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ABSTRACT Wireless broadcast transmission enables Inter-vehicle or Vehicle-to-Vehicle (V2V)
communication among nearby vehicles and with nearby fixed equipment, referred to as Road Side
Units (RSUs). The vehicles and RSUs within transmission range establish a self-organizing network called
Vehicular Ad-hoc Network (VANET). The V2V communication in VANETs is vulnerable to cyber-attacks
involving message manipulation. Thus, mechanisms should be applied to ensure both the authenticity and
integrity of the data broadcast. However, due to privacy concerns, it is important to avoid the use of identifiers
that may aid tracking and surveillance of drivers. This is a serious constraint on authentication mechanisms.
Recently, Wang et al. [1] proposed A Two-Factor Lightweight Privacy Preserving Authentication Scheme for
VANET named 2FLIP. They claim that their scheme includes a secure systemkey update protocol to restore
the whole system when necessary. In this paper, we show that this is incorrect: 2FLIP does not provide
perfect forward secrecy. This results in a known-key attack, as well as message forgery attack by an external
adversary who may be an unregistered vehicle user. This external adversary can generate valid anonymous
messages and further, they cannot be traced. The 2FLIP scheme is efficient, so we propose a modification
to improve the security. We provide a formal security proof to show that our proposal is indeed provably
secure. We demonstrate the efficiency of our proposal by conducting extensive performance analysis. We
believe the enhanced system-key update protocol will be useful for application by researchers and designers
in current and future VANET authentication schemes.

INDEX TERMS Authentication, cryptography, known-key attack, message forgery attack, perfect forward
secrecy.

I. INTRODUCTION
Cooperative Intelligent Transport System (C-ITS) is an
emerging technology with the potential to improve road
safety [2]. Car manufacturers embed devices such as IEEE
802.11p in vehicles to enable wireless communication with
other vehicles and with nearby fixed equipment, referred to as
Road Side Units (RSUs). This enables devices (vehicles and
RSUs) within transmission range to establish a self-organizing
network called Vehicular Ad-hoc Network (VANET) [3]. The

VANET exchanges beacon messages at a high update rate
carrying critical information [4], [5].

A. NETWORK MODEL AND ASSUMPTIONS
The vehicular network model consists of a Certificate Au-
thority (CA), RSUs along the roads, On-Board Units (OBUs)
embedded in vehicles, and communication between these en-
tities. This VANET architecture and communication model is
illustrated in Fig. 1.
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FIGURE 1. Vehicular network model.

The CA is assumed to be always online, secure, and fully
trusted by other network entities. The CA can be implemented
in a multi-layer structure; for example, with a root CA and
several sub-CAs. For sake of simplicity, here we show the
CA as a single entity. The CA is a managing authority that
can act as the root of trust to generate, update, and revoke
credentials for other network entities, including vehicles. For
example, the department of motor vehicles or the Department
of Transportation (DOT) can act as the root CA.

The distributed RSUs are equipped with a higher com-
putational capability and transmission power than OBUs.
As shown in Fig. 1, the CA and RSUs can connect
to each other through wired (solid line) and/or wireless
(half-dashed line) channels. The RSUs work as gateways
to deliver data from the CA to roadside vehicles, and
vice versa. The range of an RSU-to-vehicle communication
can be larger than that of the V2V and vehicle-to-RSU
communications [6].

Smart vehicles equipped with OBU, sensors, and Global
Positioning System (GPS) move along the roads, and commu-
nicate with other vehicles and RSUs according to a defined
Intelligent Transportation Systems Radio Service (ITS-RS)
standard, such as the Dedicated Short Range Communica-
tions (DSRC) protocol [6]. A Tamper Proof Device (TPD) is
embedded in each OBU to store the user inaccessible cryp-
tographic keying materials involved in cryptographic opera-
tions. Moreover, each vehicle has a unique barcode/identifier
that is known to the DOT. Fig. 2 illustrates an envisioned smart
vehicle prototype.

This system is useful if all messages are legitimate. Safety
messages are broadcast to reach all vehicles within commu-
nication range. However, malicious entities could manipulate
messages. Mechanisms should be applied to ensure both
identification of the data source (entity authentication) and
authentication of the message (assurance of data origin and
data integrity) [7].

Authentication requirements can often conflict with privacy
requirements. A unique identifier, such as a Vehicle Identifica-
tion Number (VIN), is provided to a vehicle for authentication

FIGURE 2. Envisioned smart vehicle prototype.

purposes. However, this vehicle identifier can be associated
with an identifiable individual (e.g., driver or vehicle owner).
In this case, the exchanged data reveals personal information,
(e.g., aggregating location information over time can reveal
work or home addresses and travel patterns). An adversary
can capture communications and link the identifiers to spe-
cific vehicles, and consequently to the drivers (ID disclosure),
providing a means for surveillance [8]. Hence, protection and
confidentiality of data exchanged is required to avoid privacy
breaches. For both identification and message authentication,
protection of the driver’s identity during authentication must
be guaranteed.

B. EXISTING WORK AND RESEARCH CHALLENGE
Any cryptographic technique for authentication requires the
use of a cryptographic key. A key-update mechanism is
needed to refresh the key to ensure security, for example after
a cryptographic-key breach occurs, or if a cryptographic-key
is unknowingly accessed. The key-update mechanism must be
carefully designed to satisfy both security against known-key
attacks [9, §12.2.3], and perfect forward secrecy; if a cryp-
tographic secret key for the current session is revealed, an
adversary must not be able to use this information to assist
in recovering messages from past and/or future ciphertexts [9,
§12.16]. To achieve this, there must not be any exploitable
dependencies among keys for different sessions (keying ma-
terial).

Multiple authentication schemes have been proposed to
secure V2V communication [10], [11] (for examples see [1],
[5], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23]). Many of these authentication schemes (e.g., [12],
[13], [14], [17], [18]) do not include a key-update protocol
for long-term cryptographic keying material. This is a serious
omission. Some authentication schemes include a key-update
protocol. However, these may not have been carefully
analyzed to ensure security against known-key attacks and
perfect forward secrecy.

