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ABSTRACT Wireless secret key generation (WSKG) facilitates efficient key agreement protocols for
securing the sixth generation (6G) wireless networks thanks to its inherently lightweight functionality. Nev-
ertheless, with the existence of adversarial attacks or internal impairments, WSKG can be negatively affected
during the randomness distillation, where the legitimate parties measure a source of common randomness. In
this article, we propose a learning-aided approach for cooperative WSKG under man-in-the-middle (MitM)
adversarial attack, while the legitimate nodes suffer from hardware impairments (HIs). The key idea is to
process the PHY-attribute data on the application layer via deploying a deep neural network (DNN) to
enhance the randomness distillation. This way, we realize a learning-based software-centric security solution.
More specifically, we take into account the sequence-type nature of observed data, and propose a DNN
comprised of gated recurrent units (GRUs) to learn the sequence of observations at legitimate endpoints,
while the MitM is also alleviated. Our numerical results verify the performance gain of the proposed
learning-based approach compared with the state-of-the-arts. Moreover, time and computation complexity
of different learning-based models are studied to address the complexity-performance trade-off. Our tests
highlight a performance gain of about 43% in terms of mean-square error (MSE) in comparison with a
conventional PHY-only scheme.

INDEX TERMS Deep learning, man-in-the-middle adversarial attack, gated neural networks, cooperative
key generation.

I. INTRODUCTION
Network security mechanisms rely traditionally upon
cryptography-based keys to provide confidentiality and
authentication requirements. Nevertheless, the modern era of
the sixth generation (6G) wireless networks with substantially
large number of peer-to-peer communications performed
on-the-fly, challenges the performance of conventional
solutions [2]. As a promising framework to realize a
paradigm shift from the conventional complexity-based
security solutions towards lightweight techniques, wireless
secret key generation (WSKG) has been envisioned to be
leveraged in future 6G networks [3], either as a standalone

security mechanism or a complementary to the existing
ones [4]. Notably, WSKG has gained much interest from both
academic [4], [5], [6], [7] and industrial researchers [8], [9].

A. MOTIVATION
WSKG has remarkable merits for wireless networks. Specif-
ically, its protocol does not require any additional infras-
tructure, and the secret key is obtained without the need
of a third party contributor. This substantially reduces the
required time for key agreement and the potential informa-
tion leakage. Moreover, continuous update of the secret key
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can be realized owing to the dynamic variations of wire-
less channels [6]. WSKG framework employs lightweight
mechanisms with minimum required changes at the control
plane (in terms of time scheduling, syncronization, and radio
resource management), while offering information-theoretic
security guarantees [10]. Hence, this approach is envisioned
as a promising solution for the applications in beyond-
the-fifth-generation (B5G) systems, such as the Internet-of-
Things (IoT) [5], [7], [10] and latency-sensitive communi-
cations [3], [11]. Information-theoretic security guarantees
of WSKG make this approach resilient against quantum
computers, which can help the development of lightweight
post-quantum security solutions [3]. In addition, the artifi-
cial intelligence and machine learning (AI/ML) techniques
can be integrated into the WSKG scheme to improve its
performance [3].

6G is envisioned to bring device-level intelligence via im-
plementing contemporary deep learning (DL) algorithms [12].
Owing to the capabilities of DL methods to capture and learn
from the feature statistics of data sequences, they can be incor-
porated into WSKG frameworks to realize intelligent security
solutions [3], [13]. In addition, wireless networks are facing a
new trend of transferring functionalities from PHY to higher
layers via employing software-centric solutions. This key idea
can be applied to the WSKG as well. That is, after obtaining
the raw PHY-attribute data, it can be further exploited by DL
algorithms implemented on higher layers of the protocol stack
to improve system’s performance [14].

The procedure of WSKG is based on exploiting the wireless
medium as the shared source of randomness among legiti-
mate entities. However, this phase of randomness distillation
is affected by inevitable practical deficiencies such as ran-
dom noise, imperfectly-reciprocal channel state information
(CSI), and hardware impairments (HIs). In addition, substan-
tial growth of adversarial attacks on wireless edge, such as
spoofing and man-in-the-middle (MitM) attack—that are eas-
ily implemented using low-cost software defined radios—has
been widely witnessed during recent years [14]. If not prop-
erly dealt with, such adversarial attacks have shown to be
able to destruct the WSKG process [14], [15]. To elaborate,
an adversary can try to “find” the agreed secret key between
legitimate entities by inject poisoned signals, such that he
“deceives” legitimate parties about the source of common
randomness [15].

B. RELATED WORKS
To provide “proof of concept” (PoC) for WSKG, the au-
thors in [7] implemented a WSKG scheme for long-range
wireless communications in low power wide area networks
(LPWANs). However, the effect of active or passive adver-
saries on the performance of their proposed scheme was
missing. In [10], WSKG in the presence of both a totally-
passive eavesdropper and a hostile jammer is analyzed, and a
closed-form expression for the probability of successful hand-
shaking is derived. The WSKG scheme was further extended
to the case of cooperative communications in [16] and [17].

It is also of great importance to establish secure connections
via wireless key agreement schemes, even when the endpoints
lack a direct link to communicate. In such scenario, an inter-
mediate node relays communication signals to the endpoints.
In this regard, the authors in [17] investigated the key genera-
tion scheme in the presence of an intermediate relay node and
an active jammer. The generated secret key was exploited to
determine a secure frequency hopping pattern for IoT nodes.
Cooperative secret key generation in static environments was
investigated in [18] in the presence of a passive eavesdropper.
To deal with poor sources of “natural randomness” in static
environments, the authors proposed to induce “artificial ran-
domness” to the network.

We remark that although the legitimate parties in [16],
[17], [18] suffered from channel estimation errors, their
transceivers were assumed to operate perfectly. That is, HIs
were not modeled, nor examined in their proposed schemes.
In addition, the active adversaries considered in the [10], [16],
[17] were quite simple, i.e., they blindly inject noise-like
signals to degrade the channel exploration capability of le-
gitimate nodes. A MitM adversary who tries to control the
WSKG process by spoofing the communication was investi-
gated in [19]. The optimal strategy for the MitM in a direct
communication was derived using game-theoretic approaches.
However, the nodes were assumed to perform ideally (without
any hardware mismatch) during transmission and reception.
Then the authors in [20] considered the effect of mismatched
radio-frequency (RF) front-ends in a point-to-point (P2P)
communication, which sheds light on further investigations of
the HI effects in cooperative WSKG scenarios.

Remarkably, none of the aforementioned works have lever-
aged the potential capabilities of ML/DL techniques to come
up with an intelligent security solution for WSKG. In fact, to
the best of our knowledge, there are only a few papers ad-
dressing learning-aided schemes for wireless key agreement
protocols [21], [22], [23], [24]. For instance, [21] and [22]
utilized a fully-connected (FC) neural network for a simple
P2P communication in the presence of a simple passive eaves-
dropper. Considering a similar topology, convolutional neural
networks were proposed in [23]. However, the sequence-
type nature of observations during WSKG scheme was not
addressed in [21], [22], [23]. In other words, they did not
take into account the potential capabilities of state-aware
neural networks, which can capture the relevant informa-
tion within the chain of PHY data sequences. To the best
of our knowledge, the scenario of learning-aided coopera-
tive key generation is only studied in [24], however, the
performance of that scheme under active adversarial attacks
was not addressed. Moreover, we perform extensive evalua-
tions on learning-based WSKG models and comprehensively
compare our scheme with various benchmarks in terms of
different secrecy and complexity metrics. Such extensive stud-
ies are not addressed in [24], nor in other related works
in the context of cooperative key generation. Details of our
novelties and contributions are explained in the following
subsection.
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C. OUR CONTRIBUTIONS
In this article, we propose a learning-aided solution for the
cooperative WSKG scheme under MitM adversarial attack
and the practical assumption of HIs. The MitM adversary
in our system spoofs the randomness distillation phase via
fake injection. The goal of a MitM is fundamentally dif-
ferent from that of an external hostile jammer (HJ) studied
in [16] and [17]. HJ does not care about the procedure of key
agreement, and its simple goal is to inject noise-like signals
to impose mismatches within the observations of legitimate
nodes. In contrast, a MitM performs his attack in a smart
way that his injected adversarial data imitates a SoCR, and
(if not secured) legitimate nodes can be misled about the
SoCR. The corresponding mathematical details are given in
Section III. To counteract the MitM, the exchanged packets
at PHY are randomized, which is shown to prevent the MitM
from taking control of the WSKG process. We further show in
our article that our learning-based scheme is secure against the
MitM adversarial attack in terms of having zero information
leakage.

