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ABSTRACT In a transmit preprocessing aided frequency division duplex (FDD) massive multi-user
(MU) multiple-input multiple-output (MIMO) scheme assisted orthogonal frequency-division multiplexing
(OFDM) system, it is required to feed back the frequency domain channel transfer function (FDCHTF) of
each subcarrier at the user equipment (UE) to the base station (BS). The amount of channel state information
(CSI) to be fed back to the BS increases linearly with the number of antennas and subcarriers, which may
become excessive. Hence we propose a novel CSI feedback compression algorithm based on compressive
sensing (CS) by designing a common dictionary (CD) to reduce the CSI feedback of existing algorithms.
Most of the prior work on CSI feedback compression considered single-UE systems. Explicitly, we propose
a common dictionary learning (CDL) framework for practical frequency-selective channels and design a
CD suitable for both single-UE and multi-UE systems. A set of two methods is proposed. Specifically, the
first one is the CDL-K singular value decomposition (KSVD) method, which uses the K-SVD algorithm. The
second one is the CDL-orthogonal Procrustes (OP) method, which relies on solving the orthogonal Procrustes
problem. The CD conceived for exploiting the spatial correlation of channels across all the subcarriers and
UEs compresses the CSI at each UE, and upon reception reconstructs it at the BS. Our simulation results
show that the proposed dictionary’s estimated channel vectors have lower normalized mean-squared error
(NMSE) than the traditional fixed Discrete Fourier Transform (DFT) based dictionary. The CSI feedback is
reduced by 50%, and the memory reduction at both the UE and BS starts from 50% and increases with the
number of subcarriers.

INDEX TERMS Wideband, frequency domain channel transfer function (FDCHTF), channel state infor-
mation (CSI), compressive sensing (CS), massive MIMO, common dictionary learning (CDL), common
dictionary (CD), orthogonal Procrustes (OP) problem, K-SVD algorithm.

I. INTRODUCTION
Massive multiple-input multiple-output (MIMO) systems
constitute a promising enabling technique for 5 G/6 G
cellular networks as a benefit of their substantial spatial
multiplexing gain [1] in both time division duplex (TDD)
and frequency division duplex (FDD) scenarios. At the base
station (BS), combining the massive MIMO technology
with orthogonal frequency-division multiplexing (OFDM)

is capable of transmitting multiple data symbols to multiple
UEs on the same time-frequency resource block, resulting
in increased system throughput [2]. In a multi-user (MU)
massive MIMO-OFDM system, the knowledge of CSI1 is
needed at the BS to implement transmit precoding (TPC) for
suppressing the co-channel interference (CCI) [3]. In FDD

1We use the terms CSI and FDCHTF interchangeably.
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systems, due to the absence of channel reciprocity [4], the
user equipment (UE) has to feed back the downlink (DL)
frequency domain channel transfer function (FDCHTF) of
each subcarrier to the BS. Feeding back the accurate CSI
becomes more challenging with the increased number of
antennas, subcarriers, and UEs [5].

The compression of high-dimensional CSI is essential for
reducing the CSI feedback. The wireless channels can be
represented in a sparse form in the spatial-frequency domain
using ‘sparsifying’ bases termed as a dictionary [6]. In the
compressive sensing (CS)-based feedback schemes [7], the
original CSI is mapped to a sparse domain using a dictionary.
The traditional choice of the dictionary is a fixed Discrete
Fourier Transform (DFT) matrix. Then a random Gaussian
measurement matrix is introduced to compress the sparse vec-
tor for feeding it back to the BS at a reduced rate. The sparse
signal is then reconstructed at the BS using CS-based algo-
rithms, such as the orthogonal matching pursuit (OMP) [8],
basis pursuit (BP) [9] or covariance-assisted matching pursuit
(CAMP) [10] procedures. The original CSI is then recon-
structed by mapping the regenerated sparse signal back to the
same dictionary used at the UE side.

The authors of [11] proposed a rotated version of the DFT
basis to provide improved sparsity that results in reduced
CSI mean-squared error (MSE) for a narrowband multi-user
system with each UE having a single receive antenna. How-
ever, the proposed rotated basis does not exploit the antennas’
spatial correlation. The massive MIMO-OFDM channel be-
tween a multi-antenna UE and the BS can be represented by
a matrix [12]. In such systems, the UE has to feed back the
FDCHTF of each subcarrier, which results in huge feedback
overhead. The FDCHTF feedback algorithm of a massive
MIMO-OFDM single-UE system based on multidimensional
compressive sensing theory using Tucker’s tensor decompo-
sition model is developed in [13]. Briefly, Tucker’s tensor
decomposition exploits the structure hidden in all the dimen-
sions of the channel matrix and compresses it simultaneously
in each dimension. The proposed scheme has a significant
feedback reduction and hence improves the spectral effi-
ciency. However, both the basis and measurement matrices
should be learned. The authors of [14] introduced a recursive
least squares dictionary learning algorithm (RLS-DLA) for
CSI feedback. The proposed scheme achieves a substantial
reduction in feedback requirements, however it requires the
computation of large matrix inverses during the dictionary
learning process.

Another line of work focused on designing non-dictionary-
based methods for FDCHTF feedback [19]. In [20], an an-
tenna grouping-based method was proposed for reducing the
feedback overhead by grouping multiple correlated antenna
elements into a single representative value. By considering
a ray-based channel model, the authors of [21] and [22] de-
signed an angle-of-departure (AoD) based adaptive subspace
codebook for feedback compression. In [16] and [23] the au-
thors exploited the low-rank characteristics of a large channel
matrix for recovering the CSI at the BS.

Recent solutions include Deep Learning (DL) techniques
conceived for CSI compression and recovery using so-called
the Bi-LSTM [24], CsiNet-LSTM [25], DNNet [26], CS-
ReNet [27], and DCRNet [28] frameworks.2 Additionally,
the application of Deep unfolding techniques has also shown
promising results, as demonstrated in [29], [30]. These
techniques have better reconstruction performance than the
conventional CS algorithms of [31], albeit at significantly
increased computational complexity.

