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ABSTRACT Driving safety has been attracting more and more interest due to the unprecedented proliferation
of vehicles and the subsequent increase of traffic accidents. As such the research community has been actively
seeking solutions that can make vehicles more intelligent and thus improve driving safety in everyday life.
Among all the existing approaches, in-vehicle sensing has become a great preference by monitoring the
driver’s health, emotion, attention, etc., which can offer rich information to the advanced driving assistant
systems (ADAS) to respond accordingly and thus reduce injuries as much/early as possible. There have
been many significant developments in the past few years on in-vehicle sensing. The goal of this paper
is to provide a comprehensive review of the motivation, applications, state-of-the-art developments, and
possible future interests in this research area. According to the application scenarios, we group the existing
works into five categories, including occupancy detection, fatigue/drowsiness detection, distraction detection,
driver authentication, and vital sign monitoring, review the fundamental techniques adopted, and present
their limitations for further improvement. Finally, we discuss several future trends for enhancing current
capabilities and enabling new opportunities for in-vehicle sensing.

INDEX TERMS Artificial intelligence, advanced driving assistant systems (ADAS), distraction/inattention,
driver authentication, fatigue/drowsiness, in-vehicle sensing survey, occupancy detection, smart car, vital
sign monitoring, wireless sensing.

I. INTRODUCTION
The last several decades have witnessed the unprecedented
proliferation of automobiles, which has contributed greatly
in our daily commute, economy, business and entertain-
ment [1]. According to the American Automobile Association
(AAA) [2], there are roughly about 1.2 billion vehicles operat-
ing on the planet every day with an average trip of 15 minutes.
The in-vehicle time grows up to 46 minutes per day in the
United States [3]. While we have benefited a lot from the
tremendous number of motor vehicles, it has been shown [4]
that the road accidents cause approximately 1.3 million deaths
every year and about 20–50 million more non-fatal injuries,
many of which incur a lifelong disability [5]. Among those
accidents, about 94% –96% of them are related to some hu-
man error [6].

To improve driving safety, many efforts have been de-
voted by both the government and car manufacturers such as

legislatively prohibiting the use of wireless devices and
disabling some of the amusement features (i.e., Bluetooth set-
ting) during driving. However, driving is a complex task and
requires a combination of cognitive engagement and physical
operations, which makes it very hard for a driver to con-
centrate, especially during long trips such as those for truck
drivers.

As a promising safety enhancement, in-vehicle sensing has
been gaining an increasing attraction since it can continuously
monitor the driver’s status, from which the advanced driving
assistant system (ADAS) can predict human error and thus
react timely to prevent accidents from happening. In addition,
it can also provide other useful real-time information about the
interior of a vehicle, e.g. passenger status, or when a vehicle
is parked.

Significant efforts have been devoted to in-vehicle sens-
ing, which, according to the application scenarios, can be
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classified into five categories, i.e., occupancy detection, fa-
tigue/drowsiness detection, distraction detection, driver au-
thentication and vital sign monitoring.

Occupancy detection [7]–[13] mainly aims to detect, local-
ize, classify the seat occupancy states and then remind the
driver before he/she leaves the vehicle. A particular case is
the child presence detection (CPD) to prevent a child from
being left alone in a closed vehicle, which may cause fatal
damage or even death due to heatstroke [14], [15]. Exist-
ing studies about occupancy detection can be categorized
into four groups according to the adopted techniques, in-
cluding sensor-based [7]–[13], WiFi-based [16]–[18], image-
based [19]–[21], and radar-based [22]–[28] methods.

Fatigue/drowsiness can lead to slow reactions of a driver to
the surrounding changes and has caused more than 20% of the
reported accidents [29]–[31]. By enabling fatigue/drowsiness
detection in the ADAS system, fewer traffic accidents can
be expected, and safety and transportation efficiency can be
improved. Based on the features extracted, research about
fatigue detection can be roughly grouped into three types,
i.e., 1) using biological signals such as electrocardiography
(ECG) [32]–[48], electroencephalography (EEG) [49]–[66],
electromyography (EMG) [67]–[76], 2) using facial con-
texts such as movement of the face [77]–[96], eye [97]–
[110], etc., and 3) joint sensing of facial expressions and
body/arm/leg/head motions [111]–[128].

Compared to fatigue/drowsiness, distraction can only be
roughly defined since any activity that takes a driver’s at-
tention from the driving task can cause distraction [129]
such as talking to passengers, using mobile phones, etc. As
there are so many factors that may cause driver’s distraction,
the existing research on distraction detection mainly focuses
on analyzing the driver’s behaviors/activities when operating
the vehicle such as acceleration/braking, and mainly contains
three different groups including joint sensing of human and
vehicle status [129]–[135], human sensing only [136]–[145],
and cognitive sensing [146]–[148] which monitors the emo-
tion of the driver to decipher whether he/she is focusing on
driving or not.

Driver authentication [149]–[152] can help to improve
vehicle security and user experience by automatically adjust-
ing settings of the heating, ventilation, and air conditioning
(HVAC), seats, and entertainment. Most of the current re-
search in this area focuses on determining a driver’s identity
by jointly considering the driving behaviors and biological
signals.