The main idea we pursue in this article is that we pro-
pose the exchanged data packets at PHY are subsequently
processed on the application layer via implementing a deep
neural network (DNN). This way, we come up with a data-
driven and software-centric intelligent security solution for
the cooperative WSKG scheme. Notably, none of the re-
viewed literature considers the sequence-type context of data
exchanged during WSKG protocol for capturing the relevant
information within the chain of observation sequences. On the
contrary, we propose to employ state-aware neural networks.
To elaborate, we leverage the concept of recurrent networks
and propose a DNN comprised of gated recurrent units (GRU)
to learn the sequence of observations at legitimate endpoints.
We also compare our proposed learning-based scheme with
different state-of-the-art neural networks to emphasize the
performance of our scheme in terms of the resulting mean-
square error (MSE) mismatch. Insightful comparisons from
different aspects including time complexity (training time and
inference time), computation complexity, and the required
memory storage size are also provided in this article.

To have an accurate understanding of practical wireless
systems, we also consider a realistic scenario, in which the
transceivers of legitimate endpoints, as well as the intermedi-
ate relay, suffer from HIs, which was not addressed in [10],
[11], [16], [17], [18], [19], [21]. Moreover, different from [7],
[10], [16], [17], [19], we assume that the legitimate endpoints
are faced with both channel estimation errors and imperfect
reciprocity.

This article is an extension to our conference paper [1].
We extend the scheme of learning-based key generation to
the case of learning-based cooperative communication, while
in [1] we considered a simple scenario of Alice and Bob talk-
ing to each other directly. In this article, extensive simulations
are also conducted to compare different learning algorithms in
terms of various metrics, including MSE, training time, infer-
ence time, computation complexity, and storage usage, which

TABLE 1. Contrasting Our Proposed Scheme to the Existing Security
Solutions at a Glance

were not addressed in [1] and [24]. We further emphasize that
in [15], the performance analysis of a P2P WSKG scheme
under HIs was provided (without proposing any learning algo-
rithm to enhance the performance) to show that a fundamental
limit occurs in terms of the achievable secret key rate. How-
ever, the goal of this article is totally different from [15], and
we focus on proposing a learning-based scheme for cooper-
ative WSKG under MitM attack, where we extensively study
different learning algorithms and various benchmarks.

To summarize, our contributions and novelties are as
follows:

1) We propose a learning-aided approach for cooperative
WSKG under MitM adversarial attack, considering a
realistic scenario, in which the transceivers of legitimate
endpoints and the intermediate node suffer from HIs.
Outdated CSIs are also taken into account for the com-
munication links.

2) Inspired by the concept of gated recurrent neural net-
works, we propose a DNN implementation to process
the PHY-attribute data on the application layer. This
way, the randomness distillation is enhanced and an
intelligent learning-based security solution is realized.
Studying the intersection of information theory and DL,
we also show that implementing DNN does not leak any
information about the key generation process.

3) The adversarial MitM attack against WSKG protocol is
mitigated via employing randomized pilots (RPs). By
leveraging an information-theoretic approach, we prove
that the attack of MitM does not affect our WSKG
scheme in terms of information leakage.

4) Our numerical studies shed more light on the effect of
HIs and adversarial attacks on the DL-based WSKG.
Moreover, insightful comparisons of our proposed ap-
proach with different benchmarks and other learning-
based methods are provided in terms of MSE, secret
key rate (SKR), key difference rate (KDR), number
of sessions, computation time (training and inference),
computation complexity, and memory storage size.

In Table 1, we provide a bold summary and explicitly con-
trast our contributions to the literature.

D. ORGANIZATION AND NOTATIONS
The rest of our article is organized as follows. We intro-
duce a detailed description of our proposed system model
in Section II. Our communication protocol and the attacking
strategy of MitM adversary is addressed in Section III. Our
implemented DNN is proposed in Section IV together with
the technical details on different layers employed for it. Useful
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FIGURE 1. Proposed learning-assisted system model for
hardware-impaired relay-aided WSKG under MitM attack.

information-theoretic analysis and remarks are provided in
Section V to address the secrecy of our proposed scheme.
Some information-theoretic aspects of utilizing a DNN for the
WSKG framework are also addressed. Section VI provides
readers with different tests and experiments on our proposed
learning-aided scheme, and Section VII concludes the article.

Notations: We denote the transpose, conjugate, and �2 norm
of a vector by (·)T, (·)†, and || · ||, respectively. Moreover,
| · | represents the absolute value of a variable. The kernel
(null) space is denoted by null(·). Vectors are represented
by bold lowercase letters, while matrices are written as bold
uppercase symbols. The zero and the identity matrices are
shown by 0 and I, respectively. The real part of a variable
x is illustrated by Re(x). CN(μ, σ 2) represents a complex
Gaussian random variable (RV) with mean μ and variance
σ 2. Moreover, the distribution of jointly Gaussian RVs X1

and X2 with mean vector μ and covariance matrix C ≥ 0 is
denoted by (X1, X2) ∼ CN(μ, C). The expected value and the
probability density function (pdf) of RV X are denoted by
E[X ] and fX (x), respectively. The mutual information of RVs
X and Y is denoted by I (X ;Y ). Hadamard (element-wise)
product is denoted by �, while sigm(·) and tanh(·) stand for
sigmoid and hyperbolic tangent functions, respectively.

II. SYSTEM MODEL
Our proposed system model consists of three mutually au-
thenticated users, i.e., two legitimate endpoints, namely Alice
(A) and Bob (B), and an intermediate relay (R) node, as
depicted in Fig. 1. Alice and Bob aim to agree on a com-
mon secret key sequence via exploiting the wireless medium,
i.e, the communication links between A-to-R and B-to-R.
Notably, there does not exist a direct link between Alice
and Bob due to heavy shadowing, or the direct link is too
weak, such that A and B choose the option of relay-aided
cooperative communication. This is a realistic assumption

when the end nodes are placed far apart [17], [25]. Accord-
ingly, an amplify-and-forward relay which is compliant with
the networking protocols is employed, which amplifies and
forwards its received signals without tampering with the con-
tents. In our system model, there also exists a MitM adversary,
named Matt (M), who has impersonated other nodes and con-
vinced them to establish unauthenticated links with him. This
can be realized through circumventing mutual authentication
mechanisms [28]. Investigation of authentication protocols
and their vulnerabilities against MitM adversaries is out of
the scope of this article. A DNN is implemented at A with
the aim of compensating for observation mismatches among
legitimate parties. This is done via learning Bob’s observation
sequence over time. To elaborate, the signals observed during
packet exchange at PHY are processed on the application
layer, through implementing a DNN to learn the sequence of
observations. Then, the distilled randomness can be utilized
as the source for key extraction. The model training and task
inference procedures are implemented at one of the legitimate
sides, and the intermediate node does not participate in the
learning phase. Without loss of generality, it is assumed in
the article that the DNN is employed by A. In addition, we
will show in Section V that if M is provided with the training
data and similarly trains his DNN, he cannot obtain any useful
information. Technical details on the structure and hyperpa-
rameters of the proposed DNN, together with the training
strategy, are addressed in Section IV.

