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ABSTRACT In this paper, a two-timescale radio access network (RAN) slicing and computing task offload-
ing problem is investigated for a cloud-enabled autonomous vehicular network (C-AVN). We aim at jointly
maximizing the communication and computing resource utilization with diverse quality-of-service (QoS)
guarantee for autonomous driving tasks. Specifically, to capture the small-timescale network dynamics, a
computing task scheduling problem is formulated as a stochastic optimization program, for maximizing the
long-term network-wide computation load balancing with minimum task offloading variations. Due to the
large problem size and unavailable network state transition probabilities, we employ cooperative multi-agent
deep Q-learning (MA-DQL) with fingerprint to solve the problem by learning the set of stationary task
offloading policies with stabilized convergence. Given the task offloading decisions, we further study a
RAN slicing problem in a large timescale, which is formulated as a convex optimization program. We focus
on optimizing the radio resource slicing ratios among base stations, to maximize the aggregate network
utility with statistical QoS provisioning for autonomous driving tasks. Based on the impact of radio resource
slicing on computation load balancing, we propose a two-timescale hierarchical optimization framework to
maximize both communication and computing resource utilization. Extensive simulation results are provided
to demonstrate the effectiveness of the proposed framework in comparison with state-of-the-art schemes.

INDEX TERMS Autonomous vehicular networks, computing task offloading, RAN slicing, resource sharing,
task scheduling, cooperative multi-agent deep Q-learning, learning-assisted hierarchical approach, diverse
QoS provisioning.

I. INTRODUCTION
Future intelligent transportation systems are envisioned to
have more and more autonomous driving vehicles (AVs) op-
erated on the roads with increased levels of automation (e.g.,
levels 3–5) [2]. The development and commercialization of
AVs are essential for intelligent navigation, efficient traffic
management, and driving safety. In recent years, both auto-
motive industry and research community have been investi-
gating how to increase the AV automation levels by using
advanced sensing technologies, such as vision-based cameras,
light detection and ranging (LiDAR), and radio detection and

ranging (RADAR) [2]–[4]. To execute different autonomous
driving tasks (e.g., vehicle localization, object detection and
tracking, and data fusion), the raw data sensed from the sur-
rounding environment needs to be processed/computed, in
form of computing tasks, to extract useful information for
vehicles to perform responsive operations, such as lane chang-
ing, acceleration/deceleration, and route planning. With an
increasing amount of sensed data, the computation demands
can overwhelm the on-board processing capacity, leading to
prolonged computation responsiveness and excessive power
consumption.
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Computation offloading remains a promising way to re-
lease the AV on-board computation burden [5], where the
generated tasks are offloaded through wireless communica-
tions, e.g., cellular vehicle-to-everything (C-V2X) commu-
nications [6], to high-performance edge computing (HPC)
servers. The computation output is fed back to each AV to
facilitate proper vehicle operations. To enhance the edge com-
puting performance, existing studies mainly focus on how to
determine the optimal decisions between local on-board pro-
cessing and task offloading. The objective is to maximize the
aggregate network utility for computation offloading under
quality-of-service (QoS) constraints [7], [8] or minimize the
edge computing cost in terms of offloading latency or energy
consumption [9], [10]. To further reduce the communication
delay, migrating computing tasks to nearby vehicles with
available computation resources through vehicle-to-vehicle
(V2V) communications is studied [7], [11]. Many existing
proposals focus on a single-layer edge computing platform
with one edge node (or a group of servers) connected to a
single wireless base station (BS). To deal with an increasing
number of AVs with high mobility, a multi-tier networking
architecture, e.g., macro-cell BSs (MBSs) underlaid by small-
cell BSs (SBSs), connected to multi-layers of edge computing
servers, is desired to enhance communication coverage with
high computation capabilities. Under this architecture, one of
the fundamental research issues is how to determine a task
offloading policy to balance the network-wide computation
load among edge servers in a long run such that the overall
computing resource utilization is maximized. Existing works
often formulate the computation load balancing problem as
a one-time optimization program, to maximize the network
utility for balanced load [12] or minimize the difference of
task offloading levels among edge servers [13]. However,
to achieve long-term computation load balancing, the task
offloading decisions need to be determined over sequential
scheduling slots (in the scale of milliseconds). Solving one-
shot optimization problems over small-timescale scheduling
slots is computational intractable. Moreover, for load balanc-
ing, the cost of task offloading changes among servers over
consecutive slots needs to be considered.