Driver vital sign monitoring can assist in preventing ac-
cidents caused by unpredictable sudden health deterioration
of the driver as well as other in-vehicle sensing applications
such as emotion sensing. Most of the conventional vital sign
monitoring systems [153]–[158] require a user to wear a lot
of sensor pads such as ECG/EEG, which may distract driving
and thus are not applicable for driver’s vital sign monitoring.
Recent advances in wireless sensing techniques [159]–[163]
have made contactless vital sensing possible and thus shed
light on the future of driver’s vital sign monitoring.

The rest of the paper is organized as follows. The abbrevia-
tions used in this paper are summarized in Table I for easy
reference. Section II reviews the research about occupancy
detection and Section III reviews the existing works about
fatigue detection. Then, Section IV summarizes the existing
methods for distraction detection followed by an overview of
driver authentication and vital sign monitoring in Section V.
Finally, Section VI discusses the limitations and future works
while Section VII concludes this paper.

II. OCCUPANCY DETECTION
In-vehicle occupancy detection, which detects how many
seats of a car are occupied and what object (e.g., an
adults/kid/pet/inanimate item) is located at a particular seat
has been a key component to enhance driving safety by the
Society of Automotive Engineers (SAE) [164]. For example,
knowing which seat is occupied by a passenger can be utilized
to: 1) remind the passengers who are not wearing seat belts
since buckling up can help to reduce the risk of fatal injuries
by 45% and moderate to critical injuries by 50% [165]; 2) trig-
ger the emergency system such as airbags in case of accidents
to save lives. More importantly, leaving children, especially
those who are less than 6 years old and have little ability
to exit the vehicle on his/her own, alone in an unattended
vehicle can cause very serious damages to organs/brain or
even deaths due to heatstroke [14], [15]. As a result, enabling
child presence detection has been proposed as a standard fea-
ture on the road map of the European New Car Assessment
Programme (NCAP) [159], [166] to alert caregivers or emer-
gency services if a child is left alone. Towards this end, many
efforts have been devoted to developing accurate and practical
occupancy detection systems. Fig. 1 summarizes the existing
research about occupancy detection, which, according to the
technologies adopted, are categorized into four classes as will
be detailed next.

A. SENSOR-BASED OCCUPANCY DETECTION
As shown in Table II, sensor-based occupancy detection meth-
ods [7]–[13], usually leverage different kinds of physical
sensors such as weight, heat, force, capacitance, Radio fre-
quency identification (RFID) to capture the weight, pressure,
temperature, electrical continuity, capacitance, etc. elicited by
the presence of passengers and then perform further occu-
pancy analysis. This kind of methods is usually very easy to
design, manufacture and deploy with affordable cost to most
of Original Equipment Manufacturer (OEM) and customers.
However, there are three main drawbacks of this kind of
methods. First, as the equipment/sensor positions are usually
pre-designed and thus fixed, they tend to suffer from very
limited coverage within/next to the seats in the car. Second,
it is very challenging to find a universal threshold suitable
for different cars and human beings. For example, it takes
different thresholds to detect the presence of people with dif-
ferent weights. Otherwise, it causes high false positive rate
(FPR) if the threshold is too small while high false negative
rate (FNR) if the threshold is too large. Third, most of them
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TABLE I Mapping of Abbreviations
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FIGURE 1. Related works of in-vehicle occupancy detection. (The data is obtained by searching on Google Scholar with the combinations of key words:
occupancy car, occupancy vehicle, occupancy automotive, child presence car, child occupancy, and seat occupancy. We review the top 600 related papers
and patents, from which we find a total of 99 ones that directly study the topic of in-vehicle occupancy detection. Accessed Mar. 06, 2022.).

TABLE II Sensor-Based Occupancy Detection

lack the ability to distinguish human from inanimate objects.
For example, weight-based approaches cannot tell apart a box
from a human as long as they are of the same weight.

B. WIFI-BASED OCCUPANCY DETECTION
As more vehicles are being equipped with WiFi
transceivers [171]–[173], WiFi-based occupancy detection
approaches [16]–[18] are becoming popular due to their
superiority in cost and coverage as shown in Table III. The
principle behind WiFi-based occupancy detection is that
the presence or activity of a human being inside a car can

affect the WiFi signal propagation between a transmitter
and a receiver, which is embedded in the channel state
information (CSI) measurements and can be extracted by a
dedicated algorithm. For example, Zeng et al. [17] proposed
an approach based on statistical electromagnetic (EM)
modeling, which can achieve over 96.4% detection rate with
less than 3.96% false alarm and a responsive time ≤ 20s based
on the tests over 5 real babies. [18] presented a portable CPD
solution that can work on both 2.4 and 5 GHz commercial
off-the-shelf (COTS) WiFi equipment by detecting biological
movements at 1 − 6mm level. While WiFi-based solutions
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TABLE III WiFi-Based Occupancy Detection

TABLE IV Image-Based Occupancy Detection

1Forward-looking infrared (FLIR)
2Public dataset in [178]
3Including ResNet152V2 [179], DenseNet121 [180] and EfficientNetB0-B5-B7 [181] architectures for feature extraction

enjoy low-cost and good coverage, they may suffer from
distortions due to the activities outside a car such as cars
passing by, since WiFi signals can penetrate the car exterior
under certain conditions. Besides, other factors [174] such
as channel frequency offset (CFO), sampling frequency
offset (SFO), symbol timing offset (STO), and jitters of the
phase-locked loops (PLLs) [175] may reduce the CSI quality
and thus degrade the robustness of WiFi-based solutions.

