of complete frames at fixed
intervals. They generate events or spikes when significant
brightness changes occur, providing essential information
such as pixel coordinates (location of the change), times-
tamps (corresponding timestamp of the change), and polarity
(whether it was a positive change or negative change) [23].
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While traditional approaches employ multi-sensor fusion and
advanced algorithms to mitigate these challenges, event-based
neuromorphic vision sensors offer a unique approach. They
capture visual data as events triggered by significant bright-
ness changes, sidestepping “undersampling” and motion blur
challenges while achieving real-time detection of rapid lumi-
nance changes [22]. Moreover, event camera manufacturers
provide users with a certain level of flexibility (Event-Bias
setting) to customize the sensitivity of the event camera.
In practical use cases these can be configured dynamically
to handle variations in lighting conditions, and motion sen-
sitivity. Practical examples include adaptation to low-light
environments, high-contrast scenarios due to direct sunlight,
or vehicular headlights. [24], [25], [26], [27]. This facilitates
real-time detection and holds the potential to reshape sensor
systems in the context of advanced optical sensing based
vehicular technologies, marking a path beyond traditional al-
gorithmic solutions.

In this context, event cameras, which selectively cap-
ture relevant changes in brightness, significantly reduce data
throughput and computational requirements. Notably, in in-
stances of motion absence, no unnecessary data is generated.
This inherent sparsity in data stream translates into reduced
processing power, memory, and bandwidth demands, resulting
in potentially significant cost savings in terms of hardware
infrastructure. Additionally, their ability to operate with low
power consumption can lead to extended battery life in
portable applications. While the initial investment in neuro-
morphic camera technology might be higher due to its spe-
cialized nature, the long-term cost benefits can outweigh the
upfront expenditure, particularly in scenarios where computa-
tional efficiency and power conservation are paramount [23].
These advantages highlight the effectiveness of event cameras
compared to traditional camera sensors. While event cameras
offer significant advantages over traditional camera sensors,
their sparse and asynchronous properties introduce distinctive
challenges that require the innovation of novel processing
techniques to adeptly analyze event data. At the same time
they offer much greater temporal resolution than conventional
camera sensors and individual events can be resolved at the
microsecond level [6]. The core challenge is to sort the rel-
evant event data for a particular sensing application from a
much larger asynchronous event stream.

In this study, we focus on the development of submani-
fold sparse neural networks with event cameras to address
the computational efficiency challenges. Inspired by the sub-
manifold sparse convolutional neural network (SSCNN) and
Asynet [13], [15], we propose a sparse-ResNet architecture
as a binary classifier for efficient driver distraction predic-
tion. This architecture optimally exploits the sparseness of
event data, enhancing feature extraction while minimizing
latency. By combining SSCNN with event camera sensing
we significantly reduce the complexity of the computational
analysis enabling efficient, low-power neuromorphic sensing
techniques to be deployed in application fields such as driver
monitoring and human activity sensing.

A key challenge in event camera research is the limita-
tions of event-based datasets. To overcome this limitation, we
employ an event simulator called v2e, to synthesize event-
based datasets from visible video or image sequence data.
By utilizing v2e, we create two synthetic event datasets:
Drive&Act and Driver Monitoring Dataset (DMD) [11], [12].
These datasets allow for the evaluation and validation of our
proposed approach in realistic driver distraction scenarios.
Nine quantitative metrics, including accuracy, specificity, sen-
sitivity, false positive rate, false negative rate, Matthews Cor-
relation Coefficient, recall rate, F1 score and FLOPs(floating-
point-operations) are utilized to analyze the performance of
the classifiers. The results demonstrate the capabilities of the
proposed submanifold sparse neural networks in efficiently
detecting driver distraction. Finally the trained network is
tested on locally acquired real-event dataset to show the gen-
eralization capabilities of the trained network.

Contributions:
1) Development of a sparse-ResNet architecture as a bi-

nary classifier to predict driver distraction, which can
efficiently obtain features from a sequence of events and
make use of the sparse signal for least computational
processing.

2) Synthesis of two different RGB datasets to event
datasets, Drive&Act and Driver Monitoring Dataset
(DMD) to overcome data limitations and to introduce
enough data diversity, using an event simulator called
v2e, which allows for further training and testing of
event algorithms.

3) Validation of low-power neuromorphic sensing through
combining event-camera technology with SSCNN; a
significant improvement in computational efficiency is
demonstrated with an average of 1.4 GFLOPs.

II. RELATED WORK
A. CONVENTIONAL DRIVER DISTRACTION METHODS
Distracted driving raises the likelihood of serious acci-
dents [1]. Since the rapid development of deep learning
algorithms over the previous decade, distracted driving de-
tection has motivated researchers’ interest. In [17], the
authors presented distraction detection based on kinematic
motion models by fusing various state-space models to cap-
ture multiple driving motion patterns under ordinary driving
conditions. Mustafa et al. [18], proposed E2DR - an en-
semble technique to detect distraction in drivers. The E2DR
variant with ResNet50 and VGG16 achieved 92% test accu-
racy. Authors in [19] proposed a driver distraction study on
young-experienced drivers. There were two types of driving
situations studied: manual driving conditions and partially
automated driving conditions.