Wang et al. [1] propose 2FLIP: A Two-Factor Lightweight
Privacy Preserving Authentication Scheme for VANET. In
2FLIP, the TPD embedded in each vehicle is equipped with
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a system key to generate Message Authentication Codes
(MACs) for the broadcast messages. Recipient TPDs can ver-
ify the messages by creating MACs of the received messages
with the same system key. This only requires one hash com-
putation and one MAC operation to accomplish the message
verification. Hence, the protocol is very efficient in terms of
computation.

In 2FLIP, the same copy of system key must be stored in
all vehicle TPDs. However, Huang et al. [17] view this as a
single point of failure. If any single vehicle’s system-key is
compromised, all vehicles in the network will be affected (as
they all have the same key), and all will need to be updated
with a new system-key. Clearly, a key-update mechanism is
required.

The authors of 2FLIP acknowledge the possibility of key
compromise. They propose renewing the system key, and
claim that the mechanism they provide can restore the sys-
tem quickly in the event that the system key is leaked. They
recognize the importance of the key-update mechanism and
state that such a protocol is necessary for a complete secure
system (see [1, §III – C]).

A serious security flaw in the system-key update mecha-
nism of 2FLIP is reported by Baee et al. [24], [25]. There
is a clear dependency between successive system keys. In
the 2FLIP key-update protocol, a CA that is fully trusted by
other network entities encrypts a new system key, treating the
system key as the message content and encrypting this using
the previous system key. In the case where a past system key
is compromised, clearly the new key is not protected and very
easily discovered.

As 2FLIP is computationally efficient and has some prac-
tical advantage, it would be a shame to discard it due to this
system-key update flaw. This research reviews the scheme and
suggests modifications to mitigate this flaw, to address the
security of the 2FLIP scheme.

C. RESEARCH CONTRIBUTION
This paper contains five major contributions. First, the mes-
sage signing and verifying protocol, system-key update proto-
col, and adversary model in 2FLIP scheme are reviewed, and
a vulnerability in the system-key update protocol of 2FLIP
scheme is identified. Secondly, two attacks that exploit this
vulnerability are described and demonstrated. Thirdly, a mod-
ification to mitigate the security flaw in 2FLIP system-key
update protocol is proposed. Fourthly, a formal security proof
for the proposed system-key update protocol is given. This
demonstrates that the new protocol is indeed provably secure.
Finally, the efficiency of our protocol is demonstrated by con-
ducting extensive performance analysis.

D. ORGANIZATION OF THE PAPER
The remainder of this study is organized as follows. Section II
briefly reviews the message signing and verifying protocol,
system-key update protocol, and adversary model in 2FLIP
scheme. Section III demonstrates the vulnerabilities in 2FLIP.

TABLE 1. List of Abbreviations

Section IV presents the modification proposed by this re-
search, and Section V provides formal security proof to show
the modification is indeed provably secure and preserves the
privacy requirements. Section VI evaluates the computational
cost and communication overhead of the proposed key-update
protocol. Section VII discusses the results, and finally, the
paper is summarized in Section VIII. For the convenience of
the reader, a list of abbreviations and symbols used throughout
the paper is given in Tables 1 and 2, respectively.

II. THE 2FLIP SCHEME
This section reviews the message signing/verifying protocol,
system-key update protocol, and adversary model proposed in
2FLIP.

In addition to the notations presented in this section, every-
where in this paper the concatenation symbol “‖” denotes an
operation that combines several strings into one string where
the constituent strings are uniquely recoverable from the final
one.
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TABLE 2. List of Symbols

The symbols “ts” denotes time at generating a message. The
symbol “tr” denotes time at receiving a message. A message
receiver drops the message if the time interval between the
time of receiving tr and the time ts exceeds a predefined
threshold denoted by “�t”. This is used to determine the
freshness of the message.

Assume X and Y are two communicating nodes. The sym-
bol “X → Y” denotes a message transmission from X to Y.
The symbol “X ↓” denotes processing a message by X, be-
fore transmitting a message or after receiving a message. The
symbol “X � Y” denotes a two-way message transmission
from X to Y, and also from Y to X.

FIGURE 3. Message broadcasting in 2FLIP.

FIGURE 4. System-key update protocol in 2FLIP.

A. MESSAGE SIGNING AND VERIFYING IN 2FLIP
Fig. 3 shows the message exchange in this phase. The same
copy of system key km is stored in all TPDs. The following
steps are executed by two vehicle TPDs i and j in this phase:

1) A TPDi generates a MAC σi = mackm (PIDi,ts ‖ h(m ‖
km)||ts) on a message m using km, where PIDi is a
vehicle’s Personal Identifier (PID) preloaded by the CA
on the vehicle TPD (during system initialization and
entity registration phase [1, §IV – A]), h is a simple
hash function, and ts is current time (see [1, §IV – C,
and D]).

2) TPDi broadcasts the tuple {PIDi,ts, σi, ts, m}.
3) A receiver TPD j calculates σ ∗i = mackm(PIDi,ts ‖

h(m ‖ km) ‖ ts) to verify the legitimacy of the received
broadcast tuple {PIDi,ts, σi, ts, m}, and accepts the mes-
sage if σ ∗i = σi; otherwise, rejects the message.

B. SYSTEM-KEY UPDATE IN 2FLIP
Fig. 4 shows the message exchange in this phase. In 2FLIP, the
CA is responsible for updating vehicle TPDs with new system
key. The following steps are executed by vehicle TPDs and
CA in this phase:

TPD← CA
1) The CA with identifier IDCA encrypts a new system

key k′m under the previous system key km such that
c = Enckm (ts′key ‖ IDCA ‖ k′m). Note that Enc is an en-
cryption procedure, and ts′key is time at generating this
new system key.

