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ABSTRACT Visual crowdsensing (VCS) is becoming predominant in mobile crowdsensing, but there still
exist various unique challenges, including large sizes of visual data, multidimensional requirements, and
intensive processing demands. As a key research problem in VCS, data selection filters out redundant
data and only retains most representative samples, which can effectively reduce the complexity and cost
for VCS. In this paper, we study a phase-by-phase data selection approach, in which metadata are first
used to pre-select collected photos and then only selected ones are sent to a backend server for further
processing based on content features. As such, the initial selection can be completed on nearby edge servers
in mobile edge computing (MEC), while more intensive content processing can be done in a remote cloud. We
evaluate different initial data selection algorithms using traditional performance measures as well as adapted
clustering indices as quality metrics. Moreover, we formulate an integer linear program (ILP) problem for
the final data selection based on the scale-invariant feature transform (SIFT) feature. This content-based
selection can complement the initial data selection based on contextual metadata. The simulation results
show the differences of these selection algorithms and provide guidance on how to choose an appropriate
one according to application needs.

INDEX TERMS Mobile crowdsensing, visual crowdsensing, edge computing, data selection, hierarchical
clustering, maximum coverage problem.

I. INTRODUCTION
Mobile crowdsensing (MCS) is a cost-effective approach for
data collection [1]. It leverages smart devices’ built-in sen-
sors and the inherent mobility of device holders to obtain
comprehensive knowledge of interesting targets. In particular,
visual crowdsensing (VCS) allows a large group of mobile
users to share visual data (in the form of photos and videos)
acquired by their devices [2]. User-contributed data can be
further aggregated to generate insights with greater breadth
and depth. With the benefits of low costs, high scalability, and
high energy efficiency, VCS finds wide applications in virtual
tours, smart cities, environment monitoring, emergency man-
agement, and disaster relief [2]. For example, smart vehicles
or unmanned vehicles can be used to collect photos of certain
regions or road segments in special events.

Though visual data provide rich information, their large
sizes and multidimensionality can cause overwhelming de-
mands for processing and transmission [2]. It is also high-
lighted in [2] that if redundant or irrelevant data can be filtered

out and only most representative samples are retained, it can
effectively reduce the complexity and cost for VCS. This data
selection problem is a key research problem in VCS. In the
literature, there have been many existing studies in this area
such as [3], [4], [5]. In these works, both context and content
features have been considered in similarity and redundancy
measurements for data selection. For example, the work in [3]
focuses on context features also known as metadata. In [4],
[6], context and content features are jointly considered.

In fact, the metadata and the actual visual data are comple-
mentary. On one hand, a variety of metadata can be accessed
easily from a sensor-rich smart device or directly provided by
users for a captured photo, such as the location, shoot angle,
view coverage, and timestamp. These lightweight metadata
can be processed locally. On the other hand, visual content
features provide richer information than contextual metadata
but require more computational resources for processing. In
addition, the transmission of content data to a remote server
can be costly and time-consuming. To compare and relate
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visual objects more effectively, the raw pixel data from the vi-
sual contents are often processed to derive new features, such
as color histograms and features from scale-invariant feature
transform (SIFT) [7]. A content-based method needs to extract
such features from the visual contents and further makes use
of them for classification, detection, selection or other tasks.
The feature extraction and comparison are often computa-
tionally intensive, especially, when a large number of visual
objects are involved. Therefore, a content-based method
may not be responsive enough to some time-critical sensing
tasks.

In the literature, some existing works consider both con-
textual metadata and visual content data together in data
selection during the participants-to-server stage (e.g., [8]) or
the server-to-requester stage (e.g., [9]). They often require the
participants to upload the collected photos or their thumbnails
to the server, so that the visual features are extracted and
utilized in photo selection. In this paper, we adopt a phase-by-
phase data selection approach, in which metadata are first used
to pre-select crowdsourced photos. As the metadata sizes are
very small and the pre-processing with only metadata is not
computationally intensive, this can be completed on nearby
edge servers in mobile edge computing (MEC). After that,
only selected data samples will be sent to a backend server,
which may be hosted in a remote cloud, for further processing
based on content features. With this phase-by-phase approach,
the close proximity of distributed edge servers can enable
real-time data analysis for better timeliness than one-time
centralized processing at a remote backend server.

Specifically, the main contributions of this work are sum-
marized as follows:
� We consider a phase-by-phase data selection framework,

which first pre-screens photos with validity constraints,
then selects promising photo candidates based on context
metadata, and last finalizes selection leveraging features
extracted from visual contents.

� For the initial data selection based on metadata, we ex-
tend the approaches in [3], [4]. Also, for comparison
purpose, we consider a clustering-based benchmark ap-
proach which is often used in the literature to deal with
redundant data. Unsupervised clustering can group data
samples according to their features so that close sam-
ples are placed into the same cluster but separated from
other distant samples. If each photo in the data selection
problem is considered as a data sample in clustering, we
can group all photos into clusters and select the most
representative photo from each cluster. Each selected
photo is expected to be similar to the rest of photos in the
same cluster but dissimilar to other photos in different
clusters. Thus, only these selected photos are retained
and others can be screened out.

� We evaluate the performance of several data selec-
tion methods on various metrics. The simulation results
demonstrate the performance of the methods in different
aspects. Existing studies on data selection often use cus-
tomized quality metrics, such as k-depth coverage [10],

quality-aware coverage [11], and temporal-spatial cover-
age [12]. In addition to such traditional metrics, we also
exploit a variety of clustering indices [13] for quality
validation and comparison, which is a side benefit of
mapping the data selection problem to a clustering prob-
lem. Compared with these customized quality metrics,
the clustering indices can better integrate the multidi-
mensional attributes of visual data in both the context
and content domains and evaluate the overall perfor-
mance more comprehensively.

� Last, we formulate an integer linear program (ILP) prob-
lem for the final data selection based on visual features.
A heuristic algorithm is developed to solve a large-scale
instance of the ILP problem. The performance of the
heuristic algorithm is validated by comparison with that
of the optimal solution.

The rest of the paper is organized as follows. In Section II,
we explore the related works. In Section III, we present the
system model and the data selection problem under study.
Section IV further analyzes the problem and gives several
candidate solutions. Section V evaluates these solutions and
discusses observations from the simulation results. Last,
Section VI concludes this paper.