Kapotaksha et al. [16] proposed the detection and recog-
nition of driver distraction using multi modal signals like
visual, physiological and thermal groups of features with ran-
dom forest and gradient boosting classifiers. Authors in [20],
proposed an unsupervised deep learning algorithm that
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applies RepMLP-Res50 (replaces some blocks in ResNet50
with ResMLP). This network was trained on a state-farm-
distracted driver detection dataset and used 10%, 20%, 30%,
40%, and 50% of labelled data to fine-tune the network.
In [21], the authors proposed a comprehensive review of the
distraction related to mobile phone use. A systematic review
of 37 papers was conducted using the PRISMA approach.

B. EVENT-BASED DRIVER MONITORING SYSTEM
In this section, some of the most recent event-based vision in
context of driver monitoring systems is explored.

Event-based vision for driver monitoring has many advan-
tages including high temporal resolution, reduced motion blur,
low latency, reduced power consumption for the onboard sen-
sor suite, and most importantly privacy [22], [23], [9], [6], [2].
The following are some of the recent studies on driver mon-
itoring using event cameras. Authors in [6], [28], proposed a
real-time face, eye tracking and blink detection using event
cameras. Due to the limitation of the real face event dataset,
the authors used the V2E simulator [10] to process events
from the visible Helen dataset. Further, by exploiting the in-
herent advantages of vision sensors, Chen et al. [29] proposed
event-based driver drowsiness detection using facial motion
analysis. With the advantages of a high dynamic range and
challenging environmental conditions like low illumination,
authors in [30] proposed facial micro-expressions with an
event camera. With the help of the signal produced by a
high-speed event camera, the suggested approach shows how
simple it is to understand the underlying emotions of faces that
are being observed compared to conventional visible sensors.
Authors in [31] proposed event-based near-eye gaze tracking
beyond 10,000 Hz. A hybrid event-based eye-tracker which
demonstrates a binocular prototype, functioning at a high
framerate. Moreover, there are a few more studies with event
cameras which can be efficiently used for driver monitoring
systems [33], [34].

Recent studies have focused on leveraging event-based
cameras, in more rigorous tasks. Berlincioni et al. [43]
presented NEFER, a dataset for neuromorphic event-based
facial expression recognition, highlighting the effective-
ness of event-based approaches for analyzing subtle micro-
expressions. Bulzomi et al. [44] introduced an end-to-end
neuromorphic lip reading model, utilizing events captured
by an event-based sensor for real-time embedded scenarios.
Bissarinova et al. [45] released FES, the first large and var-
ied dataset with face and facial landmarks annotations for
event-based cameras, accompanied by models achieving high
accuracy in predicting bounding boxes and landmarks. Fur-
ther, Paul et al. [46], [47] proposed neuromorphic sensing
techniques to analyze the entire facial region, detecting yawn-
ing behaviors that give a complimentary indicator of fatigue
and drowsiness and similar approach to detect driver seatbelt.
These recent studies showcase the increasing interest in utiliz-
ing event-based cameras for a wide range of computer vision
applications.

To the best of the author’s knowledge, there has been only
one study focusing on event-based driver distraction recogni-
tion. Chu Yang et al. [35] suggested using EfficientNetB0 and
LSTM cell to predict event-based driver distraction and action
recognition. The v2e event simulator is used in the research to
simulate the Drive&Act dataset while training on the simu-
lated event dataset. Furthermore, study evaluates performance
on a locally-acquired event dataset.

III. METHODOLOGY
In this section, a detailed overview of the proposed methodol-
ogy including its event representation, and network architec-
ture is described.

A. EVENT REPRESENTATION
Neuromorphic event cameras respond both independently and
asynchronously to changes in illumination in the field of view.
The event camera produces a series of variable data known
as “Spike” or “Event” with each pixel-level change in the
intensity [23]. When a sensor generates such an event, it
acquires the logged brightness and continuously checks for
a change from the brightness value it has previously saved.
When a certain brightness threshold is exceeded, then the
camera fires an event with the x, y location, the timestamp
t, and the 1-bit polarity of the changes, indicating whether
there was a positive change in brightness (1) or a negative
change (0/−1). For one single event at a time interval �T a
neuromorphic event camera produces the following

{Es}N
s=1 = {xs, ys, ts, ps}N

k=s (1)

Driver distraction is a critical task for road safety, and it
requires an understanding of both temporal and spatial in-
formation to predict distraction [35]. In this research, we
used time-surface event representation, as it allows for the
extraction of temporal information and pixel motion history
directly from the event data. This can be achieved by grouping
events in batches using a range of temporal bins, which en-
ables the training of a neural network to learn spatiotemporal
features. The advantage of using a time-surface representation
for event data in submanifold sparse ResNet is that it elimi-
nates the need for additional techniques like optical flow or
3D convolution, used in most detection networks to capture
motion features explicitly [36]. This representation preserves
the spatiotemporal sparseness of the event data, allowing for
the least latency processing. Additionally, the submanifold
sparse ResNet architecture is designed to handle the sparsity
of the event data, resulting in a more efficient and effective
classifier [39].

B. PROPOSED METHOD
In this research, we simulate two different datasets Drive&Act
(side view - body focused) [11] and DMD (driver Monitor-
ing dataset and this dataset has a front view of the driver -
face focused) [12] from visible to event streams using V2E.
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FIGURE 1. Overall pipeline of the proposed approach for event based
driver distraction recognition.