2) The CA broadcasts the message {c, sg} to vehicles in the
network through the RSUs. Note that sg is the output of
an identity-based message signing function (see [1, §IV
– E]).

TPD ↓
1) The TPD receives the key-update message {c, sg}, de-

crypts c, and recovers the payload {ts′key ‖ IDCA ‖ k′m}.
Then, the TPD checks the ts′key to prevent the replay
attack. After that, the TPD verifies IDCA with the previ-
ously published IDCA to authenticate the origin of this
message. Finally, verifies the signature sg to ensure that
the message is valid.

2) The TPD updates km to k′m and tskey to ts′key.
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C. ADVERSARY MODEL IN 2FLIP
Let A be a Probabilistic Polynomial-Time (PPT) adversary. In
the computational world, the PPT adversary A is modeled as
a PPT Turing machine [26]. Wang et al. [1] assumed that A
has impressive communication abilities through powerful re-
ceivers, can control the communication channel, and monitor
on-the-fly data exchange, as well as tamper with messages and
replace the original messages with modified messages. They
assume that the cryptographic keying materials are kept safe
in TPDs and key disclosure would never be achieved (see [1,
§III – B]).

III. ATTACKS ON 2FLIP SCHEME
In 2FLIP, a key-update procedure is performed if a cryp-
tographic key breach occur, or if a cryptographic key is
unknowingly accessed (see [1, §III – C]). However, the pro-
cedure uses an old system key to encrypt a new system key
(key wrapping). This is absolutely a vulnerability. It produces
dependencies among keying material (see [1, §IV – E], or
refer to Section II-B). In the case where a past system key km

is compromised, the new key k′m is very easily compromised.

A. KNOWN-KEY ATTACK
In 2FLIP, a known system key km is used by all vehicle TPDs.
If a single vehicle’s system key is compromised, all vehicles
in the network will need to be updated with a new system
key. However, the key-update phase proposed in 2FLIP is
not secure. Clearly, it is a simple matter for the adversary to
successfully perform a known-key attack:

1) The adversary is aware of a compromised key km.
2) The adversary eavesdrops c = Enckm (ts′key ‖ IDCA ‖

k′m) on the broadcast message {c, sg} (refer to Section II-
B).

3) The adversary decrypts c = Enckm (ts′key ‖ IDCA ‖ k′m)
using the known system key km, and recovers the new
system key k′m.

B. MESSAGE FORGERY ATTACK
Lack of perfect forward secrecy results in message forgery at-
tack. Wang et al. [1] claim that 2FLIP is resistant to forgery or
modification of message because the adversary cannot forge
or modify the message {PIDi,ts, σi, ts, m} (refer to Section II-
A) to let it be accepted by other vehicles (see [1, §V – B]).

This research proves that an attacker (an external adversary
who is an unregistered vehicle user) can launch this attack ef-
ficiently. The following steps can be executed by the adversary
to successfully perform a message forgery attack:

1) The adversary A randomly picks a personal identifier
PIDi ∈ Z∗q , where q is order of a cyclic additive group
G.

2) The adversary uses the km compromised in the key-
update phase (explained in Section III-A) to generate
a valid tuple {PIDA,ts, σA, ts, m} and broadcast for
a long period of time, where σA = mackm (PIDi,ts ‖

h(m ‖ km)||ts), m is an arbitrary message, h is a simple
hash function, and ts is current time.

3) A receiver TPDi calculates σ ∗A = mackm(PIDA,ts ‖
h(m ‖ km) ‖ ts) to verify the legitimacy of the received
broadcast tuple {PIDA,ts, σA, ts, m}, and accepts the
message as σ ∗A = σA.

IV. THE PROPOSED COUNTERMEASURE
This section proposes a modification to improve the 2FLIP
system-key update protocol. Since the scheme is efficient, this
research slightly modifies the protocol to improve its security
(Section IV-D). Seven steps are added to the System Initializa-
tion and Entity Registration phase of 2FLIP (Section IV-C),
and propose an alternative System-key Update protocol.

A. SECURITY OBJECTIVES AND DESIGN GOALS
This section focuses on security objectives of the proposed
system-key update protocol, including: message integrity
and authentication, confidentiality of the new system key,
anonymity and unlinkability, and perfect forward secrecy.

Message Integrity and Authentication: Message au-
thentication provides assurance of data origin, and also data
integrity [9]. The authentication process must be secure
against an adversary trying to fabricate (forge) an authentica-
tion tag for a message without having access to the respective
legitimate sender’s secret credential.

Confidentiality of New System key: This is to ensures
that no efficient adversary can infer any information about the
new system key sent to the vehicle TPD.

Anonymity and Unlinkability: It should be impossible
for an adversary and the network entities (except the CA) to
link a message to a vehicle/driver correctly. If an observer
tried to guess which vehicle transmitted a particular message,
there should be only a low probability of linking a vehicle’s
actions or identifying it among the set of all vehicles.

Perfect Forward Secrecy: Ensures that compromise of
past session keys does not allow an adversary to compromise
future session keys [9, §12.17]. A protocol is vulnerable to a
known-key attack if perfect forward secrecy is not provided.

B. BUILDING BLOCKS
The modification proposed in this research involves the use
of Elliptic Curve Integrated Encryption Scheme (ECIES)
proposed by Abdalla et al. [27]. The ECIES is a hybrid public-
key encryption scheme, and employs the Diffie-Hellman
protocol [28] over elliptic curves to establish a symmetric
encryption key. This research uses ECIES with the (well-
known) cryptographic primitives. This section briefly reviews
these cryptographic primitives and their underlying security
assumptions.

