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ABSTRACT Wireless Sensor Networks (WSNs) that classify the source of detected radio signals require
mobile transmitters, physical (PHY) and link layer meta data, and packet sniffing capabilities. These signal
classifiers are restricted by assumptions that may be difficult to realize in adversarial Signal of Opportunity
(SOP) localization settings, and they do not jointly localize transmitters. In this paper, we present a novel
framework that self-organizes to classify and jointly localize sets of stationary transmitters emitting SOP.
The framework leverages the underlying Gaussian distribution associated with multilateration estimates via
the use of Unsupervised Learning (UL) techniques. Inference of spatial multilateration features allows for the
joint estimation of classification outcomes with respect to several unknown parameters, including the number
of transmitters, source transmitters for each signal, the underlying multilateration distribution, and the
transmitter locations. The proposed framework was evaluated in a two-dimensional trilateration experiment.
Signals transmitted by vehicular Tire Pressure Monitoring System (TPMS) wireless beacons were observed
by a custom-built WSN test bed to produce Received Signal Strength Indicators (RSS) features. We used
a trained Convolutional Neural Network (CNN) to make location estimates from the RSS feature data. An
Anderson-Darling test showed that these CNN estimates were statistically indistinguishable from those of
a normal distribution. The spatial trilateration estimates were clustered to identify six of the eight TPMS
transmitters with a 75% cluster detection rate, which was the result of every statistically different spatial
and RSS population as determined by a Kruskal-Wallis (KW) test. The source transmitter of every signal
was classified with a 76.4% indicator variable accuracy (93.7% when removing statistically identical RSS
populations) and the detected source transmitters were localized with an average of 1.72 m variance and
1.19 m bias within a roughly 15 m square whose perimeter is made up of receivers.

INDEX TERMS Convolutional neural network, dirichlet process Gaussian mixture model, fingerprinting,
multilateration, signals of opportunity, unsupervised learning, wireless localization.

NOMENCLATURE
ACRONYMS
AD Anderson-Darling
ADS-B Automatic Dependent Surveillance Broadcast
AUC Area Under the Curve
CDF Cumulative Distribution Function
CDMA Code Division Multiple Access
CFAR Constant False Alarm Rate
CNN Convolutional Neural Network
CRLB Cramer Rao Lower Bound
DPGMM Dirichlet Process Gaussian Mixture Model

DTV Digital Television
EM Expectation Maximization
GNSS Global Navigation Satellite System
GPS Global Positioning System
GSM Global System for Mobile Communications
KW Kruskal-Wallis
LIDAR Light Detection and Ranging
LOS Line of Sight
MCMC Markov Chain Monte Carlo
MHT Multi-Hypothesis Tracking
MSE Mean Squared Error
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NLOS Non Line of Sight
NN Neural Network
OOK On-Off Keying
PLL Phase-Locked-Loop
PPV Positive Predictive Value
QQ Quantile-Quantile
ReLU Rectified Linear Unit
RF Radio Frequency
ROC Receiver Operating Characteristic
RSS Received Signal Strength
SGD Stochastic Gradient Descent
SL Supervised Learning
SOI Silicon on Insulator
SOP Signal of Opportunity
TDoA Time Difference of Arrival
TPMS Tire Pressure Monitoring System
UL Unsupervised Learning
UWB Ultra Wide-Band
VI Variational Inference

I. INTRODUCTION
Driverless vehicles could save the U.S. economy an estimated
$450 billion per year [1] by improving traffic safety [2], [3],
increasing the mobility of the impaired and the elderly [4], and
reducing pollution to the environment [5]. To realize robust
autonomous operation, vehicles require nearly comprehensive
and continuous situational awareness to make appropriate
driving decisions. This awareness is obtained via the use of
on-board sensing technologies such as LIDAR (LIDAR) [6],
computer vision algorithms [7], [8], and radar [9]. A GNSS
(GNSS) such as GPS (GPS) or similar provides vehicle lo-
cation data. [10]. Accurate location information is critical,
especially during maneuvers such as lane changing, navigat-
ing an intersection, or merging with high speed traffic [11].
GNSS-based techniques may be unable to handle complex
road conditions upon which these vehicles operate, such as
urban canyons [12] and foliage [13] that cause significant sig-
nal attenuation, as well as being susceptible to unintentional
interference [14] and malicious jamming signals [15]. There-
fore methods to supplement or replace GNSS have generated
significant interest [16].