C. IMAGE-BASED OCCUPANCY DETECTION
To accurately estimate how many seats are occupied and
further localize and recognize the objects,1 image-based ap-
proaches are extensively studied [19]–[21], [164], [176],
[177] because an image can provide more visible informa-
tion such as the contour/edge of an object than WiFi signals.
By leveraging techniques such as edge detection [19]–[21],
and learning including convolutional neural network (CNN),
multi-task learning [164], which can automatically identify
object-related features for recognition, great performance can
be achieved. However, as shown in Table IV, capturing high-
quality images requires dedicated cameras and it takes efforts
to construct a good dataset to train the network, especially for
manual data labeling and annotation. For better privacy pro-
tection, thermal images [177] are captured and then fed into
a CCN network based on multi-task learning technique. The
work in [164] designed a CNN network which is pre-trained
from the existing CNN models including ResNet152V2 [179],

1Few of the WiFi-based approaches can localize and identify an object
occupying a seat as the time and space resolution of COTS WiFi is limited by
the bandwidth (20MHz-80 MHz) and the number of antennas (≤ 3 usually).

DenseNet121 [180], and the most recent EfficientNetB0-B5-
B7 [181]. The system yields about 79.87% accuracy on the
public synthetic dataset for vehicle interior rear seat occu-
pancy (SVIRO) [178] to classify people and inanimate objects
over 10 different vehicle interiors and 25,000 scenarios. As
seen, the accuracy is limited because different vehicles have
different background information which challenges the clas-
sifier greatly.

D. RADAR-BASED OCCUPANCY DETECTION
Recently, the unprecedented development of radar tech-
niques [182]–[187], especially millimeter-wave (mmWave)
radar has offered new opportunities for occupancy detection,
classification and localization since mmWave can provide
better directionality, angular, angular, and range resolution
due to its high frequency and large bandwidth. As shown
in Table V, recent years have witnessed the blossom of
mmWave-based occupancy detection systems [22]–[28]. For
example, Vayyar [22] presents occupancy detection and clas-
sification by estimating the 4D image of the object. Texas
Instrument [27] demonstrates the feasibility of occupancy de-
tection using 77 GHz frequency modulated continuous wave
(FMCW) radar to construct the range-angle heatmap of the
object.

Another major superiority of the mmWave system is that
it is easy to be integrated on a single chip [23], [24] or a
small unit [26], offering flexibility in device locations and
better portability. At present, Federal Communications Com-
mission (FCC) has been trying to enable State-of-the-Art
Radar Sensors in 60 GHz Band to increase the practicality
of using mobile radar devices in the 60 GHz band to perform
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TABLE V Radar-Based Occupancy Detection

1Multiple-input and multiple-output (MIMO)
2Evaluation board (EVB)
3Field of view (FOV)
4Ultra-wideband (UWB)
5Only testing results in the garage and outdoor parking lots are provided. More tests such as street parking are needed since passing-by cars may cause interference
on the received signal and thus degrade the performance.

innovative and life-saving functions, including gesture con-
trol, detection of unattended children in vehicles [188], which
provides legislative support and incentives for mmWave-
based occupancy detection approaches. Companies such as
Innosent [23], Infineon [24] and NOVELIC [25] have an-
nounced their system-on-chip (SOC) solution of presence
detection. In February 2021, IEE VitaSens [26] launched Vi-
taSense [189], an interior radar sensing solution for CPD
in vehicles, with grant from North America and Science and
Innovation, Science and Economic Development (ISED) of
Canada [190], [191]. While mmWave is very encouraging, it
is yet to be integrated with the current in-car system (most on
2.4 GHz and 5 GHz) without additional hardware cost.

III. DRIVER FATIGUE DETECTION
Fatigue, which degrades perception, delays reaction, and im-
pacts judgment of a driver on his/her surroundings, has been
shown as a prime culprit for over 20% of car accidents [4].
What is worse is that drivers are more prone to feeling fa-
tigue or drowsy nowadays since the roads are becoming more
crowded due to the rapid increase of motor vehicles [29] and
thus the drivers have to be more focused. It is imperative
to seek effective solutions for fatigue detection and predic-
tion so that smart cars can sense the status of the driver
and respond accordingly, such as sounding a warning/alarm
message with an audio assistant system. To meet the demand,
various research and commercial solutions have been pro-
posed as summarized in Fig. 2.