II. RELATED WORKS
Compared to traditional MCS, VCS needs to tackle some
unique challenges, such as large data amounts, multidimen-
sional coverage requirements, and complex quality assess-
ments. Consequently, there are some key research problems in
VCS, such as diversity-oriented task allocation, efficient data
transmission, and representative data selection [2].

In [14], the authors studied how to assign workers to tasks
to maximize completion reliability and the spatial/temporal
diversities of tasks. In particular, this work defines spatial
and temporal diversities in terms of entropies and combines
them with a weighted sum. The formulated problem is proved
to be NP-hard and solved by using effective approximation
approaches, including the greedy, sampling, and divide-and-
conquer approaches. Similar temporal-spatial constraints are
considered in [12] for multi-task allocation. It defines the
temporal-spatial coverage to measure the target sensing qual-
ity and further evaluates the overall utility accordingly. A
descent greedy approach is adopted to determine the task-
worker pairs so that the overall utility is maximized while
individual task quality is assured in the meantime.

Data transmission is also essential to VCS due to
the inherently large sizes of visual data. A variety of
communication techniques have been considered to address
the transmission challenges such as opportunistic trans-
mission [15], MEC [16], and disruption-tolerant networks
(DTNs) [6]. In [15], the authors proposed a cooperative and
selective picture forwarding framework, called CooperSense.
In this framework, a tree model called PicTree is used
to structure the picture collection from a crowdsensing
participant based on the metadata of pictures. When two
participants encounter, they exchange their PicTrees at a low
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transmission cost and then select high-quality pictures by
merging these PicTrees. Thus, they only need to selectively
forward certain useful pictures to each other.

In [16], the authors proposed a solution where a worker
can upload crowdsourced data by leveraging the redundant
resources of edge nodes in MEC. Due to the large sizes of
visual data, the solution incorporates collaborations among
multiple edge nodes to satisfy the transmission demand of one
worker. Meanwhile, it requires that the data held by a worker
be uploaded completely or not transmitted at all, since part
of a captured photo may not provide useful knowledge. As
this data transmission problem is proved to be NP-hard, an
efficient method based on Lagrangian relaxation is used to
obtain an approximate solution.

Furthermore, data selection is another key research problem
for VCS. In [3], the authors proposed a framework, called
SmartPhoto, to assess crowdsourced photos based on only
metadata and select a given number of photos to maximize
the total utility. Here, the utility of a photo mainly depends on
the number of its covered aspects, which can be conveniently
calculated from the metadata. Accordingly, four different op-
timization problems are studied to trade-off between photo
quality and resource constraints.

In [4], the authors proposed an online data selection ap-
proach based on a pyramid tree (PTree). The proposed method
PicPick can dynamically select an optimal set of pictures
from workers based on multidimensional constraints. Con-
textual metadata and content-based visual features are used
together to assess data redundancy in real time. As a result,
the thumbnails of incoming pictures need to be sent to the
backend server for data selection. In [5], the PTree approach
is further used for data grouping at the macro-diversity level
based on multidimensional semantic attributes such as loca-
tion, shooting angle, and shot size. At the micro-diversity
level, three data selection schemes are developed for different
prioritization needs. In [8], the PTree model is also inte-
grated into a generic framework, called CrowdPic, to solve
the multiconstraint-driven data selection problem. A PTree-
based data stream clustering method is used in CrowdPic
to dynamically divide a data stream into microclusters and
select pictures from each microcluster to form the maximum
diversified subset (MDS). When a new picture arrives, it is
placed into the PTree according to the matching and branching
algorithms, while the MDS can get updated.

All the works in [3], [4], [5], [8] focus on pre-data selection
during the participants-to-server stage. In contrast, a novel
server-to-requester photo selection problem is investigated
in [9], [17]. The authors studied how the server selects a subset
of high-quality photos from the raw set for the requester to
better meet the requester’s expectations. In [17], the proposed
approach leverages simple metadata information (i.e., GPS
location) and SIFT features extracted from photos. A utility
measure is designed to assess the quality of a photo set, which
integrates an entropy-based spatial diversity factor and a
content influence factor based on visual similarities. A greedy
approximation algorithm is proposed to solve the NP-hard

utility-based photo selection problem. The experiments with
real-world datasets show high performance of the proposed
approach in terms of photo coverage and view quality.

In [9], the authors further extended the study on
server-to-requester photo selection in [17]. They considered
a more realistic photo coverage model by taking into account
aspects of point of interests (PoIs). Moreover, speeded up
robust features (SURF) [18], a speeded-up version of SIFT,
are used to assess visual similarities in the calculation of
the content influence factor. In addition to a greedy-based
algorithm, termed BasicSelection (BPS), a PoI number-aware
photo selection scheme (termed PAPS) is further proposed.
PAPS first constructs a similarity graph over all photos and
partitions it into clusters via spectral clustering, provided that
the number of PoIs is known a priori. Then, BPS is run on
each cluster to select photos from each cluster independently.
PAPS is shown to outperform BPS in photo coverage but
performs similarly as BPS in view quality.

In this work, we focus on data selection during the
participants-to-server stage as in [3], [4], [5], [8]. Similar
to [4], [8], we consider multifacet contextual metadata as well
as visual content-based features. This is different from the
work in [3], which is only based on geographical and geomet-
rical metadata obtained from built-in cameras of smartphones.
In [4], [8], the metadata and visual features are processed
together to construct different layers of a PTree for clustering.
Thus, thumbnails of all pictures need to be uploaded and
processed at the server. In contrast, we consider a phase-by-
phase approach, which pre-screens photos based on metadata
first and only requires upload of pre-selected photos for final
selection based on visual contents.

This work is also different from [9], [17], which focus on
the server-to-requester photo selection problem. Because the
works in [9], [17] intend to reduce the burden on participants
in metadata collection to encourage participation, only simple
location information is required. In contrast, our work, as well
as [3], [4], [8], study how to exploit a variety of metadata in
photo selection when they are available. Another difference
between this work and [9], [17] lies in the use of features
extracted from visual contents. In [9], [17], the similarity
between two photos are defined as the ratio of the number of
matched features over all features extracted from them. The
sum of visual similarities between a subset of selected photos
and its complement is used to evaluate the representativeness
of the selected subset. Differently, we directly use the mean
distance of good matches identified between two photos to
measure their dissimilarity. Then, the sum of pairwise dis-
tances of a subset of photos can also assess the distinctness
of the selected photos therein.