Further, we train the simulated dataset separately on sparse-
ResNet [15] architecture to further predict distraction. The
same is depicted in the pipeline for event-based driver dis-
traction in Fig. 1.

1) SUBMANIFOLD SPARSE CONVOLUTION NEURAL
NETWORK (SSC)
The proposed approach utilizes the spatial sparsity of event
data through Submanifold Sparse Convolutions (SSC), which
significantly reduces computational requirements by focusing
solely on activated sites. Unlike conventional convolutions,
SSCs disregard inputs in the receptive field of the convolution
that have zero values, calculating the convolution only at sites
with non-zero feature vectors [13].

Fig. 2 presents the submanifold sparse ResNet architec-
ture specifically designed to effectively process event data
for predicting driver distraction. The figure consists of four
parts, each representing a different step in the event processing
through the network. In Fig. 2(a), an example input frame
from a camera feed is shown. Fig. 2(b) illustrates the accumu-
lation of events in a time-surface representation, showcasing
the activated event sites (resulting from V2E tool which used
to simulate RGB to events conversion). This step is crucial
for converting event data into a format suitable for neural

network processing. Fig. 2(c) depicts how the submanifold
sparse ResNet architecture focuses only on the activated
events, a key aspect that enables efficient event data process-
ing. The architecture updates only the non-zero elements of
the convolutional filters, significantly reducing computational
overhead and memory requirements.

Moreover, in Fig. 2(d), we can observe a comparison be-
tween the updating mechanisms of conventional convolutions
and the sparse-updating approach employed by the subman-
ifold sparse ResNet architecture (depicted in Fig. 2(c)). This
comparison brings attention to the disparities between these
two approaches, specifically emphasizing the traditional con-
volutional updating method commonly used in conventional
neural networks. Moreover, this comparison underscores the
unique advantages offered by the submanifold sparse ResNet
architecture in effectively managing the sparsity of event
data. The use of a time-surface representation for event data
in the architecture enables efficient feature extraction from
event sequences. This representation converts the event se-
quence into a 2D spatiotemporal signal that can be processed
by convolutional neural networks (CNNs) [39]. It preserves
the spatiotemporal sparsity of the event data, allowing for
minimal latency processing. Moreover, the design of the sub-
manifold sparse ResNet architecture specifically addresses the
sparsity of event data, resulting in a more efficient and effec-
tive classifier.

As mentioned before in SSCs, convolution operations are
performed only at sites where there are non-zero feature
vectors, referred to as active sites. These active sites are deter-
mined based on the presence of events. SSCs use a rulebook
to establish correspondences between input and output sites.
This rulebook dictates how information from active input sites
is propagated to output sites, ensuring that computations are
focused only on relevant areas. The initial Rulebook, proposed
by [15], was later modified for event-based data analysis
by [13], [14]. We have incorporated this adapted Rulebook
to enhance our approach to driver distraction detection. The
core equations governing SSCs in event-based data adapted
from [13] are as follows:
� Sparse Convolution Operation:

yt
n+1(u, c) = bn(c)

+
∑

c0

∑

k∈Kn

∑

(i,u)∈Rt,k

Wn(k, c0, c)yt
n(i, c0),

for u ∈ At (2)

Equation (2), yt
n+1(u, c) represents the activation at a

specific pixel u and feature channel c in layer n at time
t + 1 and activated sites At . The term, bn(c) is the bias
term, which adds a constant value to the activation.

∑
c0

sums over all feature channels, ensuring contributions
from different features are combined.

∑
k∈Kn

iterates
over convolution kernel indices, allowing different ker-
nels to be applied.

∑
(i,u)∈Rt ,k sums over the rulebook

entries, where each entry (i, u) connects an active input
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FIGURE 2. Proposed submanifold sparse approach for processing event data to detect driver distraction. The figure includes four components
demonstrating different stages in the event processing pipeline. In panel, (a) an example input frame is presented, (b) shows how events are
accumulated in a time-surface representation and activate non-zero event sites, (c) demonstrates how the submanifold sparse ResNet architecture
handles sparse-updating, which enables efficient processing of event data by only updating non-zero elements of the convolutional filters, (d) compares
the proposed sparse-updating approach to the conventional convolutional updating approach used in traditional neural networks.

site i to an output site u. The rulebook (R) preserves
the connections between input and output sites, defining
the relationships between input site i and output site j
within Rt , k. A weighted summation is performed on the
same output site j = u to generate the integrated output.
Wn(k, c0, c) represents the weight associated with a par-
ticular kernel index k and input/output feature channel
pair (c0, c). yn

t (i, c0) is the activation at layer n for input
site i and feature channel c0 [13].

� Activation Function:

yn
t+1(u, c0) = σ (yn+1

t (u, c0)) (3)

After the sparse convolution operation, the resulting val-
ues yt

n+1(u, c) (3) are passed through an activation func-
tion σ to introduce non-linearity into the network [13].