The physical RF transceivers of A, B, and R suffer from
HIs. The level of impairments at the transmitter and re-
ceiver hardware are denoted, respectively, by κtn and κrn ,
n ∈ {A,B,R}. These factors reflect the error vector magni-
tudes (EVMs) as a measurable metric for the quality of RF
transceivers [25]. While Alice and Bob exchange properly
designed signals for randomness distillation, Matt tries to
deceive legitimate entities by injecting fake signals. Details
of the attacking model of Matt are elaborated in Section III.
As a pessimistic assumption, Matt is considered to occupy an
ideal RF transmitter to realize a powerful MitM attack, and
he is equipped with nT > 1 transmitting antennas. We also
assume that Alice, Bob, and the relay node are equipped with
single antenna transceivers. This is in line with the scenario of
low-cost devices employed in B5G IoT-enabled networks and
with an advantage of the attacker [10], [17].1

Communication links are assumed to follow discrete time
quasi-static block-fading model [10], [16], [17], [25]. Ac-
cordingly, the wireless link between Alice(Bob) and the relay
is denoted by the complex circularly symmetric Gaussian
RV hAR(BR) ∼ CN(0, δ2

AR(BR) ) where δ2
AR(BR) represents the

large scale fading effect of legitimate channels. Similarly, the
link of R-to-A(B) is denoted by hRA(B) ∼ CN(0, δ2

A(B)R). As
a practical assumption, we assume that the link of R-to-A(B)
experiences imperfect reciprocity with respect to the link of

1The proposed scheme can be directly applied to the generic case of
multiple-input multiple-output (MIMO) scenario as well. The details are
provided in the subsequent sections and through our numerical results.
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FIGURE 2. Block diagram of the proposed signaling and learning protocol.

A(B)-to-R [9]. That is,

hRN = ρhNR +
√

1 − ρ2uNR, N ∈ {A,B} (1)

where hRN and hNR have a correlation 0 < ρ ≤ 1, with ρ = 1
corresponding to the special case of perfect reciprocity. More-
over, uNR characterizes the uncertain part of hRN which is
modeled as uNR ∼ CN(0, δ2

NR) independent from hNR. As
a worst-case assumption from the security perspective [10],
[17], [19], we consider that Matt has perfect knowledge about
his channel vectors to Alice(Bob) and Relay, denoted by
hMA(B) and hMR, respectively. Similar to [10], [17], [19], we
assume channel coefficients of adversarial links are pairwise
statistically independent with hMn ∼ CN(0nT, δ

2
MInT ) for n ∈

{A,B,R}, where δ2
M denotes the large scale effect. This is

a plausible assumption in block-fading scenarios, while the
channel’s coherence time is respected [19]. Additive noises
are assumed pairwise statistically independent with variance
σ 2

n .

III. COMMUNICATION DESIGN
With the aim of distilling a common source of random-
ness from PHY, the legitimate nodes should first take turns
conducting channel excursion, during which A and B ex-
change pilot signals with the help of the relay. Considering
practical scenarios, physical RF transceivers suffer from
impairments in real testbeds [26]. Hence, the general commu-
nication model from node i to node j at any given flat-fading
channel is well-captured by the following equation [25],
[26], [27].

y = h(s + ηi j ) + n, (2)

where s ∈ C with power E[|s|2] = Pi is the signal sent over
a wireless channel with fading coefficient h ∈ C and addi-
tive noise n ∈ C, and y denotes the received signal. This is
an experimentally-validated model for HIs, which is widely-
adopted in wireless communication literature [25], [26].2 The
independent distortion noise ηi j ∼ CN(0, κ2

i jPi ) (varying from
one block to another) models the HIs at the communica-

tion link of i-to- j, where κi j
�=
√

(κti )2 + (κrj )2 reflects the

aggregate level of impairments. κti , κrj ≥ 0 are the design
parameters characterizing the level of impairments in the
transmitter and receiver hardware, respectively [25], [26],
[27].

In the following, we propose our communication protocol
on how to distill a shared source of randomness for Alice and
Bob using the characteristics of PHY layer. A general block
diagram of the scheme is provided in Fig. 2.

A. SIGNALING PROTOCOL
As shown in Fig. 1, the legitimate nodes perform a three-step
protocol to render randomness distillation from PHY, while
Matt tries to deceive them via sending spoofing signals. The
details of signaling protocols are as follows:3

2Detailed description of HIs and their compensation algorithms can be
found in [27]. According to [25], the combined influence of different types
of HIs at a given flat-fading block is well-modeled by the generalized channel
model given in (2).

3Without loss of generality, the same protocol can be applied to the case of
block-fading channels with Nsc parallel blocks, known as sub-channels [17],
[18], [19]. In the following, we consider the communication over a single
carrier for the sake of notation brevity and tractability.
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1) ESTIMATION PHASE
In the first step, channel estimation is performed, during
which the relay sends channel probing signals (with power
PR) to help Alice and Bob estimate their links to R. These
estimates will further be utilized by A and B to cancel out self-
interference signals from their observations. The estimates of
Alice and Bob about their communication links to R, denoted
by ĥNR, N ∈ {A,B} are given as follows [17], [18]

ĥNR = hNR + eN, eN ∼ CN
(

0, δ2
NRκ2

RN + σ 2
n

PR

)
, (3)

where eN denotes the estimation uncertainty, i.e., channel es-
timation error. According to (3), HIs at legitimate nodes can
affect the quality of channel estimation. During the estimation
phase, Matt also exploits transmitted pilots and obtains his
link hMR to the relay. Notably, the strategy of Matt is to
perform his adversarial role in a “wait-then-attack” manner.
He first listens to the exchanged packets to obtains an accurate
estimation of his links to the other nodes. Once the CSI of his
links to the legitimate nodes are estimated, he can design and
transmit poisoned packets to inject fake SoCR at Alice and
Bob. Otherwise, if he just blindly emits a noise-like signal
from the very first step of packet exchange, he might be
detected, while being unable to inject fake randomness.

2) PILOT PACKET EXCHANGE
Alice and Bob transmit pilot signals denoted by xp

A and xp
B

with E[|xp
n |2] ≤ Pn, n ∈ {A,B}, which is received by the relay

R, while Matt simultaneously emits his malicious signal x j

with power E[|x j |2] = PM towards R to degrade the receiving
performance of R. Hence, the received signal y(2)

R at R can be
formulated as

y(2)
R = hAR(xp

A + ηAR) + hBR(xp
B + ηBR)

+ hT
MRp(2)

M (x j + ηMR) + n(2)
R , (4)

where the superscript (2) indicates the second step of pilot

packet exchange. Moreover, p(2)
M

�= h†
MR

||hMR|| denotes the pre-
coder of Matt. Details on how to choose the pilot signals
xp
A, xp

B are elaborated later.

3) RELAYING STEP
In the third step, an amplified version of y(2)

R is relayed to
Alice and Bob. The relaying gain G can be computed as

G =
√

PR
E[|y(2)

R |2]
such that the mean transmit power of relay

becomes PR [29]. The value of G is determined based on
the relay’s received power E[|y(2)

R |2], and it is considered as
a publicly-known parameter [16], [17], [18].