Alternatively, the position and velocity of vehicles can also
be determined by leveraging SOP (SOP)-based navigation
and beacon localization methods, which assume that source
transmitters detected by the WSN can be distinguished using
a priori metadata (e.g., physical layer attributes such as car-
rier frequency). However, in adversarial wireless localization
problems, this meta data may be limited or unavailable. In
this work, we introduce a framework to estimate and clas-
sify the following unknown parameters using only physical
pass-band signal characteristics detected by the WSN: i) the
number of transmitters; ii) their location; iii) which transmitter
sent each detected signal. State-of-the-art WSN frameworks
that estimate a subset of or all of these unknowns include

ADS-B (ADS-B) signals used in aerospace applications [17]–
[22]. These solutions estimate RF (RF) features that are
highly correlated to hardware noise such that the transmitters
can be identified [17], [18], perform mobility analysis via
Multi-Hypothesis Tracking (MHT) [19], use heuristic thresh-
olds in multilateration or range estimate based verification
methods [20], [21], or employ a combination of these tech-
niques [22].

Although there have been substantial advances in SOP-
based localization and navigation, several challenges remain.
Radio-frequency (RF) feature analysis solutions such as the
algorithms presented by Moser et al. [17] and Schafer [18] re-
quire protocol meta data, including transmission frequency, to
correct for Doppler effects when computing their frequency-
based feature. Additionally, Moser’s phase-based feature re-
quires the detection of spoofing signals transmitted during the
tuning interval of the spoofer’s Phase-Locked-Loop (PLL),
during which the transmitter-specific transient behaviors can
be observed. Mobility analysis works such as [19] reliably
detect sudden changes to tracks, but can be vulnerable to
slowly diverging spoofed tracks and spoofers who are knowl-
edgeable of the propagation delay to trusted transmitters.
Multilateration and range-estimate based verification methods
also have several drawbacks, including heuristic-based thresh-
olding techniques for classification that do not generalize
well, along with requirements for non-opportunistic signals to
contain position and time stamp information. Moreover, they
employ inference techniques that focus only on the binary
unknown parameter representing the presence or absence of
a second transmitter or spoofer.

In this paper, we present a novel algorithmic framework
distinguished from other state-of-the-art for low assumption
multilateration networks in the following ways:

1) The framework provides a stationary alternative to
MHT that is relatively computationally inexpensive by
utilizing Bayesian clustering instead of hypothesis test
trees.

2) It introduces an opportunistic alternative to current
WSNs that use multilateration data to classify signal
source IDs, allowing for localization without packet
sniffing.

3) The framework requires fewer assumptions compared
to current RF signature-based WSNs that use phase and
frequency meta data, allowing for the localization of
transmitters when little is known a priori by the WSN
about RF behavior.

The rest of this paper is organized as follows. Section II
presents a detailed overview of the SOP concept, the value
of meta data, and the goals of our approach. Section III de-
scribes the framework as well as details of our methodology
and experimentation. Section IV evaluates the performance
of our CNN-based multilateration and UL-based clustering
of spatial multilateration data. This analysis includes an An-
derson Darling (AD) normality test of spatial data to confirm
the Gaussian assumptions of the UL algorithm, as well as a
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FIGURE 1. Complementary SOP navigation scenarios: (a) Vehicle determines its location based on ranging of source transmitters; (b) transmitter location
determined based on its emissions detected passively by network of WSN receivers. Physical feature and range estimates are independent of other
readings in the SOP beacon localization problem, such that they may be computed locally at each receiving sensor or at the fusion center.

Kruskal-Wallis (KW) non-parametric test of Received Sig-
nal Strength (RSS) estimates. Final thoughts are discussed in
Section V, including drawbacks and open challenges of our
methodology.

II. OVERVIEW OF LOCALIZATION MODEL
A SOP is a wireless signal that is both freely available but
not designed to carry information for receiving localization
systems [23]. SOP-based navigation systems perform mul-
tilateration given a user’s receiver with an unknown loca-
tion. Several local transmitters with known locations are used
with enough wireless information known about their carrier
frequency and bandwidth to individually detect each signal
and estimate physical properties from them. These systems
(Fig. 1 (a) typically use high altitude, high transmit power
SOPs such as DTV (DTV), GSM (GSM), and CDMA
(CDMA) signals in outdoor multilateration experiments with
a small number of SOP transmitters [24]–[26]. System per-
formance for these approaches varies greatly depending on
the availability and orientation of the transmitters, and their
advantages and disadvantages have been sufficiently covered
in [16], [23].

SOP-based navigation researchers have also explored the
inverse approach focusing on the beacon localization prob-
lem. In this approach, several receivers with known locations
are used together to estimate the positions of one or more
SOP-emitting transmitters with unknown locations (Fig. 1 (b).
They usually report SL (SL)-based, RSS-based indoor mul-
tilateration [27] or parameterized fingerprinting experiments
to estimate the location of a single Zigbee, Wi-Fi, Bluetooth,
or UWB (UWB) SOP transmitter via multiple receivers [28]–
[33]. System performance for these works varies greatly de-
pending on the SL algorithm used, training data collected, and
the number, placement, and design of the receivers.