� Update Rule for Active Sites:

�n(u, c) =
∑

k∈Kn−1

∑

(i,u)∈Rk,n

∑

c0

Wn−1(k, c0, c)

∗ $yt
n−1(i, c0) − yt−1

n−1(i, c0)) (4)

From (4), �n(u, c) calculates the change in activation
at active locations u in layer n due to a single event.∑

k∈Kn−1 iterates over the convolution kernel indices
from the previous layer, allowing the network to cap-
ture different spatial patterns.

∑
(i,u)∈Rk ,n

sums over the
rulebook entries specific to layer n and kernel index k,
connecting input site i to output site u. Wn−1(k, c0, c)
represents the weight associated with a particular kernel
index k and input/output feature channel pair (c0, c).
yn

t−1(i, c0) is the activation at layer n for input site i and
feature channel c0 at the previous time step. yn

t−1(i, c0)
reflects the previous state of active sites, allowing the
network to efficiently update only the relevant locations
in response to new events [13].

2) SPARSE-RESNET
SparseResNet is a specialized implementation of the Pre-
activated Residual Network (ResNet) architecture, designed
to address the challenge of vanishing gradients in deep neural
networks, particularly for sparse data like event-based vision

data from neuromorphic sensors. Traditional deep networks
suffer from vanishing gradients as they get deeper, making
training difficult [52]. ResNet introduces residual blocks with
shortcut connections to enable the flow of gradients, address-
ing this issue effectively.

In this research we utilize the sparse ResNet architecture,
introduced in [15], which is specifically designed to leverage
the inherent spatial sparsity of data. Moreover, this research
employed the ResNet basic “block” consists of two submani-
fold convolutional layers with batch normalization and ReLU
activations, forming the fundamental building unit of ResNet
architectures (basic block takes-input channels, number of
repetitions and stride). The number of repetitions in each
layer controls how many times the basic block is applied
sequentially. Fig. 3(a) shows a single resnet basic block, fol-
lowed by figure 3(b) which shows how multiple basic blocks
are grouoped to predict distraction. The proposed network
consists of five blocks with varying numbers of channels:
16, 32, 64, 128, and 256 as shown in figure 3(b). The input
to the ResNet block maintains a resolution of 640 × 480
with 2 time-surface bins. Following the sparse ResNet block,
the network undergoes an fully connected layer to generate
predictions. In Pre-activated ResNet, batch normalization and
ReLU activations are applied before the convolution opera-
tion, enhancing stability during training and improving overall
performance (Fig 3(a)). Batch normalization is applied during
training to normalize input data within each mini-batch, accel-
erating training and enhancing stability. The ReLU activation
function introduces non-linearity, enabling the model to learn
complex patterns.

IV. EXPERIMENTATION
A. DATASET
The detailed descriptions of the two datasets used for train-
ing the network is provided in Sections IV-A1 and IV-A2.
To evaluate the performance, a 3-fold validation approach
was employed on the dataset. Table 1 presents the break-
down of the three-fold splits for both the Drive&Act and
DMD datasets. The Drive&Act dataset consists of data from
15 subjects, while the DMD dataset includes data from 20
subjects. The table highlights the specific splits utilized for
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FIGURE 3. Submanifold Sparse Convolution ResNet: a) showcases a single ResNet block and b) presents the complete architecture including six basic
blocks.

TABLE 1. Simulated Drive& Act and DMD Event Dataset 3 Different Splits

training, validation, and testing in the three-fold training
process.

1) DRIVE&ACT DATASET
Drive&Act dataset [11] is a domain-specific dataset that was
specifically designed for fine-grained driver action recogni-
tion. The dataset consists of more than 9.6 million frames
from 15 subjects. To generate this dataset, videos of subjects
driving were recorded, and for each action, on average, a
3-second video was cropped and converted to event streams.
Specifically, for each subject, there were 40 sequences of two
different videos were trimmed. Half of the samples in this
dataset consisted of various distractions, such as using a mo-
bile phone, adjusting the radio, talking on the phone, reading a
newspaper, fetching an object, eating, drinking, and/or using a
laptop while driving. The other half of the sequences consisted
of focused driving. In total, 560 samples were derived from
the 15 subjects, and these samples were then converted to
event streams using the v2e tool [10]. However, for subjects
9 and 10, due to the short length of their videos, only 40
sequences were extracted from each of them.

2) DRIVER MONITORING DATASET (DMD)
The Driver Monitoring dataset [12] is a comprehensive dataset
that is widely used in the field of driver monitoring. This
dataset is unique because it includes data collected in three
different scenarios: a laboratory environment, a vehicle where
subjects are acting, and real-world driving scenarios. The au-
thors of [12] have made data from 20 subjects available for
academic research. Each subject participated in three different
driving scenarios, resulting in a total of 1680 video samples,
each with an average duration of 3 seconds. The videos were
cropped and simulated to event streams using v2e. The dataset
includes a variety of driving scenarios, such as distracted driv-
ing where subjects are using mobile phones, drinking water,
fixing their hair, talking on the phone, and fetching objects,
as well as focused driving scenarios where the subjects are
paying attention to the side mirrors and the road. The diversity
of scenarios captured in this dataset is a significant advantage,
as it allows the distraction detection model to be more robustly
trained and evaluated using locally acquired event data. This
dataset contains 50% of samples with distracted driving and
50% of samples with focused driving from all three scenarios.
The fact that the dataset contains data acquired in a variety of
circumstances makes it an ideal for this research. The trained
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model can be effectively used to detect distracted driving, and
its performance can be evaluated using locally acquired event
data.

