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ABSTRACT Artificial Intelligence (AI) is an emerging technology that finds its application in various
industries. Integration of AI in Unmanned Aerial Vehicles (UAVs) can lead to tremendous growth in the
field of UAVs by improving flight safety and efficiency. Machine learning algorithms can enable UAVs
to make real-time decisions in complex environments and reach the optimal solution that aims to fulfill
a mission’s requirements within the hardware constraints such as battery and payload. Several recent
works in UAVs employed a variety of machine learning algorithms to enhance the capabilities of UAVs
and assist them. Although several reviews have been published examining the various aspects of AI for
UAVs, they are all pertaining to particular applications or technologies. Addressing this research gap, we
present a comprehensive and diversified review to enable researchers to analyze the current and future
requirements and develop the latest solutions utilizing AI. We have classified the reviewed works based
on three different classification schemes: 1) application scenario-based, 2) AI algorithm-based, and 3) AI
training paradigm-based. We have also presented a compilation of frameworks, tools, and libraries used in
AI-integrated UAV systems. We identified that the integration of AI in UAVs has a wide array of applications
ranging from path planning to resource allocation. We have observed that Reinforcement Learning based
algorithms are more often used in AI-integrated UAV systems than other AI algorithms. Further, our findings
reveal that UAV frameworks employing federated learning and other distributed machine learning paradigms
are quickly emerging. Furthermore, we also have put forth several challenges and potential applications of
AI-integrated UAV systems.

INDEX TERMS UAVs, machine learning, artificial intelligence, applications, AI algorithms, AI training
paradigms.

I. INTRODUCTION
Artificial Intelligence (AI) refers to the field of study fo-
cused on creating intelligent agents or devices that possess
the ability to comprehend their surroundings and make suit-
able decisions to maximize their chances of accomplishing
predefined goals [1]. Rapid progress is being made in the
realm of AI, and efforts are being made for its infusion into
different utilities to improve the efficiency of operations and
achieve far-reaching goals. UAVs have witnessed remarkable
growth in recent years with advancements in artificial intel-
ligence (AI) and machine learning. Researchers have applied

various artificial techniques to enhance the capabilities and
functionalities of UAVs. The incorporation of Artificial Intel-
ligence in UAVs renders autonomy to UAVs. It is estimated
that the autonomous Unmanned Aerial Vehicle(UAV) market
would cross an expected market value of USD 15634.7 mil-
lion in 2023 and would cross a valuation of USD 91304.8
million by the end of 2033. [2]. Multiple sectors, including
transportation and surveillance, have seen a drastic change
as a result of autonomous UAV technology. Modern UAVs
are equipped with advanced sensors and AI-based algorithms,
enabling them to function autonomously without any human
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TABLE 1. Related Surveys

intervention. The efficacy and precision of autonomous UAVs
enable them to navigate through complicated environments,
collect data, and execute complex tasks. Such UAVs are being
inducted for a variety of real-life purposes, such as monitoring
traffic patterns, conducting aerial inspections [3], [4], or de-
livering packages. In agriculture, they help in crop monitoring
and spraying and provide farmers with invaluable insights into
their fields. In disaster management, they are used for damage
assessment, survivor localization, and the delivery of aid to
inaccessible regions.

AI algorithms are incorporated in several applications of
UAVs, as discussed later in Section III. Path planning, UAV
control systems, and UAV swarm coordination are some of
the important applications. Path planning plays a crucial
role in UAV operations, ensuring safe and efficient naviga-
tion. ML algorithms, such as Reinforcement Learning (RL),
are commonly employed to train UAVs to compute optimal
paths based on environmental factors and mission objec-
tives. UAV control systems employ AI techniques to ensure a
stable flight and precise maneuvering. Proportional-Integral-
Derivative (PID) controllers adjust UAV movements based
on error signals between desired and actual states. Machine
Learning(ML) algorithms like Deep Learning Neural Net-
works (DLNNs) have been employed to enhance control
systems by learning complex flight dynamics and adaptive
control strategies. Further, AI algorithms enable the coordina-
tion of multiple UAVs and facilitate collaborative operations.
Swarm algorithms, such as Ant Colony Optimization (ACO)
and Particle Swarm Optimization (PSO), enable UAVs to
communicate and cooperate, leading to efficient task alloca-
tion [5] and collective decision-making.

Modern UAV power system has seen rapid upgradation
with the development of efficient batteries that provide longer
flight time. High-resolution cameras and other sensors are
able to capture real-time data during flight, which enables the
decision-making process and enhances situational awareness.

A. RELATED SURVEYS
In the section, we start by briefly describing the already un-
dertaken works in areas related to our topic and differentiate
our work from them. The related surveys have been summa-
rized in Table 1. Bithas et al. [6] put forth a comprehensive
examination of various Machine Learning(ML) algorithms
employed to facilitate UAV-based communications. Rezwan

et al. [7] conducted a thorough assessment of various research
works involving the use of AI for UAV navigation and also
highlighted some of the major future problems. Fu et al. [8]
investigated methods to solve the problem of low energy
efficiency in wireless UAV networks using deep learning ap-
proaches. Puente et al. [9] surveyed various AI algorithms
such as reinforcement learning, which facilitate autonomous
path planning in UAV swarms. They also highlighted the
prospective future challenges and their potent solutions. Wil-
son et al. [10] presented the latest advancements in embedded
sensors, communication technologies, computing platforms,
and machine learning methods which have been employed in
UAVs for smart sensing tasks while simultaneously achieving
high power efficiency. Cheng et al. [11] presented a review of
the integration of AI in various UAV-focused IoT(Internet of
Things) functions.

Although several reviews have been published examining
the various aspects of AI for UAVs, they are all pertaining to
particular applications or technologies like path planning [9],
smart city surveillance [12], flood management [13], and In-
ternet of Things(IoT) [11], swarm intelligence [14]. There is
no comprehensive survey covering various applications, AI
algorithms, AI paradigms, tools, and libraries used in AI-
integrated UAV frameworks, etc. Addressing this research
gap, we present a comprehensive and diversified review to
enable researchers to analyze the current and future require-
ments and develop the latest solutions utilizing AI. The major
contributions of our work are:

1) For the first time, we present a comprehensive survey on
Artificial Intelligence for UAVs.

2) We categorize the existing research works based on
three criteria–a) application scenario, b) AI algorithm,
and c) AI training paradigm.

3) We cover a broad range of applications of AI in UAVS,
ranging from path planning to resource allocation.

4) We present a detailed discussion on how different AI
algorithms are employed in UAV applications.

5) We present a compilation of tools and libraries used in
building AI-integrated UAV systems.

6) We showcase challenges in integrating AI in UAVs. We
also illustrate a number of future directions for research.

B. ORGANIZATION OF THIS ARTICLE
The rest of the article is organized as follows. In Section II,
the methodology we have utilized for studying and analyzing
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FIGURE 1. Survey map.

the papers has been described. In Section III, we mention var-
ious applications of infusion of AI into UAVs and elaborately
describe each application. In the next section(Section IV),
multiple AI algorithms have been elaborated, which have been
used in a variety of applications in UAVs along with their
usage in UAV systems. Section V categorizes the existing
research works based on different AI paradigms. We present
several challenges and future works associated with the inte-
gration of AI in UAVs in Section VII. Finally, we conclude our
work in Section VIII. An overview of the survey is presented
in Fig. 1.

II. METHODOLOGY
In this section, we describe the article selection procedure and
the protocols followed while preparing this review.

A. RESEARCH ISSUES
We put forth four primary questions and attempt to solve them
through our analysis in this review. 1) What are the various
applications of AI in Unmanned Aerial Vehicles(UAVs)? 2)
What are the roles of specific AI algorithms in the correspond-
ing applications? 3) What are the present and anticipated
issues in the incorporation of these techniques in UAVs? 4)
What is the scope for future research, and what are the existing
challenges in the field?

B. REVIEW
We have used renowned scientific databases such as IEEE
Xplore, Science Direct, MDPI, Elsevier, and ACM for the
purpose of choosing the most relevant papers to solve the

posed questions and include them in our study. We searched
for relevant papers using carefully chosen search phrases
and strings. We paid importance to choose papers from the
aforesaid sources to ensure presenting high-quality scruti-
nized articles that have been published in reputed conferences,
journals, and workshops. We have chosen the latest papers to
ensure presenting updated and accurate information. We have
utilized two search strings - Artificial Intelligence for UAVs
and Machine Learning for UAVs.

C. SELECTION OF PAPERS
After examining the search databases, we only chose the pa-
pers with the most relevance to our theme and rejected the
other papers. The chosen papers were then analyzed in the
next step, which comprised thorough reading of the abstracts
and conclusions. This enabled further sorting of the relevant
papers, and only the most relevant papers were considered to
be utilized for our review. The papers selected in this step were
read and analyzed thoroughly. We have utilized 166 papers for
our study.

III. APPLICATION SCENARIO-BASED CLASSIFICATION
In this section, we outline different applications in the integra-
tion of AI and UAVs and present the papers in each of these
applications. Table 2 enlist and summarize these applications.
Fig. 4 presents the same pictorially.

A. PATH PLANNING
Path planning is one of the most critical components of a
UAV flight. It refers to the computing of a geometrical path
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from the source to a final destination in the most efficient
way. UAVs are often employed to work in unknown environ-
ments whose precise mathematical models may not be known
beforehand. Pham et al. [15] presented a technique using rein-
forcement learning to operate in such generic conditions. This
technique involved training a quadrotor to maneuver to the tar-
get using a proportional–integral–derivative (PID) controller
based on Q -learning algorithm (PID+Q-learning algorithm).
This eliminates the necessity of a mathematical model. They
also suggested a stochastic learning model for real-world
implementation of the UAV account for environmental un-
certainties like wind [16], [17]. Wang et al. [18] suggested
using deep reinforcement learning(DRL)-based method for
the UAVs to navigate in extensive and intricated environ-
ments. Their technique delineates the UAV’s crude sensory
data into flight control signals and enables autonomous
maneuvering.

Collision avoidance is an important constituent of the path-
planning mechanism of any algorithm. To address the issue
of collision with traffic or any other obstacle while plan-
ning the path, Lin et al. [19] suggested sampling rooted
path-determining method based on the closed-loop swiftly-
exploring random tree algorithm. They also developed three
alterations of this algorithm by i) simplifying the trajectory
computation procedure, ii) employment of medial waypoints
iii) prediction of collision by making use of a reachable set.
Their technique was successful in creating collision-averse
trajectories in real time for a variety of UAVs when the ob-
stacles differed in quantity, angles of approach, and speeds.
Shiri et al. [20] explored the self-directed management of
large unmanned aerial vehicles (UAVs). Ensuring their swift
movement and minimal motion energy while avoiding mid-
air collisions amidst windy conditions presents a challenging
control task that necessitates significant communication en-
ergy to exchange states of UAVs on a rapid and real-time
basis. However, their approach leads to considerable com-
putational energy usage, particularly with multi-dimensional
UAV states. The study’s numerical evaluations prove that the
proposed ML-assisted mean-field game approach effectively
avoids collisions while minimizing communication energy
and acceptable computational energy. Q learning and neu-
ral network-based strategies have been suggested by Yijing
et al. [21]. Their approach for improving the learning rate in
UAV path learning and obstacle avoidance involves utilizing a
neural network for continuous state space fitting and propos-
ing a trap-escape strategy for the UAV to escape difficult
situations. They evaluated the effectiveness of their method,
including the Adaptive and Random Exploration approach
(ARE), by simulating four separate maps comprising walls,
blocks, bricks, and traps and achieved satisfactory results.
The ARE method allows the UAV to explore the environment
and take actions based on current evaluation, with a random
mechanism to redirect it to a safe path when close to obstacles.
This technique reduces learning errors and facilitates accurate
computation of the route.