In this work, we investigated a variant of the transmitter
localization scenario, where a WSN “black box” had to solve
the problem without meta data or packet sniffing capabilities
(Fig. 2). Metaphorically speaking, the “black box” represents
the WSN operator’s intent to localize any detectable signals.
Without a priori knowledge of how the channel activity cor-
responds to transmitter activity or packet-layer data such as
reported transmitter location [17]–[22], our WSN was forced
to use only locally-computed physical signal characteristics
(e.g., Time Difference of Arrival (TDoA), RSS) to determine
the source of each detected signal while also locating and
counting those source radios. Given that pre-multilateration
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FIGURE. 2. An example of the low meta data scenario is a subset of the
transmitter localization problem, where the number of beacons is hidden
from the localization network of sensors, and must be inferred. As in the
standard localization problem, the transmitter locations are unknown.
Additionally, the origin of the four signals detected in this scenario is
hidden, such that the receiving network must infer which transmitter sent
which signal via the physical layer pass-band characteristic inference of
signal strength, angle, or timing estimates.

physical features in this complex WSN varied by proto-
col, time, frequency, bandwidth, and several other physi-
cal characteristics, a post-multilateration clustering approach
was needed to leverage the sum-of-Gaussians characteristic
of all CNN multilateration estimates despite their front-end
variations.

III. PROPOSED MULTILATERATION FRAMEWORK
In this section, we describe our framework (see Fig. 3). The
method begins with the signal detection and pre-processing of

the TPMS signals received by our WSN setup, their process-
ing by a central computer to produce several input features,
generation of spatial transmitter location estimates from those
features via CNN-based multilateration, and UL-based infer-
ence of unknown parameters leveraging that spatial data.

A. SIGNAL DETECTION AND PRE-PROCESSING
Data files in the form of two-dimensional arrays were pro-
cessed to generate RSS estimates from each receiver for each
TPMS frame over time before localization could occur (block
(a) in Fig. 3). The process of extracting RSS estimates from
a given data file includes: down-sampling, frame detection,
preamble frequency and timing correction, and frame correla-
tion for estimating the RSS per frame.

The first step required band-pass filtering and down-
sampling to reduce the computational load as well as increase
the effective bit depth resulting from oversampling.

After re-sampling, detection was performed. This step be-
gan by identifying the start of each individual frame. For this
application we used a simple power detector with a Constant

FIGURE 3. An overview of the interaction between of all estimators,
classifiers, and digital signal processing tasks of the proposed approach
presented in this work. Inputs and outputs are represented by circles,
while intermediate steps are represented by rectangles. KW and AD tests
were performed to determine the uniqueness of each beacon’s true RSS
population and normality of estimated beacon location subtracted
multilateration estimates, respectively. Normality is an assumption of the
DPGMM (DPGMM) inference, and by determining the number of unique
input data populations, we identify maximum performance bounds for the
DPGMM inference.

False Alarm Rate (CFAR) threshold. We started by decom-
posing the down-sampled file into k = 1, . . ., K bins based on
the detector’s integration period T . The energy level of each
bin in the decomposed signal x(t ) was computed as [34]:

E [k] = 1

T

∫ T (k−1)

T k
‖x(t )‖2dt . (1)
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For this type of CFAR detector, the threshold level is com-
puted using [35]:

α = N (P−1/N
fa − 1), (2)

given false alarm probability Pfa and number of samples N .

B. INPUT FEATURE ESTIMATION
After a frame was detected, the frequency and timing errors
had to be corrected before the RSS can be estimated using
correlation (see block (b) in Fig. 3). The frequency and timing
offsets form a continuous ambiguity function (CAF). To esti-
mate the frequency and timing offset parameters, the known
preamble was frequency shifted and stretched as needed, then
correlated against the detected frame. The peak of the correla-
tions represented the best fit. This technique allowed for vary-
ing degrees of accuracy but at the expense of computational
load. For this experiment, we post-processed the data on a
desktop such that computational resources were not a limiting
factor. The correlation between the CAF search preamble and
the received signal also acted to estimate the RSS of the
received frame [36]:

RSS = 1

N

N∑
t=1

xt ||x̂t ||, (3)

where xt sampled from t = 1, . . ., N is the CFAR detected
signal and x̂t is the unit power CAF preamble after correcting
for frequency and timing offsets. Through this process, we
employed three receivers to produce a dataset where input
features were represented as x = [RSS1, RSS2, RSS3].