1) SYMMETRIC ENCRYPTION SCHEME
Let (Enc, Dec) denote a symmetric encryption scheme which
provides Indistinguishability under Chosen-Plaintext Attacks
(IND-CPA): given two messages of equal length, a challenger
randomly decides to encrypt one of the messages and to
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the adversary. It should be hard for the adversary to distin-
guish which of the messages was encrypted. The symmetric
encryption operation Enc(m, k1) outputs ciphertext k1C(m):
a plaintext m is encrypted under symmetric key k1. The
corresponding decryption operation Dec(k1C(m), k1) outputs
message m: ciphertext k1C(m) is decrypted under symmet-
ric key k1. The maximum advantage of PPT adversary A
in breaking the IND-CPA property of (Enc, Dec) is denoted
by Adv

ind-cpa
A(Enc,Dec) . This proposal uses the Advanced Encryp-

tion Standard in Counter Mode (AES-CTR) for symmetric
encryption, as specified in National Institute for Standards and
Technology (NIST) Special Publication (SP) 800-38A [29].

2) HASH-BASED MESSAGE AUTHENTICATION CODE
Let HMAC() denote a Hash-based Message Authentication
Code (HMAC) function which is believed to satisfy Strong
Unforgeability under Chosen-Message Attacks (SUF-CMA):
it should be computationally infeasible for the adversary to
find a valid pair of message and tag whether the message is
new and has never been signed by a legitimate signer, or the
message is old and the new tag is not previously attached
to this message by a legitimate signer [30]. The HMAC op-
eration HMAC(m, k2) outputs tag k2δ(m): a tag is generated
on message m under symmetric key k2. To verify a received
message-tag pair, a new HMAC tag k2δ

′(m) is generated on
the message and the tags are compared: the tag k2δ(m) is
accepted if, and only if, k2δ

′(m) = k2δ(m). The maximum
success probability of PPT adversary A in finding a forgery
is denoted by Succsuf-cmaA(HMAC) , where A is given access to the
tagging/verification oracle. This proposal uses the HMAC for
message authentication, as specified in the (U.S.) Federal
Information Processing Standard (FIPS) 198-1 [31], as well
a Secure Hash Algorithm Hash, as specified in the FIPS
180-4 [32].

3) HASH-BASED KEY-DERIVATION FUNCTION
Let HKDF () denote a Hash-based Key-Derivation Function
(HKDF) based on the HMAC presented in Section IV-B2
which extracts an input master secret key k, and expands it
into several additional pseudorandom secret keys [33]. For
instance, two secret keys k1 and k2 can be derived (extract
process) such that k1 = HKDF (1, k) and k2 = HKDF (2, k),
where 1 and 2 are salt values. The HKDF is defined to operate
with and without random salt [34]. The security of HKDF
as a HMAC-based KDF is based on the assumption that the
compression function of the underlying hash is itself a Pseu-
doRandom Function (PRF) [35]. The maximum advantage of
PPT adversary A in distinguishing the outputs of PRF better
than by a random guess and breaking security of the PRF
is denoted by Advind-secA(PRF ) . This proposal uses the HKDF to
convert a shared-secret into key material suitable for use in
encryption, integrity checking or authentication, as specified
in the Request For Comments (RFC) 2898 [36].

FIGURE 5. The new system-key update protocol.

C. SYSTEM INITIALIZATION AND ENTITY REGISTRATION
To address the perfect forward secrecy issue, this section adds
seven steps to the original version of the protocol in the System
Initialization and Entity Registration phase. The CA generates
system parameters and cipher suite components. The follow-
ing steps are executed by the CA and a vehicle user in this
phase:

1) The CA chooses a large prime p, a random point P of
order q, and an elliptic curve E (Fq) over finite field F
to satisfy the Short Weierstrass form of equation, y2 =
x3 + ax + b (mod q) [37], where q = pm for m ≥ 1 is
the smallest positive integer such that q.P = O, a, b ∈
Fq are the constant coefficients of the curve, and 〈P〉 be
the cyclic subgroup of points generated by P.

2) The CA generates system parameters CApar =
{p, q, a, b, P, csc}, where csc is a list of cipher suite
components applicable in the network (e.g., NIST
P-256 curve and SHA-256).

3) The CA computes password PW Du =
HKDF (saltu, pwdu) for the vehicle user, where
saltu and pwdu are two long unique values (e.g., 16
bytes each) generated truly at random.

4) The CA stores the hash value PW Du in its database.
5) The CA stores saltu in the vehicle TPD.
6) The CA delivers pwdu to the user securely.
7) The user provides further identity information (e.g., na-

tional identity/security number), a valid mobile phone
number, or alternatively requests a hand-held password
generator token. The token generates a password which
is synchronized with the server, and is valid for a short
period of time (e.g., one minute).

D. AN ALTERNATIVE SYSTEM-KEY UPDATE PROTOCOL
This section proposes an alternative system-key update
protocol. Fig. 5 shows the message exchange in this phase.
The modification is based on the use of vehicle user’s mobile
phone or a password generator token. The CA can update
all TPD related keying materials and the user’s salt value
saltu without relying on the previous keys used by the CA
and the TPDs. In addition, the CA can generate a new set of
system parameters CApar including its new public/private key
pair, and update the vehicles with the new parameters. The
key-update procedure can be called by a user, or advertised
by the CA through RSUs; for example, at regular intervals
(e.g., every 6 months) or when a long-term key is leaked. The
following steps are executed by the vehicle and the CA in this
phase:
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If the user does not have a token, the following steps need
to be executed by the user and the CA in this phase:

User � CA
1) The user sends a key-update request to the CA through

a Short Message Service (SMS).
2) The CA locates the PIDi corresponding to the user’s

mobile phone number in its database.
3) The CA generates a Personal Identification Number

(PIN) pinphone for the user.
4) The CA computes a symmetric key kup =

HKDF (pinphone, PW Du), where PW Du =
HKDF (saltu, pwdu) is the user’s password saved
in the CA’s database (refer to Section IV-C).

5) The CA derives a secret key k3 such that
k3 = HKDF (3, kup).

6) The CA generates a HMAC tag re f = k3δ(0) for use as
a reference number.

7) The CA sends pinphone to the user’s mobile phone
through SMS.