Massive MIMO-OFDM channels tend to be individually
sparse and simultaneously share a common support set that
typically exhibit joint sparsity in the time domain (TD) [32],
which results in correlation among subcarriers in the fre-
quency domain (FD). Since the DFT dictionary does not
exploit spatial correlation across antenna arrays, we design
a dictionary for massive MIMO-OFDM systems that can
exploit the spatial correlation, hence achieving improved
CSI reconstruction performance. The dictionary is generally
learned from a training data set by relying on learning-
based approaches [17], [18], [33], [34], [35]. The dictionaries
learned have the potential to offer improved normalized mean
squared error (NMSE) performance compared to fixed dictio-
naries, like the DFT-based one. In [15] a CS-based method
was proposed, which exploited the spatial correlation among
the antennas in a narrowband single-UE system using the
K-SVD [36] algorithm. The method relies on learning the
K-SVD dictionary from the training data set and on feeding
back the K-SVD dictionary learned at the UE to the BS. Using
this K-SVD dictionary, the CSI is compressed at the UE and
reconstructed at the BS. The motivation for this K-SVD based
dictionary is not only to reduce the CSI feedback, but also to
reduce the NMSE of CSI reconstruction.

As the channel-induced dispersion is increased, the number
of OFDM subcarriers also has to be increased to avoid an
excessive performance degradation. Hence upon using the
K-SVD algorithm of [15], the number of subcarrier K-SVD
based dictionaries increases as the number of subcarriers
increases. Handling ubiquitous subcarrier K-SVD based dic-
tionaries is cumbersome in terms of memory management
and feedback load. To circumvent this problem, we propose
a novel common dictionary learning (CDL) technique, which
can replace the requirement of individual subcarrier K-SVD
dictionaries, leading to the concept of a common dictionary
(CD). The CD effectively captures the channel characteristics
of all the subcarriers and UEs, making it the optimal spar-
sifying dictionary for representing the channel’s sparsity in
massive MIMO systems. Given the CD learned, compressive
channel estimation techniques can be constructed for acquir-
ing the CSI. A set of two methods having different pros and
cons are proposed for CDL, namely the CDL-KSVD method
and the CDL-orthogonal Procrustes (OP) [37] based method.
These methods are detailed in Section III of the article. Again,
our primary motivation is to reduce the CSI feedback over-
head on the uplink as well as the memory requirement at

2For the expansion of these acronyms please refer to the relevant papers.
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TABLE 1. Comparing Our Contribution to the Existing Literature

both the UE and the BS in FDD massive MU-MIMO-OFDM
systems.

Main contributions of this article:
1) We proposed a novel CDL framework for learning a CD,

mainly using the CDL-KSVD and the CDL-OP meth-
ods. In the CDL framework proposed for a multi-UE
system, the CD conceived exploits the spatial correla-
tion of the FD channels across all the subcarriers and
the UEs. We demonstrate that this implementation im-
proves the NMSE performance when compared to the
existing methods.

2) In the CDL framework proposed for a single-UE sys-
tem, the learning of CD is implemented at the UE. The
UE sends only the CD to the BS in the uplink instead of
all the subcarrier K-SVD dictionaries. This implemen-
tation reduces the dictionary feedback to the BS by a
factor of Nc and also reduces the memory requirement
by having a single CD at the UE and the BS.

3) We evaluate the proposed CD in the context of var-
ious system configurations and channel conditions in
the face of UE mobility. The numerical results show a
significant reduction in the NMSE of channel estimation
and highlight the bit error rate (BER) performance of
the channel estimates when using our learned dictio-
nary. This corroborates the effectiveness of the CDL
framework proposed over existing methods in wideband
massive MIMO systems.

The remainder of this article is organized as follows. Sec-
tion II presents the system model, CS procedure, and the
motivation. In Section III, the proposed methods are dis-
cussed. Then the application of the proposed methods in
wideband systems is discussed in Section IV. Our simula-
tion results are provided in Section V to show the NMSE
performance of the proposed method compared to state-of-
the-art methods. Finally, in Section VI, our conclusions are
given.

Table 1 presents the comparison of our contribution to
the existing literature. Table 2 presents the list of acronyms.
Table 3 presents the list of notations and in Table 4 the refer-
ences for CSI compression techniques are given.

Notations: We use lower (upper) bold letters to denote
column vectors (matrices) and super-scripts (.)−1, (.)∗, (.)H

to represent the inverse, complex conjugate and Hermitian
operators respectively, ‖.‖F denotes the Frobenius norm of

TABLE 2. List of Acronyms

a matrix; ⊗ denotes the Kronecker product, tr(.) is the trace
of the matrix, vec(.) operation returns a column vector by
stacking all the columns of a matrix.

II. SYSTEM MODEL
In this section, we first introduce the massive MU-MIMO-
OFDM channel and the associated spatial correlation matrices
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FIGURE 1. Overview of the considered massive MU-MIMO-OFDM system.
Right: K UEs with Nr RAs each for k = 1 to K; Left: massive MIMO base
station with Nt TAs. Hk represents the complete FDCHTF of the k-th UE and
Hl,k represents the FDCHTF across the l-th subcarrier of the k-th UE.

at the BS and UEs. Furthermore, we conceive the CS-based
channel reconstruction procedure of massive MIMO channels.
Next, we highlight the dictionary learning algorithms avail-
able in the literature. Then, in the final sub-section we describe
the motivation of the proposed CDL framework.

A. THE MASSIVE MU-MIMO-OFDM CHANNEL
We consider a massive MU-MIMO-OFDM system using a
uniform linear array (ULA) of Nt TAs at the BS, Nr RAs at
all the K UEs and Nc subcarriers as shown in Fig. 1. For the
k-th UE (k = 1 to K), consider a frequency-selective channel
having L taps in the TD. Let Hl,k represent the FDCHTF of
the l-th subcarrier of the k-th UE given by

Hl,k =
L−1∑
i=0

H̄i,ke− j2π il
Nc , (1)

where H̄i,k ∈ CNr×Nt is the i-th tap TD channel matrix. The
tap coefficient H̄i,k (p, q) represents the channel impulse re-
sponse (CIR) of the link spanning from the q-th BS antenna
to the p-th UE antenna.

The spatial correlation of massive MIMO channels can be
modeled by a Kronecker structure having separable transmit
and receive correlation matrices [31], with H̄n,k given by

H̄i,k = 1√
tr(RUE ,k )

R
1
2
UE ,kH̆i,kR

1
2
BS, (2)

where H̆i,k is a Nr × Nt matrix whose elements are indepen-
dent and identically distributed (i.i.d.) complex zero-mean,
unit variance, Gaussian random entries. Furthermore, RBS and
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FIGURE 2. Overview of the considered CSI feedback compression scheme in the massive MU-MIMO-OFDM system. The FDCHTF across the l-th subcarrier
of the k-th UE is compressed at the UE and reconstructed at the BS.