Details of the Adversarial Attack: Now is the time for
Matt to play his adversarial role. Informally speaking, the
strategy of Matt is to “steal” the randomness distillation. That
is, Matt aims to intelligently inject “poisoned” data so that
the same fake signal is “observed” at legitimate endpoints,
making them “believe” the source of shared randomness is

what he has sent. Mathematically speaking, Matt injects an
adversarially-precoded signal, denoted by wM, such that his
poisoned packets are observed similarly by Alice and Bob
after they are received. Hence, Matt wants to satisfy

hT
MAwM = hT

MBwM
�= zM, (5)

with zM denoting the adversarial term observed by Alice and
Bob. Inspired by (5), Matt designs his adversarial data, wM,
such that (hMA − hMB)TwM = 0. Hence, define the kernel
(a.k.a. null-space) matrix V ∈ C

nT×nT−1 associated with vec-

tor vT �= (hMA − hMB)T ∈ C
nT as

V �= [ν1, . . . , νnT−1] = null(vT). (6)

Then, invoking (5) and (6), wM can be calculated as

wM =
nT−1∑
l=1

νl x
M
l , ||νl || = 1, (7)

where νl denotes the l’th column of V and xMl shows
the adversarial signal on the l-th antenna (before precod-
ing). Moreover, we have

∑nT−1
l=1 E[||νl xMl ||2] ≤ PM, with PM

denoting Matt’s transmit power budget. Remarkably, our pro-
posed multi-stream MitM attack in (7) exploits the entire
kernel space of attacking links, while setting l = 1 in (7)
simplifies to the special case of single-stream injection pro-
posed in [19]. We also remark that incorporating other types
of learning-based adversarial attacks, such as adversarial ma-
chine learning, into the WSKG process will be studied in our
future works.

Based on the aforementioned discussions and by utilizing
(4)–(7), the raw observations of Alice and Bob, denoted by
ỹN for N ∈ {A,B} are as follows:

ỹ(3)
N = hRN(Gy(2)

R + ηRN) + zM +
nT−1∑
l=1

hT
MNνlηMN + n(3)

N .

(8)

Invoking (8), we can see that there exists a common (but
adversarial) term zM in the raw observations of Alice and
Bob, which mimics the SoCR. However, it is the adversarial
data sent by Matt, and hence, known by him. This can lead
to security faults during the WSKG process, since both A
and B maintain a common term which is known by Matt.
Therefore, if we directly perform WSKG by exploiting the
raw observations in (8), it results in information leakage to
the MitM. Mathematically, the information leakage rate L for
such a naive system is upper bounded by L ≤ I (ỹA, ỹB; zM).

Remark 1: Based on the aforementioned discussions, the
optimal strategy for Matt (in the sense of maximizing the
information leakage) is to choose his adversarial signals wM
in a way that the observed signal at legitimate endpoints, zM,
is a Gaussian-distributed RV. This fact basically relates to
the capacity achieving input of Gaussian channels [17], [19],
[42]. Therefore, by invoking the expression of zM in (5) and
(7), a good choice for Matt is to set xMl to a constant value.
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This results in zM ∼ CN(0, nTPMδ2
M), where the proof can be

obtained in a similar way to what discussed in [19].
As a countermeasure to the MitM attacks, utilization of

randomized pilots (RPs) have been shown to be an effective
strategy [19], [30]. Hence, inspired by [19], we propose that in
the pilot packet exchange, A and B exchange RPs of the form
{√Pne jϕn}, n ∈ {A,B}, where ϕn’s are drawn according to
independent and identically distributed (i.i.d.) zero-mean dis-
crete uniform distribution {±π

4 ,± 3π
4 }, with E[xp

A] = E[xp
B] =

0, and E[xp
Axp

B] = 0. We will show in Section V that this
choice of employing RPs results in having zero information
leakage to the MitM.

4) LOCAL PROCESSING
Alice and Bob cancel their self-interference signals from their
local observations in (8). By invoking (1), (4), and (8), the
self-interference signals at Alice and Bob can be formulated
by Gρh2

ARxp
A and Gρh2

BRxp
B, respectively. Since A and B

have estimated versions of ĥAR, ĥBR, it results in ŷ(3)
N = ỹ(3)

N −
Gρĥ2

ANxp
N, for N ∈ {A,B}. After local interference cancella-

tion, A and B locally multiply their raw observations ŷ(3)
A

and ŷ(3)
B by their RPs to finally retain the source of shared

randomness. This results in

yA = ŷ(3)
A xp

A = ρhARhBRGxp
Bxp

A︸ ︷︷ ︸
Common Randomness

+ zMxp
A︸ ︷︷ ︸

Fake Randomness

+ τA, (9)

yB = ŷ(3)
B xp

B = ρhARhBRGxp
Axp

B︸ ︷︷ ︸
Common Randomness

+ zMxp
B︸ ︷︷ ︸

Fake Randomness

+ τB, (10)

τN = ρGEN(xp
N)2 + hRNG

×
(

hBRηBR + hARηAR + v
(2)
M + hT

MRp(2)
MηMR + n(2)

R

)
xp
N

+
nT−1∑
l=1

hT
MNνlηMNxp

N + hRNηRNxp
N

+
√

1 − ρ2uNRG
(

hARxp
A + hBRxp

B

)
xp
N + n(3)

N xp
N. (11)

where τA and τB represent the residual HIs, channel esti-
mation uncertainties, and random noises, given in (11), with

v
(2)
M

�= hT
MRp(2)

M x j and EN �= h2
NR − ĥ2

NR for N ∈ {A,B}. In-
voking (11), we can deduce that the relay has unintentionally
amplified the components, such as HIs, which increases the
level of mismatch within the signals of A and B. This
highlights the importance of proposing proper solutions for
hardware-impaired cooperative key generation schemes as
studied in this article. We also remark that if we set ρ = 1 and
κ
t,r
A,B = 0, our network simplifies to the special case of ideally

reciprocal channels and perfect hardware [19]. Moreover, if
we set PM = 0, i.e., it results in the special case of relay-aided
WSKG without adversarial attack [18]. In the following sec-
tion, we propose our learning-based approach to enhance the
hardware-impaired cooperative WSKG.

IV. NEURAL NETWORK IMPLEMENTATION
In the previous section, a general sketch of the shared ran-
domness was achieved by performing proper packet exchange
at PHY. Here, with the aim of improving the randomness
distillation, the PHY data is passed to the application layer to
be further processed and compensate for underlying discrep-
ancies. Hence, a software-centric security solution is proposed
by utilizing DNNs. Recall that the discrepancies exist due to
the injected signals of MitM, and the unbalanced imperfec-
tions at legitimate transceivers. This can be inferred from (9)
and (10). The main idea in this section is that we want to make
predictions about the occupied data sequence of endpoints. By
doing so, we wish to obtain a sequence similar to the original
data occupied by either sides; hence, compensate for potential
discrepancies between A and B.

We leverage the concept of recurrent neural networks
(RNNs) and capture the relevant information which lies within
the chain of observation sequences. Remarkably, the chain-
like nature of RNNs makes them suitable for sequence data
types [32], [33]. RNNs allow information to persist, i.e., they
do not begin to learn from scratch every time. Instead, at ev-
ery time-stamp they learn from their previous understandings.
There are feedback loops implemented in recurrent layers of
RNNs to help them update their current state, according to the
previous states. Thanks to the employment of feedback loops,
the recurrent layers can memorize the historical information
obtained from data sequences; hence, they are able to establish
meaningful connections between every single data and its
corresponding contextual information which is hidden in the
data sequence [32], [33], [34].

A. OUR PROPOSED DNN
Inspired by the concept of RNNs, we propose a DNN for
our WSKG scheme as depicted in Fig. 3. Our DNN is com-
prised of two GRU layers followed by two dense layers.
According to Fig. 3, Alice runs a GRU-based DNN to learn
the observation sequences of Bob from her own observa-
tions, yA. Technically speaking, our proposed neural network
realizes a DL-based sequence-to-sequence (Seq2Seq) regres-
sion on Alice’s observations to make them resemble Bob’s.4

Accordingly, the dense layers in our implemented DNN char-
acterize the regression process on the underlying information
of Alice’s data, which is early extracted by the GRU layers.
Remarkably, the GRU layers [35] as a well-established type
of RNNs have become increasingly popular to be used in DL
algorithms [36], [37]. GRUs maintain fewer tensor operations;
hence, they typically perform faster than the long short-term
memory (LSTM) networks during the training and inference.5

Before going through the details of the learning and prediction

4Without loss of generality, the proposed neural network can be im-
plemented at Bob by feeding yB’s to the network and predicting Alice’s
sequence. That is, we maintain the symmetry property in our proposed
learning-based scheme.