C. MULTILATERATION
Multilateration (see block (c) of Fig. 3) is the process of using
physical signal characteristics to estimate the distance be-
tween receiver-transmitter pairs, and subsequently computing
the transmitter’s most likely location. The CNN algorithm is
a popular choice for replacing both stages of multilateration
with a set of trainable weights [28]–[33]. This algorithmic
substitution is useful for replacing fingerprinting methods
because it allows for continuous, rather than discrete-space,
unknown parameter estimation through the use of trainable
weights. This attribute is important since physical space is
a continuous variable, and traditional fingerprinting typically
predicts physical transmitter location via nearest-neighbor
techniques that introduce inherent errors due to their discrete-
space nature [28]–[33]. Alternatively, traditional continuous-
space, physical characteristic-based transmitter localization
techniques first estimate the range by assuming an electro-
magnetic signal propagation path loss model, then solve for
the geometric problem of intersecting circles (or parabolas) to
identify the most likely region of the transmitter [37]. State-
of-the-art CNN localization works [28]–[33] use the universal
approximator characteristic [38] of Neural Networks (NNs) to
provide flexible, accurate transmitter location estimates that
improve traditional fingerprinting and provide an alternative
to multilateration if the training data is available. Although

Algorithm 1: CNN model training protocol [40].
1: procedure Given training data X , labels Y , learning

rate η, training iterations ne

2: initialize model parameters w, b
3: for ne do
4: for each x in X , y in Y do
5: for layer convolution layer l in L do
6: for filter w in layer l do
7: apply zero-padding if used
8: compute convolution zl (x,w, b)
9: apply ReLU a = max(0, z)

10: compute max pooling P = pool(a)
11: end for
12: end for
13: flatten down sampled features,

p = flatten(P)
14: for each dense layer do
15: compute linear logit, z(p,w, b)
16: compute activation function

a = max(0, z)
17: end for
18: compute softmax ŷ = arg max(a(z))
19: compute loss fCE (y, ŷ)
20: compute gradients δ

δw
fCE , δ

δb fCE

21: update model parameters w, b
22: end for
23: end for
24: end procedure

range and geometry solving multilateration methods do not
require training data, they do require meta data in the form of
path loss information [39].

Although CNN architectures can take many forms, the SGD
(SGD) training methodology is frequently employed (see Al-
gorithm 1) [40]. A NN can be described as a union of small
non-linear regression models arranged in both parallel and
serial connections. In our case, these models were iteratively
optimized via SGD to minimize the estimation error of each
transmitter’s location. The use of filters in the CNN architec-
ture can be described as enforcing a constraint on weights that
results in model regularization, lower computational costs,
and the model assumption of input equivariance. Input equiv-
ariance is the idea that data patterns correlated to the ground
truth are highly similar despite shifts, rotations, and other
common transforms.

D. INFERENCE
Using clustering algorithms as the final step in our proposed
methodology, we proceeded to estimate or classify the un-
known parameters described in Section I (see block (d) in
Fig. 3). This was achieved by self-organizing the spatial trans-
mitter location estimates provided by the CNN. Membership
in a cluster represents the probability the signal that produced
that location estimate was transmitted by the same radio as all
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other location estimates in that cluster. The number of active
clusters represents the probability of how many radios trans-
mitted the set of all signals detected by the WSN. Finally, the
estimated mean of each cluster represents the most probable
location of a transmitter.

The DPGMM assumes a set of samples was generated by
the following generative conditional distribution [41]:

p(Pi|π1, . . ., πk, μ1, . . ., μk, s1, . . ., sk )

=
k∑

j=1

π jN (μ j, s−1
j ), (4)

where the mixing proportions
∑k

j=1 π j = 1, and
observations from Gaussians of mean μ and co-
variance s−1 with larger mixing proportions π are
generated more often, and mixing proportions that are
small indicate inactive mixtures. Since integrating to
evaluate the distributions p(π1, . . ., πk |P1, . . ., PN ) ∝
p(P1, . . ., PN |π1, . . ., πN )p(π1, . . ., πN ) are not tractable,
Bayesian inference of DPGMMs is always performed either
by MCMC (MCMC) sampling [42], VI (VI) [43], or EM
(EM) [41]. In this work, we employed the optimization-based
EM as a relatively hands-off approach when compared to
VI or MCMC, which only risks convergence to a local
minima [44]. MCMC and VI, on the other hand, risk mode
default and poor mixing due to their utilization of Gibbs
sampling [44]. Additionally, EM provides faster and more
accurate results for when point estimates are sufficient, as in
this study [44].