B. UAV CONTROL
UAV control refers to the techniques used to control the move-
ments of a UAV. This includes controlling the flight path,
altitude, speed, orientation of the UAV, and various sensors
to enable safe and efficient UAV flights capable of completing
a required task. UAVs can be broadly controlled manually by
a human or autonomously using artificial intelligence algo-
rithms.

Autopilot is usually employed to achieve stability and
navigation during the flight. Proportional-Integral-Derivative
(PID) control is a common autopilot system that is known
to work quite satisfactorily in stable external environments.
Problems posed by unknown and harsh environments need
to be addressed. Koch et al. [22] investigate the use of Re-
inforcement Learning algorithms to train the autopilot system
responsible for altitude control in UAVs. To check the correct-
ness of their model, they trained a quadrotor flight controller
using RL. After this, they compared the performance of RL
and PID controllers to determine if the RL method was
better in terms of precision in flight control, and their anal-
ysis yielded satisfactory results. Similarly, Moe et al. [23]
suggested a Deep Reinforcement Learning (DRL) based con-
troller that addresses the problem of nonlinear attitude control
in fixed-wing UAVs. The researchers designed a controller
utilizing the proximal policy optimization (PPO) algorithm
and confirmed that it could stabilize a fixed-wing UAV to
reference roll, pitch, and airspeed values from a wide range
of initial conditions. They compared the trained RL controller
with a PID controller and discovered that it outperformed
the PID controller in most cases and had similar perfor-
mance. Furthermore, they demonstrated that the RL controller
is highly adaptive to unseen disturbances such as wind and
turbulence.

Kumar et al. [24] developed an autopilot system that can
regulate speed and altitude using an electronic throttle control
system (ETCS) and elevator, respectively. To control the throt-
tle position for the suitable flow of air mass, a DC servo motor
is employed in the design of the ETCS. The study employs
AI-based controllers to create a stable autopilot system. The
simulations prove that these suggestions yielded the goal of
attaining a wider range of airspeed, improvising energy effi-
ciency and fuel economy, and reducing pollutant emissions,
by employment of the throttle, speed, and altitude controls, to
satisfactory levels and paving the way for future work in this
direction.

C. UAV NETWORKS
UAV networks are a type of network that continue multiple
UAVs that coordinate among themselves and with a ground
control station. In a UAV network [25], each drone can act
as a node in the network and can communicate with other
drones and with the ground control station using wireless
communication technologies such as Wi-Fi, Bluetooth, or ra-
dio waves. The drones can also share data and collaborate
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FIGURE 2. Cellular networks of UAVs.

to perform tasks such as surveillance, mapping, and sensing.
Zhang et al. [26] focused on a cellular Internet of UAVs,
which involves UAVs performing sensing tasks along with
transmission, which minimizes the age of information (AoI).
Designing the UAV trajectories for sensing and transmission
is challenging since they are closely intertwined. To address
this issue, they suggested a distributed sense-and-send proto-
col wherein UAVs select tasks and locations for sensing and
transmission from a discrete and continuous set, respectively.
Simulation results indicate that cooperative UAVs are capable
of attaining a reduced AoI than non-cooperative UAVs by
dividing tasks.

To address the difficulty in achieving three-dimensional
(3D) coverage in the UAV communication process, Zeng
et al. [27] put forth a novel solution utilizing deep reinforce-
ment learning (DRL). They utilized the advanced dueling
double deep Q network (dueling DDQN) with multi-step
learning. In this approach, the action-value function of the
navigation policy is trained directly using the signal mea-
surement obtained by the UAV. This approach facilitates the
creation of simulated UAV trajectories and the prediction of
their anticipated returns. These predictions are then employed
to train the DQN using the Dyna technique [28], thereby
significantly improving the learning efficiency. Wireless com-
munications are often faced with threats such as interference
and cyber attacks. To address this problem, Saad et al. [29]
proposed an approach that presents a path-planning tech-
nique designed for a network of UAVs connected to cellular
networks. Fig. 2 shows the pictorial representation of this
approach. The objective of each UAV is to balance the maxi-
mization of energy efficiency while simultaneously achieving
low wireless latency and interference on the ground network
along its path.

In the context of object detection [30], AI can be applied to
UAVs for:

1) Real-time object detection: The images captured by
UAVs’ cameras can be processed with AI algorithms to detect
objects in real time. 2) Tracking moving objects: UAVs can
be used to track moving objects accurately. 3) Image recogni-
tion: AI algorithms can be trained to autonomously recognize
objects or patterns of interest using the images captured by
the UAV. 4) Autonomous flight: AI algorithms can be used to
enable autonomous flight of UAVs.

Rohan et al. [31] proposed a system that uses a Convo-
lutional Neural Network(CNN)-based object detection algo-
rithm that captures the target object’s center positions and
encloses it within a bounding box. A Gain-Scheduled PID
controller-based algorithm has been developed for object
tracking, which can effectively follow the detected object even
when its speed is changing. Based on the experimental results,
it has been demonstrated that the object detection algorithm
can accurately detect and categorize objects while consuming
less power and achieving a high fps. Avola et al. [32] pre-
sented their method to address the problems posed by the
variable movement of the target, visual obstructions, disar-
ranged background, and too low or high brightness in the
images captured by UAVs for the purpose of tracking and
detecting their targets. To imitate a multi-scale image analysis,
various kernel sizes are utilized on each stream. The suggested
framework is employed as the foundation for the Faster-R-
CNN pipeline, creating an MS-Faster R-CNN object detector
that can reliably detect objects in video sequences. Afterward,
this detector is combined with Deep Association Metric (Deep
SORT) algorithm to be able to track objects in real time using
the images captured by UAVs.

The image captured by the UAV contains small and closely
packed objects, which can result in missed detection errors. To
combat this issue, Tian et al. [33] suggested using a dual neu-
ral network review technique that can rapidly identify missed
targets in one-stage detection by categorizing the secondary
characteristics of the suspected area of interest. This approach
can lead to accurate detection of small targets with high pre-
cision.

D. COLLISION AVOIDANCE
Collision avoidance is critical to safe UAV flights. UAVs are
prone to colliding with obstacles in their flight path, such as
terrain and traffic.

Some major methods implemented to avoid such colli-
sions [34] of UAVs include:

1) GPS: Ground Positioning System can be used to avoid
obstacles by identifying them during the flight and re-routing
the UAV’s flight path. 2) Obstacle detection and avoidance
sensors: Light Detection and Ranging (LiDAR), sonar, or
radar systems can be used to detect obstructions in the flight
path and avoid them. 3) Computer vision: Cameras can be
used to view and subsequently analyze the external environ-
ment of the UAV to identify and avoid obstacles. 4) Flight
planning: The path of UAVs can be planned optimally using
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AI algorithms which can bypass any obstacle in the path and
also optimize other parameters such as flight time. 5) Com-
munication and coordination: UAVs can communicate with
each other and with other aircraft to avoid collisions. This
technique is particularly useful in situations where multiple
UAVs are operating in the same airspace.

Joshi et al. [35] examined how the performance of UAVs
in Deep Reinforcement Learning (DRL)-based waypoint nav-
igation and obstacle avoidance is impacted by measurement
uncertainty. This uncertainty arises due to sensor noise, which
affects the accuracy of obstacle detection. The Gaussian prob-
ability distribution, characterized by an unknown non-zero
mean and variance, is assumed to model the measurement
uncertainty or noise. They further refined the noise element
using a Kalman filter. Making further use of DRL, Lai
et al. [36] proposed a You Only Look Once (YOLO) algorithm
while employing a mononuclear camera simultaneously to
detect obstacles swiftly and accurately.

Singla et al. [37] introduced a novel approach for facili-
tating a quadrotor UAV with a monocular camera to avert
collision with obstacles autonomously in unspecified indoor
environments. Existing control methods that use monocular
images for collision avoidance rely heavily on the specifi-
cations of the surroundings and do not fully utilize the vast
amount of information available for decision-making. The
researchers put forth a deep reinforcement learning-based ap-
proach that addresses this issue by utilizing the concept of
partial observability, enabling the UAV to store useful details
about the environment to make better maneuvering decisions.
Their technique employs RNNs and has a high rate of infer-
ence while simultaneously reducing power consumption by
significantly reducing the UAV’s oscillatory motion.

E. PREDICTIVE MAINTENANCE
Predictive maintenance in UAVs refers to analyzing data from
sensors and flight history to forecast potential mechanical
issues. By identifying patterns and anomalies in these obser-
vations, maintenance can be scheduled proactively, ensuring
UAV reliability and minimizing downtime. This will reduce
the threat of sudden failures of UAVs during a mission and
would also help in extending the lifespan of UAVs and op-
timizing maintenance schedules. In the long run, this would
lead to lower operation costs and better safety. It is possible
to detect anomalies, monitor the UAV’s health, and predict
failures of UAV systems such as battery, propulsion, and
structure. The RUL (Remaining Useful Life) of the propulsion
system can be predicted using neural networks.

Based on the above concepts, Zahra et al. [38] put forth a
system in which Inertial Measurement Unit (IMU) sensors are
installed on the motor to monitor vibrations that are induced
by the motor in the propulsion system. Then, this vibration
data is analyzed using vibration signal analysis, which yields
five time-domain features which depict the attributes of the
input signals. Utilizing these features, it becomes possible to
assess whether the motor is currently in a normal or abnormal
condition. An abnormal state hints at an upcoming failure of

the motor. To better judge the time until the motor’s failure,
RUL prediction involves calculating the HI(Health Indicators)
of the motor for a future time period. It involves a sequence
of transformation algorithms- Principal Component Analysis,
Exponentially Weighted Average, and scaling. The output HI
is a numerical value that falls within the range of zero to one.
A reading of one indicates complete failure and a reading of
zero implies that the motor is in perfect condition.

To avert the drone’s motor from achieving undesirable tem-
peratures during operation, Lu et al. [39] developed a system
that records the motor temperature using DS18B20 sensors.
Afterward, the Raspberry Pi processing unit assesses if the
motor is working unusually using reinforcement learning. To
monitor the activity of Raspberry Pi, a custom-designed user
interface is available on a tablet. This system enables the
drone to land itself when the temperature of the motor goes
beyond a threshold temperature, thus preventing mid-flight
motor failures and other technical problems. The academia
is intensively exploring better ways of anomaly detection in
UAVs. Wang et al. [40] proposed a method for detecting
anomalies in UAVs. Their method involves the use of a Re-
current Neural Network called Long Short Term Memory
(LSTM). A predictive model is first established by utilizing
a training dataset consisting of normal data. This can be used
to predict data for the future. This is followed by estimating
the uncertainty of these predictions. Comparing the predicted
data with the range of uncertainty identifies the anomaly.