5During our ablation studies, we evaluated both LSTMs and GRUs for
our model and realized that almost the same performance could be achieved,
while the GRU-based DNN performed faster than LSTM-based network.
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FIGURE 3. Proposed deep neural network implemented for the WSKG.

FIGURE 4. Detailed structure of a gated recurrent unit (GRU).

process, we briefly examine how GRU layers help networks
extract state-aware information from given data sequences.

As illustrated in Fig. 3, a typical GRU layer consists of sev-
eral units, called hidden units. The idea is to regulate the flow
of information in a state-wise manner, i.e., the units maintain
hidden states that act as the memory of neural networks,
holding information on previous data the network has seen
before. Hence, the GRU layer gradually learns which data in a
sequence is important to keep or throw away. Then, by passing
the relevant information down the chain of data sequence, it
can perform predictions [36], [37]. After feeding each input
data sequence to a GRU layer, it processes the input sequence
one by one. During the processing of each element, the GRU
layer passes the previous hidden state to the next states. To see
how GRU layers calculate the hidden states, an arbitrary unit
of a GRU layer is sketched in Fig. 4, showing the n’th hidden
state. It is comprised of two main parts, i.e., a reset gate and an
update gate. By defining the update and reset gate vectors as
z[n] and r[n], respectively, and the output state vector as h[n],
the controlling equations for a GRU are as follows:

z[n] = sigm (Wzx[n] + Uzh[n − 1] + bz ) ,

r[n] = sigm (Wrx[n] + Urh[n − 1] + br ) ,

h̃[n] = tanh (Whx[n] + Uh(r[n] � h[n − 1]) + bh) ,

h[n] = z[n] � h[n − 1] + (1 − z[n]) � h̃[n], (12)

where x[n] stands for the input vector to this unit (as shown
in Fig. 4), {Wz, Wr, Uz, Ur} and {bz, br} are the weights ma-
trices and bias vectors, respectively, and h̃[n] formulates the
intermediate memory unit (a.k.a. candidate state). According
to (12), the update gate determines how useful past informa-
tion is for the current state. The sigmoid function exploited
in (12) leads to having updated values between 0 and 1. By
invoking (12), the closer z[n] is to 1, the more we incorporate
past information and vice versa. Reset gate helps the network
ignore past information that might be irrelevant in future steps.
Finally, the new candidate value h̃[n] is scaled by the GRU
state update, and h[n] is calculated as the output. In the fol-
lowing, we study the utilization of GRU-based DNNs for the
application of WSKG in our scheme.

B. TRAINING PROCEDURE OF THE PROPOSED DNN
During the training phase, the weights W �=
{Wz, Wr, Uz, Ur} and biases B �= {bz, br} in (12) need to be
properly adjusted. This adjustment is done through training

our DNN with a training set denoted by T �= {(yA, yB)i},
i = 1, . . . , NT, with NT showing the number of training
sets. Moreover, (yA, yB) denotes the vector of occupied
observations at Alice and Bob, each of which being a
sequence of length L, where each element is given in (9)
and (10), respectively. Using the examples provided in
T, our DNN gradually learns to predict the sequence of
Bob. Mathematically speaking, the training process opt for
adjusting the weights and biases of the DNN with the goal of
minimizing the loss between desired output vector yB and the
actual output sequence ŷB = FW,B(yA).

The training process should also take the information
leakage into account. This can be captured by the mutual
information metric between the adversarial signals occupied
by Matt, and the data sequences at legitimate parties, i.e.,
FW,B(yA) and yB. Hence, the overall loss function for the
training process can be formulated as follows

{W∗, B∗} = argmin
W,B

1

NT

NT∑
i=1

�
(
FW,B(yA), yB

)
i

+ I
(
FW,B(yA)i, yB,i; zM,i

)
, (13)
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where �(·, ·)i is any desired error measure between the input
and output sequence of the DNN corresponding to the i-th
training sequence. In this article, we employ mean-squared-
error (MSE) ||FW,B(yA) − yB||2 as a widely-adopted error
measure. We note that in the next section, we show that the
leakage term for the proposed scheme is zero. Hence, the final
loss function will only consider the error measure between
the input and output sequences. Invoking (9), (10), and (13),
one can infer that the formulated optimization problem in
(13) is complicated due to the existing non-linearities and
fake signals. Hence, traditional optimization methods incur
a considerable computational complexity. Whilst, finding the
output of our DNN simply requires the calculation of learn-
ing blocks by moving from the input layer to the output
layer of the trained DNN [13]. The minimization of (13) can
be handled by off-the-shelf gradient descent-based methods
specifically developed for training DNNs [38], where the re-
view of these methods is beyond the scope of this article.
We have chosen the widely-adopted adaptive moment esti-
mation (Adam) optimizer algorithm. More details regarding
the hyperparameters of our DNN, together with conducted
experiments on our proposed network are provided in the
subsequent section.

To prepare the training dataset T, in addition to gathering NT
observation sequences {yA}i, Alice should be provided with
Bob’s sequences {yB}i. This can be done via employing secure
data transmission schemes for cooperative networks, e.g., the
data transmission protocol proposed in [17]. It should be noted
that sending the training set to Alice is for the purpose of
training; not for quantization and key extraction. Hence, it
will not compromise the secrecy. This is because the wireless
channels change over time, and the observations which will
be exploited to generate keys are independent from the ones
used for training. In addition, we show in the next section that
if Matt is provided with the training data T and implements
the same DNN, he cannot obtain any useful information.

After the training process is completed, i.e., the minimiza-
tion problem of (13) converges to a relatively low MSE, all
weights and biases of our DNN are configured and the DNN
achieves an acceptable state to perform Seq2Seq prediction.
Once Alice and Bob perform packet exchange to distill PHY
randomness, Alice will pass her new data sequences yA to
the application layer to conduct DL-based prediction on Bob’s
data in a real-time manner. When the trained DNN is utilized
for predicting new sequences, it is simply required to per-
form a forward propagation, i.e., moving forward through the
DNN from the input layer to the output layer and performing
the computations of (12). We note that the complexity of
our DNN compared with related benchmarks is investigated
in Section VI by examining the computational complexity,
computation time, and memory size. Moreover, we show in
Section VI that by considering different configurations and
generating samples with different distributions than that of the
training set, our DL-based approach performs well without the
need to update the DNN.

V. SECURITY ANALYSIS AND DISCUSSIONS
In this section, we provide the information leakage analysis to
address the security of our proposed learning-based scheme.
Specifically, we show that the poisoned data of Matt (gen-
erated based on (5)–(7)) does not help him take control of
the WSKG process, and the information leakage rate of our
scheme is zero. We also address the intersection of informa-
tion theory and deep learning, and show that utilizing the
proposed DNN does not affect the information leakage rate.
More precisely, if Matt is provided with the training data T and
implements the same DNN, he cannot obtain any information
corresponding to the WSKG process. To this end, we first
show that the two endpoints experience independent versions
of fake randomness in (9) and (10). The following corollary,
which is obtained with a similar approach to what proposed
in [1], formulates this claim.