A. FATIGUE DETECTION USING BIOLOGICAL SIGNALS
By directly measuring the variation of biological response
related to the human neural system, biological signal-based
(e.g., EEG [49]–[66], ECG [32]–[48], and EMG [67]–[76])

fatigue detection has been viewed as the golden standard, and
the related works are summarized in Table VI and Table VII.
In most of these approaches, users are asked to wear a number
of electrode pads for data collection. Then, pre-processing
techniques such as Finite Impulse Response (FIR) filter,
Infinite Impulse Response (IIR) filter [34], Principal com-
ponent analysis (PCA) [59], empirical mode decomposition
(EMD) [192] and fast independent component analysis (Fas-
tICA) [34] are adopted, which aim at removing the noise and
artifacts while retaining the signal components within a cer-
tain range of frequency. Afterwards, the cleaned signal is fed
into some feature extraction module to get the fatigue-related
features such as α and β information, inter-beat-interval (IBI),
spatial spectrum, temporal dependency, variation, kurtosis
of the power spectrum etc. To get the fatigue information,
most of the existing works tend to formulate the problem
as a discrete classification problem, such as support vec-
tor machine (SVM), deep neural network (DNN), K-nearest
neighbor (KNN). It is worth to note that the discrete clas-
sification model is very straightforward by feeding the data
into the well-studied classification models, which can usually
achieve reasonably good performance. However, the manual
labeling process of fatigue can be error-prone, since the eval-
uation is subjective and even the most experienced biological
experts may get confused in distinguishing fatigue and normal
status. For this reason, decision making-based on Fuzzy Infer-
ence System (FIS) [195]–[197] have been studied in assisting
driver’s fatigue detection since it is hard to quantify human’s
neuron response even for the same activity. Another main
drawback of fatigue detection using biological signals is the
requirement of many wearable sensors, which may distract the
driver. Less intrusive sensors are being considered before such
methods can be widely accepted by the market.

226 VOLUME 3, 2022



TABLE VI Biological Signal-Based Fatigue Detection-Part I

1 Wavelet packet transform (WPT)
2 Deep neural network (DNN)
3 Do it yourself (DIY)
4 Heart rate variability (HRV)
5 Finite Impulse Response (FIR), Infnite Impulse Response (IIR)
6 Fast independent component analysis (FastICA)
7 K-nearest neighborhood (KNN)
8 Normal, drowsy, fatigue, visual and cognitive inattention
9 Photoplethysmograph (PPG)
10 Data acquisition (DAQ)
11 Galvanic skin response (GSR)
12 Karolinska sleepiness scale (KSS)
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FIGURE 2. Related works of in-vehicle fatigue detection. (The data is obtained by searching on Google Scholar with the combinations of key words:
driver fatigue, driver drowsiness, vehicle fatigue, vehicle drowsiness, automotive fatigue, and automotive drowsiness. We review the top 600 related
papers and patents, from which we find a total of 189 ones that directly study the topic of in-vehicle fatigue detection. Accessed Mar. 11, 2022.).

TABLE VII Biological Signal-Based Fatigue Detection-Part II

1Root mean square (RMS)
2Empirical mode decomposition (EMD)
3Polysomnography (PSG)
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TABLE VIII Fatigue Detection Using Independent Facial Features

1DLIB:an open-source software library
2Long-short-term-memory (LSTM)

B. FATIGUE DETECTION USING INDEPENDENT FACIAL
FEATURES
Without requiring wearable sensors, image/video-based fa-
tigue detection using facial features has become popular,
such as those based on face recognition [77]–[96], eye detec-
tion [97]–[110], and the combination of the features extracted
from face, eye, mouth, etc. In most of these approaches, a
face/eye/mouth region detection module is firstly designed
to refine the input image to remove redundant information
outside the region of interest. As shown in Table VIII, region
recognition methods include you only look once (YOLOv-
CNN) [198], multi-task cascaded CNN, DLIB keypoint detec-
tion [199], etc. The next step following the region detection
is to extract the fatigue-related visible features such as eye
open/close/gaze, mouth open/close, face being twisted or not.

Afterwards, the joint analysis of the extracted features is per-
formed. For example, the percentage of eyelid closure over the
pupil over time (PERCLOS) of a driver larger than 80% [200]
is a strong indication that he/she is drowsy, even though the
specific threshold/percentage may vary from person to person
and at different time over a day. In this case, by continuous
monitoring, if the system further detects that the driver yawns
more frequently than usual, there is a high probability that
he/she is sleepy and thus an alert can be triggered. In the
last, different strategies can be adopted such as Two-stream
neural network, Adaboost classifier, Fuzzy inference fusion,
and long-short-term-memory (LSTM) network to output the
final decision.

While many related works have been proposed with their
own advantages and drawbacks, as shown in Table VIII,
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they share several common limitations: 1) Putting a cam-
era in front of the driver during driving may not only
induce privacy concern but also distract the driver and
thus increase the risk of accidents; 2) Many of the re-
lated works are studied on public datasets such as WIDER
FACE [77], National Tsing Hua University Driver Drowsiness
Detection (NTHUDDD) dataset [78], [112], [201], YawDD
dataset [88], CEW Database [97], ZJU Database [97], BUAA
Eye Database [97], most of which are collected in a labora-
tory environment when the driver is driving on a simulator.
As a result, it is really hard to conclude about the practical
performance since human beings tend to have very differ-
ent biological reactions in practical driving. To expedite the
real-world application, efforts are still needed on developing
highly efficient data collection tools on practical driving for
further validation; 3) Most of the existing studies are based on
the dataset when users face right towards the camera, while
few of them have discussed the case if a user faces towards
the camera with an oblique angle, since driving can involve
frequent activities requiring head turns, such as checking the
rear-mirror, looking at the side mirrors before lane changes,
etc.