F. SWARM INTELLIGENCE
The ability of multiple UAVs to form a group and work to-
gether autonomously is referred to as swarm intelligence. The
UAVs in a swarm work in a properly coordinated manner to
achieve a specific task. The idea for implementing swarms
in UAVs came by observing insects such as ants and bees,
which are known to work in groups. The UAVs in a swarm are
capable of collaborating and communicating with each other
in real time. The synchronization among the UAVs is endowed
using advanced AI and ML algorithms. This technology has
enabled researchers to perform tasks such as search and rescue
and delivering parcels using UAVs and has paved the way
for further research in the areas of using UAV swarms in
various fields such as agriculture and transportation. Swarm
technology provides better resilience and scalability as com-
pared to using individual drones for the same mission. It also
allows the UAV swarms to cover bigger areas of operations
and perform complicated tasks by dividing a single large task
among several UAVs.

Breathing in ambient air is crucial for the existence of
life on Earth. As a result, the deteriorating air quality has
become a major concern. It is, therefore, pertinent to predict
and keep track of the air quality index in real-time. Tanwar
et al. [41] suggest an approach to Federated Learning that is
both distributed and decentralized, which can be implemented
within a swarm of UAVs. In their approach, the air quality data
collected by the sensors is fed into a Long Short-Term Mem-
ory (LSTM) model for analysis. Every UAV in the swarm
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utilized the data it had collected on its own to train a model.
Subsequently, each UAV sent its locally trained model to the
central base station. Once the central base station has received
the locally trained models from all the participating UAVs, it
aggregates the models’ weights to generate a single master
model. This master model is subsequently sent back to all the
UAVs involved in the Federated Learning process during the
following cycles. As a result of this process, the UAVs become
capable of estimating the air quality in a given region in the
future.

Zeng et al. [27] introduced an innovative structure for exe-
cuting distributed federated learning (FL) algorithms utilizing
a group of UAVs comprising a foremost UAV and various
trailing UAVs. This approach helps to resolve the problem of
the lack of consistent connections between the UAV swarm
and ground-based stations (BSs), which makes it challenging
to utilize centralized machine learning when dealing with a
substantial amount of data. Every trailing UAV generates its
own delimited FL model from the data it has gathered, which
it then transmits to the leading UAV. The leading UAV then
processes each of the models it retrieves from its followers
and generates a master model, which is returned to every
trailing UAV. Zeng et al. [27] further bring forth a joint power
allocation and scheduling design which aims at improving
Federated Learning’s rate of convergence by considering the
requirements for energy and the control system’s delay speci-
fications.

Rahman et al. [42] dealt with the issue of communication
among swarms of UAVs during search-and-rescue operations
using methods based on machine learning. They introduced
a technique for determining path loss in UAV swarms using
machine learning, and it also forecasts the strength of received
signals. At the outset, a random forest model is trained using
the information retrieved from the received signal to create
the path-loss profile. Afterward, K-means clustering was uti-
lized to forecast the cluster parameters for the UAV swarms.
Finally, to acquire accurate swarm formation, the dendrogram
of all varieties was examined.

G. DELIVERY AND LOGISTICS
UAVs have been witnessing rapid growth in the areas of flight
time and autonomous operations. This makes them highly
useful for being implemented for the purpose of delivering
goods. They can deliver parcels in a fast and efficient manner
even to remote areas which are hard to access by any other
mode of transport. Modern and advanced technology capable
of enabling longer and safer flights is needed to achieve the
goal of goods delivery using UAVs reliably. UAVs need to
be able to carry heavier goods with better and more efficient
batteries and navigation systems capable of preventing colli-
sions and computing optimum flight paths. Using UAVs for
commercial purposes such as goods delivery has to be done
under strict compliance with government regulations to ensure
safety. This is why companies that want to incorporate UAVs
for delivery purposes are required to obtain the necessary
permits and certifications. For the correct delivery of goods,

proper determination of flight paths is required. A strong net-
work of ground personnel is also required to coordinate timely
and correct deliveries. Software based on AI algorithms is
needed, which can compute the optimum flight paths and track
the parcels on a real-time basis.

Dorling et al. [43] created a cost function that considered
factors such as energy consumption and UAV reuse. This
function was then simulated in practical scenarios to find
optimal and workable solutions. This is a solution to the
problem of multi-trip vehicle routing [44] and reducing de-
livery time and cost of operation. Kong et al. [45] presented a
new autonomous learning technique called the attention-based
pointer network (A-Ptr-Net), which aims to optimize drones’
delivery trajectories. The A-Ptr-Net model, which incorpo-
rates an attention mechanism, has proven to be capable of
automatically adjusting to new drone trajectory data without
the need for an explicit distance matrix. The authors further
create convex function constraints that pertain to the nonlin-
ear energy consumption of drones and other crucial factors,
including customer demands. The constraints developed are
subsequently utilized to optimize the drone logistics delivery
through the A-Ptr-Net model.

Owing to the limitations of their batteries, drones are most
appropriate for last-mile delivery, which refers to the delivery
of goods from the package distribution centers (PDCs) to the
customers. Khamidehi et al. [46] examined the problem of
dynamic drone assignment while aiming at guaranteeing high
Quality of Service (QoS) standards. They utilize a queueing
theoretic methodology to model the customer-service param-
eter. Additionally, they employ a deep reinforcement learning
technique to acquire a strategy that facilitates the dynamic
redistribution of drones. This ensures that the waiting-queue
duration of the packages never crosses an upper bound, thus
helping the supplier and consumer alike. Simulations prove
that this approach is indeed effective and further help in
reducing the required number of drone for an operation.

H. DEFENSE APPLICATIONS
The integration of artificial intelligence (AI) in UAVs can
greatly enhance their effectiveness in border security appli-
cations.

Some ways AI-powered UAVs can be used for border se-
curity are listed below: 1. Surveillance and Reconnaissance:
UAVs with AI technology can patrol along the borders for
surveillance. Objects such as vehicles and people can be de-
tected using ML techniques, and this will help the security
personnel to eliminate threats in a timely and efficient method.
2. Threat Detection: Cameras fitted in UAVs can capture im-
ages of a large area and can then process them using ML and
AI techniques to identify potential threats, such as smugglers.
3. Autonomous Operations: UAV’s capability to operate au-
tonomously will enable efficient patrolling of the border areas
and assist ground personnel in recognizing and correcting
security issues. UAVs can also provide better information
related to threats because they can continue surveillance
silently and without getting noticed. 4. Communication and
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FIGURE 3. Multi-UAV communication networks.

Coordination: AI-powered UAVs can also be used to en-
hance communication and coordination between border patrol
agents and UAV operators. UAVs can provide real-time infor-
mation to border patrol agents, allowing them to respond to
potential threats more quickly and effectively. 5. Rapid Re-
sponse: UAVs with AI implementation can provide quick and
effective assistance in emergency operations with enhanced
situational awareness. This can include delivering essential
life-supporting goods to disaster-struck regions which might
be inaccessible easily by other means of transport.

Aguilar et al. [47] designed a strategy for enabling au-
tonomous micro-UAV flights for detection and surveillance
missions. The authors suggested YOLO-based neural network
algorithms for achieving the aforesaid purpose. The testing
and analysis revealed that the algorithms were successful
in accurate real-time object and human recognition in dif-
ferent landscapes and environments. The improved wireless
network stability and improved physical maneuverability of
UAVs have led to further work in the direction of military
surveillance using UAVs.

Afifi et al. [48] aimed to solve the problem of exact three-
dimensional location determination detection of UAVs to
enable accurate and swift military operations such as tactical
autonomous flights. The authors employed the pre-existing
5G network instead of Ground Positioning System(GPS) for
this. They suggested two machine learning approaches involv-
ing deep neural networks and reinforcement learning to utilize
the 5G network for exact location calculation in real time.

I. RESOURCE ALLOCATION IN UAVS
The distribution of resources among a group of unmanned
aerial vehicles (UAVs) has become an important issue that
researchers have devoted significant attention to in recent

times. This is indispensable for the quick, safe, and reliable
operation of UAVs. These UAVs are capable of autonomous
flight or remote control and find application in diverse areas,
including surveillance, reconnaissance, communication, and
delivery. Research allocation in networks driving the UAVs
aims at the optimal distribution of limited resources such as
spectrum, power, and bandwidth. This will help to improve
the UAVs’ potential. However, this is faced with a number
of challenges based on UAV mobility since even very minute
changes in the UAV’s position coordinates change the entire
network topology. This complicates the process of real-time
resource allocation. The finitude of all the crucial resources is
another major issue. UAV batteries are usually low-powered
with a very limited operational period. This lack of unre-
stricted energy supply limits the physical maneuverability of
the UAVs, communication, and computational power.

There have been various methods suggested to tackle the
issue of assigning these resources in networks of UAVs.
These methods can be generally categorized into two groups:
centralized and decentralized. The centralized approaches per-
tain to a central controller that takes care of distributing
resources among various UAVs. In comparison to decentral-
ized approaches, these methodologies exhibit higher efficacy
levels due to their consideration of the overall network
state. However, they are associated with increased complex-
ity and communication overhead requirements. Decentralized
approaches, conversely, pertain to individual UAVs mak-
ing autonomous determinations regarding resource allocation
depending on local data. Such approaches possess greater
scalability and resilience due to their independence from a
central controller. Their efficacy may still not match that of
centralized approaches as they lack access to global network
information.

Resource allocation to UAVs by base stations also plays a
critical role in augmenting coverage and surveillance area in
the context of UAV-assisted networking. As such, the task of
resource allocation assumes the utmost significance, given the
aforementioned factors. Various techniques involving artifi-
cial intelligence and machine learning have been employed to
tackle these challenges. These include reinforcement learning,
which enables the UAV to allocate resources based on data
obtained in real-time. Game theory [49] is another approach
to solving these issues, wherein the resource allocation is pro-
jected as a task to be solved between the participating UAVs.

There are some other major applications of AI in UAVs
which offer a huge potential for research and development,
like precision agriculture. It involves using cameras and sen-
sors to monitor crop health, predict yields, and optimize input
application. In bridge inspection, AI analyzes high-resolution
images and thermal data from UAVs to detect structural de-
fects, enhancing safety and efficiency in maintenance.

Chen et al. [50] presented a solution to solve the issue
of combining caching and resource allocation in a network
of UAVs equipped with caches, which provide wireless ser-
vice to ground users via the licensed and unlicensed bands
of the LTE network. The authors utilized a technique that
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TABLE 2. Summary of the Applications of AI in UAV

relies on a liquid state machine (LSM). The LSM algorithm
can enable the cloud to anticipate the distribution of content
requests from users, even with only partial information on
the states of the network and users. With this, the UAVs can
select the most effective resource allocation methodologies,
which aim to maximize the number of users with steady
queues. By analyzing the distribution of user association and
content requests, the algorithm calculates the ideal content
to be cached by UAVs and the optimal resource allocation
strategy. Duan et al. [51] created Internet Of Things (IoT) [55]
uplink transmission systems with high capacity by integrating
nonorthogonal multiple access (NOMA) with UAV communi-
cation. The k-means clustering algorithm is utilized to cluster
IoT nodes into subsystems that correspond to the number of
UAVs.