B. REAL-EVENT DATA ACQUISITION
In order to ensure that the trained network could generalize
well to real-world scenarios, it was important to evaluate its
performance on real event data. To this end, a new dataset
was collected in a laboratory environment, where subjects
were instructed to perform a variety of actions that might
distract them while driving, such as texting, talking on the
phone, fixing their hair, fetching objects, fixing the radio,
drinking water, and so on. The data acquisition method used
for this dataset was the same as that used for the DMD dataset,
which consisted of face-focused recordings. A total of 20
subjects volunteered for the study, and for each subject, 10
sequences of distraction and 10 sequences of focused driving
were recorded. The data was collected with informed consent
and in compliance with ethical guidelines.

To record our real event driver distraction dataset, we uti-
lized Prophesee’s EVK3 Gen 3 camera [42] in Xperi Data
Acquisition setup [38]. In Fig. 4 showcases the complete
setup of our driving simulator for data acquisition. The driver
simulator employed in this study is a state-of-the-art industry-
standard system designed specifically for evaluating the latest
advancements in Driver Monitoring Systems (DMS). This
simulator is distinguished by its high fidelity, realism, and
adherence to industry benchmarks, making it a paramount
tool for replicating real-world driving scenarios and assessing
the performance of state-of-the-art DMS technologies. For
more information on the simulator please refer [38]. This
high-speed vision sensor directly captures events instead of
traditional frames. We collected a total of 400 sequences,
encompassing diverse real-world driving scenarios. By in-
corporating this real event data during the evaluation of
our trained network, we systematically measure robustness
and effectiveness of proposed approach in addressing vari-
ous distraction scenarios encountered in real-world driving
situations. Fig. 5, which presents plots illustrating events rep-
resented during network learning. This figure encompasses
samples from both the Simulated Event Dataset and locally
acquired event datasets.

C. IMPLEMENTATION SPECIFICATION
All the experiments were performed on Nvidia-RTX-2080Ti
GPU with 64 GB RAM using the PyTorch framework. There
are two aspects to the assessment of driver distraction detec-
tion. First, models were entirely trained on simulated event
datasets and further, they were tested on unseen simulated
data. Second, the model was tested using locally acquired
event datasets and then assessed once again after fine-tuning
the trained model with real event data. During the training
process for the Drive&Act dataset of the research, the Adam
optimizer was used with an initial learning rate of 1e-3 which
is degraded with a factor of 0.1 every 50 epochs. For the train-
ing process of the DMD dataset which is face-focused, Adam

FIGURE 4. Real-events data acquisition setup using Prophesee EVK3.

FIGURE 5. Visualised events generated from real and simulated event
data.

optimizer was used with an initial learning rate of 1e-4 which
was again degraded with a factor of 0.1 every 50 epochs. The
training consisted of a batch size of 16 and was terminated
after 65 and 85 epochs respectively. Since the trained network
is a binary classifier, we used binary cross entropy as our loss
function.

V. EVALUATION OF SIMULATED EVENT DATASET
To evaluate the efficacy of the proposed models, we adopted a
evaluation strategy similar to that utilized in reference in [35].
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TABLE 2. Quantitative Results on Simulated Event Datasets

This 3-fold splitting mitigates the risk of overfitting to a
specific set of data while offering a more reliable estimate
of the model’s performance across diverse scenarios and en-
suring the robustness and reliability of the research findings.
Similar to [35], split 0 was selected to evaluate the body-
focused method, and the performance was compared against
the state-of-the-art (SoA) approaches (Drive&Act dataset).
On the other hand, to the authors’ knowledge, this is the
first instance of benchmarking accuracy and precision for the
face-focused approach (DMD-dataset) using an event dataset.
In this study, the performance of the proposed method was
compared with an existing method, LSTM [35], which was
considered as SoA. However, to ensure a fair comparison, it is
crucial to not only evaluate the performance but also consider
the computational complexity of both methods. Regrettably,
the recent studies lack specific information regarding the
number of parameters and FLOPs (floating-point operations)
required for their approach. Hence, we implemented an ap-
proximation of these values based on the limited information
provided in the referenced article [35].

This research also uses various quantitative metrics as
evaluation indicators to assess the performance of trained
classifiers. These metrics include accuracy, precision, sensi-
tivity, specificity, false positive rate, false negative rate, and
Matthews correlation coefficient. These indicators play a cru-
cial role as a comprehensive set of evaluation metrics for
measuring the effectiveness of the proposed driver distraction
detection method. The details of these metrics are presented
in Table 2 with corresponding results for face-focused and
body-focused approaches.