FIGURE 3. Overview of the massive MU-MIMO-OFDM system having a k-th UE with Nr RAs and a BS with Nt TAs. Hk represents the complete FDCHTF at
the k-th UE and Hl,k represents the FDCHTF across the l-th subcarrier of the k-th UE. The FDCHTFs are vectorized and then undergo sparse transformation
using the dictionary obtained from the existing methods 1, 2 of [15] and the proposed framework. The circled numbers and the notations are the same as
in Fig. 2.

RUE ,k are the spatial correlation matrices at the BS and k-th
UE, respectively.

The spatial correlation matrices are generated by Jakes’
model often used in the literature, so the uv-th element of RBS

and RUE ,k , can be modeled by ruv = J0( 2πduv/λ) where duv

is the distance between the antennas u and v, λ is the carrier
wavelength and J0(.) denotes the zeroth-order Bessel function
of first kind [39].

B. COMPRESSIVE SENSING BASED CHANNEL
RECONSTRUCTION
Fig. 2 shows the basic schematic of the FDCHTF com-
pression and reconstruction across the l-th subcarrier of
the k-th UE. More specifically, observe in Fig. 3 that at
the k-th UE we present the FDCHTF view across all the
subcarriers and its sparsification using the existing as well
as the proposed methods in parallel. The remainder of
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this section introduces each of the steps numbered in both
figures.

1© In between the BS and a k-th UE the complete channel
frequency response matrix that includes all the Nc subcarrier
channels is formed by stacking the channel matrices column-
wise:

Hk = [
H1,k, . . . , Hl,k, . . . , HNc,k

]
. (3)

2© We assume that the k-th UE perfectly estimates its channel
matrix Hk , which should be shared with the BS through feed-
back. Instead of sending the FDCHTF of each subcarrier, the
matrix Hl,k is vectorized first into an NrNt × 1 column vector
using the vec(.) operation

hl,k = vec(Hl,k ). (4)

3© 4© In practical systems, the UE has to compress the esti-
mated channel vector hl,k ∈ CNrNt ×1 to avoid high feedback
load. The wireless channel vector hl,k can be represented by a
sparse vector [31] after a transformation

hl,k = �h̃l,k, (5)

where h̃l,k is the sparse representation of hl,k . The number of
non-zero components of a sparse channel vector is called the
sparsity or sparsity index, and it is denoted by S, while � is a
NrNt × NrNt dictionary known to both the UE and the BS. A
popular example of � is the DFT matrix. Next, we introduce
the measurement (sensing) matrix �, which plays a crucial
role in compressive sensing. The measurement (sensing) ma-
trix defines the measurement process in CS, which influences
the reconstruction quality and efficiency of the signal recovery
algorithm. It is responsible for mapping the original high-
dimensional signal to a lower-dimensional signal.

5© 6© To compress the channel vector hl,k , a measurement
matrix � ∈ CNg×NrNt (Ng << NrNt ) that satisfies the Re-
stricted Isometry Property (RIP) [8], which facilitates sparse
vector recovery relying on:

hk
c,l = ��h̃l,k, (6)

where hk
c,l is the compressed channel vector with dimension

Ng × 1. Let us now define � = ��.
7© Then the reconstruction of hl,k can be formulated as an

�0-norm minimization problem and the sparse vector h̃l,k can
be obtained by solving

min
h̃l,k

‖h̃l,k‖0 s.t. hk
c,l = �h̃l,k . (7)

Thus, instead of feeding back hl,k , the UE sends a low-
dimensional vector hk

c,l to the BS for reducing the FDCHTF

feedback. The BS reconstructs ĥl,k from hk
c,l , where ĥl,k

represents the reconstructed hl,k . The reconstructed channel
vector ĥl,k at the BS is utilized for precoding during the
data transmission stage. The precoder matrices employed at
the BS are denoted as Wg and Wg

op, which correspond to
the beamforming weights. These weights are obtained from
the true channels and the channels estimated using CDL-OP
dictionary, respectively, for a compression factor of g. Here,

the compression factor g is defined as g = NrNt
Ng

, where Ng × 1
represents the dimension of the compressed channel vector
hk

c,l .

C. MOTIVATION FOR THE COMMON DICTIONARY
LEARNING FRAMEWORK
In CS-based feedback schemes, the traditional choice of the
dictionary is a fixed DFT matrix, which does not exploit the
spatial correlation between the antennas. The authors of [11]
proposed a rotated version of the DFT dictionary for better
exploiting the sparsity, resulting in reduced FDCHTF mean-
squared error (MSE) for a narrowband multi-user system
supporting single antenna UEs. But this rotated basis still
failed to exploit the antenna’s spatial correlation for improving
the MSE further.

The authors of [15] have shown that a dictionary can be
learned using the K-SVD algorithm for narrowband FDD
massive SU-MIMO systems. This K-SVD dictionary learned
exploits the spatial correlation between the antennas, and its
FDCHTF reconstruction performance is improved compared
to the fixed DFT dictionary. The proposed method requires
FDCHTF and dictionary feedback to the BS. However, in
practical communication systems, the channels are frequency-
selective, and OFDM is a ubiquitous technique for such
systems. In a massive MU-MIMO-OFDM system, to extend
the idea of dictionary learning, it is necessary to feed back the
FDCHTF and K-SVD based dictionary of each subcarrier of
all UEs. Feeding back the entire FDCHTF Hk of the k-th sub-
carrier will be a huge burden in the uplink. Another important
issue is that substantial memory is required for saving all the
Nc subcarrier dictionaries at both the UE and the BS. The di-
mension of each subcarrier dictionary is NrNt × NrNt , hence
the memory required to store Nc dictionaries is Nc(NrNt )2.

To overcome these challenges, we propose the novel idea
of a common dictionary, which can replace the requirement
of individual subcarrier dictionaries. The CD is designed for
exploiting the spatial correlation across all the subcarriers
and UEs in the FD, hence improving the CSI reconstruction
accuracy. The proposed CD reduces the CSI feedback load
and memory requirement in both single and multi-UE sys-
tems. In particular, the feedback load is further reduced for
a single-UE system by sending only a single CD from the UE
to the BS. Hence, the proposed CDL framework reduces the
CSI feedback and memory requirements, and we also study
the NMSE performance compared to the DFT and subcarrier
K-SVD dictionaries.