For proper resource allocation in UAVs to facilitate emer-
gency communications in disaster-struck regions, Duong
et al. [53] proposed a rapid user clustering model based on
the K-means algorithm, along with an optimized allocation
of power and time for transfer. In disaster situations, UAVs
would work as flying base stations and help in the facilitation
of communications, which can be used for search and rescue
operations. Sun et al. [54] put forth a method to identify local-
ized patches of forest fire using UAVs based on the Industrial
Internet of Things (IIoTs). When using IoT sensors to monitor
various aspects of forest fires, taking into account the priority

constraints between sensors can ensure a prompt response in
forest fire monitoring. A cooperative particle swarm optimiza-
tion algorithm that uses learning and is based on a Markov
random field decomposition strategy has been suggested as
a means of finding the most efficient allocation strategy for
UAV resources. Chang et al. [52] focused on a multi-UAV
system and employed machine learning techniques to tackle
the issues of resource allocation and trajectory planning. To
tackle the challenges related to the vast number of dimensions
in the state space, the authors put forward an algorithm for
strategic resource allocation based on deep learning and re-
inforcement learning. The authors used deep Q-network was
utilized to incorporate dynamic optimization.

IV. AI ALGORITHM-BASED CLASSIFICATION
In this section, we present the reviewed papers based on the
AI algorithm incorporated. Fig. 5 shows the diagrammatic
representation of the AI algorithms used in AI-integrated UAV
systems, and Table 3 summarizes the reviewed papers under
each algorithm.

A. REINFORCEMENT LEARNING
Reinforcement learning (RL) is a method in which an agent
interacts with a dynamic environment in a trial-and-error fash-
ion to learn to respond in a way that optimizes the reward [56].
At each stage of interaction, the agent receives sensory
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FIGURE 4. Overview of applications of AI in UAVs.

FIGURE 5. AI algorithm-based classification.
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TABLE 3. Summary of AI Algorithm-Based Classification

input that provides some indication of the current state of the
environment, and then the agent chooses an action to send
as output. The agent receives a singular scalar reinforcement
input based on the value it places on the altered condition
of the environment. To maximize the sum of reinforcement
signal values over time, the agent makes decisions that lead to
such outcomes. Over time, it learns this via trial and error and
other strategies.

1) MODEL-FREE RL ALGORITHMS
Model-free RL algorithms adapt their policy based on the
outcomes of their actions without estimating or using the dy-
namics of the environment. There are two types of model-free
RL algorithms, as described below:
a) Policy-based algorithms: Without explicitly estimating or
modeling the underlying dynamics of the environment, a
policy-based algorithm is able to learn a policy, which is a
mapping from states to actions. Finding the best policy is
the primary emphasis of policy-based techniques rather than
attempting to estimate the value function or the action-value
function (Q-function). Gradient ascent algorithms are often
used for this purpose since they update parameters in the
direction of the gradient of an objective function that stands
for the anticipated return.

Research on intelligent flight control systems is ongoing,
and RL has recently been used to address the limitations of

PID control. Using state-of-the-art RL algorithms like the
Deep Deterministic Policy Gradient and Proximal Policy Op-
timisation, Koch et al. [22] studied the efficacy and accuracy
of the inner control loop that controls altitude. They developed
a simulator to train a flight controller using RL and then used
it to evaluate the effectiveness of PID and RL in maintaining
a constant altitude. Using a Gauss-Markov random model,
Liu et al. in [57] analyzed a mobile edge computer network
that included a UAV. The issue is formulated as an optimiza-
tion of a Markov decision process, with the UAV trajectory
and UAV-TU association serving as the parameters. To maxi-
mize system reward, it proposes to devise a quality-of-service
(QoS)-based action selection strategy using a double deep
Q-network.
b) Value-based algorithms: An algorithm that bases its deci-
sions on an estimate of a certain value function or action-value
function (Q-function) is known as a value-based algorithm.
The algorithms look for the value function to maximize the
anticipated cumulative payoff. Estimates are continually up-
dated using techniques like temporal difference learning based
on the difference between the actual and predicted values.

Cui et al. in [58] addressed the long-term resource allo-
cation issue as a stochastic game for maximizing predicted
rewards, where each UAV acts as a learning agent, and
each resource allocation solution is an action executed by
the UAVs. The authors here developed a Q-learning-based
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framework for MARL, in which agents work together to learn
the best way to act given a set of local observations but
make decisions independently. Similarly, the authors of [59]
proposed a MARL-based path planning method for UAVs,
claiming the advantage of it over traditional Q-learning as it
gathers both global and local information, significantly im-
proving performance by using two layers in the algorithm.
One layer deals with local information, and the other lower
layer deals with global information, considering it a long-term
stride. Qu et al. created the reinforcement learning-based grey
wolf optimizer method (RLGWO) in [60] to address the in-
efficiency of existing route planning algorithms, especially
when confronted with a three-dimensional, complex flying
environment. The authors of [21] used an Adaptive and Ran-
dom Exploration (ARE) strategy to successfully accomplish
the UAV navigation and obstacle avoidance objectives. Also,
search techniques to help the UAV getaway on the right track
were used.

2) MODEL-BASED RL ALGORTIHMS
Model-based Reinforcement Learning (RL) algorithms com-
bine learned models of the environment with RL techniques to
make informed decisions. These algorithms simulate possible
actions and their outcomes, thus enabling better exploration
and optimal policy determination compared to trial-and-error
approaches.

Model-based algorithms use transition functions to estimate
the optimal policy.
a) Imitation learning: Model-based imitation learning [61]
is a group of reinforcement learning algorithms that may
be used to rapidly suggest an approximation of a solution
to a given control problem, often in robotics. According to
the theory, either a person or a machine might do a variety
of vocations, such as performing home tasks for domestic
robots. Imitative learning is used because it is often difficult
to recognize the exact movements required to guide the robot
along the trajectories, but they may be learned by utilizing a
model of the robot’s dynamics. Liang et al. in [62] proposed a
new learning-based system that automatically enhances UAV
tracking performance via learning. This algorithm can be
trained alone; however, it is part of the model-based learning
paradigm, and so it improves with guidance from control
methods. This method was developed for use when adhering
to the reference trajectory would be overly forceful or oth-
erwise counterproductive to system dynamics. To maximize
UAV owner profit and on-ground user benefits, [63] proposed
a multi-agent imitation learning-enabled UAV deployment
strategy. Agent rules for online scheduling with imperfect
information were developed, trained, and run in a distributed
manner with a guaranteed -Nash equilibrium by modeling the
actions of related experts using CNNs, GANs, and a gradient-
based policy [64].
b) Inverse reinforcement learning: Inverse reinforcement
learning (IRL) refers to the challenge of deducing an agent’s
reward function from its policy or observed behavior. In order

to track a multirotor UAV’s path, the authors of [65] used IRL
Control. An expert’s numerous demonstrations were collected
in the first step, and then a hidden Markov model (HMM) and
dynamic time warping (DTW) were used to generate a repre-
sentative trajectory from the collected dataset. The multirotor
used this information to replicate the flight path. The optimum
controller for minimizing the trajectory tracking error was
then built using IRL to learn the quadratic hidden reward
function.

3) HYBRID RL ALGORITHMS
a) Model-ensemble based: Model ensemble learning is a
technique for developing a single learning model capable of
making inferences on supplied data by combining different
learning models, such as Logistic Regression and Naive Bayes
classifiers. To predict wheat output using UAVs in the win-
ter, Li et al. [66] utilized an ensemble-based learning and
hyperspectral-based approach, with the latter being used to
assess crop attributes due to the fact that hyperspectral data
may give rich spectral information. Boruta feature selection
and the Pearson correlation coefficient (PCC) are two ex-
amples of the kinds of feature selection techniques used to
filter out data with unusually high spectral indices. By inte-
grating linear ridge regression, random forest, and decision
trees, the authors here were able to create an ensemble-based
learning model that could predict wheat production. Total
nitrogen concentration in water was evaluated by the authors
of [67] using a hyperspectral and ensemble-learning-based
framework applied to emergent plants using a drone. The
authors of the article conducted a hypothesis test using four
different types of machine learning models. The results of the
regression analysis were then used to inform the development
of a decision-level fusion (DLF) model that would allow for
the extraction of Total Nitrogen (TN) concentration in water.

In [68], Perron et al. addressed a patrolling problem is-
sue, which is an issue of coordination among several UAVs
traveling over a vast region. Thus, in the article, the authors
proposed a method for combining reinforcement learning with
multi-agent simulation, which enabled the herd of UAVs to
find nearby optimal solutions in real geo-referenced virtual
environments, implying that they can automatically find pat-
terns of patrolling in an area even when there are unknown
obstacles and moving targets. The authors employed Coor-
dination Learning in Multi-Agent Framework (COLMAS)
framework to create their proposed hybrid strategy.

B. CONVOLUTION NEURAL NETWORK (CNN)
BASED ALGORITHMS
An Artificial Neural Network(ANN) has several layers, be-
ginning with the input layer, followed by a number of hidden
layers, and finally, the final output layer. CNNs are similar
to the ANNs in that the neurons in the learning process self-
optimize. There are no significant differences between classic
ANNs and CNNs, except that CNNs are mostly employed
for pattern identification inside pictures, as this becomes a
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job targeted with images, reducing the modeling parameters.
As a result, CNNs are successful in overcoming the most
significant drawback of classical ANNs, namely their com-
putational complexity [69]. CNNs have emerged as a viable
tool for enhancing UAV perception and decision-making. The
creation of effective and precise algorithms based on CNNs
will be crucial in boosting the capabilities of UAVs in many
applications as the use of UAVs continues to grow, much like
for object identification and semantic segmentation. CNNs are
deep neural networks with the ability to segment as well as
categorize pictures. Although there are many layers in CNN
architectures–some of which have already been mentioned–
they may be divided into Shallow CNNs and Deep CNNs.
There are several applications for each of the categories; thus,
the discussion of the same focus follows.