Corollary 1: The fake randomness which lies within the
observations of legitimate endpoints are pairwise independent
with the following distribution

(zMxp
A, zMxp

B ) ∼ CN
(

02×1, PMnTδ
2
M

[
PA 0

0 PB

])
. (14)

The corollary indicates that the adversarial counterparts
lying within the observations of the legitimate parties do
not have any mutual information with each other. In other
words, zMxp

A and zMxp
B do not contain any common informa-

tion. Hence, there is not any leakage imposed to the network
through Matt.6 According to the aforementioned discussions,
by utilizing Corollary 1 and invoking (9) and (10), one can
deduce that the information leakage L of the proposed scheme
is zero due to the statistically independence of injected fake
randomness at legitimate parties [1], [19]. Mathematically
speaking, by invoking (9), (10), and (14) we can rewrite

L ≤ I (yA, yB; zM) = 0. (15)

To gain insight about (15), it shows, from the information-
theoretic perspective, that there will be no leakage by utilizing
yA and yB for the process of secret key agreement, although
Matt occupies the adversarial signal zM. (15) also ensures that
the data sequences of Matt are decorrelated with the signals at
Alice and Bob.

One might argue that according to the proposed scheme,
Matt might obtain more information than zM during the pro-
tocol, if equipped with a full-duplex radio, for example. To
answer this, we provide the following remark.

Remark 2: Considering both an untrusted relay and an
external pure eavesdropper, it is shown in [18] that the prob-
ability of eavesdropping attack can be arbitrary small. The
results can be applied to our scenario when Matt is equipped
with full-duplex radio, and wishes to simultaneously inject
malicious data and wiretap the packet exchange. Therefore,
inspecting the packets exchanged by Alice and Bob, e.g., by

6One can also easily verify that zM and v
(2)
M are independent of the

common randomness term, i.e., ρhARhBRGxp
Axp

B in (9) and (10).
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pretending to be the relay, does not help Matt obtain useful
information. Similarly, listening to the packets transmitted by
R does not help him in terms of the information leakage [18].
Also note that deploying full-duplex hardware and decoding
all of the exchanged packets require consuming a relatively
large amount of available energy, which is costly for an adver-
sary. Hence, in this article we proposed a MitM who aims to
wisely deceive endpoints regarding the SoCR via adding his
own data to their observations.

Remark 3: Based on the above discussions, the achievable
secret key rate (SKR) for the proposed scheme can be formu-
lated by Rkey = I (yA; yB). However, obtaining a closed-form
expression for the SKR in this case is intractable. This is
because the common source of randomness in (9) and (10)
corresponds to the product of two complex Gaussian RVs,
i.e., hARxp

A and hBRxp
B.7 This RV follows complex double

Gaussian distribution, a.k.a. Gaussian-product, where its pdf
is provided in [31].

The next question in terms of studying the secrecy of the
proposed scheme is whether implementing the same DNN
by Matt could help him infer any useful information. This is
addressed in the following proposition.

Proposition: Leakage Analysis of Utilizing DNN: Intersec-
tion of Information Theory and DL. If Matt is provided with
the training data T and implements the same DNN, denoted
by FW,B(·), he cannot obtain any useful information.

Proof: Based on the notations mentioned above, the in-
ferred sequence at Matt, when utilizing the DNN, can be
denoted by FW,B(zM), which is obtained by feeding the ad-
versarial samples zM to the DNN. Accordingly, the leakage
rate, LDNN, in this case is bounded by the mutual information
between the inferred sequence at Matt, and the data sequences
at the output of the legitimate parties, i.e., FW,B(yA) and yB.
Mathematically speaking, we can write

LDNN ≤ I
(
FW,B(yA), yB;FW,B(zM)

)
(a)≤ I

(
FW,B(yA), yB; zM

)
(b)≤ I (yA, yB; zM)

(c)= 0, (16)

where (a) follows from data processing inequality (DPI)
[42] for the Markov chain (FW,B(yA), yB)—zM—FW,B(zM).
Similarly, (b) follows from DPI over zM—(yA, yB)—
(FW,B(yA), yB). Finally, (c) directly follows from (15). Since
the mutual information metric is non-negative, the leakage
rate should be zero, and the proof is completed. We further
note that invoking (16), the last inequality also indicates that
utilizing the proposed DNN does not affect the information
leakage rate.

According to the above proposition, one can deduce that
I (FW,B(yA), yB; zM) = 0. Therefore, invoking (13) and (16),

7To show that the mentioned RVs follow complex Gaussian distribution,
one can easily follow a similar approach to [19].

TABLE 2. Parameters for Training the Proposed DNN

we can rewrite the training process as follows

{W∗, B∗} = argmin
W,B

1

NT

NT∑
i=1

�
(
FW,B(yA), yB

)
i . (17)

Before providing the results of our numerical experiments, we
mention that the full procedure of secret key agreement is real-
ized through running the following blocks: 1) A mapping, e.g.,
quantization, from the occupied data of A and B to a discrete
subspace, followed by 2) the reconciliation phase; and, 3) a
hash function [18]. In this article, however, our focus is on the
randomness distillation phase as the fundamental part of any
WSKG scheme. Interested readers are referred to [4] for more
details on other blocks of PHY-based key agreement. In our
future works, we will study the integration of DL algorithms
into the other blocks of WSKG.

VI. NUMERICAL RESULTS
In this section, we present different numerical examples to
investigate our proposed DL-based scheme for relay-aided
WSKG. We also compare our scheme with different state-
of-the-art benchmarks to demonstrate its performance. The
codes are run on Intel(R) Xeon(R) Silver 4114 CPU running at
2.20 GHz. For the following tests, a typical wireless channel
h between two arbitrary nodes with distance d is modeled
as h = Gd− α

2 h0, with G = c
4π fc

denoting the constant pa-

rameter of the path-loss with exponent α = 4, c = 3 × 108

m/s, and fc = 2.4 GHz [1], [17], [18], [29], [40]. Moreover,
h0 ∼ CN(0, 1) models the typical small scale Rayleigh fading.
Unless otherwise stated, Alice, Bob and the relay are placed
at [−10, 0]m, [10, 0]m, and [0, 5]m, respectively [18], [29],
while Matt (equipped with nT = 4 antennas) is located at
[0,−5]m [11], [17], [19]. This can be considered as a typical
scenario of indoor WiFi networks. Training parameters are
provided in Table 2. Moreover, the number of hidden units in
GRU layers and the number of neurons employed at dense lay-
ers are denoted on top of their corresponding blocks in Fig. 3.
In addition, dropout regularization with probabilities 0.8, 0.6,
and 0.6 are implemented on each layer. The length of the input
and output sequences of our DNN is set to L = 20, which is
obtained by hyper-parameter tuning.8 During the training of
DNN, the transmit power of legitimate pilots and the MitM
transmit power are set to PA⇔B⇔R = 10 dBm and PM = 20
dBm, respectively. The training set is created according to (9)

8For the case of fast-varying channels instead of quasi-static block fading
channels, input sequences of lengths less than 20 could be considered.
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FIGURE 5. Secret key rate vs. pilot power for PM = 10 dBm with
κ
t(r)
A = κ

t(r)
B = κ

t(r)
R = κt(r).

and (10), and based on the configurations mentioned above,
using Monte Carlo method. For the test scenario, however, we
vary different configurations, such as transmit power, impair-
ment levels, and nodes’ locations, and generate samples with
different distributions than the training set, in order to verify
the generalization property of the implemented DNN.