III. SYSTEM MODELLING
A. DATA SELECTION FOR VISUAL CROWDSENSING
Consider a visual crowdsensing scenario shown in Fig. 1,
where a crowdsensing task (denoted by G) is published to
collect photos for some interesting object, such as a landmark
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FIGURE 1. Visual crowdsensing scenario.

building, a street segment, or a celebration ceremony. The
task and the sensing target need to be specified clearly, e.g.,
in terms of its temporal, spatial, and quality constraints. A
group of mobile users are recruited to accomplish the task by
taking and uploading photos (denoted by P) with their smart
devices. Due to the large number of photos and the potential
redundancy therein, they will be processed to select the most
representative ones, for example, to further reconstruct a vir-
tual display.

Foremost, the selected photos should meet the task con-
straints to be valid. Moreover, the data selection should
balance between cost and quality. The number of selected
photos is often limited by B to bound the processing and stor-
age costs. Ideally, these selected photos should be as diverse
as possible, so that the sensing target is covered compre-
hensively. Meanwhile, they should have high similarity or
redundancy with those photos that are filtered out, so that
minimal information is lost after the data selection.

B. TASK MODEL
Referring some previous work [3], [4], we consider a task
model that specifies a sensing task and target by the fol-
lowing tuple: G = {[gx, gy], [ts, te], [θmin, θmax], ϕmin, dmax}.
Here, [lx, ly] is the location of the sensing target, [ts, te] is the
valid period of performing the task, [θmin, θmax] is the valid
view angles with respect to the target, ϕmin is the minimum
coverage span within the above range required for a valid
photo, and dmax is the maximum acceptable distance between
the shoot location and the target. As seen, a valid sensing
photo for a task has to be taken within the valid period and
distance, while it must cover sufficient views within the ex-
pected range.

C. DATA FEATURES
To select a limited number of qualified photos for a
task, we consider two types of data features, namely, the
context metadata recorded with a photo, and certain visual
features extracted from the content data. Let F denote the
number of context-based metadata features. Specifically, the

metadata associated with photo Pi ∈ P are given by Mi =
{[xi, yi], ti, [αi, βi], ϕi, di}. Here, [xi, yi] and ti are where and
when the photo is taken, respectively. Accordingly, the shoot
distance to the target di and the shoot angle ϕi can be derived.
Last, [αi, βi] represents the range of views covered by the
photo. A valid photo for the sensing task has to meet the
conditions that di ≤ dmax, ts ≤ ti ≤ te, |βi − αi| ≥ ϕmin, and
[αi, βi] ⊆ [θmin, θmax].

In addition, we can extract visual features from the captured
photos. One powerful technique is the feature detection algo-
rithm, SIFT [7]. A good property of SIFT is that it is invariant
to the size or orientation of a photo. SIFT has been shown to
be robust in identifying objects even in presence of clutter and
occlusion [7]. In [19], SIFT is also tested with kinds of image
distortions, including scaling, rotation, fisheye, shearing and
salt and pepper noise. It is found that SIFT performs the best
in most scenarios and achieves high matching rates.

Using SIFT, we can locate a collection of image features
commonly known as “keypoints,” which are scale and rota-
tion invariant. Further, a “descriptor” is generated from the
samples in the neighbourhood of each keypoint, as a unique
fingerprint for the keypoint. Here, we denote the visual con-
tent feature of photo Pi by Vi = {Ki,Di}, where Ki and Di

represent the sets of keypoints and descriptors generated from
photo Pi, respectively.

D. QUALITY METRICS
To bound the transmission and processing costs, we intend to
select certain most representative photos from the photo set.
The selected photos are expected to be dissimilar to each other
but more similar to the photos that are filtered out. To quantify
the selection effectiveness, there are various metrics proposed
in the literature.

For example, the coverage metric and its variants have been
widely used, such as k-depth coverage [10] and quality-aware
coverage [11]. In [4], the proposed approach aims to maxi-
mize the coverage by the selected photos. An eliminated photo
is counted as covered by a selected photo if the distances
between the two photos with respect to all features fall within
the corresponding similarity thresholds. For instance, if the
Euclidean distance between their shoot locations is no more
than a threshold, say 5 meters, one photo is considered cov-
ered in terms of the shoot distance. If an eliminated photo is
similar to a selected photo on all features, the eliminated photo
is said to be redundant and covered. It is ideal that the set of
selected photos can maximize the coverage and even provide
full coverage. As seen, this coverage metric is simple and easy
to compute. However, this 0/1 count of coverage cannot quan-
tify redundancy elimination in a finer granularity. Moreover,
this coverage metric cannot characterize the diversity among
the selected photos.

Differently, the work in [3] defines a utility measure, which
is proportional to the range of aspects covered by a photo.
For instance, a photo with a coverage interval [40◦, 110◦] has
a utility that is twice that of another photo with a coverage
interval [50◦, 85◦]. Clearly, the larger the overlap between
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two photos’ coverage intervals, the higher the similarity and
redundancy between them. Moreover, in the above case, their
coverage intervals not only overlap, but also the coverage of
the latter photo is a subset of that of the former photo. Then,
the latter photo can be discarded assuming that it does not
provide new information. As seen, this utility measure can
quantify the similarity between two photos in a scale finer
than a 0/1 count. However, the work in [3] mainly focuses
on maximizing the covered aspects, while the similarity and
redundancy among a set of photos depend on more features
such as shoot time, shoot distance, and visual content.

To select a number of diverse photos from a whole set, a
natural idea is to cluster the photo set into groups and choose
the one that is the closest to the centroid of each cluster, which
is presumably the most representative photo of each group.
Ideally, each cluster should be dense within the cluster but
well separated in between. To evaluate the clustering perfor-
mance, many metrics have been implemented in scikit-learn
[20] when there is no ground truth, e.g., the silhouette coef-
ficient, the Davies-Bouldin index, and the Calinski-Harabasz
index (also known as the variance ratio criterion). We can ex-
tend these metrics to evaluate the data selection performance.

The silhouette coefficient of each point xi in a dataset can
be written as [21]

Si = bi − ai

max{bi, ai} , −1 ≤ Si ≤ 1. (1)

Here, bi is the nearest-cluster distance, i.e., the average dis-
tance between point i and all points in the nearest cluster. In
other words, bi quantifies the cluster separation, since it is
the smallest average distance of xi to all points in any other
cluster, of which xi is not a member. The cluster cohesion ai

gives the average distance between point xi and all other points
in the same cluster. As seen, bi captures how dissimilar a point
is to other clusters, and ai tells how similar it is to the other
points in its own cluster. The mean silhouette coefficient of
all points is the silhouette score of the clustering. The score is
close to 1 when clusters are dense and well separated.