1) SHALLOW CNNS
Few convolutional and pooling layers make up the neural
network design known as shallow CNNs because they con-
tain fewer layers than deep CNNs and are often utilized for
straightforward image recognition tasks. These networks are
easier to train and more computationally effective. Tasks in-
volving picture categorization also make use of them. LeNet
and AlexNet are two examples of shallow CNNs that are also
commonly utilized in UAVs.
a) LeNet: LeNet [70], developed by LeCun et al. in 1998 for
recognizing handwritten digits, is one of the first and best-
known shallow CNNs. LeNet has seven layers, comprising
three fully connected layers, two convolutional layers, and
two subsampling layers. Each layer is made up of a group
of trainable parameters, such as weights or filters, which are
optimized during training to raise the model’s accuracy. LeNet
is still often used in UAVs today for a variety of objectives.
An innovative method for spreading deep neural networks
(DNNs) within UAVs is presented in the article [71] in order to
speed up data categorization in devices with limited resources
and prevent delays caused by server-based approaches. The
suggested approach formulates an optimization problem that
accounts for the UAV’s resource limitations as well as their
mobility model as part of air-to-air communication. In order
to adjust the system to the UAV’s dynamic movement and net-
work fluctuation, mobility prediction [72] is also added. The
authors used a simulation on a high-performance computing
(HPC) cluster to assess the effectiveness and benchmark of the
suggested solutions. Thus, the suggested methodology came
out to be a viable option for UAV-based data categorization
in contexts with limited resources. The authors rigorously
assessed the performance of their system in the simulation
using two different CNN models, the Lenet and VGG-16 [73],
each with seven and eighteen layers, respectively. The sys-
tem was used specifically to deal with scenarios involving
pedestrian monitoring, which entailed classifying large-scale
RGB photos (595326) taken from the Stanford Drone Data
Collection [74]. The limited energy and payload capacity finds
the challenge to incorporate ML capabilities into small UAVs.

Within the limited UAV hardware and software, the authors
of [75] proposed a scalable and modular framework for eval-
uating vision-based ML challenges. In this study, the authors
compared and contrasted two alternative systems that rely on
vision for navigation. In the first setup, an autonomous landing
site identification system was built and evaluated using two
different models based on LeNet-5 and MobileNetV2. As a
consequence, the UAV may change its trajectory to get closer
to the designated landing area. In the second configuration, the
authors tried out a person detection model using a customized
MobileNetV2 network. It is shown that the system can quickly
learn from its environment and respond appropriately, even
when faced with constrained computational resources. The
article also showed that moving from cloud to edge com-
puting [76] might significantly reduce energy consumption
without compromising service quality.
b) AlexNet: For picture categorization using the ImageNet
dataset, Krizhevsky et al. introduced the [77] network in 2012.
A total of 60 million parameters are contained in the five
convolutional layers and three fully linked layers that makeup
AlexNet. It employs numerous methods to boost performance,
including local response normalization, dropout regularisa-
tion, data augmentation, and the use of rectified linear units
(ReLU) as activation functions. The usage of AlexNet in
UAVs demonstrates the network’s adaptability and capacity
to carry out challenging visual tasks in circumstances with
limited resources. The authors of [78] describes a cutting-edge
method for leveraging deep learning to automatically detect
damage to wind turbine blade surfaces using UAVs. In partic-
ular, a 21-functional sub-layer, 8-layer AlexNet, is built and
parameterized to categorize photos of blade surfaces taken
by a 4-rotor UAV. With an outstanding average accuracy of
99% in damage identification, the AlexNet was evaluated on a
different dataset of 350 photos after being tested on a dataset
of 10,000 images during training. The authors showed that
deep learning classifiers developed on UAV image capture
data are capable of automatically detecting damage to wind
turbine blades that are already in operation.

2) DEEP CNNS
Deep CNNs are multi-layered neural networks that are fre-
quently employed for computer vision applications like image
identification [79] and classification. Because they frequently
have many more layers than conventional neural networks–
some models have hundreds of layers–they are referred to
as “deep” neural networks. Deep CNNs have the benefit of
learning complicated and abstract features automatically from
raw image data, eliminating the need for human feature
engineering, which was a time-consuming and error-prone
procedure in the past. The following is a description of a few
well-known deep CNN architectures that are often utilized in
UAVs.
a) Deep Residual Learning Network (ResNet): A deep con-
volutional neural network (CNN), Residual Network was
initially presented by He et al. [80] in 2015. This network

VOLUME 4, 2023 725



SAI ET AL.: COMPREHENSIVE SURVEY ON ARTIFICIAL INTELLIGENCE FOR UNMANNED AERIAL VEHICLES

employs a novel design based on skip connections, or “resid-
ual blocks,” which allow for direct information transfer across
layers to address the problem of vanishing gradients in ex-
tremely deep neural networks. By using these expedients, the
network may learn residual mappings that are appended to the
output of previous layers, making it easier for the network to
understand the essential features of the data.

Using micro-Doppler signatures (MDS) shown on radar
spectrogram images, a deep learning-based classification al-
gorithm is proposed in [81] for real-time UAV identifica-
tion. In this case, a frequency-modulated continuous wave
(FMCW) radar was used to capture five LSS targets across
a range of environments, including three kinds of unmanned
aerial vehicles (UAVs) and two types of human activities. The
signals were then converted into visual spectrograms through
the Short-time Fourier transform (STFT). After analyzing the
ResNet-18 model, a new model named ResNet-SP was devel-
oped to improve upon it in terms of computation, accuracy,
and stability. Dataset expansion and refinement led to the
creation of the radar spectrogram dataset.
b) InceptionNet: Google engineers developed a deep CNN
architecture in 2014 dubbed GoogleNet, sometimes known as
InceptionNet [82]. The network was designed to outperform
conventional CNNs by improving accuracy with fewer param-
eters. This architecture is often used for picture classification
and identification, combining convolutional filters of varying
sizes in parallel to capture features at varying scales,

The study by Chriki et al. [83] proposed an implementa-
tion of novel anomaly detection algorithms to aid UAV-based
surveillance operations that include the collection of pho-
tos using a mobile camera. Strong features were extracted
from UAV videos using a combination of a pre-trained CNN
and two well-known hand-crafted approaches (HOG [84] and
HOG3D [85]). Specifically, the authors used an unsupervised
classification method called One-Class Support Vector Ma-
chine (OCSVM). Extensive testing on a dataset of videos
recorded by a UAV keeping watch over a parking lot con-
firmed the efficacy of the proposed methods. A pre-trained
CNN based on the popular GoogLeNet (or inception v1)
was also used [82]. The 2014 ImageNet Large-Scale Vi-
sual Recognition Challenge (ILSVRC14) demonstrated that
GoogleNet is superior to state-of-the-art classification and
detection approaches.

C. GENERATIVE ADVERSARIAL NETWORK (GAN)
A Particular kind of deep learning model called generative
adversarial networks, or GANs [86], produce new data that
closely mimics a given training dataset. A generator and a
discriminator are their two basic parts. In order to trick the
discriminator, which has been taught to differentiate between
authentic and fraudulent data, the generator produces fresh
samples. The two models are trained simultaneously as the
discriminator improves its ability to discriminate between ac-
tual and false data using the technique of adversarial training
The generator creates replica samples of the training data

using random data as input. It is taught to use a loss func-
tion such as mean squared error or binary cross-entropy to
minimize the gap between the generated samples and the
true data. The discriminator is trained to determine whether
incoming data is genuine or fake and is optimized for this
task. One potential use of GANs in UAVs is the generation
of high-quality images for use in training object recognition
algorithms. It is possible to categorize them based on their
architecture, intended purpose, or use case.

In order to limit the damage caused by droplet drift caused
by rotor flow fields, an innovative method has been proposed
in [87]. This approach combines deep learning and flow field
approaches via the deployment of a GAN prediction model.
While the discrimination network can distinguish between
real and fake images, the generative network can learn the
properties of the flow field in order to uncover hidden struc-
tures. This model studies training data to determine features
of the flow-field distribution, which it then uses to generate a
predictive model for flow-field prediction.

1) DEEP CONVOLUTIONAL GANS (DCGANS)
In DCGANs [88], CNN is used as a generator and discrimi-
nator. CNNs are useful for creating images because they can
identify regional spatial relationships. DCGANs create pic-
tures from random noise using a number of deconvolutional
layers in the generator. To assess if a picture is real or false,
the discriminator employs a number of convolutional layers.
DCGANs have been utilized to produce high-quality pic-
tures in applications, including image and video production.
The 5G wireless network [89] is crucial for allowing marine
UAV communication. For important applications, great de-
pendability and low latency are necessary. As a result, it’s
essential to have a fast data rate and trustworthy communi-
cation, all of which depend on the state of the channel. A
channel mode for 5G-enabled maritime UAV communication
employing millimetre wave (mmWave) for the air-to-surface
link was thus proposed by the authors in [90]. The chan-
nel model’s mmWave channel state information (CSI) is
intended to be included in the channel estimation method. An
LSTM-Distributed Conditional Generative Adversarial Net-
work (DCGAN) was used to implement the strategy across
all beamforming directions. To expand the usefulness of the
training channel model, a UAV network based on LSTM-
DCGAN was developed. Simulation results based on resilient
local training errors show that the proposed LSTM-DCGAN-
based network is effective.

2) WASSERSTEIN GANS (WGANS)
The Wasserstein distance is employed as the objective func-
tion in WGANs [91] as opposed to the conventional binary
cross-entropy loss in normal GANs. It has been estab-
lished that the binary cross-entropy loss is less stable than
the Wasserstein distance, which quantifies the separation
between two probability distributions. Weight clipping is an-
other technique used by WGANs to impose the Lipschitz
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constraint [92], which prevents the gradients of the dis-
criminator from exploding or disappearing. Applications like
picture synthesis and text creation have both employed
WGANs. The study [93] explores the viability of enhanc-
ing wireless signal-based detection of unauthorized UAVs
using GAN. In order to increase classification accuracy using
the discriminative model, a sizable dataset is built without
the need for manual annotation. The model works well in
outdoor settings and produces outstanding results with lit-
tle datasets. For multi-class UAVs, an enhanced Auxiliary
Classifier Wasserstein GANs (AC-WGANs) model is created,
and it is integrated with the USRP B210 SDR for real-time
classification.

3) CYCLEGANS
CycleGANs is a sort of GAN that can learn to translate
across multiple domains. Unpaired training data is not re-
quired for CycleGANs [94]. To learn the mapping between
the two domains, CycleGANs employ two generators and
two discriminators. Images are mapped from one domain to
the other by one generator, then from the second domain
back to the first domain by the other generator. Whether
the created pictures are phony or real is determined by the
two discriminators. CycleGANs have been applied to domain
adaptation and picture style transfer, among other things.
An UAV-based wildfire [95] detection system was proposed
in [96] to reduce wildfire damage. In the deep learning-based
categorization of wildfire images, data imbalance between
wildfire- and forest-image data is a frequent issue that affects
performance. In order to correct data imbalances, the authors
of this article suggested a DenseNet-based architecture and
created wildfire pictures using CycleGAN. The framework
obtained an F1 score of 98.16% and an accuracy of 98.27%.
The trained model showed great wildfire identification [97]
accuracy when used with high-quality drone photos of wild-
fires [98].

D. RECURRENT NEURAL NETWORKS (RNN)
RNN is a type of neural network which deals with sequen-
tial data. RNNs have the capacity to process sequential data
of variable lengths and employ feedback loops to preserve
knowledge about previous inputs [99]. RNNs comprise sev-
eral layers of neurons, each of which receives input from
the layer above and produce its own output. It also has a
hidden state sent back into that layer in the following time
step. Backpropagation through time (BPTT), a variation of the
backpropagation method that considers the temporal character
of the input data, can be used to train RNNs. To update the
network weights, BPTT computes gradients for each time
step of the input sequence and propagates these gradients
backward through time [100].

Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU) networks are one of the types of RNNs.The major
motive of the aforesaid networks is created to solve the issue
of “vanishing gradient”.

1) LSTM
Long Short-Term Memory (LSTM) [101] architectures in
RNNs are capable of detecting dependencies of temporal na-
ture. Such dependencies arise in sequential data. The LSTM’s
input, output, and forget gates monitor and enable selec-
tive control of the information flow of a particular memory
cell. This information, passing through the output gate moves
into the network, while the same information flows into the
memory cell through the input gate. Deletion of the data is
controlled by forget gates. LSTM is particularly useful for
tasks involving the processing of sequential input with gaps
in time, such as voice recognition and text processing. Its
ability to selectively remember or forget information over
long periods of time makes it a great fit for tasks that require
recalling past events, such as language translation or hand-
writing recognition. The LSTM has found a number of uses
in UAV-based deployments.

The resource allocation issue for many UAVs serving M2M
communications is investigated by Xu et al. in [102]. Uncer-
tainty in a stochastic setting is modeled after a Markov game.
To better monitor and predict mobility, leading to higher net-
work rewards, an LSTM with GANs architecture is proposed
as a solution to the UAV mobility issue in this article. The
results here are superior to those of the more common LSTM
and DQN algorithms. Bae et al. in [103] described a novel
approach for UAV anomaly detection in the distributed AI
environment utilizing deep learning models. Due to the high
computational demands of anomaly detection, the embedded
system-based UAV environment is not ideal for settings that
use standard AI. LSTM-AE(Auto Encoder) and AE models
are utilized in distributed AI with DPS and MAS for UAV
anomaly detection. Experimental findings indicate that the
suggested technique performs well for anomaly identification
in the UAV environment. Another article [104] using LSTMs,
focus on UAV communication. Future wireless networks will
benefit from the use of UAVs as significant communication
platforms, particularly in temporary and emergency situa-
tions. The capacity for data flow through an UAV is impacted
by the its location. The location of a UAV that optimizes
system performance and user throughput is determined in
this study using MLP and LSTM techniques. For accurate
findings, the suggested system is assessed using TensorFlow
packages and contrasted with alternative methods.

2) GATED RECURRENT UNIT (GRU) NETWORKS
RNNs containing GRUs are used to represent sequential data.
Cho et al. in [105] proposed it as an alternative to the LSTM
architecture. GRU is designed to circumvent some of the
limitations of the LSTM architecture while maintaining the
same degree of performance. GRU, like LSTM, allows one
to choose which memories to retain or discard. GRU only
makes use of two gates, the reset gate and the update gate,
whereas LSTM makes use of three [106]. How much of the
new information should be stored is determined by the update
gate, while how much of the old information should be deleted
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is determined by the reset gate. The simplified design allows
for faster GRU training.

Typically horizontally organized, the polarisation compass
used by UAVs for navigation causes notable heading mis-
takes as a result of inevitable tilts during flight. Heading
errors are increased when the body axis tilt and the solar
meridian angle are coupled. Utilizing a GRU neural network,
an extensive investigation of attitude angle factors has been
performed, creating a brand-new heading error modeling and
compensating technique in [107]. In terms of forecasting
UAV direction, their solution fared better than cutting-edge
algorithms. The use of defect detection to improve system
stability is important in UAV systems. Credible defect detec-
tion is accomplished using data-driven approaches, although
the efficacy of standard techniques may be hampered by time
series noise. In order to analyze UAV flight data impacted by
motor or wind vibration, an upgraded GRU approach is thus
proposed in [108]. A GRU model is constructed to estimate
sensor data after the raw data is denoised and normalized to
enhance the analysis. The approach employs thresholds and
residuals to reduce wildfire damage. The efficiency of the
approach is assessed using simulation data from UAVs, and
defect detection is determined to be successful. Traditional
approaches struggle to withstand the impacts of noise uncer-
tainty since the power of noise and the channel’s SNR are
unpredictable. This is due to the UAV environment’s continual
change. Luo et al. in [109] integrated machine learning and
data preprocessing to enhance UAV spectrum sensing perfor-
mance. The satisfactory simulation proves the superiority of
their GRU-based approach over LSTM networks.

E. CLASSICAL MACHINE LEARNING ALGORITHMS
In machine learning, the techniques used to train models to
make predictions or judgments based on data are known as
classical algorithms. UAVs may be equipped with traditional
machine learning techniques to boost performance and give
them the ability to make more informed judgments. A sum-
mary of some of the most popular traditional machine learning
algorithms and the UAV-related works employing them is
given below.

1) LINEAR REGRESSION
Finding the best-fit line or hyperplane that illustrates the con-
nection between the dependent variable and the independent
factors is the aim of linear regression [110]. Both simple
and multivariate regression analyses may be performed us-
ing linear regression. In a straightforward regression analysis,
there is only one independent variable, and a straight line is
used to describe the connection. Multiple independent vari-
ables are used in multiple regression analysis, and a plane
or hyperplane in higher dimensions is used to describe the
connection. The following list of UAV-related applications has
used linear regression. Alos et al. introduced a novel method
in [111] for contextual fault detection in UAV systems that
makes use of the intricate linear correlations between UAV

properties, such as sensor data and orders. An UAV system is a
complicated system because of the control, aerodynamics, and
communication systems that go into its design. This method
uses dynamic linear regression to estimate the values of a
particular characteristic in order to detect any potential flaws
that might arise from a faulty sensor reporting false values.
Using a K-NN (Nearest Neighbour) classifier, the estimation
error values at each time step are obtained and divided into
two categories, namely normal and abnormal. Potential flaws
are shown by the anomalous spots. The article [112] proposes
to find the best place to attach four gas sensors and a Particle
Number Concentration (PNC) monitor to a hexacopter as part
of a UAV system for evaluating point source emissions. There
were two studies done to determine how well the gas sensors
worked and how the air flowed. After determining that the
best place to attach the sensor was adjacent to the UAV, they
utilized a linear regression model to analyze the effect of sen-
sor location on our pollutant concentration data. This research
provides guidelines for developing reliable UAV systems for
evaluating emissions from stationary sources.

2) NAIVE BAYES
The Naive Bayes algorithm [113] is a frequently used algo-
rithm for classification purposes. The Bayes theorem [114], a
linchpin of probability theory, serves as its theoretical basis.
The Naive Bayes approach assumes that the presence of one
characteristic in a class does not rely on the existence of any
other qualities. This is known as the “naive” assumption be-
cause it improves the method’s computational efficiency and
simplicity of estimating probability. The Naive Bayes method
must first be trained on a collection of labeled data before
it can be used for classification. The algorithm determines
the conditional probability of each feature given a class label
during the training phase. The number of times each feature
appears in each class in the training data is counted to achieve
this. The posterior probability of each class, given the ob-
served characteristics, may be used to predict the class label
of incoming data once the algorithm has been trained. The
anticipated class label is then chosen from the class with the
highest likelihood.

As the number of ways in which UAVs may be deployed
grows, security becomes a key issue. UAVs rely heavily
on civilian GPS signals for finding and navigation. How-
ever, these transmissions may be intercepted and manipulated
by malicious attacks like GPS spoofing. Several techniques,
such as supervised machine learning, have been proposed
by researchers in [118] to detect and classify these dangers.
However, no research in this area has focused on unsuper-
vised models. When comparing the results of supervised
and unsupervised models, this research found that the De-
cision Tree model was the most successful in detecting and
classifying GPS spoofing attempts. Getting data during live
missions is difficult; thus, a simulator is used to mimic the
three tiers of mental exertion required for SAR operations.
Several physiological markers are used as characteristics in
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FIGURE 6. AI training paradigm-based classification.

identifying mental exertion. Using the eXtreme Gradient
Boosting (XGBoost) method and the Shapley Additive ex-
Planations (SHAP) score, as described in the article [120],
a recursive feature elimination strategy is used to choose the
most informative features.

3) K-NEAREST NEIGHBORS (KNN)
Machine learning algorithms like KNN are utilized for clas-
sification and regression problems. It is a straightforward
method that relies on the similarity concept. Similar items
tend to cluster together, which is the fundamental tenet of
KNN. The input data for KNN are points in a multidimen-
sional space. The size of the space corresponds to the number
of characteristics in the data, and each point represents a single
instance of the data. KNN searches the space for the K closest
data points to a new input data point when one is provided.
The class of the majority of these KNNs then determines the
algorithm’s output [121] [122].

Insecure situations where people interact closely with robot
swarms necessitate intuitive control. Maintaining the swarm’s
autonomy while providing adequate tools for the human
operator to affect the robots’ decision-making process is re-
quired in such activities. The work [119] presents a method
for human-swarm interaction that employs full-body action
recognition to manage an autonomous flock of unmanned
aerial aircraft. The KNN algorithm is used to classify hu-
man actions and estimate the full-body position of the human
operator. The swarm bases its objective direction on the iden-
tified activity. A multi-stage experimental design to assess
the system’s resilience and prediction accuracy shows how

useful this technique is. The research by Alos et al. [111] sug-
gests a novel method for identifying contextual errors in UAV
systems. Control, aerodynamics, and communication systems
are all used in UAV design. The suggested method takes ad-
vantage of intricate linear correlations between several UAV
characteristics, including sensor readings and orders. Dy-
namic linear regression is used to estimate the values of a
particular attribute, and each time step includes a calculation
of the estimation error. The values of the estimation error are
divided into two categories–normal and abnormal–using the
KNN classifier.

V. AI TRAINING PARADIGM AND INFERENCE-BASED
CLASSIFICATION
In this section, we classify the papers based on the AI training
paradigm employed. Fig. 6 shows the diagrammatic represen-
tation of the AI training paradigms, and Table 4 summarizes
the reviewed papers under these AI training paradigms.

A. DISTRIBUTED ML
The use of machine learning algorithms that function in a dis-
tributed fashion is referred to as distributed machine learning.
This method enables UAVs to communicate their models with
other UAVs or a central server for increased accuracy while
learning from data collected in their local settings.

A distributed optimization approach using an adaptive
fuzzy PID-UAV attitude controller is proposed in [123] to
solve the issues of membership value and expert knowledge
dependency in the control effect. Fuzzy PID has advantages
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TABLE 4. Summary of AI Training Paradigm and Inference-Based Classification

over traditional PID when learning how to acquire contin-
uous square wave instructions. The system’s tracking and
anti-interference skills are greater, it can reach stable control
faster, and it has excellent dynamic and static characteristics.
The results of the experiments reveal that the UAV can reach
and maintain a stable altitude of 2 meters within 6 seconds
after takeoff using a single PID controller. The control sys-
tem’s high precision and simplicity of installation contrast
sharply with the fuzzy controller’s advantages, which include
decreased overshoot and transient response and the ability to
develop precise and rapid behavior management. For a net-
work of cache-enabled UAVs serving wireless ground clients
on the LTE licensed and unlicensed bands, the problem of
shared caching and resource allocation has been addressed
in the article [50]. The proposed solution is a distributed ap-
proach using the liquid state machine (LSM) machine learning
architecture that allows the cloud to predict the distribution
of user content demands and UAVs to autonomously choose
the appropriate resource allocation methods. Simulation re-
sults on real-world datasets show that the proposed method
drastically decreases convergence time by as much as 20%
compared to two baseline methods, Q-learning with cache and
Q-learning without cache.