C. FATIGUE DETECTION USING HYBRID ANALYSIS
As aforementioned, to capture high-quality images/videos
so that minute facial/eye/mouth changes can be extracted,
dedicated cameras are needed. In addition, under some cir-
cumstances, a strict installation angle/position is required to
make sure that the camera and user’s face are facing towards
each other. However, a driver has to keep checking the sur-
rounding environment during practical driving, the relative
position/angle between the camera and the driver’s face is
time variant, and it is impractical to assume that frontal im-
ages are always available. To tackle this issue, some of the
existing works have explored solutions by studying how the
big motion of a driver, such as head movement due to nod,
arm/hand motion when moving their hands away from the
steering wheel unintentionally, can assist the fatigue detection,
because sensing big motions is always feasible during driving.
Although relying on sensing the big motion itself may not
be accurate enough for reliable fatigue detection as such big
motions can also happen when the driver is sober, they can
provide good auxiliary information.

Towards this end, many research works [111]–[128] have
been proposed by jointly analyzing the big motions and the
imperceptible changes corresponding to the subtle motion
of face/eye/mouth as shown in Table IX. For example, Part
et al. [111] presented a joint analysis on local facial expression
and head gesture using VGG-FaceNet and FlowImageNet
architecture, respectively. The results show that joint fea-
tures including both face and head can contribute about the
5% improvement in drowsiness detection accuracy over the
public NTHUDDD video dataset [112], which are collected
over 36 subjects including different genders and ethnicities.
While [111] is evaluated on a public dataset collected under
simulated driving conditions, Mittal et al. [113] develops a

fatigue detection system that combines the information from
head pose (with a particle-filter based 3D model to track
head motion), lip and eyes, which is then comprehensively
evaluated with 14 subjects driving a car on different round-trip
routes through the University of California campus at different
times, including morning, afternoon, dusk, and night. Further
studies also involve the head pose dynamics [114], [115],
[202], head orientation and arm position [116], [117], which
improve the fatigue detection accuracy by 2% - 10%, com-
pared to the benchmark methods using only facial features.
To further handle the time-variant relative position between
the camera and a driver’s face, multiple cameras can be dis-
tributed around the car for data acquisition [114], [115], [202].
Although the fatigue detection accuracy is improved, many
new practical problems arise as well, such as the cost of
hardware, deployment, computational complexity, and more
importantly how to fuse the information from multiple cam-
eras while satisfying the real-time detection requirement.

IV. DRIVER DISTRACTION DETECTION
Driver distraction, which can increase the risk of accidents,
may be caused by many factors. As introduced in Section I,
there exists no universal definition for distraction during driv-
ing [205]–[207], and a widely accepted concept is that, any
activity that takes a driver’s attention from driving belongs
to the cause of distraction [129] such as talking to passen-
gers, using mobile phones, under different kinds of negative
emotions including anger [208], anxiety [209], sadness [210],
etc. As shown in Fig. 3, the community has been exploring
how to detect/prohibit distraction in many different directions
to improve driving safety. One example is that playing with
mobile devices when driving is legislatively prohibited in
most countries. Besides, car manufacturers are adding more
convenient designs such as integrating switches of phone-call,
music-playing, cruise-setting on the steering wheel area so
that a driver does not need to move his/her hand off the
steering wheel when they have to utilize related functions.
Also, some of the amusement features are disabled during
driving such as that Tesla [211] stops allowing drivers to play
video games during driving. However, there exists a conflict
between simplifying the design/functions and satisfying the
users. In other words, to make the car more intelligent and im-
prove the driving experience, manufacturers have to develop
and integrate more functions (e.g., entertaining, relaxing),
which again will increase the chance of distraction. Therefore,
an automatic distraction detection system is needed, which
can alert a driver, or more intelligently, provide real-time
corrections whenever distraction is detected.

A. DISTRACTION DETECTION BASED ON JOINT SENSING
OF HUMAN AND VEHICLE
Among the many distraction detection studies [129]–[135],
joint sensing of the vehicle and human status is firstly pro-
posed, as shown in Fig. 3 and Table X. Tang et al. first [130]
presented a driver’s distraction system by leveraging the vehi-
cle data (usually including speed, steering angle, position of
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TABLE IX Fatigue Detection Using Hybrid Analysis

1Frequency of mouth (FOM)
2Long-term recurrent convolutional network (LRCN)
3Localized gradient orientation (LGO)
4Laboratory for intelligent and safe automobile (LISA)

the accelerator pedal, the brake pedal, etc.) gathered from the
vehicle controller area network (CAN) [204] system, which
is then fed into an SVM classifier for distraction detection.
Later, motion information which mainly corresponds to the
big motion of the human body such as body/leg/arm move-
ments were further involved in [131] and yielded about 90%
detection accuracy. To further improve the accuracy, the rela-
tionship between the head motion and distraction was studied
in [132] and then fused with the vehicle data [134], which also
explores the time-domain information by utilizing LSTM-
recurrent neural network. The correlation between eye glance
and steering movements was analyzed in [212], which verified
the feasibility of distinguishing different types of distraction.
To test the performance, a real-time system was implemented
in [129] and 30 participants were recruited to drive on a
straight country road while performing eight pre-defined sec-
ondary task (e.g., playing radio, setting the navigation to a
destination) on the multimedia interface to evoke distractions.
In total, the authors got about 150 minutes distraction data and
50 minutes attentive data, which demonstrates about 96.6%
accuracy.