The Davies-Bouldin index computes the average similarity
of each cluster with its most similar one. The similarity of
cluster j and cluster k can be evaluated by [21]

R jk = s j + sk

d jk
(2)

where sk is the average distance between each point of cluster
k and its centroid, also known as the cluster diameter, and d jk

is the distance between the centroids of clusters j and k. As
seen, the similarity measure is the ratio of the within-cluster
distance to the between-clusters distance. Then, the Davies-
Bouldin index of K clusters can be expressed as [21]

DB = 1

K

K∑

k=1

max
j �=k

R jk . (3)

Clearly, the Davies-Bouldin score is close to 0 when the clus-
ters are far apart.

In the data selection problem, the selected photos are ex-
pected to be dissimilar to each other but similar to screened
out photos. When we evaluate any given data selection so-
lution, a selected photo is not necessarily the centroid of a
cluster or its mean point. It may not even be the point that is
the closest to the centroid. However, the Davies-Bouldin index
is based on the distances to the centroid, which may not repre-
sent well the features of a selected photo. Hence, the Davies-
Bouldin index cannot evaluate the performance of any data
selection solution accurately. Therefore, we extend the above
definition of the Davies-Bouldin index by generalizing the use
of centroids in the calculation. Instead of taking the mean
point of each cluster as the centroid, we can use any given
point as the centroid of the cluster, which is mapped to the
photo selected from each cluster. As such, the Davies-Bouldin
index measures the similarity with respect to a real given
photo instead of a virtual mathematic centroid of the cluster.

Last, the Calinski-Harabasz index is the ratio of the sum
of between-clusters dispersion and the sum of within-cluster
dispersion of all clusters, while dispersion is measured by
the sum of squared distances [21]. Specifically, the Calinski-
Harabasz index of K clusters for a dataset of totally N points
can be written as [22]

CH =
∑K

k=1
nk

N−1‖μk − μ‖2

∑K
k=1

1
N−K

∑nk
i=1 ‖xi − μk‖2

. (4)

Here, for any cluster k, there are centroid μk and nk points
denoted by xi, where i = 1, . . . , nk , while μ is the global
centroid. The separation of clusters in the numerator is based
on the distances of the cluster centroids from the global cen-
troid, while the internal cluster cohesion in the denominator is
estimated by the distances from the data points within a cluster
to its cluster centroid. Hence, a higher score indicates better
clustering that is dense within each cluster but well separated
between clusters. Due to the similar reason for adapting the
Davies-Bouldin index, we also extend the Calinski-Harabasz
index by using any given point to replace a centroid. Then, we
can better map a data selection solution to a clustering result
for quality evaluation.

IV. PROBLEM ANALYSIS AND SOLUTION
Given a sensing task G, a group of participants collect a set of
photos P . To select no more than B photos from the set, we
take a three-phase approach. First, all participants upload the
metadata of their photos to the crowdsensing server. The cost
is acceptable considering the small sizes of the metadata. The
server then pre-screens the photos based on the metadata and
identifies the valid ones that meet the temporal, spatial, and
quality constraints given in Section III-B. The group of valid
photos after pre-screening is denoted by Pv .

Assuming that there are more than B valid candidate pho-
tos, we need to proceed and refine the selection. Based on
the context metadata, we select γ B (1 ≤ γ ≤ |Pv|/B) pho-
tos from the valid candidates in the second phase. These
γ B photos should be as diverse as possible, while the other
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eliminated photos are redundant with respect to the selected
ones. In the last phase, the server requests the original files of
these γ B selected photos from the corresponding participants
and selects B photos therein by further processing the visual
contents. With the initial selection based on the lightweight
metadata, this step now becomes more manageable. More-
over, the ratio γ can be adjusted according to the available
resources for transmission and computation. When a larger
cost is affordable, the server can set a larger value for γ and
choose more candidates based on the metadata.

A. INITIAL SELECTION BASED ON CONTEXT METADATA
1) SMARTPHOTO+ FOR INITIAL SELECTION
For the initial selection based on the photo metadata, we
consider three candidate approaches. First, we can extend the
scheme SmartPhoto proposed in [3]. For ease of comprehen-
sion, let us introduce the main steps of SmartPhoto in the
following. Consider a single target G. Each photo Pi covers
a range of aspects of the target, represented by an interval
[αi, βi]. With the coverage intervals of all photos in set Pv ,
we can split the whole range of full coverage [0, 360◦) into
a number of sub-intervals, by taking the boundaries of each
interval as the dividing points. These sub-intervals form a
universe set of elements, where the length of the sub-interval
for an element is defined as its weight. Then, each photo
covers a subset of elements in the universe set. The total
utility of a photo selection result is the total weight of the
elements covered by the selected photos. Thus, the data se-
lection problem is formulated as an instance of the maximum
coverage problem [23], which is to find a bounded number of
subsets to maximize the total weight of the elements covered
by the selected subsets. As the maximum coverage problem
is known to be NP-hard, a greedy selection algorithm is used
in [3] for the photo selection. The basic idea is to iteratively
select an unselected subset, which has the highest incremental
contribution to the total utility. That is, the elements in the new
subset that are uncovered so far have the largest total weight.
The selection process continues until the required number of
subsets (photos) have been selected or every aspect of the
target has been covered.

As the original algorithm focuses on the aspect coverage,
we need to incorporate more context features, including the
shoot angle, the shoot time, and the distance to the sensing
target. Algorithm 1 shows the extended version, subsequently
referred to as SmartPhoto+. As seen, there are two main pro-
cedures. In Lines 1–6, the whole set of elements are defined
with respect to each feature in the context metadata, and each
candidate photo is mapped to a subset of such elements. While
the aspect coverage is specified by a range of view angles,
the other features are single values. For each single-valued
feature, we just divide its data scale to a number of uniformly
distributed intervals, which represent the set of elements for
this feature. If a photo’s feature falls into an interval, it
means that the photo covers the element corresponding to this
interval. Since these intervals are uniformly distributed, each
element has the same weight 1. The aspect coverage is defined

by two end points for the view angles, e.g., [30◦, 70◦]. The
end points of all photos divide the entire coverage interval
[0, 360◦) to a set of sub-intervals. As considered in [3], each
sub-interval is added to the universe set of elements, while
its weight is proportional to the length of the sub-interval.
Moreover, we normalize the weight to [0, 1] to be compara-
ble with the elements from other features. For each photo, a
subset of elements is generated according to which coverage
sub-intervals it falls into.