EM optimization of the DPGMM conditional probabilities
θ = π1, . . ., πk, μ1, . . ., μk, s1, . . ., sk is then provided first
by the expectation step, which computes the cluster indicator
vector c of each sample given current estimated distribution
parameters [41]:

p(ci = z|Pi, θ ) = N (μz, s−1
z )πz∑k

j=1 N (μ j, s−1
j )π j

, (5)

where observation Pi belongs to mixture z if p(ci = z|Pi, θ ) >

p(ci �= z|Pi, θ ).
Then, inversely, the maximization step is given as the com-

putation of the new Bayesian posterior distributions by using
the current cluster assignments as:

π j = 1

N

N∑
i=1

p(ci = j|Pi, θ ), (6)

μ j =
∑N

i=1 p(ci = j|Pi, θ )Pi∑N
i=1 p(ci = j|Pi, θ )

, (7)

s j =
∑N

i=1 p(ci = j|Pi, θ )∑N
i=1(Pi − μ j )2 p(ci = j|Pi, θ )

. (8)

Algorithm 2: Dirichlet Process Gaussian Mixture Model
(DPGMM) inference by EM [41].
1: procedure Given observations P, mixing

proportions π , cluster means μ, cluster covariance
s−1, indicator variables c, number of observations N
and number of clusters k

2: Initialize θ = π1, . . ., πk, μ1, . . ., μk, s1, . . ., sk

3: while not converged do
4: Expectation step
5: for i ∈ {1, . . ., N} do
6: for j ∈ {1, . . ., k} do
7: compute p(ci = j|Pi, θ )
8: end for
9: end for

10: Maximization step
11: for j ∈ {1, . . ., k} do
12: for i ∈ {1, . . ., N} do
13: compute π j |p(ci = j|Pi, θ )
14: compute μ j |Pi, p(ci = j|Pi, θ )
15: compute s j |Pi, μ j, p(ci = j|Pi, θ )
16: end for
17: end for
18: end while
19: end procedure

Algorithm 2 shows an overview of the DPGMM EM op-
timization, including the combination of the expectation and
maximization steps.

Current wireless localization works that make use of un-
supervised learning algorithms [45]–[48] do so for self-
supervised applications, wherein clustering is used to generate
labels for unlabeled data such that the costs of training a
supervised learning model are reduced. These methods have
been shown to reduce the bias and variance of CNN-based
fingerprinting estimates.

In previous work, we applied a Gaussian Mixture Model
(GMM) to a known number of mobile, simulated wireless
beacons [49]. In the following sections, we describe how we
applied a modified version of that proof of concept simula-
tion to a practical experiment. There were several differences
between the two efforts.
� Mutliateration estimates were produced from real mea-

surements, rather than generated directly from a Gaus-
sian distribution.

� While the Markov process used generated Gaussian sam-
ples at each time step with a stationary mean, real-life
data sets have a non-stationary mean. This would make
the use of mixture models inappropriate, which assume
the distributions are stationary.

� We used a Dirichlet prior, which allowed for the infer-
ence of an unknown number of clusters instead of a fixed
number specified by the user utilizing a priori meta data.
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FIGURE 4. The experiment site, located at 358 Pleasant St, Gardner MA, USA (longitude -71o59’41.32”W, latitude -42o34’9.19”N). The hardware used in
the experiment is also pictured.

Next, we present the implementation details of our novel
framework (see Fig. 3), as well as evaluate its performance.

IV. EXPERIMENTAL RESULTS
In this section, we describe the implementation details of the
proposed CNN-based multilateration, including the method
used to generate dataset ground truths, the architecture used,
and the training protocol. We subsequently evaluate our
entire methodology (Fig. 3), supplemented by the use of
assumption-checking hypothesis testing.

A. EXPERIMENT IMPLEMENTATION DETAILS
Three custom-built Raspberry Pi 3 Model B+ receivers em-
ploying NooElec NESDR smart v4 RTL SDR units and
isotropic antennas were used to digitize and store the RF
signals at 315 MHz emanating from the TPMS sensors of
a Subaru Forester 2016 (Fig. 4). For each TPMS sensor,
a three minute RF capture was made per location at 2.5
MSPS complex IQ. The experiment consisted of four TPMS
sensors, three custom receivers, nine training vehicle posi-
tions, and two vehicle positions used for evaluation, which
resulted in 132 data files. The samples were loaded into
MATLAB and the built-in resample function was used with
a re-sampling factor of 32. This resulted in an output band-
width of 78.125 kHz which was above the silicon on insulator
(SOI) bandwidth and was about 18 samples per symbol for
the TPMS SOI. Finally, a time constant of T = 5 milliseconds
was used in our CFAR detector, which used both training cells
and guard cells, but only on one side of the cell under test. We
used three guard cells and 10 training cells.