While these works have shown promising results, most
of them are evaluated on the data collected from a driv-
ing simulator or practical driving but following a simple
route. Although many efforts have been made to make the
driving simulator more realistic such as involving challeng-
ing routes, playing sound around as distractions, experiences
from a driving simulator are still different from practical
driving [147], and the validations/findings from the afore-
mentioned works may not hold in practice. as shown by the
degraded performance during practical driving [129], [134],
and it is worthwhile to conduct more real-world data based
studies.

B. DISTRACTION DETECTION ON HUMAN SENSING
Instead of joint vehicle and human sensing, distraction can
also be detected based on human sensing only. The main rea-
sons are as follows. First, vehicle data is not always available.
Second, it is difficult to build a universal vehicle data-based
driving profile since driving behavior can be affected by many
external factors and a driver may respond differently to the
same stimulus. For example, braking frequency on a highway
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FIGURE 3. Related works of in-vehicle distraction detection. (The data is obtained by searching on Google Scholar with the combinations of key words:
driver distraction, driver inattention, driver behavior, vehicle distraction, vehicle inattention, automotive distraction, and automotive inattention. We
review the top 700 related papers and patents, from which we find a total of 168 ones that directly study the topic of in-vehicle distraction detection.
Accessed Mar. 15, 2022.).

TABLE X Distraction Detection by Joint Sensing of Vehicle and Human

1Controller area network (CAN) [204]
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TABLE XI Distraction Detection by Sensing of Human Only

1American University in Cairo (AUC) Distracted Driver Dataset
2Minimum Required Attention (MiRA)

and urban roads is different, while driving in snowy weather is
different from driving on a sunny day as well. In addition, the
measurement error of the CAN system is vehicle-dependent,
which again induces new noise in the vehicle-specific dataset.

Distraction detection based on human sensing only can be
mainly divided into two categories. Existing works in the first
category mainly leverage the visualized big motion (e.g., head
pose/orientation [136]–[139]) of the human body or the minor
motion involved in the eye movement/glance [140]–[142],
facial expression [143]–[145], and etc. For example, Zhao
et al. [136]–[138] introduced a distraction detection method
by utilizing the head pose estimator (HPE _ Resnet50) net-
work structure to extract the head pose/orientation (described
in Euler angle) of a driver [136], based on the 300W-
LP [221] and Annotated facial landmarks in the wild (AFLW)
datasets [222]. A similar idea was proposed in [137], [138],
which extracted the head pose using a coordinate-pair-angle-
method (CPAM) and then DNN for further classification.
Praveen et al. [223] demonstrated the feasibility of distrac-
tion detection by tracking the face pose using a clustered
approach based on Gabor features. The full-scale information
of a human body was leveraged by an ensemble of ResNets
in [224] to distinguish distraction from images of normal
driving, yielding an accuracy of 94.28% on the American
University in Cairo (AUC) dataset. On the other hand, Rezaei
et al. [142] created a cascaded network using Haar-like Masks
to detect the subtle eye movement such as opening/closing
for distraction recognition, which could detect distraction
from both the frontal direction and an oblique angle of a
tilted head pose, making a big step towards practical appli-
cations. [141], [216], [225] explored metrics such as eye gaze
direction [225], blink pattern [141], and on-road/off-road gaze
duration [216]. [226]–[228] demonstrated the feasibility of
using activities of eyes and mouth, and a review of driver
distraction detection using facial expressions was presented
in [144], [145]. Note that the different features extracted from

subtle eye/face/mouth movements are usually fused [143] and
then fed into various classifiers such as AdaBoost, Random
Forest, SVM, CNN, DNN for distraction analysis.

Instead of using either the big motion [136]–[139] or minor
motion [140]–[145], [226]–[228], the second category [140],
[146], [203], [213]–[220], [229]–[231] fuses features from the
big motion and minor motion together as shown in Fig. 3
and Table XI. Although different features are extracted, the
main steps of this kind of methods can be summarized as
follows:
� Step 1: Image capturing using dedicated RGB/thermal

cameras, which are usually mounted on the wind-
shield/dashboard and pointed towards a driver’s face as
much as possible while not blocking his/her view.

� Step 2: Image pre-processing, such as resizing, noise
removal, enhancement, and region detection correspond-
ing to the driver’s arms, legs, hands, head, torso, face,
mouth, eyes, etc. Note that different region detection
methods may be designed for a specific purpose. For
example, eye detection takes a smaller window to cap-
ture more details while body contour extraction requires
full-scale images.

� Step 3: Feature extraction, construction, and classifi-
cation, which are closely related to the cascaded net-
work and the loss/objective function adopted. The two
most common feature extraction methods are shape-
based (e.g., calculating the distance such as Euclid
distance using several key points in the image) and
appearance-based by leveraging the color, context, or
correlations between different images.