III. PROPOSED COMMON DICTIONARY LEARNING
FRAMEWORK
In this section, we detail the CDL framework proposed for
a multi-UE system that constructs a dictionary from the esti-
mated channel vectors and K-SVD based dictionaries of UEs.
Before introducing the framework proposed, in Fig. 4 we
provided a diagram showing the flow of the analysis described
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FIGURE 4. Flow of the mathematical analysis.

in the article. This diagram guides the reader through the
article.

A. COMMON DICTIONARY LEARNING FRAMEWORK
The main goal of the proposed CDL framework is to con-
struct a CD, denoted by �c, that can exploit the correlation
of channels across all the UEs and BS, for improving the
CSI reconstruction at the BS. The matrix of training channel
vectors is denoted by H′, which consists of M ′ channel vectors
collected for N different frames across Nc subcarriers and K
UEs. Then we have M ′ = N × Nc × K .

To elaborate further, H′ is structured as H′ = [H′
1,

. . . , H′
k, . . . , H′

K ], and each sub-matrix in H′ is represented
as H′

k = [H′
1,k, . . . , H′

l,k, . . . , H′
Nc,k

] ∀k ∈ {1, 2, . . . , K},
∀l ∈ {1, 2, . . . , Nc}. Similarly, H′

l,k is defined as H′
l,k =

[hl1,k, . . . , hln,k, . . . , hlN ,k], where hln,k represents the
channel vector transformation of Hln,k at the n-th
MU-MIMO-OFDM frame (time-instant). We assume that
the channel envelope remains constant for an OFDM frame
and then changes for the successive frames, according to
the vehicular velocity. Hence the consecutive frames are
correlated.

The sparse representation of the matrix H′ is de-
noted as H̃′ = [H̃′

1, . . . , H̃′
k, . . . , H̃′

K ], and each sub-matrix
in H̃′ is represented as H̃′

k = [H̃′
1,k, . . . , H̃′

l,k, . . . , H̃′
Nc,k

]

∀k ∈ {1, 2, . . . , K}, ∀l ∈ {1, 2, . . . , Nc}. Similarly H̃′
l,k =

[h̃l1,k, . . . , h̃ln,k, . . . , h̃lN ,k], where h̃ln,k denotes the sparse
representation of the channel vector hln,k .

The CDL optimization problem is formulated as:

min
�,H̃′

{‖H′ − �H̃′‖2
F

}

s.t. ‖h̃ln,k‖0 ≤ S, ∀ n ∈ {1, 2, . . . , N},
∀ l ∈ {1, 2, . . . , Nc}, ∀ k ∈ {1, 2, . . . , K}. (8)

To solve the optimization problem in (8) we propose the fol-
lowing methods.

1) CDL-KSVD METHOD
In the CDL-KSVD method the training set H′ consists of the
channel vectors of all the UEs. The training set is employed
to learn the dictionary �c using the K-SVD algorithm [36].
The K-SVD algorithm has two stages: the sparse coding stage
and the dictionary update stage. In the sparse coding stage,
each column of H′ is sparsely represented using a dictionary.
The dictionary update stage involves updating each column of
� with a dominant singular vector. As a result, the learned
dictionary �c has unit-norm columns.
� Sparse coding stage: In the first stage of the K-SVD

algorithm, the optimization problem is formulated as:

min
H̃′

{‖H′ − �H̃′‖2
F

}

s.t. ‖h̃ln,k‖0 ≤ S, ∀ n ∈ {1, 2, . . . , N},
∀ l ∈ {1, 2, . . . , Nc}, ∀ k ∈ {1, 2, . . . , K}. (9)

To solve (9), we begin by initializing the matrix � with
a DFT dictionary. The next step involves finding the
matrix H′ having a sparse representation, which is an
�0 problem and it is carried out by using the OMP al-
gorithm [8]. The objective of the OMP algorithm is to
find a sparse representation of H′ using a small number
of non-zero elements in the matrix H̃′.

� Dictionary update stage: In the second stage of the K-
SVD algorithm, the optimization problem is formulated
as:

min
�

{‖H′ − �H̃′‖2
F

}
. (10)

The solution to the problem posed in (10) is obtained by
updating each column of the dictionary by computing a
partial SVD of a matrix [6]. After the dictionary update
stage, the dictionary � gets updated to �c. It is to be
noted that this method updates only the columns corre-
sponding to sparse coefficients of the channel matrix H̃′.

� Repeat sparse coding and dictionary update stages until
the stopping criterion is met.

The main advantage of the CDL-KSVD method is that it
captures the spatial correlation of the channel vectors. But
its drawback is that it requires a partial SVD operation for
each column update in the dictionary update stage, which is
computationally expensive.

2) CDL-OP METHOD
The CDL-OP method stands for common dictionary learning
- orthogonal Procrustes method. In this method we solve the
orthogonal Procrustes problem to learn the CD [37]. The CD
obtained is a square matrix with dimensions NrNt × NrNt .
The constraint imposed is that the columns of the dictionary
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should be orthogonal. The optimization problem is formulated
as:

min
�

{‖H′ − �H̃′‖2
F

}
s.t. �H� = I, (11)

where � in (11) may be found explicitly by singular value
decomposition (SVD).

Let C = H̃′H′H

[U,�, V] = SVD(C)

� = VUH . (12)

The resulting dictionary � obtained in (12) is the CD (�c).
The main advantage of the CDL-OP method is that it captures
the spatial correlation of the channel vectors, but at the cost of
an SVD operation.

B. COMMON DICTIONARY FOR WIDEBAND MULTI-UE
SYSTEM
A wideband channel has a broader signal bandwidth than the
coherence bandwidth. In this section, we first discuss the CDL
framework conceived for a wideband system supporting K
UEs, and then highlight the simplified scenario, where a single
UE is present. Next, we will quantify the memory savings
of storing only a single CD. Then in the final sub-section,
we elaborate on the dictionary feedback reduction by sending
only a single CD in a single-UE system.