Accuracy measures how often the model correctly identifies
whether a driver is distracted or not. It provides an overall
assessment of the classifier’s ability to make correct predic-
tions. Precision, on the other hand, evaluates the proportion
of true positives (correctly identified distractions) out of all
positive predictions. It helps assess the classifier’s ability to
minimize false positive errors by focusing on the precision
of positive predictions. Sensitivity, also known as recall or
true positive rate (TPR), measures the ability of the classifier
to correctly identify positive instances (driver distractions)
out of all actual positive cases. It indicates how well the

classifier captures the positive examples. Specificity quanti-
fies the ability of the classifier to correctly identify negative
instances (non-distracted drivers) out of all actual negative
cases. It represents the classifier’s capacity to correctly ex-
clude negative examples. False positive rate (FPR) computes
the proportion of negative instances incorrectly classified as
positive (non-distracted drivers classified as distracted). It
highlights the rate of false alarms or Type I errors. False nega-
tive rate (FNR) calculates the proportion of positive instances
incorrectly classified as negative (distracted drivers classified
as non-distracted). It measures the rate of missed detections
or Type II errors. Matthews correlation coefficient (MCC)
combines information from true positives, true negatives, false
positives, and false negatives to provide an overall measure
of classifier performance. It takes into account imbalanced
datasets and is particularly useful when the classes are not
equally represented.

In addition to these metrics, the research also employed
Flops (floating-point operations per second) as a measure
to compare the computational complexity of the proposed
method with that of a previously state-of-the-art method.
Flops quantifies the number of arithmetic operations a com-
puter can perform per second, serving as an indicator of
the computational resources required to execute a specific
method. It helps evaluate the efficiency and computational
demands of different algorithms or approaches.

A. PERFORMANCE ON BODY-FOCUSED
DRIVE&ACT DATASET
The evaluation of the submanifold sparse ResNet architec-
ture commenced with testing its performance on an unseen
Drive&Act simulated dataset. The results obtained from the
driver distraction classification are presented in Table 3. In
comparison to the state-of-the-art LSTM model, the sparse
ResNet architecture showcased competitive performance.
While the LSTM achieved an accuracy of 89.23%, the sparse
ResNet achieved a comparable accuracy of 86.25%. Notably,
it also demonstrated the highest precision of 0.89. It is impor-
tant to emphasize that the proposed network was trained from
scratch, devoid of any pre-trained network weights for the
classification task. These findings underscore the suitability
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TABLE 3. Performance Results on Simulated Drive&act and DMD Event Dataset: Evaluating the Effectiveness of the Proposed Sparse-ResNet Architecture
(*approximate Values)

of the submanifold sparse ResNet architecture for processing
event data, as it effectively extracts features and produces
accurate predictions.

Additionally, Table 2 provides a comprehensive evaluation
of body-focused model. These metrics offer an intricate and
multifaceted assessment of the body-focused techniques and
their performance across the simulated event datasets. Specifi-
cally, the sensitivity metric, measuring the ability to accurately
detect true positive cases, achieved a score of 0.8406. The
specificity metric, indicating the ability to correctly identify
true negative cases, reached a value of 0.8850. The false
positive rate, representing the proportion of falsely identi-
fied positive cases among actual negatives, was calculated
at 0.1150. Similarly, the false discovery rate, which signifies
the proportion of falsely identified positive cases among all
positive predictions, amounted to 0.1090. On the other hand,
the false negative rate, representing the proportion of actual
positive cases that were incorrectly predicted as negative, was
observed at 0.1594.

Furthermore, the F1 score, which harmonizes the balance
between precision and recall, achieved a value of 0.8650. This
metric is particularly important as it conveys the trade-off
between making accurate positive predictions and capturing
all actual positive cases. Lastly, the Matthews Correlation
Coefficient (MCC), which takes into account true and false
positives and negatives to provide a comprehensive measure
of classification performance, achieved a value of 0.7245.
Collectively, these metrics offer a comprehensive and nu-
anced understanding of the efficacy of the body-focused
methods and their proficiency in handling the simulated event
datasets, shedding light on different aspects of their perfor-
mance and highlighting their strengths and areas for potential
improvement.

B. PERFORMANCE ON FACE-FOCUSED DMD DATASET
The DMD dataset is a robust simulated dataset comprising
over 1680 samples that underwent a 3-fold validation crite-
ria. It encompasses a diverse range of both real-world and
laboratory driving scenarios, adding to its reliability. The
performance evaluation of the trained sparse ResNet on this
unseen dataset is presented in Table 3. The results indicate that
the trained network achieved an average accuracy of 80.05%
and a precision of 0.83 on the event-simulated DMD dataset.

In parallel, Table 2 presents an all-encompassing evaluation
of face-focused methodologies on Simulated Event Datasets.
The array of metrics within the table provides a comprehen-
sive perspective on the performance of these face-focused
techniques across the simulated event datasets. To delve into

specifics, the sensitivity metric, gauging the capability to ac-
curately detect true positive instances, achieved a score of
0.7804. Simultaneously, the specificity metric, reflecting the
capacity to correctly identify true negative instances, reached
a level of 0.8226. Further analysis indicates that the precision
of the face-focused approaches attained a value of 0.8350,
while the negative predictive value, representing the ability
to correctly predict true negatives, reached a value of 0.7650.
Additionally, the false positive rate, signifying the ratio of
incorrectly predicted positive cases among actual negatives,
was computed at 0.1744. Similarly, the false discovery rate,
indicating the ratio of falsely predicted positive cases among
all positive predictions, coincided at 0.1650. Notably, the false
negative rate, denoting the proportion of actual positive cases
incorrectly classified as negative, amounted to 0.2196. The
F1 score, which balances precision and recall, culminated
at a value of 0.8068. Not to be overlooked, the Matthews
Correlation Coefficient (MCC), providing a comprehensive
assessment of classification performance by considering true
and false positives and negatives, reached a value of 0.6015.
These metrics collectively offer an intricate and comprehen-
sive evaluation of the face-focused methodologies, shedding
light on diverse aspects of their performance across the sim-
ulated event datasets. Additionally, the pretrained weights of
this network were fine-tuned on real event data to assess its
performance in that domain as well.