After defining the elements of the universe set and their
weights and the subset of elements covered by each photo,
Lines 7–13 select a limited number of photos and label all
photos into the clusters. First, the greedy algorithm in [3] is
used to solve an instance of the maximum coverage prob-
lem, which gives γ B representative photos to achieve a high
total utility. Then, each selected photo is taken as a cluster
centroid, while each remaining unselected photo is classified
into the cluster with the nearest centroid. For ease of distance
calculation, we normalize the context features before the clas-
sification.

The algorithm SmartPhoto+ is a potential solution to the
initial selection of candidate photos only based on the context
metadata. Compared to the original approach SmartPhoto, we
further take into account multiple features. Accordingly, we
need to properly weight and normalize the feature elements.
In addition, we map the selection result to a straightforward
clustering so that it can be evaluated with various clustering
indices discussed in Section III-D.
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2) PICPICK+ FOR INITIAL SELECTION
Another interesting approach for the initial photo selection is
PicPick proposed in [4]. PicPick uses a pyramid tree (PTree)
structure to group pictures with multidimensional features.
PTree has (F + 2) layers, where F is the number of features
under consideration. The root node is at Layer-0, while Layer-
1 to Layer-F is mapped to one of the F features. The bottom
Layer-(F + 1) consists of the leaf nodes, each of which cor-
responds to a picture instance. Each subset of leaf nodes on
the bottom layer descending from the same node on Layer-F
naturally forms a cluster of pictures, and one representative
picture can be selected from each cluster. Here, we re-define
the label of each node in the tree. The label of each node is
given by L〈�〉-N〈n〉, where 〈�〉 is the layer of the node and 〈n〉
is simply the order of the node added to the layer.

To generate a PTree, it begins with the root node. Then new
nodes are added in according to a sequence of pictures. Each
node at Layer-1 to Layer-F (excluding the top and bottom
layers) is associated with an attribute with respect to the fea-
ture used on that layer (e.g., the shoot angle). This attribute is
obtained from the features of the leaf nodes descending from
the node. Specifically, it is the mean value of these leaf nodes
for the feature of that layer, e.g., the mean shoot angle of leaf
descendants on the bottom layer. Thus, each picture can be
added into the tree by comparing its distances to the attributes
of the nodes already in the tree.

PicPick originally uses context features and visual content
features together. Since we intend to streamline the data se-
lection procedure phase by phase, we can use PicPick for
the initial photo selection based on only context metadata.
However, one limitation of PicPick is that it does not restrict
the number of node clusters on the bottom layer. If one picture
is selected per cluster, we cannot limit the number of selected
pictures. Hence, we need to extend PicPick on the genera-
tion of the PTree. Algorithm 2 shows the algorithm PicPick+
extended from [4]. Similar to SmartPhoto+, there are two
main procedures. Lines 1–12 generate a PTree by processing
the set of pictures one by one. For each picture, it traverses the
current PTree from the root node, and compares the features
of the new picture with the attributes of the existing non-leaf
nodes on Layer-1 to Layer-F . If a non-leaf node is within a
distance threshold to the new picture, it is called a match in
[4]. Note that match here should be distinguished from match
of SIFT features to be discussed in Section IV-B. Otherwise,
a new non-leaf node is created on the current layer. It is worth
noting that the distance thresholds are important to PicPick
and PicPick+ and should be carefully selected according to
the requirements of the crowdsensing task. Then, we move
downward to the next layer through the matched node or the
newly created node. Finally, the new picture is added to the
bottom layer, i.e., Layer-(F + 1), as a leaf node.

In the above procedure, there are two key aspects. First,
we need to properly calculate the distance between a non-
leaf node and a new picture based on the layer feature. For
a single-valued feature, such as the shoot angle and shoot
distance, we can simply use the Euclidean distance as in [4].

However, for the distance between two coverage intervals
inspired by how coverage intervals are handled in [3], we first
find their overlapping sub-interval if any, normalize the length
of the sub-interval with the maximum range covered by the
two intervals, and last take one minus the ratio. This distance
can quantify the dissimilarity between the two intervals. Sec-
ond, we need a match policy to match a new picture to a
non-leaf node when traversing the PTree. In [4], the authors
proposed two match policies, namely first-match and min-
match. First-match just takes the first matched non-leaf node
on Layer-1 to Layer-F if any exists, whereas min-match com-
pares the distances of the new picture to all matched nodes on
a layer and chooses the node with the shortest distance to the
picture.
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As mentioned earlier, one limitation of PicPick is that it
does not restrict the number of clusters on the bottom layer,
which makes it not applicable to our problem. Hence, we
adapt the algorithm in Lines 7–10. Here, we only add a new
non-leaf node on a layer if the number of existing clusters has
not reached the limit. Moreover, we apply the min-match pol-
icy and always choose the closest non-leaf node as a parent,
even when this node is not within the distance range and a
maximum number of clusters have been created. As such, we
do our best to group pictures into the PTree while meeting the
selection constraint.

The second procedure in Lines 13–18 labels the clusters for
all pictures according to the above generated PTree and selects
a subset of pictures from the clusters. In the original algorithm
PicPick, it simply picks the first picture added into each cluster
for timely processing. Here, since we only consider metadata
in the initial photo selection, it is affordable to choose a more
representative picture for each cluster. Hence, in Line 18,
referring to the mean-priority strategy in [5], we select the
picture that is the closest to the centroid of each cluster in
terms of the feature distances.

3) CLUSTERING ALGORITHMS FOR INITIAL SELECTION
In addition to SmartPhoto+ and PicPick+, for comparison
purpose, we also consider a clustering-based benchmark algo-
rithm which is often used in the literature to process redundant
data. The idea is to consider the set of valid photos as data
samples, use a clustering algorithm to group them into γ B
clusters, and then choose one representative photo from each
cluster. Since a clustering tends to be dense within the cluster
but well separated in between, the selected photos are there-
fore expected to be diverse but redundant to the eliminated
ones. Algorithm 3 shows the approach for initial photo se-
lection based on clustering and centroids. It first normalizes
the features of all valid photos. Then, a clustering algorithm
is run to separate the photos into γ B clusters. In the liter-
ature, there have been a variety of clustering algorithms to
choose from, such as k-means, mean shift, spectral cluster-
ing, density-based spatial clustering of applications with noise
(DBSCAN), and agglomerative clustering. Last, it selects the
photo that is the closest to the centroid of each cluster.