In the multi-UE system, since no communication takes
place among the K UEs, CDL is impossible at any UE. Con-
sequently, the CDL is only feasible at the BS. For the CDL at
the BS, we require the subcarrier dictionaries and the recon-
structed channels (used as training channel vectors). Let the
reconstructed sparse channel matrix at the BS be represented
by ˆ̃H′ = [ ˆ̃H′

1, . . . ,
ˆ̃H′

k, . . . ,
ˆ̃H′

K ], where each sub-matrix in
ˆ̃H′ is represented as ˆ̃H′

k = [ ˆ̃H′
1,k, . . . ,

ˆ̃H′
l,k, . . . ,

ˆ̃H′
Nc,k

] ∀k ∈
{1, 2, . . . , K}, with ˆ̃H′

l,k = [ ˆ̃hl1,k, . . . ,
ˆ̃hln,k, . . . ,

ˆ̃hlN ,k], con-
taining N reconstructed sparse channel vectors of each sub-
carrier, i.e., ∀l ∈ {1, 2, . . . , Nc}.

Let the reconstructed matrix of training channel vectors
at the BS be represented by Ĥ′ = [Ĥ′

1, . . . , Ĥ′
k, . . . , Ĥ′

K ],
where each sub-matrix in Ĥ′ is represented as Ĥ′

k =
[Ĥ′

1,k, . . . , Ĥ′
l,k, . . . , Ĥ′

Nc,k
] ∀k ∈ {1, 2, . . . , K}, with Ĥ′

l,k =
[ĥl1,k, . . . , ĥlN ,k] when considering N reconstructed channel
vectors for each subcarrier i.e., ∀l ∈ {1, 2, . . . , Nc}. The total
number of reconstructed training channel vectors in Ĥ′ is
M ′ = N × Nc × K .

Importantly, at this stage we have to consider Ĥ′ instead of
H′ and ˆ̃H′ instead of H̃′ in (8). The optimization problem of
finding �c in the multi-UE system is formulated as follows:

min
�, ˆ̃H′

{
‖Ĥ′ − � ˆ̃H′‖2

F

}

s.t. ‖ ˆ̃hln,k‖0 ≤ S, ∀ n ∈ {1, 2, . . . , N},
∀ l ∈ {1, 2, . . . , Nc}, ∀ k ∈ {1, 2, . . . , K}. (13)

The single-UE system (K = 1) is a special case of a
multi-UE system. For the current system when compared
to the multi-UE system of Fig. 5 there is no need to send
the subcarrier dictionaries (�k

ksvd,l , ∀ n ∈ {1, 2, . . . , N}, ∀ l ∈
{1, 2, . . . , Nc}) from the UEs to the BS. The CD is learned at
the UE itself using one of the two proposed methods and then
the UE sends �c to the BS. Now both the BS and the UE will
start using �c. The total number of training channel vectors in
H′ is M ′ = N × Nc.

The optimization problem of finding �c is as follows:

min
�,H̃′

{‖H′ − �H̃′‖2
F

}

s.t. ‖h̃ln‖0 ≤ S, ∀ n ∈ {1, 2, . . . , N},
∀ l ∈ {1, 2, . . . , Nc}. (14)

The CDL framework of our multi-UE system is outlined in
Algorithm 1 and its block diagram is shown in Fig. 5. More
specifically, in the Algorithm 1 we present the step-by-step
procedure of the CDL framework. The remainder of this sub-
section introduces each of the steps numbered in the Fig. 5
and the corresponding steps in the algorithm.

1© The BS sends the pilots to all the K-UEs in the system
and each UE estimates its channels and follows the steps 4 to
10 in the algorithm for N frames and learns the K-SVD based
subcarrier dictionaries.

2© Each UE sends the Nc K-SVD dictionaries to the BS.
For the next N frames each UE compresses the l-th subcarrier
FDCHTF using the K-SVD dictionary (�k

ksvd,l ) and sends
it to the BS. Then the BS reconstructs the l-th subcarrier
FDCHTF with the aid of the same K-SVD dictionary. Using
the reconstructed FDCHTFs and the K-SVD based subcarrier
dictionaries of all the K UEs, the BS learns the �c. The 2©
procedure corresponds to the steps 14 to 19 in the algorithm.

3© After learning the CD at the BS, the BS sends the
CD to all the K-UEs, the UEs and the BS will follow the
steps 22 to 25 in the algorithm for FDCHTF compression and
reconstruction using �c.

1) MEMORY REDUCTION CALCULATION
� The memory required to store each subcarrier dic-

tionary �k
ksvd,l is (NrNt )2, ∀l ∈ {1, 2, . . . , Nc},∀k ∈

{1, 2, . . . , K}.
� The total memory required to store Nc subcarrier dictio-

naries is Nc(NrNt )2.
� The memory required to store �c is (NrNt )2.
� Total memory storage reduction for a K-UE system

=K× ([Memory required to store Nc subcarrier dic-
tionaries] − [Memory required to store �c]), which is
formulated as:

�saved = K (Nc − 1)(NrNt )2. (15)

� The total memory storage reduction for a single-UE is

�saved = (Nc − 1)(NrNt )2. (16)
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FIGURE 5. Overview of the CDL framework for FDD massive MU-MIMO-OFDM system. Right: K UEs with Nr receive-antennas each; Left: massive MIMO
base station with Nt transmit antennas; Center: For simplicity, only dictionary feedback is shown.

2) DICTIONARY FEEDBACK REDUCTION CALCULATION BY
SENDING A CD IN A SINGLE-UE SYSTEM
� The dimension of each subcarrier K-SVD dictionary

�ksvd,l is NrNt × NrNt , ∀l ∈ {1, 2, . . . , Nc}.
� The total dimension of Nc subcarrier dictionaries is Nc ×

NrNt × NrNt .
� The dimension of �c is NrNt × NrNt .
� Total dictionary feedback reduction for a single-UE

(Tsaved ) = [Feedback required for sending Nc subcarrier
dictionaries (Tksvd )] − [Feedback required for sending
�c (Tcom)], where we have

Tksvd = Nc(NrNt )2

Tcom = (NrNt )2

Tsaved = Tksvd − Tcom = (Nc − 1)(NrNt )2.

� Reduction in dictionary feedback: We define the feed-
back reduction factor by (ϒ):

ϒ = Tcom

Tksvd
= 1

Nc
(17)

For example, the dictionary feedback reduction factor in
a single-UE system is provided in Table 5.