8) The CA links re f and kup to PIDi in its database for a
short period of time (e.g., 1 minute).

Those users who are provided a hand-held password gener-
ator token by the CA can present the PIN pintoken to proceed
this phase. This PIN is a password generated by the token
and is synchronized with the CA. The PIN is valid for a
short period of time (e.g., 1 minute). If the user has a token,
the following steps need to be executed by the CA periodi-
cally (similar to the token’s password changing rate) in this
phase:

CA ↓
1) The CA computes a symmetric key kup =

HKDF (pintoken, PW Du).
2) The CA derives a secret key k3 such that

k3 = HKDF (3, kup).
3) The CA generates a HMAC tag re f = k3δ(0) as a refer-

ence number.
4) The CA links re f and kup to PIDi in its database and

always replaces a new generated re f value with the old
one and updates the link.

The following steps are executed by the vehicle TPD and
the CA in this phase:

TPD→ CA
1) The TPD asks the user to enter the pwdu through the

OBU’s computing interface. The pwdu is the user’s
registration password which is created in the entity
registration phase (refer to Section IV-C).

2) The TPD loads saltu and computes PW Du =
HKDF (saltu, pwdu).

3) The TPD asks the user to enter the pinphone through the
OBU’s computing interface and computes a key kup =
HKDF (pinphone, PW Du), if this is a phone-based key-
update.

4) The TPD asks the user to enter the pintoken through the
OBU’s computing interface and computes a key kup =
HKDF (pintoken, PW Du), if this is a token-based key-
update.

5) The TPD derives three secret keys k1, k2, and k3

such that k1 = HKDF (1, kup), k2 = HKDF (2, kup),
and k3 = HKDF (3, kup).

6) The TPD generates a HMAC tag re f = k3δ(0) as a ref-
erence number (similar to the CA’s generated reference
number).

7) The TPD chooses a random temporary private key dt ∈
RZ∗q and computes a temporary public key Qt = dt .P.

8) The TPD computes ciphertext k1C(Qt ). Note that the
key Qt must be encrypted, because it is used to es-
tablish a Diffie-Hellman shared secret key by the CA
when it responds to this request. Otherwise, the adver-
sary can forge an authentication tag on any malicious
response.

9) The TPD generates a HMAC tag k2δ(m) on message
m = {re f , k1C(Qt ), ts}.

10) The TPD sends tuple {m ‖ k2δ(m)} to the CA. This tu-
ple is only sent once, which does not harm the privacy
requirements (anonymity and unlinkability).

TPD← CA
1) The CA determine the freshness, and accepts the

message if, 0 ≤ tr − ts ≤ �t , otherwise drops the mes-
sage.

2) The CA reads reference number re f in message m, and
searches for the corresponding PIDi linked to re f in
its database (the CA drops the message if nothing is
found).

3) The CA verifies that the vehicle PIDi is not recently
blocked because of malicious activity, otherwise stops
the process.

4) The CA loads the corresponding kup value linked to
PIDi and derives two secret keys k1 and k2 such that
k1 = HKDF (1, kup) and k2 = HKDF (2, kup).

5) The CA generates a new HMAC tag k2δ
′(m) and ac-

cepts the message if, and only if, k2δ
′(m) = k2δ(m).

This is to ensure that message m has not been altered.
6) The CA decrypts ciphertext k1C(Qt ) and recovers the

vehicle TPD’s temporary public key Qt .
7) The CA chooses a random integer b ∈ RZ∗q, and com-

putes β = b.P and k′ = b.Qt .
8) The CA derives two secret keys k′1 and k′2 such that

k′1 = HKDF (1, k′) and k′2 = HKDF (2, k′).
9) The CA chooses a new system key k′m as specified in

the original System Initialization and Entity Registra-
tion protocol proposed in 2FLIP [1, §IV – A].

10) The CA generates a response T ′skup = {k′m, saltu} and
computes ciphertext k′1C(T ′skup).

11) The CA generates a HMAC tag k′2δ(m) on message
m = {re f , k′1C(T ′skup), β,CApar, ts}.

12) The CA sends tuple {m ‖ k′2δ(m)} to the TPD.
13) The CA removes kup and re f under the vehicle PIDi

in its database.
TPD ↓
1) The TPD corresponding to re f determines the fresh-

ness, and accepts the message if, 0 ≤ tr − ts ≤ �t ,
otherwise drops the message.
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2) The TPD computes k′ = dt .β. It works because
dt .β = dt .(b.P) = b.(dt .P) = b.Qt .

3) The TPD derives two secret keys k′1 and k′2 such that
k′1 = HKDF (1, k) and k′2 = HKDF (2, k′).

4) The TPD generates a new HMAC k′2δ
′(m) and accepts

the message if, and only if, k′2δ
′(m) = k′2δ(m), otherwise

drops the message. This is to ensure that message m has
not been altered.

5) The TPD decrypts ciphertext k′1C(T ′skup) and extracts
T ′skup = {k′m, saltu}.

6) The TPD stores the new system key k′m, saltu, and
CApar .

V. SECURITY AND PRIVACY ANALYSIS
This section defines a security model, and conducts a security
proof to show that our proposed system-key update protocol
Fskup for 2FLIP scheme �2FLIP is indeed provably secure.
Next, based on the requirements explained in the security
objectives and design goals in Section IV-A, the security and
privacy analysis are carried out in detail.

A. SECURITY MODEL AND DEFINITIONS
The actual security proof consists of a reduction of the
underlying computational problem to an attack against the
cryptographic scheme: if there exists an adversary that has a
significant advantage against Fskup, then there is an adver-
sary to solve the computational problem. In the computational
world the PPT adversary A is modeled as a PPT Turing
machine [26]. This section shows that the view of A in the
reduction remains unchanged from the one it has during a real
attack.