B. LABEL GENERATION VIA SURVEYING
To generate the ground truth labels for the training and test-
ing of our CNN, we surveyed the parking lot located at 358
Pleasant St, Massachusetts, USA (longitude -71o59’41.32”W,
latitude -42o34’9.19”N). String was used to draw circles with
tied sticks of chalk, anchored down to the center of the circles
on each of our three Raspberry Pi units, which were used as
the sensing localization network (Fig. 5). Since each chalk
intersection location was known, the grid allowed physical

FIGURE 5. The true location of beacons was measured by adding the
measured distance of the beacon from these known intersect points (a)
and the anchor and beacon locations for the experiment (b).

objects to be located in the experimental region by trilateration
via hand-measuring three distances to the three nearest chalk
intersects (not to be confused with the wireless multilateration
performed by our experiment). Measuring distances to more
than three reference points would have increased the accuracy
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FIGURE 6. An overview of the PointNet CNN architecture, which we modify only by changing the 10-class softmax output to a two-dimensional linear
output. A dropout with p = 0.3 is used after each dense layer. Each T-net is a mini-network that aims to learn a affine transformation matrix. PointNets
are designed for low-dimensional data and physical space. We employed a bagging ensemble of three PointNets for this experiment.

of label generation at the cost of more time spent measuring
at each point. The error for the hand-made range measure-
ments of the 32 grid locations given by Fig. 5 was found, in
an experiment of 32 measurements, to have a mean error of
2.00 cm and an error standard deviation of 1.68 cm. These
moments were determined by comparing theoretical geometry
(see Fig. 5) to the actual measurements. This error combines
human tape-measure error, which is about 0.5 cm or half
a tick mark, and chalk circle intersect misplacement errors
caused by slack in the string and its measurement error. Given
this statistical description of range measurements, we used
the second order Taylor series approximation of the CRLB
(CRLB) for multilateration measurements m [50]:

CRLB(θ |m) ≥
[

dm(θ )

dθ

T

N (θ )−1 dm(θ )

dθ

+ 1

2
tr

(
N (θ )−1 dN (θ )

dθ
N (θ )−1 dN (θ )

dθ

)]−1

.

(9)

This computation is performed given the trace function
tr(·), anchor-beacon distance matrix θ , the gradient of mea-
surement covariance with respect to beacon location N (θ ),
and the gradient of measurements with respect to beacon lo-
cation dm(θ )

dθ
to compute the CRLB of training labels gathered

for the fingerprint data. This yielded a standard deviation of
16.8 cm on the x axis and 17.3 cm on the y axis for our ground
truth labels.

C. CNN TRAINING
The CNN architecture developed for this work (Fig. 6) was
designed using a modified PointNet [51] architecture and a
host of over-fitting countermeasures to combat the high noise,
low number, and large shift in statistics between training
and testing data and labels. The PointNet is terminated with
a two neuron linear layer, whose outputs represent the es-
timated two-dimensional location of the transmitter whose
range estimates were input. The model’s three-dimensional
input represents a set of RSS estimates from the perspective
of each sensor for a single detected signal of unknown origin.
The PointNet is comprised of two T-nets, each of which is a
mini-network comprised of a 32, 64, and 512 filter convolu-
tional layer, a global max pooling [52] layer, a 256 and 128

neuron dense layer, and final dense layer with a number of
neurons equal to the squared number of features. We do not
change the architecture’s depth or width because our inputs
are of the same dimensionality as the three-dimensional spa-
tial data that this state-of-the-art architecture was optimized
for. These T-nets utilize L2 [53] regularizers (λ = 0.001)
to learn an affine transformation matrix. Each convolutional
layer has a kernel size of one, valid zero padding [54], a
ReLU (ReLU) activation function, and Kaiming [55] kernel
initialization. Additionally, the PointNet is comprised of two
sets of convolutional layers with shared weights, a global
max pooling layer, and two dense layers with 256 and 128
neurons.

We trained three PointNets in a bagging ensemble [56]
learning scheme, which can significantly improve the per-
formance of the trained SL models. A bagging ensemble of
SL models is a collection of n models independently trained
on the same data set, not to be confused with boosting or
stacking ensembles. Bagging ensembles perform regression
by averaging their predictions on test data. The benefit of this
can be shown by minimizing the expected squared error of
predictions, defined as [57]:

E

[((
1

n

n∑
i=1

ŷi

)
− y

)2]
= v

n
+ c

n − 1

n
, (10)

where the variance v = E [(ŷi − yi )2], and the covariance c =
E [(ŷi − y j )2], i �= j. If the covariance is zero, or each model
makes different mistakes, then the gain of using an ensemble
on the squared error of predictions is 1

n . If v = c, then the
ensemble brings no gains, and the prediction MSE remains
at v.