B. FINAL SELECTION BASED ON VISUAL CONTENT
After the valid photo set is initially examined based on con-
text metadata, we end up with a much smaller photo subset,
denoted by Ps. Then, it becomes affordable to analyze their vi-
sual features and further select B most distinct photos therein.
Here, we take the SIFT-based visual feature as one example,
while this can be extended to other visual features as well.
Note that the pre-selected photos may contain clutter, blur,
occlusion or other distortions. Such noises may interfere with
the visual feature extraction and matching, although SIFT has
good robustness even in matching noisy images [7], [19]. If
a noisy photo provides complementary information that is
absent in other photos, it may be selected but not meet the

Algorithm 3: ClusterFirst: Initial Photo Selection Based
on a Standard Clustering Algorithm.

Input: Sensing task G, metadata for valid photo set:
{Mi : ∀Pi ∈ Pv}, maximum photo number for initial
selection γ B

Output: Initial selection x = {xi : ∀Pi ∈ Pv}, cluster
labelling y = {yi : ∀Pi ∈ Pv}

1: Normalize features of all photos in Pv;
2: Choose a clustering algorithm, e.g., agglomerative

clustering;
3: Run the clustering algorithm to separate photos in Pv

into γ B clusters;
4: Assign cluster labels to photos in Pv and record

clustering in y;
5: Compute the centroid of each cluster;
6: Select the photo that is the closest to the centroid and

record selection result in x;
7: Return x, y;

requester’s expectation on image quality. Therefore, if the
requester has a requirement on the minimum image quality,
we can use an image quality assessment (IQA) approach [24],
[25] to filter out photos of low image quality first. As such, in
the subsequent photo selection, we can avoid the interferences
from noisy photos and do not need to deal with conflicting
decisions with respect to photo uniqueness and image quality,
of course, at the additional cost of IQA screening.

Algorithm 4 shows the final photo selection algorithm
based on the SIFT feature. Here, we expect to select a subset
of dissimilar photos that can provide complementary informa-
tion. As seen, Algorithm 4 consists of two main procedures.
In Lines 1–12, we extract the visual features of pre-selected
photos and evaluate their pairwise distances. In Line 3, we
derive the SIFT feature Vi from each pre-selected photo Pi,
where Vi = {Ki,Di}, respectively. Here, Ki and Di represent
the sets of keypoints and descriptors generated from photo
Pi. Given that there are ρ keypoints identified for photo Pi,
Ki contains ρ keypoint objects, while Di is an ρ × 128 array
describing the 16 × 16 neighborhood of each keypoint. Then,
in Line 6, we measure the distances between the descriptor
features of each pair of photos to find possible match(es) if
there is any. That is, each descriptor of one photo is compared
with all descriptors of the other photo to find one or more
matches with short distances. The distances are evaluated by
Euclidean distances based on L2-norm.

As the k-nearest neighbour (KNN) matching algorithm was
shown to be generally robust, it is considered in Algorithm 4.
If there are ρ descriptors from photo Pi, the KNN algorithm
outputs ρ × k matches from photo Pi to photo Pj . Among the
k matches for each descriptor, Line 7 further takes the ratio
test [7] to decide whether to keep the top match. Only if the
shortest distance of the top match is less than φ (0 < φ < 1,
e.g., φ = 0.75) of that of the second match is the top match
considered as a good match. As such, only those matches with
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sufficiently small distances are retained, and there are at most
ρ such good matches identified for two photos, where there is
at most one good match for each descriptor.

After finding the good matches between two pre-selected
photos, the mean distance of the matches is recorded as a
corresponding element in a distance matrix (Line 9). If no

good match is found, a large constant is used in the distance
matrix (Line 11), which indicates that the two corresponding
photos are very distinct. As the so-generated distance matrix
may not be symmetric, we further take the maximum value
of each pair of elements Wi j and Wji to reset their values
(Line 12). Then, the distance matrix becomes symmetric and
better quantify the dissimilarity of each pair of photos.

In the second procedure in Lines 13–23, we use the above
generated distance matrix W to select B most distinct photos
from set Ps. Naturally, we expect that the selected photos
are as dissimilar as possible. Such a subset of diverse photos
can cover the sensing target comprehensively. Translating this
idea to a mathematical problem, we can formulate the photo
selection as the following optimization problem:

(P) max
x

.
∑

i

∑

j>i

xix jWi j (5a)

s.t.
∑

i

xi ≤ B. (5b)

Here, xi is a binary decision variable, indicating whether
photo Pi ∈ Ps is selected, and Wi j is the distance between
photos Pi and Pj estimated in the above procedure. As the dis-
tance matrix is symmetric, we only need to consider the upper
triangular portion of the distance matrix above the diagonal.
The only constraint is to limit the total number of selected
photos by B.

To solve this optimization problem, we can reformulate it
as an ILP problem as follows:

(D) max
x

.
∑

i

∑

j>i

zi jWi j (6a)

s.t. zi j ≤ xi, ∀i, j and j > i (6b)

zi j ≤ x j, ∀i, j and j > i (6c)

xi + x j − 1 ≤ zi j, ∀i, j and j > i (6d)
∑

i

xi ≤ B. (6e)

In (6), one additional binary variable zi j is introduced,
which can be interpreted as an indicator on whether distance
Wi j between photos Pi and Pj is counted in the objective value.
Obviously, zi j is related to xi and x j . As defined in constraints
(6b)–(6d), zi j = 1 only if both xi = 1 and x j = 1. That is, to
have zi j = 1 and count distance Wi j , both photos Pi and Pj

should be selected.
When the ILP problem has a small scale, it can be solved

by modern solvers, such as Gurobi [26] and the GNU linear
programming kit (GLPK) [27]. However, due to the high com-
plexity, it can be slow to solve a large-scale instance. Hence,
we also use a heuristic algorithm given in Lines 17–23 to solve
it. Initially, it chooses the first photo that is the most distant
to all others. Then, it iteratively selects a new photo with the
largest mean distance to other already selected photos. The
subsets of selected photos and eliminated photos are updated
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TABLE 1. Experiment Parameters

accordingly. This procedure continues until B photos are se-
lected.

V. SIMULATION RESULTS
In this section, we evaluate the data selection approaches in-
troduced in Section IV. First, we introduce the datasets used in
the performance evaluation, including those for the contextual
metadata and the visual content data. Then, we present the
results for the initial photo selection based on metadata. Last,
we show the performance of the final photo selection.