Definition 1 (Adversary’s Advantage): A can guess b′ for
a bit b where b is a fair coin. The advantage AdvA is the
probability taken over all coin tosses made by A, which is:

AdvA = 2|Pr[b = b′]− 1/2|.

The advantage AdvA measures that how much A is better than
an adversary who simply guesses at random. An adversary
who guesses at random has a success probability of 1/2,
and an advantage of Adv = 0. When the adversary always
correctly finds the value of b′, we have Pr[b = b′] = 1 and
thus an advantage of Adv = 1.

Definition 2 (Negligible Function): A function ε : N →
R is negligible if for every positive polynomial p(.) there
exists an N ∈ N such that for all N < n ∈ N it holds that
ε(n) < 1/p(n) [38].

Definition 3 (Security Model): Based on the network model
and the adversary’s ability, we define the security model of
our proposed system-key update protocol Fskup for 2FLIP
scheme �2FLIP through a game played between the PPT ad-
versary A and a simulator S which simulates the protocol
Fskup specification and answers all queries of the adversary.

Definition 4 (Adversarial Queries): The adversary A par-
ticipates in the actual execution of the system-key update

protocol instance Fskup and may, at any time, send the fol-
lowing queries to an oracle:
� Execute query Execute(TPD,CA): This query mod-

els passive attacks. The adversary A eavesdrops the
execution of the system-key update protocol instance
Fskup between a chosen TPD and the CA. A learns the
corresponding transcript.

� Send query Send(m,F): This query models active at-
tacks where A sends a message m to the system-key
update protocol instance Fskup.

� Hash oracle query Hash(m): In this query, A presents
an oracle with m ∈ {0, 1}∗. The oracle responds to A’s
query with the value Hash(m) ∈ {0, 1}l , where l is
string length of the hash output.

� Encrypt oracle query Encrypt(m0,m1): A submits
two messages m0, m1 ∈ {0, 1}l to an encryption oracle.
The oracle responds to A’s query with the encrypted
value of one of the messages mb using a random key
k ∈ RZ∗q where b ∈ {0, 1}.

B. FORMAL SECURITY PROOF
Claim: The security of Fskup (as defined in Section IV-A)
is based on the security of PRF, (Enc,Dec), and HMAC (as
defined in Section IV-B) in function of the security parameter
λ.

Proof. (Sketch): The ultimate goal of A is to maliciously
commit in the network communications. We construct a se-
quence of games Gi, i = 0, . . . , 8. The event that adversary A
breaks the security of Fskup in game Gi is denoted by wini.

Game G0. [Real protocol] This is the real game Real-
Game�2FLIP

S (λ,A) played between A and S which simulates
the protocol Fskup according to the natural protocol specifi-
cation and answers the adversarial queries.

Game G1. [Same random secret kup in Fskup-req] In
this game the simulation aborts if during the interaction the
simulator on behalf of the TPD chooses random kup in the
vehicle system-key update protocol Fskup-req during TPD
→ CA key-update request. Considering the probability for the
collision of two random choices (λ-bit length each) we obtain:

|PrA[win1(Fskup-req)]− PrA[win0]| ≤ 1

2p(λ)
.

Game G2. [Pseudo-randomness of k1, k2, and k3 in
Fskup-req] In this game the simulator on behalf of the
TPD chooses random k1, k2, and k3 instead of computing
them using the pseudo random function PRF in the vehicle
system-key update protocol Fskup-req during TPD → CA
key-update request, where the random secret kup was used to
compute k1 = HKDF (1, kup) (secret key for encrypting Qt ),
k2 = HKDF (2, kup) (secret key for generating HMAC tag),
and k3 = HKDF (3, kup) (secret key for generating a HMAC
tag as a reference re f ). Due to the pseudo-randomness of PRF,
we obtain:

|PrA[win2(Fskup-req)]− PrA[win1]| ≤ 3Advind-secA(PRF )λ
.
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Game G3. [HMAC Forgery in Fskup-req] In this game the
simulation aborts if A queries on the message {m ‖ k2δ(m)} in
the vehicle system-key update protocol Fskup-req such that
k2δ(m) is a valid HMAC authentication tag on a TPD→ CA
key-update request string {m = re f , k1C(Qt ), ts}. To achieve
this, A must find a new message/tag pair, or an old message
as long as the output tag was not previously attached to this
message by a legitimate TPD. If A can do this, we can say
that A breaks the SUF-CMA security of the applied HMAC
scheme. Thus:

|PrA[win3(Fskup-req)]− PrA[win2]| ≤ Succsuf-cmaA(HMAC)λ
.

Game G4. [Indistinguishability of k1C(Qt ) in Fskup-req]
In this game the simulator replaces the ciphertext k1C(Qt )
with k1C(y) = Encrypt(y,k1) for randomly chosen y in the
vehicle system-key update protocol Fskup-req during TPD
→ CA key-update request. Due to the IND-CPA property of
(Enc,Dec) we obtain:

|PrA[win4(Fskup-req)]− PrA[win3]| ≤ Adv
ind-cpa

A(Enc,Dec)λ
.

Game G5. [Same random secret k′ in Fskup-res] In this
game the simulation aborts if during the interaction the simu-
lator on behalf of the CA chooses the same random secret k′ =
b.Qt in the vehicle system-key update protocol Fskup-res

during TPD ← CA key-update response. Considering the
probability for the collision of two random choices (λ-bit
length each) we obtain:

|PrA[win5(Fskup-res)]− PrA[win4]| ≤ 1

2p(λ)
.

Game G6. [Pseudo-randomness of k′1 and k′2 in Fskup-res]
In this game the simulator on behalf of the CA chooses
random k′1 and k′2 instead of computing them using the
pseudo random function PRF in the vehicle system-key up-
date protocol Fskup-res during TPD ← CA key-update
response, where the random secret k′ = b.Qt was used to com-
pute k′1 = HKDF (1, k′) (secret key for encrypting T ′skup) and
k′2 = HKDF (2, k′) (secret key for generating HMAC tag).
Due to the pseudo-randomness of PRF we obtain:

|PrA[win6(Fskup-res)]− PrA[win5]| ≤ 2Advind-secA(PRF )λ
.