The weights were optimized in TensorFlow [58] by min-
imizing training data MSE loss via the Adam [59] quasi-
Newton SGD method (Fig. 7). The relatively large differ-
ence between the ensemble’s loss and each weak learner’s
loss indicated a low covariance c as described by Eq. (10),
or that our use of a bagging ensemble was appropriate and
beneficial towards making accurate multilateration estimates.
Data was trained in batches of the whole training set, which
was of size 601 detected TPMS packets over all 9 locations
and 4 transmitters, and batch normalization [60] was used.
No early stopping was implemented over the 500 epochs of
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FIGURE 7. The transient epochs of MSE training and validation loss of the CNN. Final training MSE for the ensemble was 0.89 meters, and a final test set
MSE of 4.87 meters. CRLB results found that training and test labels have a minimum error of 0.168 m and 0.173 m along the x and y axis, respectively.

FIGURE 8. A summary of the N = 229 spatial multilateration estimates
and the estimated cluster means and co-variances of the DPGMM. “Missed
detections” represent pairs of transmitters whose spatial and RSS
estimates could not be statistically distinguished.

FIGURE 9. A summary of the test set’s N = 229 detected TPMS packet
multilateration estimates true indicator variables ci = j, i = 1, . . . , N,

j = 1, . . . , k (a) and our predictions (b). Any sample from one axis with the
same indicator variable as a sample from the other axis is colored white.

FIGURE 10. QQ plot of the cluster mean subtracted, standardized PointNet
multilateration estimates. Additionally, the axis-specific AD statistics and
critical statistics are provided.

training, at which point the model loss converged. An Intel
Core i7-10750H CPU and 16 GB of RAM were sufficient
to train this relatively shallow network and low-dimensional
data.

D. CNN TESTING & UL INFERENCE
The deployment stage of the proposed SOP beacon localiza-
tion system used the hardware testbed and algorithms de-
scribed in this paper. Since physical signal features were
estimated, range estimates and subsequently multilateration-
based location estimates were random variables [50]. Specif-
ically, location estimates are known to be distributed as mul-
tivariate Gaussian variables (even if observations are non-
Gaussian [61]–[64]) such that P̂i ∼ N (μ j, � j ) for a number
of multilateration estimates i = 1, . . ., N and a number of
SOP beacons j = 1, . . ., k [61]–[64]. Consequently, we uti-
lized a DPGMM as a probabilistic inference model with which
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to assign the locations estimates P̂i to k sub-populations. Each
sub-population or cluster of estimates represents the spatially-
inferred probability that the jth wireless beacon transmitted
the ith multilateration estimate (Fig. 3). This inference and
assignment method differs from the heuristic methods [17],
[19] discussed in Section I since it is automated, leverages the
underlying statistics of the data, and is not overly sensitive to
hyper-parameter choices.

The evaluation of the experiment can be seen in Fig. 8,
in which N = 229 detected TPMS packets were localized
using the trained CNN. The Autel prompting radio [65] was
used for about three minutes at each TPMS beacon location,
and the vehicle was moved once for a total of eight beacons,
on which we superimposed the multiateration estimates in
post-processing. We implemented the DPGMM with k = N
such that every data point may become a cluster if its mixing
proportion π j, j = 1, . . ., k is sufficiently large.

We found the multilateration estimates possessed a high
error relative to the distance between beacons. This could
potentially be the result of the significant variation in the RSS
estimates, the 22.5 dBi directional TPMS antenna [66], or our
use of only three receivers, the minimum number required for
two-dimensional localization.

The two pairs of RSS populations that could not be differen-
tiated by the EM-based DPGMM clustering were not neigh-
boring locations, but the front-left tire’s transmitter and the
back-right tire’s transmitter at two locations. This indicated
a relatively higher correlation between the transmit power
and received power than the transmitter location and received
power. While only six of the eight RSS populations could
be distinguished by the DPGMM, this is actually a typical
performance given the small number of sensors, the small size
and high variance of the RSS estimates, and the low-power,
highly directional design of the transmitters.