B. FEDERATED LEARNING (FL)
Federated Learning is a distributed machine-learning tech-
nique that permits the creation of a machine-learning model
on a swarm of UAVs. In the beginning, each UAV trains a local
model with its own data. After that, a central server gathers the
locally trained models to produce a global model. Because
raw data is not shared with other UAVs in the swarm, data
privacy and security are maintained. FL is divided into two
categories: horizontal FL and vertical FL [124], [125]. The
former is the commonly used type of FL, which is applicable
to scenarios with various samples but comparable characteris-
tics. The vertical, on the other hand, is employed in situations
where participant samples are available as scattered datasets.

The article [126] suggests UAV communications for long-
lasting FL. The topic of how to include FL in wireless
networks, which is complicated by mobile users’ low bat-
tery capacities, has been addressed here. In order to provide

long-lasting FL-based wireless networks, this article suggests
using UAVs for wireless power transfer. The goal is to simul-
taneously optimize transmission time, bandwidth allocation,
power control, and UAV positioning in order to increase the
efficiency of UAV transmit power. The connection of the
variables makes it difficult to directly answer the specified
problem. As a result, the authors create an effective method
called UAV for sustainable FL (UAV-SFL) using the decom-
position technique and a sequential convex approximation
approach.

Pham et al. recommended UAV communications for per-
manent FL in [126]. This article discusses how to implement
FL in wireless networks. The issue of permanent Fl is made
more difficult by the limited battery life of mobile de-
vices. Thus, it employs UAVs for wireless power transfer to
enable long-lasting FL-based wireless networks. Improving
UAV transmission efficiency requires optimizing many factors
at once, including transmission time, bandwidth allocation,
power control, and UAV position. The interdependence of
the factors prevents us from providing a simple solution to
the given issue. In light of this, we use the decomposition
method in conjunction with a sequential convex approxima-
tion strategy to develop a practical solution we name UAV for
sustainable FL (UAV-SFL).

An FL-based method was also proposed in [127]. A hybrid
power allocation and scheduling solution was presented to
optimize the convergence rate of FL while taking into con-
sideration wireless characteristics and energy consumption. In
addition, a thorough convergence study was carried out for
FL. Applying traditional AI models to UAV sensing data may
raise concerns about data utilization and privacy. Even while
FL is a solution, there are still concerns about privacy and
safety. In order to develop a Mission Control System(MCS)
with the help of UAVs, the article [128] proposes using an
SFAC or secure federated learning architecture. SFAC uses
a blockchain-based UAV collaborative learning architecture
to allow for the safe sharing of local model changes and
validation of contributions without the need for a central
curator. To further ensure that freshly updated local models
remain private, local differential privacy is then used. An
RL-based reward system is used to incentivize the sharing
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of high-quality models. Many simulations show that SFAC
greatly improves UAV usefulness, promotes the sharing of
high-quality models, and guarantees privacy.

C. SPLIT LEARNING
Split Learning [129] is another approach to train a global
learning network. Without disclosing the original data, the
training can be performed. This approach divides the ML
model into a number of smaller sub-models, which are sub-
sequently trained in a distributed manner by a number of
clients and a server. The output of an intermediate layer is
disseminated by the client and sent through forward propa-
gation to the server [130]. The privacy of the original data is
protected by the server’s backward propagation of gradients
to the clients.

In the article [131], a spatiotemporal split learning is used
to detect the presence of fire on city streets by surveillance
UAVs. Autonomous surveillance UAVs are used to monitor
the city’s streets for any suspicious activity and to gather a
large amount of data. The fire classification model is globally
trained, allowing fire stations to recognize the presence of a
fire in the neighborhood quickly. The article also investigates
the network architecture, client and data ratios, and a sufficient
number of clients for split learning in this UAV environment
to enhance communication resilience. Rapid fire detection and
fireman deployment require effective communication between
the UAV and the central server.

Concerns concerning privacy have been raised by the rise of
personal monitoring devices, such as dash cams and cycling
helmet cameras. A team has created SASSL [132], a secure
aerial surveillance drone that utilizes split learning to find fires
the streets of a secure aerial surveillance drone that uses split
learning to detect fires on the streets in order to address this
issue. The drone records CCTV footage, which is then sent
to a nearby server, where a deep neural network is used to
instantly detect the presence of fire. The drone only processes
the feature map on the cloud server after running the deep
neural network up to the first hidden layer in order to protect
the privacy of citizens’ data. Additionally, the UAV may also
capture any abnormal activity in a suburb and analyze the data
using its built-in deep neural network or by sending it to a
server.

D. MULTI AGENT REINFORCEMENT LEARNING(MARL)
The single-agent RL algorithm based on a centralized ap-
proach is capable of solving non-convex or time-dependent
optimization issues. On the other hand, MARL is a widely
utilized technique in UAV swarm networks [133]. The number
of UAVs will greatly expand the action space and state space
of the single-agent RL algorithm when used in UAV swarms.
Consequently, there will be more information overhead, train-
ing will be more difficult, and convergence speed will slow
down. As a result, it is necessary to create a distributed RL
approach that may be used by several devices to run RL
simultaneously [130].

The article [134] examines the difficulties of processing
data on IoT [143] nodes owing to a lack of computing power
and how mounting mobile edge servers on UAVs can offer
mobile edge computing services that are available on demand.
For integrated optimization of job offloading, resource allo-
cation, UAV mobility, and online decision-making process is
necessary. For decentralized implementation, a multi-agent
DRL approach is suggested, in which several intelligent UAVs
collaboratively choose their computations and communica-
tion strategies without centralized coordination. The proposed
paradigm has the potential for creating IoT networks that self-
organize. Its decentralized learning technique works better
than current DRL systems, according to numerical findings.

The user association issue in a multi-UAV (refer Fig. 3)
aided network for uplink-downlink decoupled (UDDe) trans-
missions is covered in the study [135]. The authors provide
rate-splitting multiple access (RSMA) rules that boost spectral
efficiency by using rate splitting and sequential interfer-
ence cancellation (SIC). They propose a non-convex joint
optimization problem for UL-DL association and beamform-
ing and employ a multi-agent deep reinforcement learning
(MADRL) and resilient partly observable Markov decision
process (POMDP) for distributed optimization. Also sug-
gested is an enhanced clip and count-based proximal policy
optimization (PPO) technique. The simulation results demon-
strate that the suggested technique performs better than the
alternatives.

The article [136] suggests a Multi-UAV aided commu-
nication technique employing Multi-Agent Reinforcement
Learning to resolve a simultaneous optimization issue of UAV
trajectory design, multidimensional resource scheduling, and
user access strategy. A proximal policy optimization method,
centralized training distributed execution, and a hybrid game
model of users and UAVs are used in the algorithm. The
implementation is enhanced by a beta policy A wide array of
simulations are carried out to confirm the efficacy of the algo-
rithm. The strategy intends to compensate for the limitations
of present wireless communication by supporting integrated
space-air-ground communication.

E. BLOCKCHAIN-ORCHESTRATED FEDERATED
LEARNING(BCFL)
Blockchain-orchestrated Federated Learning (BCFL) com-
bines Federated Learning, which trains AI models across
decentralized devices, with blockchain technology to securely
manage model updates. BCFL ensures transparent tracking of
contributions from multiple devices while maintaining data
privacy and integrity through blockchain’s immutable ledger.
In a BCFL, multiple UAVs operate together in a collaborative
ML process that is governed and protected by a blockchain-
based network. Several benefits come with using blockchain
technology in B5G-enabled UAV communication, including
flexibility, scalability, immutability, transparency, and quick
and efficient delivery services with privacy and security [137]
[138]. Blockchain offers a safe and dependable communi-
cation environment for UAV networks by storing data in a
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timestamped, sequential, and immutable fashion. Addition-
ally, due to the shared ledgers’ non-alterability and the use
of GCS satellites, B5G-enabled UAV-UAV communication is
safe from any adversary assaults [139].

Unmanned aerial vehicles (UAVs) equipped with 5G net-
work connectivity may benefit from blockchain technology,
as discussed in [140]. Instead of relying on a single server
for federated learning, the suggested method makes use of
a decentralized horizontal federated learning architecture to
verify the legitimacy of UAVs flying in different domains
using multi-signature smart contracts. The experimental evi-
dence demonstrates the excellent efficiency and accuracy of
this method. The article [141] explores the advantages and
disadvantages of employing drones for edge intelligence [141]
in smart and secure settings. To solve the issues of security
and decentralization and enable environmentally friendly, sus-
tainable settings, the authors suggest an integrated approach
of FL and blockchain. They discuss the theoretical and tech-
nological components of the proposed method as well as the
difficulties, possibilities, and trends of the future.

To provide intelligent connectivity and services to aerial
and ground-connected devices, the authors [142] present a
system that integrates the capabilities of both UAVs and Un-
manned Ground Vehicles (UGVs). UAVs can adapt how they
serve their customers. The cooperative approach accounts for
the power and mobility constraints of individual nodes, while
FL is used at the network’s periphery to provide timely, ac-
curate service providing. Blockchain is used to decentralize
provisioning and control while providing authenticity and
integrity. Extensive simulations confirm that the method pro-
posed significantly improves connectivity, service availability,
and UAV energy.

VI. TOOLS, LIBRARIES, FRAMEWORKS FOR BUILDING
AI-INTEGRATED UAV SYSTEMS
In this section, we discuss the tools, libraries, and frameworks
that are utilized to build AI-integrated UAV systems.

A. MACHINE LEARNING-BASED TOOLS, LIBRARIES,
FRAMEWORKS FOR BUILDING AI-INTEGRATED UAV
SYSTEMS
Scikit-learn(SkLearn) [144] is a widely used open-source ma-
chine learning package. Classification, regression, clustering,
and dimensionality reduction are just some of the many tasks
that may be accomplished using the many techniques and
tools provided. In addition, it provides tools for testing and
deploying models. In [142], authors have implemented the
proposed algorithm using SkLearn to solve the UAV power
management issue. The approach here takes into account the
mobility and power limitations of the nodes. The authors
of [145] use SkLearn to predict how long it will take for
each frame in the dataset to complete all of them. In this
work, SkLearn is used to employ four different machine learn-
ing models–Kernel-Ridge Regression, SVR-RBF, Gaussian-
handle Regression, and Random Forest Regression–to handle
data. Training time, prediction latency, root mean square error,

and mean absolute error are some metrics that the authors ex-
tracted with the help of the SkLearn tool. With the use of ma-
chine learning, this work aims to propose a dynamic compu-
tation offloading approach that is both energy-efficient and ef-
fective for multi-UAV systems with high-resolution cameras.

The primary use of the open-source machine learning
framework PyTorch [146] is in the creation and training of
neural networks. For activities like data manipulation, layer
definition, and the implementation of frequently used op-
erations, PyTorch offers a wealth of pre-built modules and
utilities. In [135], the authors trained two neural networks,
an “actor network” and a “critic network” on a Python
3.6 platform using PyTorch, which makes up the proposed
MADRL-based joint optimization technique. The authors
of [129] have also trained their RL agents using Pytorch. In
this study, the MASAC algorithm is suggested as a method to
maximize efficiency while minimizing power usage.