3) COMPUTATIONAL COMPLEXITY OF THE ALGORITHM
We calculate the computational complexity of the dictionary
learning stage for both the CDL-OP and the CDL-KSVD
methods.
a) CDL-OP method:
� In (12), the SVD operation requires all the eigenvectors,

resulting in a full SVD operation.
� The computation of a full SVD operation, specifically

using the Golub-Reinsch SVD (GR-SVD) method, re-
quires 21(NrNt )3 floating-point operations (FLOPS) [6].

On the other hand, the Chan-SVD (R-SVD) method re-
quires 26(NrNt )3 FLOPS [6].

� Therefore, to update the dictionary, we require a compu-
tational complexity of O[(NrNt )3].

b) CDL-KSVD method:
� In (10), updating each column of the dictionary requires

an SVD operation. This SVD operation only requires the
dominant eigenvector, resulting in a partial SVD compu-
tation.

� The GR-SVD method requires 14NrNt N ′2
c + 9N ′3

c
FLOPS [6], while the R-SVD method requires
6NrNt N ′2

c + 20N ′3
c FLOPS [6]. Here, N ′

c represents
the number of non-zero coefficients corresponding to
the k-th row in H̃′, and N ′

c ranges from 0 to M ′.
� Therefore, to update the complete dictionary, a total of

NrNt partial SVD operations are required.
c) For example, let us consider Nt = 64, Nr = 1, M ′ =

1600, and an average value of N ′
c = M ′/4. The computational

complexity in FLOPS is provided in Table 6. We represent
the number of FLOPS required for updating a single column
in the dictionary by CDL-KSVD (min), and that imposed
by updating all columns in the dictionary using CDL-KSVD
(max).

4) CSI FEEDBACK CASE STUDY IN A SINGLE UE
The dimension of the compressed channel vector hk

c,l (∈
CNg×1) sent from the UE in the uplink can be varied by
adjusting the compression factor g. Specifically, the dimension
is given by Ng = NrNt

g . By tuning the value of g, we can
beneficially reduce the amount of CSI feedback required.

To quantify the feedback requirements, we introduce the
variables γu and γc to represent the feedback for the non-
dictionary and dictionary-based methods, respectively. In a
non-dictionary based method without compression, the CSI
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Algorithm 1: CDL Framework for K Users.

fed back from the UE corresponds to NcNrNt elements for
one frame. For N ′ frames the CSI feedback will be γu =
N ′NcNrNt . However, in a dictionary-based method associated
with compression, the feedback is constituted by the CSI in-
formation having NcNrNt

g elements for one frame, along with a

one-time transmission of a dictionary with (NrNt )2 elements.

TABLE 5. Dictionary Feedback Reduction Factor in a single-UE System

TABLE 6. Computational Complexity in FLOPS

TABLE 7. CSI Feedback Savings Comparison Table for N′ = 210

So, for a total of N ′ frames the feedback is given by γc =
(NrNt )2 + N ′NcNrNt

g .
We define � as the CSI feedback ratio, which is calculated

as the ratio between γc and γu. If � < 1, it indicates that
the value of γc is lower than γu, resulting in a saving in CSI
feedback.

� = γc

γu
=

(NrNt )2 + N ′NcNrNt
g

N ′NcNrNt
= NrNt

N ′Nc
+ 1

g
(18)

For example in Table 7 we consider a scenario associated
with N ′ = 210 and vary the values of Nc, Nr , and g. Using the
formula given in 18, we demonstrate significant reductions in
CSI feedback. The level of compression applied to the channel
vector hk

c,l depends on the sparsity parameter S. As per the

lower bound, the number of elements in hk
c,l must satisfy

Ng > 2S [9]. In Fig. 13, we illustrate the impact of the com-
pression factor g on the BER vs. signal-to-noise ratio (SNR)
performance for both the non-dictionary and dictionary-based
methods.

IV. NUMERICAL RESULTS
In this section, we provide the simulation results for char-
acterising the NMSE performances of the DFT dictionary
(�DFT ), of the individual K-SVD based subcarrier dictionar-
ies (�k

ksvd,l ) and of the proposed CD (�c). Using the DFT
dictionary as the initial reference dictionary, we obtain the
individual K-SVD based subcarrier dictionaries. Then �c is
learned by the proposed methods. For NMSE calculations,
each dictionary is used for reconstructing the P channel vec-
tors of each subcarrier at the BS.

The NMSE of the reconstructed channel is used as a perfor-
mance metric defined as

NMSE = 1

P

P∑
i=1

‖ĥln,k − hln,k‖2
2

‖hln,k‖2
2

, (19)
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FIGURE 6. Single-UE system is considered, where the NMSE performance
comparison among all the dictionaries is carried out for Nt = 64, Nr = 1
and Nc = 32. Subcarrier 1 is considered for comparison and the UE velocity
is 20 kmph.

where ĥln,k is the reconstructed channel vector and hln,k is the
original one.

A. SIMULATION SETTINGS
The simulations are carried out for a massive MIMO-OFDM
system having Nt = 64, antenna spacing of d = λ/15, car-
rier wavelength λ, operating at a carrier frequency of fc =
2 GHz. Furthermore, we have a communication bandwidth
of B = 20 MHz, K = 1 and K = 3 UEs, N = 50, P = 500
test channel vectors, Nc = 32 and M = NrNt/2. For M = 32,
all the existing and the proposed dictionaries reduce the CSI
feedback by 50% in the uplink. For all the experiments, the
subcarrier K-SVD based dictionaries are learned for N = 50
from each subcarrier.

For experiments in the multi-UE system, the channels are
generated using a Quasi Deterministic Radio Channel Genera-
tor (QuaDRiGa) [40], [41] for the three UEs having velocities
of V = 10, 15 and 20 kmph. For experiments in the single-
UE system, the channels are taken from the UE of V = 20
kmph. The channel update rate (CUR) considered to generate
channels in QuaDRiGa is 10 ms. The QuaDRiGa simula-
tion platform is recommended by 3GPP (3 rd Generation
Partnership Project) for designing and simulating wireless
communications systems.

The main motivation for the CDL is not only to reduce
the CSI feedback but also to reduce the CSI reconstruction
NMSE. The benefit of the proposed methods in terms of
the NMSE performance has to be studied. Hence we have
conducted experiments for determining which of the proposed
methods will best replace the DFT dictionary and subcarrier
K-SVD based dictionaries in both single-UE and multi-UE
systems. Since we have considered Nc = 32, it is not feasi-
ble to show the CD performance across all the subcarriers.