Game G7. [HMAC Forgery in Fskup-res] In this
game the simulation aborts if A queries on the message
{m ‖ k′2δ(m)} in the vehicle system-key update protocol

Fskup-res such that k′2δ(m) is a valid HMAC authentica-
tion tag on a TPD ← CA key-update response string {m =
re f , k′1C(T ′skup), β,CApar, ts}. To achieve this, A must find
a new message/tag pair, or an old message as long as the
output tag was not previously attached to this message by a
legitimate TPD. If A can do this, we can say that A breaks the
SUF-CMA security of the applied HMAC scheme. Thus:

|PrA[win7(Fskup-res)]− PrA[win6]| ≤ Succsuf-cmaA(HMAC)λ
.

Game G8. [Indistinguishability of k′1C(T ′skup) in

Fskup-res] In this game the simulator replaces the

ciphertext k′1C(T ′skup) with k′1C(y) = Encrypt(y,k′1) for
randomly chosen y in the vehicle system-key update protocol
Fskup-res during TPD ← CA response. Note that T ′skup
contains new key-material. Due to the IND-CPA property of
(Enc,Dec) we obtain:

|PrA[win8(Fskup-res)]− PrA[win7]| ≤ Adv
ind-cpa

A(Enc,Dec)λ
.

The probability of A in winning Game G8 is:

PrA[win8] ≤
{

0
2−p(λ),

which yields the result stated as the following theorem. �
Theorem 1: If PRF is pseudo random, (Enc,Dec) is IND-

CPA secure, and HMAC is SUF-CMA secure (as defined in
Section IV-B), then Fskup in �2FLIP (refer to Section IV-D)
is secure in the following sense: the maximum probability of
success for A to break the security of Fskup (as defined in
Section IV-A) is a negligible function of the security parame-
ter λ as follows:

SuccF
skup

S (λ,A) ≤ 2
1

2p(λ)
+ 5Advind-secA(PRF )λ

+

2Succsuf-cmaA(HMAC)λ
+ 2Adv

ind-cpa

A(Enc,Dec)λ
.

(1)

Corollary 2: The vehicle system-key protocol Fskup pro-
vides anonymity and unlinkability in the sense of randomness
presented in Games G1, G2, G5, and G6. That is, A has a low
probability of success in identifying a vehicle TPD among the
set of all vehicles using its transmitted data.

Corollary 3: The vehicle system-key protocol Fskup pro-
vides confidentiality of new system key in the sense of
indistinguishability presented in Games G8.

VI. PERFORMANCE ANALYSIS
This section evaluates the performance of the new system-key
update protocol presented in Section IV-D.

The investigation covers the Average Computation Time
(ACT) of the various cryptographic operations providing 128-
bit security level, including: Elliptic Curve Cryptography
(ECC) base point scalar multiplication (T scal

mul ), AES-128 CTR
mode encryption (T aes

enc ) and decryption (T aes
dec ), HKDF-256

(T hkdf
sha ), and HMAC-256 (T hmac

sha ). The investigation is per-
formed using the newest stable release branch (1.1.1 series)
of the OpenSSL software library [39]. All ECC operations
are evaluated over NIST P-256 curve for achieving 128-bit
security level [40]. The experiment for each cryptographic
operation involved 106 trials in Debian Linux distribution
running on an Intel Core 2 Duo Processor T6570 (2Megabytes
Cache, 2.10 GHz, 4 GB RAM). Note that the latest high-
performance automotive single chip modem for vehicular
communications made by NXP Semiconductors (the Road-
LINK SAF5400 [41]) offers the same performance as the
2.10 GHz Intel Core 2 Duo-T6570 processor used in this
study [5], [7], [42].

To have more useful results, this research practically es-
timates the cryptographic overhead of the new system-key

VOLUME 4, 2023 109



BAEE ET AL.: SECURITY OF “2FLIP” AUTHENTICATION SCHEME FOR VANETs: ATTACKS AND RECTIFICATIONS

TABLE 3. The Average Computation Time and Cryptographic Overhead of
Different Operations

TABLE 4. The Computational Cost in Our Key-Update Protocol (For Each
Step)

update protocol on packet size. Table 3 lists the results of
investigation.

A. COMPUTATIONAL COST
This section evaluates the computational cost of the new
system-key update protocol presented in Section IV-D. We use
the evaluated ACT (for each single cryptographic operation in
Table 3) to calculate the total computational cost in each step
of our proposed system-key update protocol.

For the first step, the CA requires to perform two HKDF and
one HMAC calculations (overall 1.11×10−5 sec), then sends
the PIN to the user. This preparation is only required for the
phone-based key-update.

For the second step TPD→ CA, the TPD requires to per-
form five HKDF, two HMAC, one point scalar multiplication
(elliptic curve calculation [43]), and one symmetric encryp-
tion computations (overall 1.66×10−4 sec).

For the third step TPD← CA, the CA requires to perform
four HKDF, two HMAC, one point scalar multiplication, one
symmetric decryption, and one symmetric encryption compu-
tations (overall 1.63×10−4 sec).

For the fourth step, the TPD requires to perform two HKDF,
one HMAC, one point scalar multiplication, and one symmet-
ric decryption computations (overall 1.51×10−4 sec). Table 4
summarizes the results of investigation. Please refer to Table 3
to find the ACT corresponding to each single operation.

B. COMMUNICATION OVERHEAD
This section evaluates the communication overhead of the new
system-key update protocol presented in Section IV-D.