A. DATASETS
1) DATASETS FOR CONTEXT METADATA
In the following experiments, we use both synthetic and real
datasets to evaluate the data selection approaches. The key
parameters are listed in Table 1.

As given in Section III-B, a sensing task target is spec-
ified by tuple G = {[gx, gy], [ts, te], [θmin, θmax], ϕmin, dmax}.
We generate the target location [gx, gy] uniformly within a
rectangular region. The valid start time ts is randomly picked
within a maximum sensing period, and the task lasts for a
random duration within a range, which gives the valid end
time te bounded by the maximum sensing period. The range
of valid views [θmin, θmax] is simply set to [0◦, 360◦]. The
minimum valid coverage span ϕmin is taken uniformly in a
given range. The maximum acceptable shoot distance dmax is
also randomly selected from a range. According to the task
information, we can set the similarity thresholds, which are
used in the PicPick-based approaches and for the coverage
metric. Some example values are given in Table 1.

For each photo Pi ∈ P , its context-based metadata are given
by Mi = {[xi, yi], ti, [αi, βi], ϕi, di}. The shoot time ti is set
uniformly within the whole sensing period. The sensing loca-
tion [xi, yi] can be taken from a real dataset or generated as a
clustered random point process within a region slightly larger

than the sensing region (to be discussed in detail). Based on
the sensing location, the shoot distance di to the target and
the view angle ϕi can be derived. The range of views covered
by the photo is given by [αi, βi]. We randomly generate a
width for the view coverage and a ratio less than 1. The ratio
defines how the view angle ϕi splits the width of the coverage
in [αi, βi]. That is, the width of the sub-interval [αi, ϕi] over
that of the entire interval [αi, βi] is given by the ratio.

To get synthetic location data, we can use a cluster point
process such as the Matérn process to model the locations. For
a Matérn process, the cluster centres are generated according
to a homogeneous Poisson point process (PPP), while each
cluster contains a random number of children points that
are uniformly distributed within a circular area of a given
radius and a centre from the preceding PPP. To just generate
a total number of location points, we also limit the maximum
number of points in each cluster, as shown in Table 1.
Since the sensing locations tend to cluster in the surrounding
environment of the target, this Matérn-like process can capture
the clustering effect while meeting our simulation needs.

To get more realistic location information, we can also use
some existing datasets such as the New York City (NYC) and
Tokyo (TKO) check-in datasets [28]. They were crawled from
Foursquare [29], which is a location data platform and mobile
app. These datasets include check-in data at venues in NYC
and TKO collected from April 12, 2012 to February 16, 2013.
Each check-in record is a tuple (user ID, venue ID, latitude,
longitude, date and time). The latitude and longitude are the
GPS coordinates obtained from the check-in user device.

The datasets contain 227,428 check-ins in NYC and
573,703 check-ins in TKO. As users may visit a venue re-
peatedly, it is time-consuming and unnecessary to consider
all records in the datasets. Instead, we pre-process the data
as proposed in [30] to get a required number of location
records. Specifically, we sample 500 records from the TKO
dataset in each run and they are sufficient to capture the data
characteristics that our experiments need. Here, we first load
the check-in records and filter them by keeping the newest
check-in record for each mobile user but removing duplicate
user IDs and venue IDs. Then, we limit the scales in space
and time to select a required subset of samples that meet the
distance and time constraints from the above filtered records.
Finally, the GPS locations of the selected records are mapped
to 2D Cartesian locations for ease of calculation. We also
normalize the location coordinates and scale them into the
given sensing region.

2) DATASETS FOR VISUAL CONTENT
It is challenging to create a usable photo set with a variety
of metadata under consideration. First of all, the photos must
be toward the same target and also significantly vary in cer-
tain aspects such as shoot time, shoot angle, and coverage of
views. Hence, the photo set needs to be sufficiently large so
that there remain a good number of valid candidates after the
dataset is pre-screened with the validity constraints.
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FIGURE 2. Total utility.

Unfortunately, we are not able to create or find such an ideal
photo set. Nonetheless, since some key aspects used in photo
selection are the angle, span and range of views, we find that
the Columbia University Image Library (COIL-100) [31] can
meet our needs in a degree. This library contains a database
of color images of 100 objects, which were shot through 360
degrees at pose intervals of 5 degrees. We will use this image
database to test the effectiveness of Algorithm 4 for final
photo selection with visual features. It is worth mentioning
that Algorithm 4 is not limited to the COIL-100 database
or SIFT features. It would be interesting future work to test
Algorithm 4 with other appropriate photo datasets and visual
features.

B. RESULTS OF INITIAL SELECTION WITH METADATA
According to the settings in Section V-A, we evaluate the
initial selection methods introduced in Section IV-A with dif-
ferent datasets. To investigate their performance extensively,
we test each method for multiple runs. In each run, each
method takes a new dataset of 500 samples as its input. Fig. 2
shows the total utility achieved by the photo selection with
SmartPhoto [3] and the extended algorithm SmartPhoto+ in
Algorithm 1. Clearly, SmartPhoto+ significantly improves the
total utility by selecting photos according to multiple features
instead of just the coverage aspect.

FIGURE 3. Total coverage.

The photo selection approach PicPick [4] aims to maximize
the total coverage of the selected photos by using a PTree
to group the photo set. As shown in Fig. 3, PicPick+ in
Algorithm 2 slightly enhances this goal. To generate Fig. 3,
the original PicPick is slightly adapted to be comparable to
PicPick+ and meet the limit on the number of selected pictures
by stopping selection after the limit is reached. The average
coverage is improved by 15.32% with the synthetic metadata,
while it is improved by 10.34% with the dataset of real loca-
tions. These results demonstrate that our extension does well
in keeping the clustering structure when pruning the branches
of the PTree.

Figs. 4–6 compare the three photo selection approaches
discussed in Section IV in terms of the three clustering met-
rics given in Section III-D. For the approach ClusterFirst, we
use agglomerative clustering in Algorithm 3. Fig. 4 shows
the silhouette coefficients of the three approaches. As seen,
if we select photos using the agglomerative clustering algo-
rithm in Algorithm 3, the resulting clustering can achieve the
highest silhouette coefficients. It is known that the silhouette
coefficient is larger when the clusters are denser and better
separated. Similarly, it is seen in Fig. 5 that the Davies-
Bouldin indices of ClusterFirst are the lowest among the three
approaches. Different from the silhouette coefficient, a lower
Davies-Bouldin index indicates a better clustering result.
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FIGURE 4. Silhouette coefficient.