We performed a KW (KW) [67] test, a non-normal method
for determining if two sets of samples originate from the same
distribution. The test statistic is defined as:

H = (N − 1)

∑g
i=1 ni(r̄i − r̄)2∑g

i=1

∑ni
j=1(ri j − r̄)2

, (11)

where N is the number of samples across all groups g, ni is the
number of samples in group i, r denotes rank, and ·̄ denotes
mean. For a critical statistic H∗ computed by table lookup
for α = 0.05, we found H < H∗ on the RSS populations of
each pair of beacons that made up a missed detection, or that
we could not reject the null hypothesis. We could not find
evidence the estimates were statistically different. On average,
the six beacon estimates were evaluated with ground truth
values to have a 1.72 m variance (E [(P̂ − P)2]) and 1.19 m
bias (E [|P̂ − P|]).

Insight into the performance of the DPGMM is provided
by the confusion matrix which quantifies the accuracy of
the expectation step, i.e. classification of which transmitter
produced which signals (see Fig. 9). The confusion matrix
shows the true mixing proportions of the data (Fig. 9(a))
and that some transmitter captures produced more detected

signals from the localization sensors than others. That num-
ber, from top left to bottom right of the confusion matrix,
is [18, 38, 31, 38, 17, 27, 18, 34] detected TPMS packets for
each of the three-minute captures at the eight test locations.
Alternatively, the confusion matrix also shows that only six
of the eight clusters were detected (Fig. 9(b)), as, starting
from the top left, if squares are named one through eight, it
can be seen the first and third clusters, as well as sixth and
eighth clusters are combined. Finally, we can see that two
additional multilateration estimates from the seventh beacon
are misclassified, producing an indicator variable classifica-
tion precision or Positive Predictive Value (PPV) of 76.4%.
When incorrect cluster assignments caused by missed cluster
detections are removed, the PPV is 93.7%. PPV is defined as
the number of true positives divided by the sum of true and
false positives [68]:

PPV = TP

TP + FP
. (12)

To gather evidence that our PointNet’s location estimates
were Gaussian distributed and our use of a Gaussian inference
model was suitable, we utilized the AD [69] test for determin-
ing if a set of samples are drawn from a particular distribution.
To do so, we first subtracted the estimated cluster mean from
each population of estimates, then standardized them:

Yi =
(P̂i − μ̂ j ) − 1

g

∑g
i=1(P̂i − μ̂ j )

1
g−1

∑g
i=1(P̂i − 1

g

∑g
i=1(P̂i − μ̂ j ))2

. (13)

This calculation produced a set of samples that, when
tested, whether the estimates were Gaussian with respect to
their cluster center. The AD critical value for normal tests can
be computed as [70]:

A∗2 = A2
(

1 + 0.75

N
+ 2.25

N2

)
, (14)

and the AD statistic is computed as [70]:

A2 = − N − 1

N

N∑
i=1

(2i − 1)(ln 	(Yi )

+ ln(1 − 	(YN+1−i ))),

(15)

where 	 is the standard normal CDF (CDF). Our AD re-
sults are presented in the QQ (QQ) plot in Fig. 10, which
visually and quantitatively show that PointNet multilateration
estimates are Gaussian distributed due to the diagonal trend
line and small AD test statistics.

V. CONCLUDING REMARKS
In this paper, we demonstrated that a novel self-organizing,
stationary transmitter, jointly localizing and classifying
methodology could locate transmitters in low meta data sce-
narios with high accuracy. Hardware experimentation showed
that the N = 229 spatial test set was able to recognize every
statistically different RSS population as verified by a KW
test, and was classified with a 76.4% indicator variable PPV
(93.7% when accounting for missed cluster detections). The
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detected transmitters were localized with an average of 1.71 m
variance and 1.19 m bias within a roughly 15 m square whose
perimeter is made up of receivers. We confirmed the Gaussian
assumption of our clustering algorithm by failing to deny
that the PointNet CNN’s location predictions were Gaussian
distributed. We accomplished this verification via an AD test
with critical statistics A∗2 = 1.0 and observed statistics A2 =
0.39(0.66) for x-axis (y-axis) samples.

Based on the outcomes of this research, several open chal-
lenges and opportunities for further research remain.
� The SL-based multilateration architectures could be im-

proved. The current state-of-the-art [28]–[33] uses a de-
noising auto encoder with unlabelled data and a CNN.

� A different clustering algorithm [71]–[75] than DPGMM
may provide better performance depending on the exper-
imental context.

� More robust [21] TDOA datasets could be captured with
more expensive hardware than our cost-constrained ex-
periment.

Our methodology allows for the post-multilateration clus-
tering of location estimates such that unknown wireless de-
vices present in driverless vehicles may be opportunistically
leveraged for localization tasks, as long as they broadcast
detectable emissions from which physical passband character-
istics may be estimated from. This lowers reliance on GNSS
systems and SOP localization networks that require meta data.
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