Fig. 5 illustrates the achievable SKR Rkey versus the trans-
mit power of pilot packets for different HI levels. The mutual
information calculation for the SKR is obtained numerically,
using empirical distributions of yA and yB over 105 real-
izations for Monte-Carlo simulation [43], [44]. The figure
demonstrates a fundamental limit of realistic WSKG schemes
when HIs are taken into account. Considering wireless net-
works in practice, we face with the ceiling phenomena, i.e.,
the SKR saturation when increasing power. This ceiling effect
can also be inferred from (2) and (9)–(11), where the increase
in transmit power not only improves the quality of shared ran-
domness, but also increases the variance of residual HI-related
terms. The figure demonstrates that HIs are very influential at
high SNR regimes, since the differences between SKR values
at different HI levels are greater in high transmit powers. In
addition, the figure indicates that the less HI the network faces,
the more SKR can be achieved, which is in line with intuition.
In this figure, we also examine some benchmarks: The SKR
of WSKG scheme is plotted when the received signal strength
indicator (RSSI) of yA and yB is considered as the source of
randomness [4]. We observe that in this case, the achievable
SKR is much lower than that of our scheme. This is because
the RSSI-based scheme only utilizes the amplitudes of obser-
vations instead of the complex-valued observations yA and
yB. We also compare the hardware-impaired results with the
special case of perfect hardware. We can infer from the figure
(the line with triangle markers) that the imperfect reciprocity
in wireless links also plays an important role in the ceiling
effect. Moreover, when the HIs are neglected and the channel
is assumed to be perfectly reciprocal—which is actually not
realizable in a realistic deployment [9], a large gap occurs
between the SKR of the ideal and the realistic scenarios. To

FIGURE 6. MSE between the sequences of Alice and Bob for
[κtA, κrA] = [0.12, 0.05], [κtB, κrB] = [0.0875, 0.175], [κtR, κrR] = [0.08, 0.15]
[25], ρ = 0.7, and PM = 10 dBm.

conclude Fig. 5, it is pivotal for network designers to carefully
take into account the hardware and channel imperfections to
have an accurate understanding of wireless system.

Fig. 6 illustrates the observations mismatch, measured via
(normalized) MSE metric, between the (absolute value of)
occupied sequences at Bob and the predicted sequences at
Alice. The MSE metric is plotted for different transmit powers
PA,B,R = P. This figure provides a useful insight on choosing
an appropriate transmit power for pilot packets. To elaborate,
increasing P does not necessarily lead to achieving lower
MSEs. In other words, if the signal level of the common
randomness gets close to the received signal of fake data,
the mismatch between legitimate parties increases according
to (9) and (10). Fig. 6 also verifies that our proposed DNN
is robust against different ranges of pilot power. In other
words, our proposed DNN shows substantial reduction in
observation mismatches for a wide range of transmit powers,
although being trained by pilot packets with a fixed power
PA,B,R = 10 dBm. Thus, we proposed a data efficient DNN,
which does not need to be retrained when the pilot powers
change.

In this experiment, we also investigate the performance of
our proposed DNN compared with different state-of-the-arts
We also show the generalization capability of our DL-based
approach for being utilized in different communication sce-
narios. Notably, the following DL-based and non DL-based
benchmarks are considered:

1) PHY-ONLY WSKG SCHEME
Fig. 6 shows that more than 40% improvement, in terms of
distillation mismatch between Alice and Bob, is achieved by
implementing our proposed DNN compared with a PHY-only
WSKG scheme [16], [18], which only relies on PHY-extracted
observations rather than employing a neural network.
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FIGURE 7. General sketch of the ESN benchmark.

2) ECHO-BASED NEURAL NETWORK
An echo state network (ESN) is implemented as a benchmark
for predicting the observations sequences [41]. ESNs perform
prediction using a relatively large reservoir of sparsely-
connected neurons, each of which has a short-term memory of
the previously-seen states. The main idea of ESNs is that the
sparse random connections in the reservoir pool let previous
states “echo” even when they have passed. After data echoes
in the pool, it flows towards the output layer. The recurrent
connections in the reservoir pool together with the connection
weights in the input layer are randomly generated, while the
output layer (which connects the reservoir to the output neu-
rons) is trained during the training process. A general sketch
of a typical ESN is illustrated in Fig. 7. For this benchmark,
we implemented an ESN with a pool of size Nr = 50 neurons.
We also set the spectral radius of the reservoir weights to 0.5
with connection density of sp = 0.5. In addition, the weights
of all untrained connections were chosen uniformly between
−1 and 1. As can be seen from Fig. 6, our proposed GRU-
based scheme outperforms the ESN benchmark by about 15%.
This performance is achieved thanks to the wisely-adopted
reset and update mechanism of GRU layers proposed in (12),
while the typical update equations of neuron reservoir is a
simple echo-inspired update (Please see [41] and [24] for the
detailed mechanism of ESNs).

3) FULLY-CONNECTED (FC) NEURAL NETWORK
The FC network is implemented for another learning-based
benchmark [21], [22]. For this benchmark, we implemented
two dense layers with 8 neurons at hidden layer and 5 neurons
at output layer. Remarkably, our proposed DNN is comprised
of both the GRU layers and the dense layers. Therefore, in
addition to having the learning capabilities of a FC network,
our DNN is also capable of capturing the relevant information
which lies within the sequence of observations. Hence, better
performance can be achieved compared with a simple FC
network by about 20% performance gain.

Comparing the general structure of our DNN, which is
comprised of recurrent and dense layers (Figs. 3 and 4), the
ESN benchmark, which is an aggregated version of recurrent
neurons with a sparsely-connected network (Fig. 7), and a

TABLE 3. Performance Comparison Between the Proposed DNN and
Benchmarks

general FC network, one can intuitively imply that the pre-
diction performance of an ESN would be something between
the performance of a FC network and a GRU-based network,
where our results in Fig. 6 validate this claim.

4) FURTHER COMPARISONS BETWEEN GRU, ESN, AND FC
To have a more comprehensive insight on performance com-
parisons between the GRU-based neural network, the ESN,
and the FC network, we further examined the required training
time (with a fixed training data size), the inference time for
predicting new sequences (during a fixed number of 256 time-
stamps), and the required memory storage for saving each of
the corresponding neural networks after that they are trained.
These experimental results are summarized in Table 3. Ac-
cording to the table, the implemented ESN maintains a small
training time compared with FC and GRU-based networks.
This basically addresses the typical advantage of echo-based
approach, i.e., its incredibly simple training process as the out-
put layer is the only layer that gets trained, while other weights
are randomly-assigned just once. To address the performance-
complexity trade-off, we mention that the computation time
of the ESN is less than the GRU-based approach and FC net-
work, thanks to its relatively simple recurrent structure with
sparse connections. However, our proposed DNN achieves
much lower MSEs than the ESN and FC, as shown in Fig. 6.
This can be interpreted as a trade-off between computation
time/complexity and resultant MSE. Notably, the required
memory storage to save the trained neural network is dras-
tically large for the ESN. This is due to its huge number of
internal states in the reservoir pool which needs to be stored
for inference on new data.

Based on the results of Table 3, one might argue that the
training time for our GRU-based network is too long. Al-
though it seems to contradict with the purpose of utilizing
our DNN, however, this is not the case due to the following
reasons: Training is performed offline before establishing the
real-time configuration settings. Hence, much higher compu-
tational time can be afforded with significantly less constraints
than a real-time computation [13]. Once the offline training
is finished, it can be used for online prediction of new data
sequences in a real time manner, where our results show
that better performance than ESN and FC networks can be
achieved with much less time for online computations than
the offline training.

We further study the computational complexity of our
scheme and the state-of-the-art benchmarks. The computa-
tional complexity is evaluated in terms of the number of
floating point operations (FLOPs) [45], as given in Table 4.
In this table, li and lo denote the length of input and output
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TABLE 4. Computational Complexity of the Proposed DNN and
Benchmarks

vectors of the corresponding neural networks, (which is set to
20 in our numerical experiments). For the ESN benchmark, Nr

and sp denote the number of internal neurons within the reser-
voir pool, and the sparsity parameter, respectively. Finally,
ni and nhi (1 ≤ i ≤ H) respectively stand for the number of
neurons in the dense layers of FC benchmark, and the number
of hidden states in the recurrent layers of our GRU-based
scheme, with H denoting the number of neural layers accord-
ing to Fig. 3. Inspecting the computational complexity orders
in Table 4, one can imply that the computation complexity
of the studied benchmarks are more or less the same, with
the same polynomial order O(n2) with respect to the size of
the employed neurons. This is also in line with the inference
computation time results in Table 3. Nevertheless, we empha-
size that inference computation time in Table 3 is comprised
of not only the tensor-based multiplications, but also other
operations and processes, including additions, concatenations,
activation functions, and reading from and writing to the
memory, which would be different among different neural
network architectures, and investigating their corresponding
mechanisms is beyond the scope of this article.