In the single-UE system, we have considered subcarriers
l = 1 or 8, since the channel gains of these two subcarriers
are relatively low over the period of time. In the multi-
UE system, we have considered the first subcarrier l = 1
of all three UEs to evaluate the NMSE performance as a
function of sparsity and compared the proposed methods’
CD performance to the DFT and K-SVD dictionaries in the
literature.

In OFDM systems, the need for subcarrier K-SVD based
dictionaries increases with the number of subcarriers. The
FDCHTFs of each subcarrier are considered to be independent
in a wideband OFDM system, but this is only realistic for ex-
tremely long CIRs. Hence in the proposed system we assume
having realistic correlation among subcarriers in the FD. This
correlation among the subcarriers is captured by the CD using
one of the two proposed methods. Our CDL procedure may
also be extended to larger Nc.

In all the simulation results, for each subcarrier it can be
observed that the NMSE decreases as the sparsity increases.
This is because in the sparse vector transformation (5) the
sparse vector h̃ picks many columns in the dictionary for
higher sparsities, which in turn helps to solve the optimization
problem (7) by minimizing the distance between h and h̃.
Hence, higher sparsity will improve the reconstruction per-
formance.

Experiment 1: In this single-UE experiment, we study the
NMSE performance across a particular subcarrier of the UE
using the CD learned from the proposed methods and existing
methods as a function of sparsity. The proposed methods’
CD is learned across all the subcarriers of the UE. For this
experiment we consider a massive SU-MIMO-OFDM system
having Nc = 32 subcarriers and a UE having Nr = 1 RA and
moving with a velocity of 20 kmph.

In Fig. 6, we consider the subcarrier l = 1 to study the
NMSE performance of all the dictionaries. For a particular
sparsity index of S = 8, the NMSE of the CDL-KSVD dictio-
nary is 1.7 × 10−2, of the CDL-OP dictionary is 1.3 × 10−2,
of the subcarrier K-SVD based dictionary is 1.8 × 10−2, and
of the DFT dictionary is 3.3 × 10−2. The CDL-OP dictionary
has the lowest NMSE at S = 8. For all other sparsities, the
CDL-OP and the CDL-KSVD method dictionaries perform
similarly, and the NMSE values are close to those of the
subcarrier K-SVD dictionary. All the proposed methods’ CD
exhibit better performance than the DFT dictionary.

In Fig. 7, we consider a scenario where the BS has a dif-
ferent number of antennas, namely Nt = 16, 32, and 64. We
consider the subcarrier l = 1 to study the NMSE performance
of the CDL-OP dictionaries learned for different Nt values.
We observe that the NMSE value increases with the number
of antennas at the BS.

Experiment 2: In this single-UE experiment, we study the
NMSE performance across different subcarriers of the UE
employing the CD learned by the proposed methods and the
individual subcarrier K-SVD based dictionaries as a function
of sparsity. For this experiment we consider a massive SU-
MIMO-OFDM system having Nc = 32 subcarriers. The UE is
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FIGURE 7. Single-UE system is considered, where the NMSE performance
comparison among the CDL-OP dictionaries is carried out for Nt = 16, 32
and 64, Nr = 1 and Nc = 32. Subcarrier 1 is considered for comparison and
the UE velocity is 20 kmph.

FIGURE 8. Single-UE system is considered, where the NMSE performance
of the K-SVD dictionary and the CDL-KSVD dictionary are used for Nt = 64,
Nr = 1 and Nc = 32. Subcarriers 1 and 8 are considered for comparison
and the UE velocity is 20 kmph.

equipped with Nr = 1 (and 2) RAs and is moving at a velocity
of 20 kmph.

In Fig. 8, the �c employed for NMSE characterization
is learned from the CDL-KSVD method and in Fig. 9, the
�c employed for NMSE characterization is learned from the
CDL-OP method. Observe from Figs. 8 and 9, for subcarri-
ers l = 1 and 8 at all the sparsity index values, the NMSE
values are close to each other, but the CDL-OP method is
the best among all the three methods in terms of the NMSE
performance attained. Both the CDL-KSVD and CDL-OP

FIGURE 9. Single-UE system is considered, where the NMSE performance
of the K-SVD dictionary and the CDL-OP dictionary are used for for Nt = 64,
Nr = 1 and Nc = 32. Subcarriers 1 and 8 are considered for comparison
and the UE velocity is 20 kmph.

FIGURE 10. Single-UE system with multiple UE antennas is considered,
where the NMSE performance comparison among all the dictionaries is
carried out for Nt = 64, Nr = 2 and Nc = 32. Subcarrier 1 is considered for
comparison and the UE velocity is 20 kmph.

methods rely on the SVD operation and learn the CD from
the channels estimated at the UE. Consequently, the NMSE
reconstruction results shown in Figs. 8 and 9 exhibit a high
degree of similarity.

We have carried out a simulation and presented the results
in Fig. 10, where we specifically focus on the scenario where
Nr > 1, indicating the presence of multiple receive antennas.
By considering this scenario, we ensure that our analysis is
not limited to a specific number of receive antennas. It is
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FIGURE 11. Multi-UE system is considered, where the NMSE performance
comparison of the DFT, the K-SVD and the CDL-OP methods is carried out
for K = 3, Nt = 64, Nr = 1 and Nc = 32. Subcarrier 1 of UE1 is considered
for comparison. The velocities of the three UEs are 10, 15, and 20 kmph.

observed that all the proposed methods’ CD exhibit better
NMSE performance than the DFT dictionary.

Experiment 3: In this multi-UE experiment, we initially
study the NMSE performance of the dictionary generated us-
ing the CDL-OP method and existing methods for a particular
UE’s subcarrier as a function of sparsity. Then we study the
NMSE performance of the CDL-OP dictionary across differ-
ent UEs for a particular subcarrier. The CDL-OP dictionary is
learned across all the subcarriers and all the K UEs. For the ex-
periment, we consider a massive MU-MIMO-OFDM system
having Nc = 32 subcarriers and K = 3 UEs each associated
with Nr = 1 RA.

The wireless channels are generated for three UEs having
velocities of V = 10, 15, and 20 kmph using a QuaDRiGa
simulator. Let us assume that a UE changes its velocity to that
of another UE, but experiences different channel characteris-
tics. In that case, there is no need to learn a new dictionary
for that particular UE. The CD has already captured all the
three UE channel characteristics, and this procedure can be
extended to larger K and Nc values.