FIGURE 5. Davies-Bouldin index.

FIGURE 6. Calinski-Harabasz index.

Fig. 6 shows the Calinski-Harabasz index of the three
photo selection approaches. It is observed that ClusterFirst
achieves the highest Calinski-Harabasz indices. Similar to
the silhouette coefficient, a higher Calinski-Harabasz index
indicates a better clustering result. With the synthetic meta-
data, the average Calinski-Harabasz index of ClusterFirst is
40.22% higher than that of SmartPhoto+ and 1.655 times
higher than that of PicPick+. With the dataset of real loca-
tions, SmartPhoto+ performs closer to ClusterFirst in some
cases. However, the average Calinski-Harabasz index of Clus-
terFirst is still 29.01% higher than that of SmartPhoto+. Also,
both ClusterFirst and SmartPhoto+ significantly outperform
PicPick+ in terms of the Calinski-Harabasz index.

Figs. 7–8 compare the three photo selection approaches
in terms of other performance metrics such as total util-
ity and total coverage. Since SmartPhoto and its extension
SmartPhoto+ aim to maximize the total utility, it is not sur-
prising to see in Fig. 7 that SmartPhoto+ achieves the highest
total utility. ClusterFirst with agglomerative clustering comes
next, while the total utility of PicPick+ is the lowest. This is
because PicPick+ selects photos to maximize the number of
other photos covered by the selected ones.

As shown in Fig. 8, the total coverage of PicPick+ is the
highest on average among the three approaches. We can see
in Fig. 8(a) that, with the synthetic dataset, the total cover-
age of PicPick+ is 61.66% higher than that of SmartPhoto+,
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FIGURE 7. Total utility.

FIGURE 8. Total coverage.

FIGURE 9. Computing time.

FIGURE 10. The optimal solution vs. the heuristic solution for final photo
selection.
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FIGURE 11. Final photo selection results based on SIFT features.

but it performs very closely to ClusterFirst. Similar trends
are observed in Fig. 8(b). PicPick+ performs the best since
it targets at maximizing the total coverage. ClusterFirst
with agglomerative clustering achieves total coverage that is
slightly lower that of PicPick+, but it performs better than
SmartPhoto+.

As the edge servers in MEC usually have limited comput-
ing resources, the computational cost of the data selection
approaches is an important factor to ensure feasible imple-
mentation. In Fig. 9, we further evaluate the computing time
(in milliseconds) of PicPick+, SmartPhoto+, and ClusterFirst.
They are implemented in Python and run on a Mac mini
station with a processor of 3.2 GHz 6-core Intel Core i7 and
memory of 32 GB. As seen, all three methods can run on
the order of seconds. ClusterFirst is the fastest with com-
puting time of several milliseconds. PicPick+ is the slowest
but the average computing time of all runs is still less than
2 seconds. One reason for the longer time is that PicPick+
needs to constantly maintain a complex data structure, PTree,
which organizes the picture set according to their features.
The results in Fig. 9 demonstrate that these three methods are
computationally efficient and it is viable to deploy them on
the edge servers in MEC.

C. RESULTS OF FINAL SELECTION WITH VISUAL DATA
As mentioned in Section IV, we take a three-phase approach
to select a limited number of photos. After the pre-screening
with the validity constraints and the initial photo selection
based on the context metadata, we need to further process the
visual content data of the pre-selected photos and choose a
given number of the best ones among them. In Section IV-B,
we give Algorithm 4 for the final photo selection based on
SIFT. First, the SIFT features are extracted to evaluate the
pairwise distances of the pre-selected photos. Then, we solve
the optimization problem in (6) with an ILP solver or a heuris-
tic approach.

Using the COIL-100 image library, we compare the heuris-
tic solution with the optimal solution obtained by the ILP
solver CVXOPT [32] with the GLPK extension [27]. Here,

we randomly choose γ B photos for an object and select B
most distinct photos among them using the optimal solution
and the heuristic solution. Similar to the above experiments,
we compare these solutions in multiple runs. In each run,
we randomly select a new subset of photos from the image
library and apply the selection solutions over them. Fig. 10
compares the objective values achieved by the two solutions
and their computing time. As seen in Fig. 10(a), the heuristic
solution performs very closely to the optimal solution. The
average approximation ratio of the objective value achieved by
the optimal solution to that of the heuristic solution is 0.968.
Nonetheless, Fig. 10(b) shows that the heuristic solution takes
significantly less computing than the optimal solution.

To further examine the differences between the optimal
solution and the heuristic solution, Fig. 11 shows the photos
selected by the two approaches for a case where the heuristic
solution has an approximation ratio 0.9879. The selected pho-
tos are annotated with *** and framed by red borders. As seen,
both approaches successfully choose the photos with fairly
distinct shoot angles. These photos are the representative ones
for the whole set. Specifically, the heuristic approach selects
two photos in the first row with close views. In contrast, the
optimal solution selects one photo in the last row with a side
view, which is clearly a better choice. However, the heuristic
approach performs closely to the optimal solution overall, and
it is much faster. Especially, the ILP solver becomes quite
slow when there are more than 30 candidates in the photo set.

VI. CONCLUSION
In this paper, we study the data selection problem in VCS. A
phase-by-phase hybrid framework is considered, which first
filters collected pictures based on the metadata and then se-
lects the final pictures using the content features. Particularly,
we extend SmartPhoto [3] and PicPick [4] to be applicable
to the hybrid framework. We also consider a benchmark ap-
proach with a standard clustering algorithm for comprison.
In addition, we evaluate different selection approaches using
adapted clustering indices as well as traditional metrics such
as total utility and coverage.
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Extensive simulations are conducted with both synthetic
and real datasets. The results show that, the extended algo-
rithm SmartPhoto+ performs significantly better than the orig-
inal algorithm SmartPhoto in terms of total utility. PicPick+
slightly improves the total coverage in comparison with
PicPick when the number of selected pictures is constrained.
Among the three algorithms (SmartPhoto+, PicPick+, and
ClusterFirst), SmartPhoto+ achieves the highest total utility,
while PicPick+ performs the best in terms of total coverage
but fairly close to ClusterFirst. Regarding the clustering in-
dices, ClusterFirst shows the best results. In practice, we can
choose an appropriate solution among these candidates ac-
cording to specific application needs and target performance.
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