C. COMPUTATIONAL COMPLEXITY AND ROBUSTNESS
The FLOPs of body-focused and face-focused networks have
been studied and analyzed. The SSC library includes a names-
pace variable to calculate a network’s FLOPs. Each time
SparseConvNet does a sparse convolution forward operation
with the specified MAC step count, the FLOPs are updated.
To calculate the average FLOPs per forward pass for each
accumulated time surface, the total number of test cases is
divided, and the receptive fields marked as zero are excluded.

Due to resource constraints, conducting a direct perfor-
mance comparison between our proposed model and other
state-of-the-art models was not feasible. However, we esti-
mated the GFLOPs for a comparable LSTM network based
on information from a referenced paper [35]. Table 3 shows
estimated GFLOPs (Giga Flops) for the comparable LSTM
network were approximately 478, taking into account assump-
tions made about event representation and available details.
On the other hand, during the training of the sparse-resnet
model, we measured an average of 1.4 billion FLOPs (1.4
GFLOPs) per accumulated event representation.
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TABLE 4. Existing Lightweight Networks in Terms of GFLOPS for Video Clip
Based Processing (RGB)

To gain a broader understanding and context of the current
landscape of lightweight networks specifically focused on dis-
traction classification, we examined recent developments in
neural networks, as summarized in Table 4. This table presents
the GFLOPs data associated with state-of-the-art models in
this field. While it is important to note that Table 4 pertains to
networks designed for a fine-grained classification task with
more than 2 classes, it provides a valuable reference point
for comparing computational complexities based on GFLOPs.
By considering the GFLOPs values of the recent state-of-
the-art networks in, we can observe that they tend to have
significantly higher computational requirements compared to
proposed event-based model. This finding suggests that these
state-of-the-art networks may be less suitable for deployment
in resource-constrained environments. It highlights the poten-
tial advantage of our proposed model, which offers a more
lightweight alternative in terms of computational complexity.

From Table 3, when comparing the proposed Sparse Resnet
model with the state-of-the-art LSTM model [35], some sig-
nificant differences emerge. The LSTM model had 6.3 million
parameters, achieved an accuracy of 89.23%, and operated at
a GFLOPs rate of 478.47*. In contrast, our proposed Sparse
Resnet model trained on the Drive&Act dataset consisted
of only 311 thousand parameters, achieved an accuracy of
86.25%, and operated at a GFLOPs rate of 1.39. Similarly,
when trained on the DMD dataset with the same 311 K param-
eters, our Sparse Resnet achieved an accuracy of 80.05% with
1.42 GFLOPs. Notably, the GFLOPs for the LSTM network
were over two orders of magnitude higher than those of our
proposed Sparse Resnet model, which emphasizes the com-
putational efficiency and effectiveness of our model compared
to the state-of-the-art approaches. This contribution is signif-
icant as it showcases the effectiveness of sparse networks in
processing event-based data, reducing computational require-
ments while preserving high accuracy.

Factors: The lower computational complexity of the pro-
posed sparse-ResNet architecture compared to SoA can be
attributed to several factors. Firstly, by leveraging the spar-
sity, the sparse-ResNet architecture can significantly reduce
the number of computations required during network training
and inference. In contrast, conventional neural networks are
designed to model sequential data and typically operate on
dense input data. They require processing each element in
the sequence, leading to higher computational requirements.
Furthermore, the submanifold sparse convolution technique

TABLE 5. Event Dataset Testing on Simulated DMD Pre-Trained Weights

employed in the sparse-ResNet architecture emphasizes only
the activated sites, further reducing computation and en-
hancing feature extraction while minimizing latency. This
technique allows for selective processing of relevant event
data, contributing to the overall computational efficiency of
the network.

VI. PERFORMANCE ON REAL-EVENT DATASET
Fine-tuning the Sparse-Resnet DMD model on real event data
significantly enhances its performance and generalization ca-
pability for detecting driver distraction in diverse scenarios.
The model’s initial training on simulated data provides a foun-
dation, but fine-tuning on the locally acquired event dataset
exposes the network to real-world complexities and variations
that were absent in the simulated training data. Moreover, by
fine-tuning, the model adapts and learns from the specific
features and patterns present in real event data, enabling it
to better understand and distinguish different types of driver
distractions in diverse scenarios.

In the experiments conducted on the locally acquired event
dataset, the performance of the network was evaluated through
three different stages. Initially, the pretrained weights of the
Sparse-Resnet-DMD model were tested on the dataset in the
first experiment. Table 5 presents the testing performances
achieved on the locally acquired event dataset. The results
obtained from this initial test showed a performance of 48%
accuracy and a precision of 0.52. In the second and third
experiments, the network was fine-tuned using a portion of the
locally acquired event dataset. Specifically, in the second ex-
periment, the network was trained on the first 20% of the data.
The fine-tuning process improved the network’s performance,
resulting in an accuracy of 67% and a precision of 0.68. In the
third experiment, the network was further fine-tuned on 50%
of the locally acquired event data. This additional fine-tuning
significantly improved the network’s performance, with an
accuracy of 87% and a precision of 0.85. During the training
process, an initial learning rate of 1e-4 was used, and the
network was trained for approximately 400 epochs.