In Fig. 11, we consider the first UE and subcarrier l = 1 to
study the NMSE performance of the dictionaries from the full
set of Nc = 32 subcarriers and K = 3 UEs. For a particular
sparsity of S = 8, the NMSE value of the CDL-OP dictionary
is 1.3 × 10−2, of the subcarrier K-SVD based dictionary is
1.8 × 10−2, and of the DFT dictionary is 3.3 × 10−2. We
observe that all the proposed methods’ CD have better NMSE
performance than the DFT dictionary. Among the proposed
methods, the CDL-KSVD method exhibits the poorest NMSE
performance. Therefore, we are not pursuing this method any
further in the simulations.

FIGURE 12. In a multi-UE system, the NMSE performance of the K-SVD
dictionary and CDL-OP method’s dictionary for K = 3, Nt = 64, Nr = 1 and
Nc = 32. Subcarrier 1 of UE2 and UE3 are considered for comparison.
Velocities of three UEs are 10, 15, and 20 kmph.

In Fig. 12, the �c employed for NMSE characterization is
learned from the CDL-OP method. Observe from the Fig. 12,
for subcarrier l = 1 of UE2 and UE3 at almost all the sparsity
index values, the NMSE values for the proposed CDL-OP
method’s dictionary is better than subcarrier K-SVD based
dictionaries, because the CDL-OP dictionary is learned from
the estimated channels of K-SVD based dictionaries.

Experiment 4: In this single-UE experiment, we study the
BER performance at the UE as a function of the SNR. The
data symbols are transmitted from the BS to the UE in two
ways: a) Using the true channel estimates without compres-
sion and b) Using the channel estimates with compression that
are obtained from the CDL-OP dictionary.

To elaborate further on the performance of our proposed
framework, we analyze the BER in a downlink scenario. In
Fig. 13 we evaluate the BER using two sets of channels:
the true uncompressed channels and the channels estimated
using the CDL-OP dictionary on subcarrier 1. The precoder

matrices employed at the BS are denoted as Wg = diag
(

hH
1

|h1|
)

and Wg
op = diag

(
ĥH

1,op

|ĥ1,op|

)
, which correspond to the weights

obtained from the true channels and to the channels estimated
using CDL-OP dictionary, respectively. Let x represents the
modulated symbol vector. Explicitly, in our BER analysis, we
harness a half-rate convolutional encoder having the gener-
ator sequences of G = [101, 111] and the resultant bits are
16-PSK modulated for generating the symbol vector x. The
received signal in the case of true uncompressed channels at
the UE can be represented as y = hT

1 Wgx + n, where n is
the additive noise. Similarly the receieved signal for channels
estimated using the CDL-OP dictionary can be represented as
yop = hT

1 Wg
opx + n.

542 VOLUME 4, 2023



FIGURE 13. In a single-UE system with 64 TAs at the BS and a UE with 1
RA, we examine the BER performance of channel estimates using the
CDL-OP methods’ dictionary. We consider two scenarios: Ng = NrNt /2 and
Ng = NrNt /4. For comparison, we assume uncompressed channel
estimates for subcarrier 1. The UE has a velocity of 20 kmph.

The CDL-OP dictionaries used in this experiment are
learned at a sparsity of 16 for g = 2 and at a sparsity of 8 for
g = 4. As we increase the compression factor g to reduce the
CSI feedback from the UE, we observe a BER performance
erosion. The lower bound shown in Fig. 13 represents the
BER performance when the BS employs uncompressed CSI.
Notably, as depicted in Fig. 13, the BER of the UE, recorded
for g = 2 when utilizing the CDL-OP dictionary approaches
the lower bound.

V. SUMMARY AND CONCLUSIONS
We proposed a novel CDL framework for reducing the FD-
CHTF feedback and memory requirement of the UE and BS.
The framework is more beneficial for the UE, which is usu-
ally resource-constrained, and the savings can be significant.
For the simulations, the channels are generated using the
QuaDRiGa simulator. In a multi-UE system of three UEs and
in a single-UE system, all the proposed method’s dictionar-
ies have better NMSE performance than the DFT dictionary.
The CDL-OP dictionary performs better than the CDL-KSVD
dictionary for all the sparsities. Hence the CDL-OP method
can be beneficially employed for CDL to compress the CSI
and improve the CSI reconstruction performance. In terms
of the computational complexity, the CDL-OP method re-
quires only a single SVD operation to learn the CD, while the
CDL-KSVD method requires an SVD operation for learning
each column in the CD. So the CDL-OP method has lower
computational complexity than the CDL-KSVD method. To
minimize the impact imposed on the BER performance, it
is important to choose an appropriate compression ratio g.
In our case, a compression ratio of g = 2 is considered to

have a modest impact on the BER performance. By selecting
a suitable compression ratio, the system can strike a balance
between reducing the amount of feedback, while maintaining
a satisfactory BER performance.

We conclude by highlighting the differences between the
multi-UE and single-UE systems as follows:

1) In the multi-UE system, the memory is reduced by a
factor of Nc at the UE and KNc at the BS by having only
a single CD instead of multiple subcarrier dictionaries.
For Nt = 64 and Nc = 32, the memory required for stor-
ing the CD at each UE is reduced by a factor of 32 and
the CSI feedback is reduced by a factor of two.

2) In the single-UE system, the memory is reduced by
a factor of Nc at both the UE and BS, the dictionary
feedback is also reduced by a factor of Nc in the uplink.
This is achieved by sending only a single CD instead of
Nc subcarrier dictionaries to the BS. For Nt = 64 and
Nc = 32, the memory is reduced by a factor of 32 for
storing only a CD, and the dictionary feedback is also
reduced by a factor of 32. Finally, the CSI feedback is
reduced by a factor of two.

3) In the multi-UE system, the CD (�c) generated using
the CDL-OP has a better NMSE performance to that
of the individual subcarrier K-SVD dictionaries �k

ksvd,l
∀l ∈ [1, Nc],∀k ∈ [1, K].

4) In the single-UE system, the CD (�c) generated using
the CDL-OP method has a better NMSE performance
to that of the individual subcarrier K-SVD dictionaries
�ksvd,l ∀l ∈ [1, Nc].
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