C. COGNITIVE DISTRACTION DETECTION
Another type of distraction is cognitive distraction, which
is mainly caused by negative emotions of a driver such as
anger [208], sadness [210], and anxiety [209]. Since emotion
is mainly related to the activity of one’s brain and neural
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system, cognitive distraction is hard to be detected using the
aforementioned detection approaches. It is possible that one
may have different behaviors under different moods. How-
ever, different people have different ways of expressing their
emotions, and thus it may not be accurate to judge one’s emo-
tion purely based on his/her behavior. In this sense, cognitive
distraction is probably the most difficult type of distraction to
be detected [146].

Recent work [147] presented a review of the existing re-
search on in-vehicle emotion sensing, which, according to the
information adopted to sense emotion, can be divided into bio-
logical signal based (e.g., ECG, Heart rate and blood pressure,
etc.) [232]–[239], speech signal based [240], [241], facial ex-
pression based [242]–[248], behavior based [249], and those
using the combination of different features [148]. Biological
signals-based methods can achieve good accuracy because
those signals are directly related to the physiological response
of a human being under different emotions. However, captur-
ing biological signals is usually intrusive and requires physical
contact between electrodes and human body, and is not con-
venient for a practical driving scenario. In addition, biological
signals are often very weak and thus highly vulnerable to ex-
ternal distortions such as noise and unavoidable human body
motions. Note that Du et al. [148] have shown that the joint
use of biological features (e.g., heart rate extracted from RGB
images) and facial expressions from images can improve the
emotion detection accuracy by about 5%, which may shed
light on a new direction of cognitive distraction detection.

V. MORE APPLICATIONS OF IN-VEHICLE SENSING
In this section, we introduce two more other in-vehicle sensing
applications, especially those wireless sensing-based tech-
niques due to its superiority in cost and coverage.

A. DRIVER AUTHENTICATION
As remote keyless system [250] has become standard equip-
ment for modern vehicles, most of them are still relying on a
token matching and rolling scheme, which has been reported
for several security concerns [150], [251]–[253]. Therefore,
enabling a smart driver authentication system can help to
protect a car from improper use without the permission of the
driver/owner [150]. Moreover, automatic driver authentication
can enable intelligent driver-specific adjustments, such as the
seat and mirror positions [149].

Towards this end, the works [150], [151] built a driver
identification system by sensing the driving behavior using the
data from the in-vehicle CAN system, with SVM and CNN
+ SVDD (Support Vector Domain Description) classifiers,
respectively. Face recognition techniques are leveraged
in [152] while [254] utilizes the On-Board Diagnostic (OBD)
port for collecting data about speed, pedal movement, fuel
flow, etc., which are then fed into a machine learning mod-
ule for classification. Biometric-based driver authentication
methods have also been proposed using different biomet-
ric information including palm prints and veins [255], brain
waves [256], and combinations of hand swipes, voice, and

faces [257]. The authors in [149] presented a driver iden-
tification system by recognizing the unique radio biometric
information [258] embedded in the CSI of commercial WiFi.
A long-term driver radio biometric database was built to train
a generalized DNN that is robust to the environment changes,
and experiments demonstrate up to 99.13% accuracy.

B. DRIVER VITAL SIGN MONITORING
In-vehicle health/vital sign monitoring has also become at-
tractive recently, because vital sign signals such as heart rates
can help to improve other in-vehicle sensing functions such
as emotion sensing [148]. Also, continuous health monitoring
can reduce the risk of accidents in unpredictable and imper-
ceivable health deterioration (such as a sudden pathological
attack or heart stroke, which is difficult to be detected based
on emotion or behavior sensing) of a driver when he/she is
driving.

Existing works on driver vital sign monitoring include
the sensor-based methods [153]–[158], vision-based meth-
ods [259]–[262] and radio frequency (RF)-based meth-
ods [263]–[275]. The sensor-based methods require wear-
able sensors such as photoplethysmography (PPG) [156],
ECG [154], [155], EEG [153], [276], voltage-controlled os-
cillators [157], and electromagnetic coupled sensor [158] to
capture physiological signals for vital sign analysis. They are
accurate due to the direct contact with a human body but
tend to be cumbersome, uncomfortable, and distracting for
a driver when driving, thus hindering practical applications.
Vision-based methods [259]–[262] which usually leverage a
camera mounted inside a car to capture images/videos for
vital sign analysis, are less intrusive by reducing physical
contact than sensor-based methods, but raise privacy concerns
and are susceptible to illumination conditions, which again
inhabits the wide deployment. More recently, RF based vital
sign sensing systems have been gaining more interests since
they do not require any wearable sensor while preserving user
privacy and robustness over different illumination conditions.
Intuitively, RF signals reflected off human subjects will be
modulated [277]–[282] by body movements including chest
and heart movement due to respiration and heartbeat. As a
result, one can decipher the vital sign information embedded
in the received RF signals without any intrusion to a driver.