The network’s convergence during training, as evidenced
by the improved performance on the real event dataset, further
confirms the effectiveness of the Sparse-Resnet-DMD model.
It successfully generalizes well on real event data despite
being initially trained on simulated data. The ability of the
model to perform consistently on both simulated and real
event data highlights its robust and versatile nature, making it
a promising tool for detecting driver distraction across diverse
scenarios.
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VII. LIMITATIONS
In the context of this work being an initial proof of concept
for the use of event cameras (EC) and neural networks in
driver distraction detection, it is important to acknowledge
the associated limitations. These limitations serve as valuable
areas for future improvement and exploration.
� Challenges in providing diverse event representations:

Sparse submanifold ResNet may face challenges in
effectively incorporating diverse event representations
into the network. Event-based vision involves processing
asynchronous and sparse data, where events are
captured at irregular intervals and contain different
levels of spatial and temporal information. Designing a
network architecture that can handle such variability and
effectively encode different event representations can be
challenging.

� Challenges in capturing temporal dependencies: While
sparse submanifold ResNet is designed to capture spatial
relationships among events effectively, it may struggle
to model long-term temporal dependencies. Distraction
detection often requires understanding the temporal con-
text of events and how they evolve over time. The limited
temporal information available in event-based data can
pose challenges in capturing complex temporal depen-
dencies accurately in sparse submanifold networks.

� Binary classification limitations: The algorithm’s binary
classification approach may result in false positives,
classifying non-distracting actions as distractions (such
as fixing seat-belt or adjusting seat). Exploring nuanced
classification approaches or incorporating context-aware
features can help address this limitation in future
iterations.

� Limited robustness to occlusions and partial visibility:
The algorithm may struggle with occlusions or partial
visibility of the driver’s face or hands. Further research
and algorithm refinements are needed to improve its han-
dling of occlusions and partial visibility.

VIII. DISCUSSION
Simulating event data from regular videos proved to be valu-
able for training the model and further fine-tuning on a real
event dataset collected locally. This highlights the potential of
using simulated datasets as a cost-effective way to generate
large amounts of training data, enabling the development of
accurate and robust models. The ability to fine-tune the model
on real event data enhances its performance and generalization
capability in detecting driver distraction in diverse scenarios.

Further the proposed work also adopts the sparse-resnet
architecture which is specifically designed to handle the
sparse data. It incorporates the submanifold sparse convo-
lution technique, which reduces computational requirements
while improving feature extraction and minimizing latency.
The combination of event cameras (EC) with the sub-
manifold sparse convolutional neural network architecture
offers computational efficiency, achieving more than two or-
ders of magnitude improvement compared to LSTM-based

approaches. Despite the higher accuracy of the current
state-of-the-art model (89.23%), the Sparse-ResNet architec-
ture outperforms it by offering fewer parameters (311 K vs.
6.3 M) and requiring lower computational resources (1.39
GFLOPs vs. 478.47 GFLOPs) on the Drive&Act dataset. This
highlights the advantage of leveraging the unique properties of
event cameras, such as low latency, high dynamic range, and
reduced computational requirements, along with the sparse-
ResNet architecture for efficient driver distraction detection.

IX. CONCLUSION
In this article, a proof-of-concept realization of a submani-
fold based neuromorphic event camera technology for driver
distraction detection is evaluated. The research highlights the
inherent advantages of event cameras, particularly their spatial
sparsity, which significantly reduces computational complex-
ity when combined with submanifold network models. With
a computational complexity of approximately 1.4 GFLOPs,
the proposed approach is computationally efficient alternative
to equivalent models. Beyond their role in driver distrac-
tion detection, these event cameras have broader applications
in enhancing driver monitoring systems for advanced vehi-
cles [8]. The use of neuromorphic vision technology holds
promise for improving human-vehicle interactions and safety,
representing a transformative shift away from traditional algo-
rithmic solutions. By leveraging the spatial sparsity of event
data, this opens the door to real-time applications, bringing
about significant changes in the realm of advanced optical
sensing within the automotive industry.

A. FUTURE WORK
In future work, addressing the limitations addressed above
will be a key focus. This includes exploring techniques
to effectively incorporate diverse event representations and
developing methods to capture long-term temporal depen-
dencies. More sophisticated classification approaches and
context-aware features will also be investigated to mitigate the
limitations of binary classification and improve accuracy. Ad-
ditionally, future work involves enabling asynchronous mod-
ification of events during inference, studying the relationship
between driver activities and cognitive load, comparing com-
putational complexity with state-of-the-art methods, and eval-
uating performance on embedded platforms. These platforms
will serve as onboard sensor suites for real-time analysis with
an evaluation of events per second. These efforts will con-
tribute to further advancing the capabilities of the architecture
and enhancing its applicability in driver distraction detection.
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