Keras [147] is a Python-based open-source deep learning
framework. It offers a high-level, user-friendly interface
for constructing and training neural networks. It comes
with a plethora of pre-built layers, activation functions,
and optimization algorithms, making it simple to build
complicated neural network structures. Keras has both
sequential and functional APIs, enabling users to build models
of varying complexity. In [148], Keras-Retinanet was used
to simulate aerial data from micro-aerial vehicles. Another
implementation of a Keras-based deep neural network
for real-time UAV position prediction is provided in the
article [149]. This article proposes a mathematical framework
for predicting the ground radar look angle, together with
data preprocessing and a deep learning model based on a
long short-term memory autoencoder (LSTM-AE). The raw
historical dataset is preprocessed using the TensorFlow and
Keras libraries for accurate depiction.

B. UAV-RELATED TOOLS, LIBRARIES, FRAMEWORKS FOR
BUILDING AI-INTEGRATED UAV SYSTEMS
ArduPilot [150] is a flight control system, and the Ar-
duCopter [151] plugin is an add-on module for it. Drones and
other unmanned aerial vehicles (UAVs) may be piloted with
the help of ArduPilot, a free and open-source autopilot soft-
ware package. The ArduCopter plugin prioritizes multirotor
copters’ administration and control, including quadcopters,
hexacopters, and octocopters. It gives capabilities allowing
the UAV to operate independently in the air. Koch et al. [22]
used the ArduCopter plugin in their UAV-based framework.
A remote health monitoring system (HMS) based on UAVs is
presented in the study [152]. Using IoMT technology [153],
it takes readings of vital signs and transmits them wirelessly
to doctors for remote analysis. The device provides video
surveillance in an effort to reduce hospital stays and readmis-
sions. In this study, the authors used the Ardupilot, a kind
of embedded airplane powered by the Arduino IDE. This
Ardupilot’s autopilot function and GSM connectivity allow it
to pilot the UAV. Information transmission in this concept was
implemented using a fly-by-wire scheme.
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FIGURE 7. Challenges and future works.

GymFC [154] is an open-source reinforcement learning
system that was developed primarily for training and assess-
ing flight controllers in simulated scenarios. It is based on
the OpenAI Gym [155] toolbox and includes a series of set-
tings and tools designed specifically for flight control tasks.
GymFC provides several flight control settings that model var-
ious circumstances and dynamics, such as fixed-wing aircraft,
multirotor copters, and other aerial vehicles. Another research
study [22] examines the accuracy and precision of attitude
control in RL-created AI flight controllers. This study aims
to use cutting-edge RL algorithms, including DDPG, TRPO,
and PPO, to design controllers for the Iris quadcopter [156].
To solve the problem of quadcopter attitude control using deep
reinforcement learning, the authors [157] implemented their
idea in GymFC, a flight controller environment based on the
OpenAI Gym API.

VII. CHALLENGES AND FUTURE DIRECTIONS
In this section, we outline several challenges and possible
future works in AI-integrated UAV systems. Fig. 7 illustrates
various challenges and areas for future developments.

A. AUTONOMOUS NAVIGATION
The development of AI algorithms for enabling autonomous
navigation and path planning presents one of the biggest chal-
lenges that the industry is trying to address. UAVs need to op-
erate and maneuver effectively in intricate and ever-changing

environments, evade obstacles, and promptly respond to sen-
sor data by making real-time decisions to enable autonomous
navigation. Also, most of the current studies in this area
suggest path-planning protocols by assuming fully and ho-
mogeneously connected networks without discontinuities in
the links. Future works may include the development of light-
computation-based algorithms for achieving route prediction
in the three-dimensional space on a real-time basis.

B. SENSOR INTEGRATION
UAVs generate reactions to the stimuli received from onboard
sensors, such as cameras, radar, and GPS, to perceive their sur-
roundings. Integrating data from multiple sensors to compute
external environmental awareness presents a complex task.
Hajiyev et al. [158] suggested Robust Kalman Filter(RAKF)
address the faults in the sensors of UAVs. RAKF acclimatizes
itself in the presence of faults, ensuring accurate data inter-
pretation even in the presence of sensor failure. Deep learning
techniques, such as convolutional neural networks (CNNs) or
recurrent neural networks (RNNs), can be used to process and
analyze data from various sensors.

C. MISSION PLANNING AND DECISION-MAKING
One of the most crucial aspects of an autonomous flight is a
UAV’s ability to make real-time decisions while on a mission.
However, addressing factors such as weather conditions, real-
time information, and mission parameters while designing
algorithms is a major challenge. UAVs also need to adapt
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to changing circumstances and unexpected events. As a part
of future work, we propose the employment of genetic algo-
rithms, which involves improving the aptness and accuracy of
possible solutions to approach a particular decision-making
problem, thereby improving the efficiency of the mission too.

D. COMMUNICATION AND NETWORKING
UAVs operating in swarms need an efficient and quick
communication system devoid of latency for collaborating
and sharing information to accomplish complex missions.
Establishing such networking ability among UAVs while
maintaining reliable connectivity in dynamic environments
is challenging. The communication links are also extremely
susceptible to failures owing to cyber-interventions and en-
vironmental factors. ML techniques that can be incorporated
infuse the link and path lifetime as an important parameter in
computing flight paths, thus improving the lifetime of the link
and reducing the loss of connectivity.

E. SCALABILITY AND RESOURCE CONSTRAINTS
UAVs are faced with limitations on computational power and
memory due to size, weight, and power constraints. Efficient
algorithms and hardware are required to enable the UAVs
to operate within these limitations and to make AI solutions
viable on UAV platforms. Robust AI algorithms are needed to
prevent accidents or failures by detecting and mitigating er-
rors, handling unexpected scenarios, and maintaining system
integrity. We also need to replace the existing computationally
heavy task-specific algorithms with their optimized counter-
parts and develop high-performance and low-weight UAV
memory chips.

F. ENERGY EFFICIENCY
UAV batteries are also faced with limitations in size and
capacity due to operational constraints. This restricts the
flight time and payload-bearing capacity of the UAVs, thus
rendering them incapable of being employed as full-scale
agents, such as in the goods delivery industry. The idea of
a hydrogen fuel cell battery supplemented with lithium-ion
batteries, which can be used after the former has run out of
charge, can be used for the mission needs to be continued.
We also propose the incorporation of ML and DL algorithms
that can compute energy-efficient flight paths by considering
environmental factors such as wind, which highly affect the
aerodynamics of the UAV and the fuel demand of the UAV
propellers.

G. CYBERSECURITY
UAV communications are susceptible to cybersecurity
threats, such as unauthorized access(man-in-the-middle),
data breaches, and potential hijacking of control systems.
Xiao et al. [159] suggested an anomalous-behavior detection
system for UAV networks using Recurrent Neural Network.
We propose the induction of physical security keys as an
industry standard for facilitating UAV authentication. Also,
ML techniques need to be employed to calculate secure and

optimal flight paths, which minimize the risk of issues like
jamming attacks.

H. MULTI-MODAL PERCEPTION
Incorporating meaningful data from multiple external sensors,
including radar, cameras, and infrared sensors, for the ap-
prehension of the UAV’s operational environment presents a
complicated problem for the industry and researchers alike.
Samaras et al. [160] have elaborated various deep-learning
techniques for solving this issue. The development of effective
algorithms for the proper infusion of data into the computa-
tions for creating accurate situational awareness is needed and
presents a positive area for future work.

I. AVAILABILITY OF RELIABLE AND HIGH-QUALITY DATA
The computational backbone of all machine learning algo-
rithms uses extensive data to train mathematical models.
Sourcing high-quality and diversified accurate data is still
problematic. All training datasets used in the industry should
be updated and labeled regularly and tested regularly to filter
out spurious data. This will eventually help achieve better
abilities in the UAVs in terms of better object detection, recog-
nition of images, and anomaly detection.

J. LEGAL AND ETHICAL CONCERNS
The heavy usage of AI in UAVs has paved the way for un-
precedented applications of UAVs in our lives, directly or
indirectly. However, this has drawn persistent criticisms in
terms of infringements on privacy, data security, and account-
ability. Robust algorithms need to be developed to address
each of these concerns, and educational awareness should
be spread regarding the technological advances being made
in this area to reduce the concerns potential UAV users and
customers might be having.

K. APPLICATION OF EDGE COMPUTING
Achieving optimal performance in UAVs within the bounds
of available resources has been a major problem in the path of
the development of UAVs. Edge computing [161] presents a
possible solution to address these issues by enabling real-time
processing of the collected data while simultaneously reduc-
ing the need to transfer data to cloud servers continuously. It
also ensures the transmission of only the relevant data within
the UAV network to reduce the wastage of network bandwidth
and also increases the privacy and security of sensitive infor-
mation. This can enable the formation of UAV swarms and be
employed for purposes like search and rescue missions.

L. APPLICATION OF COGNITIVE LEARNING
Making quick and real-time decisions based on changes in ex-
ternal stimuli is one of the most crucial aspects of autonomous
UAV flights. However, developing UAVs with human-like
cognition ability is inexpedient. Employing cognitive learning
to address this challenge can improve path planning, resource
allocation, and reaction to previously unseen situations for the
UAVs, owing to a better ability to acquire more knowledge,
improvise strategies and optimize performance gradually.
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M. USAGE OF META-LEARNING IN THE FIELD OF UAVS
Meta learning is a technique where AI models learn how to
learn. It involves training models on various tasks to develop
adaptable strategies, enabling them to quickly adapt and excel
when faced with new, unfamiliar tasks.

The continuously growing number of UAV users neces-
sitates the need to increase the computational speed and
accuracy of UAVs. Meta-learning [162] can be employed to
improve the learning speeds of algorithms to adapt to training
models so that better efficiency can be obtained in applications
such as UAV swarms and multipath planning.

VIII. CONCLUSION
Autonomous UAVs rely heavily on AI technology for their
operation. UAVS can now perform autonomous path planning,
obstacle avoidance, object detection, and tracking, among
other tasks, which require very fast decision-making ability
in real time. Recent review papers on AI-integrated UAV
systems have mostly focused on certain specific applica-
tions or technology, but no thorough and comprehensive
survey existed which demonstrates most of the latest trends
in technologies and potential fields for improving UAV ap-
plications by using AI. Our survey addresses this research
gap and presents a comprehensive and diversified review of
AI-integrated UAV systems.

We have classified the reviewed papers based on three
criteria - 1) the application scenario, 2) the AI algorithm em-
ployed, and 3) the AI training paradigm employed. We have
also presented a compilation of tools, libraries, and frame-
works employed in building AI-integrated UAV systems. We
have also highlighted several challenges and potential future
improvements in AI-integrated UAV systems, which aim at
optimizing flight safety and efficiency. Finally, our survey
showcases that application of AI in UAVs has been fruitful and
will see further diverse applications in the future. Our review
will act as a guide to the technical teams and researchers
working in building AI-integrated UAV systems.
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