Currently, WiFi- [159], [160] and mmWave-based [283],
[284] systems are the two mostly adopted RF-based ap-
proaches for in-vehicle vital sign monitoring. For example,
Wang et al. [160] presented a WiFi-based multi-person (up
to 4, a typical number of total passengers in a car) respira-
tion rate estimation system with subcarrier selection and trace
concatenation, which yields up to 98.9% detection accu-
racy with the respiration rate estimation error less than 1
respiration-per-minute (RPM). Moreover, it [160] also ex-
plored the feasibility of people recognition using the dis-
tribution of the respiration estimations for a certain period.
Although WiFi-based vital sign sensing methods [160], [280],
[281] have shown great advantages in coverage, low-cost, and
excellent portability by reusing the existing on-car WiFi, they
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lack good spatial resolution for reliable heart rate sensing.
As an alternative, mmWave [163], [264]–[268], [270]–[275]
has shown superior spatial resolution because it operates in
a much higher frequency, with larger bandwidth and higher
integration capability to equip more antennas on a single chip,
and many mmWave-based vital sign monitoring systems have
been proposed. For example, the works [163], [264]–[266]
(although not for in-vehicle sensing) have demonstrated the
feasibility of using mmWave to extract breathing and heart
rates simultaneously [163], [265] and further estimation of
heartbeat variability is presented in [267], [268], [283].

Note that the aforementioned mmWave-based vital sign
sensing may not be directly applied to a driver’s vital sign
monitoring when he/she is driving because the vital signs
are very weak and thus easy to be overwhelmed by motions
involved in driving. Recently, by exploring the 2D-correlation
of the range-angle heat map of the received RF signal,
Wang et. al. [271] proposed a motion compensation method
to mitigate the impact of interfering motions on driver vital
sign monitoring when driving by aligning and then concate-
nating the vital signals in different time intervals dynami-
cally. Extensive experiments show an estimation accuracy of
99.17%, 98.94% and 94.11% for respiration rate, heart rate,
and inter-beat-interval estimations, respectively.

VI. DISCUSSION
Despite the significant achievements for in-vehicle sensing
applications, a number of issues still remain open for future
studies. In this section, we share several possible research
opportunities for interested readers.

A. EVALUATION OF THE SYSTEM
According to the surveyed approaches, there are two com-
mon limitations in evaluation. First, most of the published
works are evaluated on the data collected either under sim-
ulated driving environments or practical experiments along
with simple routines. Although many efforts have been made
to make the simulated experiments as natural as possible,
knowing a mistake does not really hurt, human beings un-
der simulated driving experiments will have much different
physiological responses from that of real-world driving [147],
[285]. As a result, it is questionable whether the existing
research can be generalized to practical driving. Second, dif-
ferent methods are usually evaluated on different datasets, and
it is difficult to judge which one is better by just compar-
ing the related approaches side-by-side because even a small
difference in data may affect the performance especially for
data-driven approaches. Therefore, it is worthwhile to develop
highly-efficient in-vehicle sensing data collection platform
and build more standard public datasets for comparison across
different methods.

B. FUSION OF DIFFERENT FEATURES
Many of the existing studies [129], [131], [134], [135] have
shown that joint sensing over different features together can
improve performance. However, few of them have studied
how much extra cost it takes during the fusion process. For

example, to train a network that can leverage sensing features
from both big motions (e.g., head/leg/arm) and small motions
(e.g., eye open/close) may take twice or even higher computa-
tion and memory than that of utilizing just one of the features.
This is because that the network may suffer from the Curse
of Dimensionality [286] with the increment of the number of
features. Hence, the efforts needed to construct the dataset
and then train the network may grow exponentially. There-
fore, optimization of feature fusion is important for in-vehicle
sensing.

C. PERSONALIZED IN-VEHICLE SENSING
Most of the current in-vehicle sensing studies aim at improv-
ing the safety. However, with the development of automotive
techniques, drivers may expect to be able to adjust the sensing
functionality freely. For example, an elderly driver may want
the sensing system to pay more attention to his/her own health
status during driving, while another driver who has a young
baby on board cares more about his/her baby on the back
seat. Thus, personalized in-vehicle sensing which can meet
the various requirements on different functions may be of
interests.

VII. CONCLUSION
This paper presents a survey on the state-of-the-art in-vehicle
sensing technology. We classify the existing research works
into five topics, i.e., occupancy detection, fatigue/drowsiness
detection, distraction detection, driver authentication, and vi-
tal sign monitoring. We discuss the motivation and main
techniques adopted in each topic, explain how these tech-
niques are leveraged, and analyze the limitations and possible
future solutions. A high-level discussion about the evaluation
and feature fusion is provided to narrow the gap between
theoretical research and practical applications. Personalizing
in-vehicle sensing is also covered which may inspire more
research to improve driving safety while making driving ex-
perience more customized.

REFERENCES
[1] “Automotive revolution - perspective towards 2030,” Accessed : Mar.

06, 2022. [Online]. Available: https://www.mckinsey.com/industries/
automotive-and-assembly/our-insights/disruptive-trends-that-will-
transform-the-auto-industry/de-DE

[2] “Automotive and mobility statistics,” Accessed : Mar.
06, 2022. [Online]. Available: https://movotiv.com/statistics#:\:
text=on%20Global%20Journeys%20%26%20Markets%20(pre%
2DCovid)&text=The%20average%20trip%20duration%20globally,
a%20vehicle%20over%20their%20lifetime

[3] “Americans spend 70 billion hours behind the wheel,” Accessed :
Mar. 06, 2022. [Online]. Available: https://newsroom.aaa.com/2019/
02/think-youre-in-your-car-more-youre-right-americans-spend-70-
billion-hours-behind-the-wheel/
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