The new system-key update protocol produces 100 bytes of
overhead during TPD → CA key-update request, including:
one HMAC tag (the reference number) re f = k3δ(0) = 32
bytes, one AES ciphertext k1C(Qt ) = 32 bytes (for 32 bytes
ECC point Qt in compressed size), one time stamp ts = 4
bytes, and one HMAC k2δ(m) = 32 bytes. Note that the AES-
CTR encrypted ECC point k1C(Qt ) has a size similar to the

TABLE 5. The Communication Overhead in Our Key-Update Protocol
(Request and Response)

TABLE 6. The Computational Cost in 2FLIP Key-Update Protocol (CA to
TPD)

point Qt before encryption, for example k1C(Qt ) = 100 bytes
where Qt = 100 bytes.

The protocol also produces 148 bytes of overhead during
TPD← CA key-update response, including: one HMAC tag
re f = 32 bytes, one AES ciphertext k′1C(T ′skup) = 48 bytes
(for 32 bytes new system key k′m and 16 bytes new saltu
in T ′skup = {k′m, saltu}), one ECIES parameter (ECC point in
compressed size) β = 32 bytes, one time stamp ts = 4 bytes,
and one HMAC k′2δ(m) = 32 bytes. Table 5 summarizes the
results of investigation. Please refer to Table 3 to find the
cryptographic overhead corresponding to each payload.

VII. COMPARISON AND DISCUSSION
Unlike Wang et al.’s protocol [1], the proposed system-key
update protocol in this paper does not use an old system key
to encrypt and decrypt a new system key, and as a result,
it does not produce dependencies among keying material. In
case of compromise of past system key, a new system key is
not compromised.

In terms of computational cost, the 2FLIP system-key up-
date protocol requires one symmetric encryption/decryption,
one hash, and two cryptographic pairing computations (see [1,
§VI – Table 6]). To calculate the computational cost of crypto-
graphic pairing [42], [44], an investigation is performed using
the newest stable release branch (1.1.1 series) of the OpenSSL
software library [39], as declared in Section VI. The elliptic
curve arithmetic and optimal Ate pairing [45] are over the
Barreto-Naehrig (BN) curve [46] in the evaluation, where the
minimum bit-length of p is estimated as 382 bits (achieving
127-bit security level [47]), an optimistic parameter to use
in cryptographic pairings for 128-bit security level (384 bits
p) [48].

Table 6 summarizes the results of investigation for com-
putational cost in 2FLIP key-update protocol (CA to TPD).
The result for one optimal Ate pairing is 5.4×10−3 sec. Ignor-
ing the symmetric decryption and hash calculation, only two
cryptographic pairing computations requires 10.8×10−3 sec,
approximately 70 times slower than our proposed protocol in
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TABLE 7. The Communication Overhead in 2FLIP Key-Update Protocol
(Broadcast From CA)

TABLE 8. The Performance Overhead Comparison Between 2FLIP and Our
Proposed Key-Update Protocol

FIGURE 6. The computational cost comparison between 2FLIP and our
proposed key-update protocol.

this paper with 1.6×10−4 sec computational overhead (refer
to Section VI-A).

In terms of communication overhead, the 2FLIP system-
key update protocol generates 88 bytes of overhead (see [1,
§VI – Table 6]). However, our new protocol presented in this
paper generates 148 bytes of overhead (refer to Section VI-
B), only 60 bytes more than 2FLIP. Table 7 summarizes the
results of investigation for communication overhead in 2FLIP
key-update protocol (Broadcast from CA).

In our proposal, the key-update procedure can be called
by a vehicle TPD (TPD → CA), or advertised by the CA
(TPD← CA) through RSUs. However, the system-key update
request from TPD to CA (TPD→ CA) in 2FLIP is a missing
functionality. The only entity that can call a system-key update
procedure is CA. Table 8 shows the performance overhead
comparison between 2FLIP and our proposed system-key up-
date protocol. Please refer to Figs. 6 and 7 to see a detailed
comparison for each computational and communication over-
head, respectively.

FIGURE 7. The communication overhead comparison between 2FLIP and
our proposed key-update protocol.

The new system-key update protocol presented in this paper
uses the encrypt-then-MAC method [49] where the encryp-
tion scheme is IND-CPA secure (refer to Section IV-B1) and
the MAC is SUF-CMA secure (refer to Section IV-B2). This
method implies that decryption will only be carried on cipher-
text that passed an integrity test. The adversary thus cannot
observe use of the decryption key on ciphertext which is
chosen randomly, since that ciphertext will not pass the MAC
verification and will not be decrypted. Hence, the ECIES
used in this protocl should provide Indistinguishability under
Chosen-Ciphertext Attacks (IND-CCA) [30]: the adversary
has an additional capability over the IND-CPA, calling an
encryption or decryption oracle for encrypting or decrypting
arbitrary messages before obtaining the challenge ciphertext.

VIII. CONCLUSION AND FUTURE DIRECTION
This paper presents an analysis of Wang et al. [1] 2FLIP:
A Two-Factor Lightweight Privacy Preserving Authentication
Scheme for VANET. The 2FLIP authors claimed that their
scheme provides a secure system-key update and resists mes-
sage forgery attacks. However, we demonstrated that this is
incorrect. Their scheme could not achieve the claimed goals as
it does not provide perfect forward secrecy. We demonstrated
this with two successful attacks on 2FLIP: a known-key attack
reveals subsequent keys, and following this, a message forgery
attack using the known key can be performed. We have pro-
posed a new system-key update protocol that addresses the
security flaws in the 2FLIP scheme. We performed an in-
depth security analysis supported by formal security proof
to demonstrate that our solution can effectively satisfy the
security and privacy requirements. We demonstrated the ef-
ficiency of our protocol by conducting extensive performance
analysis. The enhanced system-key update protocol will also
be useful for researchers and designers to apply in VANET
authentication schemes.

As quantum computing becomes feasible, many of the cur-
rent public-key cryptographic schemes will be broken. Most
of the existing authentication and key-management protocols
in public literature rely on these algorithms. However, to the
best of our knowledge, there have been no research efforts
that examine the quantum-safety aspects of key-management
protocols in the context of vehicular communications. This is
a potential avenue for future research.
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