We finally emphasize that moving from software level
computations towards hardware level implementations, other
computational complexities could be taken into account, such
as number of bit operations (BOP), number of additions and
bit shifts (NABs) in fixed-point computations, and number of
hardware logic gates [45], which are not the focus of this
article, as we proposed a software-centric security solution
by employing a DNN at the application layer of the network
protocol stack.

5) SINGLE-STREAM ATTACK
Based on the adversarial attack elaborated in (7), the MitM
launches a multi-stream injection attack in our system. A
special case of single-stream attack can also be considered
by choosing an arbitrary column of (6) as a benchmark [19].
Although the training procedure has been performed under
multi-stream attack, the result of our tests in Fig. 6 shows that
our DNN is also robust in the single-stream scenario.

6) MULTI-ANTENNA WSKG
To highlight the generic capability of our proposed scheme,
a MIMO WSKG scheme is considered in this benchmark,
where Alice and Bob are equipped with 3 antennas. Remark-
ably, it can be seen from Fig. 6 that our DL-based approach
can also be applied to the case of multi-antenna legitimate

FIGURE 8. Achievable SKR vs. adversary power, for ρ = 0.8 and
[κtA,B,R, κrA,B,R] = [0.05, 0.05].

nodes by achieving 40% performance gain compared to a
conventional PHY-only MIMO WSKG scheme [29].

Remark 4: Trade-off between MSE and SKR upper bound.
We emphasize that implementing DNNs cannot increase the
“achievable” SKR, due to DPI. Mathematically, we have
I (FW,B(yA); yB) ≤ I (yA; yB). However, as we can see from
Fig. 6, the MSE of observations is decreased by using the
proposed DNN. This can facilitate having lighter information
reconciliation algorithms for error correction, resulting in less
information leakage and communication overhead during the
reconciliation phase. It can be an interesting research direc-
tion to investigate the trade-off between utilizing DNNs vs.
employing reconciliation algorithms in the future works.

Fig. 8 shows the SKR versus the MitM adversarial power
PM when R is placed in different locations. Pilot packets with
power 0 dBm is considered for this test. The figure highlights
the fact that when the relay moves towards one of the legiti-
mate parties, the achievable SKR decreases. This is because in
a non-symmetric placement of legitimate nodes, higher levels
of discrepancies between yA and yB occurs. This is because
the aggregate levels of HIs in relaying links hAR and hBR are
different. This can also be inferred from the residual terms
in (11). In this figure, the SKR of a conventional scheme with
unmodified pilot signals is also depicted, which shows that the
MitM can override the key generation process if RPs are not
exploited. This can be inferred from (8), in which a common
adversarial data zM (designed, controlled, and injected by
Matt) lies within the observations of Alice and Bob. In other
words, the information leakage in this case can become arbi-
trarily large with the increase in PM. However, thanks to the
exploitation of RPs, Matt cannot disrupt our proposed scheme
via increasing his power. Instead, the adversary should choose
PM in a way that the received signal level of his adversarial
data zM gets closer to the signal level of shared randomness
data. By doing so, the mismatches between legitimate end-
points increases and the achievable SKR decreases. A similar
trend was seen in Fig. 6 as well.
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FIGURE 9. Key difference rate vs. the level of receiver impairment for
ρ = 0.95, PM = 10 dBm, and PA,B,R = −10 dBm.

In order to generate raw key sequences at Alice and Bob,
denoted by KA and KB, respectively, the following one-bit
quantization block is employed at Alice and Bob

Ki =

⎧⎪⎨
⎪⎩

0 |i| ≤ μB − �σB

1 |i| > μB + �σB

none otherwise,

(18)

where A = FW,B(yA) is the predicted data at Alice, and
B = yB is the observation data of Bob at each time-stamp. In
addition, μB and σB denote the mean and standard deviation of
Bob’s observations, which are assumed to be publicly known
among legitimate parties. Moreover, � = 0.3 is the quanti-
zation guard band [21]. Fig. 9 illustrates the key difference
rate (KDR) versus the level of HIs, κrA = κrB = κr, for two
cases of Matt being located at [0,−5]m and [10,−5]m, re-
spectively. We mention that according to Remark 3, it is not
tractable to derive a closed-form expression for the KDR. For
this figure, the HI of intermediate relay is set to [κtR, κrR] =
[0.1, 0.1]. We have considered that κtA(B) = κtot − κrA(B), and
κtot = 0.3 [25]. The figure indicates that the level of HIs at
receiver ends plays a more important role than the transmit
HIs. This can be inferred from the overall proposed proto-
col in Section III, where the Rx hardware of Alice and Bob
contribute in the first and the third step of packet exchange,
while their Tx hardware is active in the second step only.
Inspecting the residual terms in (11) can also verify this fact.
From Fig. 5, one can also infer that when Matt is near one of
the legitimate parties, higher levels of mismatch are imposed,
leading to higher KDRs. This is because Matt can cause
greater discrepancies due to the unbalanced levels of HIs in
the adversarial links hMA and hMB. Moreover, Fig. 9 remarks
that our proposed DNN is data efficient in terms of the values
of HIs, i.e., our DNN is able to provide lower KDRs for a wide
range of HIs.

Fig. 10 depicts the average number of randomness distilla-
tion sessions, i.e., the sessions of packet exchange, required to
be performed by A and B to agree on a secret key of length

FIGURE 10. Number of required sessions for 256-bit key agreement vs.
pilot power for ρ = 0.95, PM = 10 dBm, and κ

t,r

A,B,R = κtot/2.

|K| = 256 bits [11]. Notably, a key of 256 secure bits can be
utilized for encrypting up to gigabytes of data [11]. In this
test, the average number of required sessions is calculated
based on the general formula of [21], i.e., |K|

Nsc (1−KDR) . More-
over, we consider the WSKG scheme over Nsc = 12 parallel
blocks to show the generalization capability of our proposed
scheme [18]. The results of Fig. 10 imply that increasing the
transmission power of pilot packets can decrease the required
number of sessions. This is because increasing pilot power can
lower the KDR. For instance, in the ideal case of perfect hard-
ware, by having a transmit power of more than 25 dBm the
number of sessions tends to its minimum value of |K|

Nsc
= 22

which corresponds to the case of one bit quantization with
zero KDR. In addition, the figure shows the negative impact of
having HIs that can increase the required number of sessions.
For instance, having HIs at a level of κtot = 0.1, can impose
to the network about 9% increase in the number of required
sessions. Thus, it is important to carefully take the hardware
and channel imperfections into account to reflect the realistic
behavior of wireless systems.

VII. CONCLUSION
In this article, we studied a DL-based approach for relay-aided
WSKG scheme in wireless networks under MitM adversarial
attacks. We took into account the practical assumptions of
HIs and imperfect channel reciprocity to gain realistic un-
derstandings of a practical system. To alleviate the MitM
from spoofing the randomness distillation, RPs were deployed
at PHY layer. We also implemented a DNN, comprised of
GRUs, to further improve the WSKG process. The impacts
of HIs and MitM adversarial attacks on system’s performance
were examined, while numerous experiments were conducted
to highlight the performance gain of our DL-based approach
compared with the state-of-the-arts. Proposing a mathemati-
cal framework to analytically study the trade-off between the
computation overhead of learning block and the information
leakage of the reconciliation phase will be considered in our
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future works. Moreover, we will incorporate other types of
learning-based attacks, such as adversarial machine learning
(AML), into the WSKG process in our future works.

Another important direction that is left for our future work
is to study the applications of WSKG scheme at the inter-
section of 6G networks and emerging technologies such as
metaverse and digital twins [46], [47], [48].
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