On the other hand, how radio resources are allocated to
support task offloading can affect the overall computing re-
source utilization. Tasks for autonomous driving often have
diverse service quality requirements. For example, each task
needs to be processed within certain delay bound and also
requires a minimum rate of being fed to the processing en-
gine [2]. If the allocation of radio resources cannot support
the offloading in meeting task transmission rate, latency, or
reliability requirements, a balanced computation load may not
be achieved. In [11], a joint communication and computing
time allocation problem for cooperative computation offload-
ing is studied for vehicular networks, where resources for
task offloading, local task execution, and vehicle-assisted task
migration are jointly optimized to achieve the overall maximal
reliability for task computation. Most existing studies aim at

offloading tasks with QoS satisfaction (e.g., in terms of of-
floading rate [7], task transmission latency [8], [12], [14], and
transmission reliability [11]), while how radio resource allo-
cation affects the computation offloading performance needs
to be investigated. With more AVs generating an increasing
number of tasks to be offloaded, how to improve the overall
communication resource utilization to support computation
offloading is essential to further enhance the edge computing
performance. By enabling resource sharing among BSs, radio
access network (RAN) slicing remains a promising approach
to facilitate more fine-grained resource orchestration for better
utilization and QoS isolation [15], [16]. Through network
function virtualization (NFV), radio resources are virtualized
and aggregated as a resource pool, centrally managed by a
software-defined networking (SDN)-enabled resource slicing
controller. The controller slices the pooled resources among
BSs, based on network traffic load conditions and QoS re-
quirements. There exist studies on how to slice the radio
resources for supporting different vehicular services, by maxi-
mizing 1) the number of admitted service requests [17], 2) the
combination of spectrum efficiency and service satisfaction
ratio [18], or 3) the satisfaction of service delay and informa-
tion freshness [19]. Joint RAN slicing and computing work-
load allocation is studied in [20], for minimizing the overall
system cost of allocating the two-dimensional resources with
task offloading delay and queueing stability constraints.

To explicitly characterize the impact of radio resource slic-
ing on balancing the computation load such that both com-
munication and computing resource utilization can be max-
imized, in this paper, we present a two-timescale RAN slic-
ing and computing task scheduling framework for a cloud-
enabled autonomous vehicular network (C-AVN). Specifi-
cally, to capture small-timescale network dynamics and char-
acterize the relation between the network traffic load and task
offloading policy, we formulate the computing task schedul-
ing problem as an MDP with constraints on communication
latency and computation capacity. The objective is to max-
imize long-term network-wide computation load balancing
with minimal task offloading variations among edge servers.
We employ a cooperative multi-agent deep Q-learning (MA-
DQL) framework with fingerprint to learn a stationary offload-
ing policy. Given the task offloading decisions, we further
formulate a large-timescale RAN slicing problem as a con-
vex optimization program to determine radio resource slicing
ratios at BSs that maximize the overall communication re-
source utilization with statistical QoS guarantee. Due to the
correlation between the problems of two timescales, a joint
optimization framework is established to determine the radio
resource slicing ratios for computation load balancing, and
a learning-assisted algorithm is designed to iteratively solve
the problem with convergence. Extensive simulation results
demonstrate that the proposed framework outperforms bench-
mark schemes, in terms of communication and computing
resource utilization with QoS guarantee and adaptation to AV
traffic load variations.
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TABLE I Important Parameters and Symbols

The rest of this paper is organized as follows. The system
model under consideration is described in Section II. In Sec-
tion III, the formulations for the two-timescale RAN slicing
and computing task scheduling problems are presented, re-
spectively, followed by a joint optimization framework for
maximizing the communication and computing resource uti-
lization. In Section IV, the small-timescale task schedul-
ing problem is solved based on cooperative MA-DQL, upon
which a learning-assisted method is proposed to iteratively
solve the joint optimization problem. Extensive simulation
results are presented in Section V, and concluding remarks
are given in Section VI. Important parameters and symbols
throughout the paper are listed in Table I.

II. SYSTEM MODEL
A. NETWORK MODEL
We consider a two-tier uplink C-AVN, as shown in Fig. 1.
A macro-cell is deployed in the first network tier with a
single MBS, S0, located at the cell center to provide a wide
area communication coverage for AVs on a road segment.
The macro-cell is underlaid by n small cells, centered at
SBSs, S1, S2, . . ., Sn, respectively, in the second tier within the
macro-cell’s coverage near the road to enhance the network
capacity. Set B = {S0, S1, . . ., Sn} is used to denote all the
BSs under consideration. A two-layer edge computing infras-
tructure is attached to the BSs to provide near-the-vehicle
computing capabilities [21]. Specifically, in the upper layer,
a main server is connected to the MBS to provide intensive
computation capacity; in the lower layer, there are n local
servers equipped with lightweight computing resources, each
of which is physically connected to an SBS and is centrally
managed by the main server through wired links, to extend the

computation coverage to nearby AVs. The servers host virtu-
alized radio processing and resource management functions,
e.g., baseband processing units (BBUs) and radio resource
control (RRC) migrated from the MBS and SBSs, through a
network function virtualization (NFV) platform, e.g., Hyper-
visor [22].

Depending on the levels of network operation, there is
a potential split of virtualized network functions (VNFs)
mounted on the main and local servers. The centralized radio
resource management (cRRM) function, e.g., RRC, that re-
quires the coordination among BSs for network-level resource
slicing, the traffic engineering (TE) function, and the mobility
management (MM) function are hosted in the main server,
whereas low-power distributed RRM (dRRM) functions for
local resource allocation and task scheduling (TS) among
vehicles under an SBS are placed at local servers. An SDN-
enabled RAN slicing controller is also hosted in the main
server to make control decisions for the cRRM function based
on the global network information. The network-wide radio
resources are abstracted as a centralized resource pool which
is then partitioned into resource slices reserved for different
BSs in support of task transmissions.

AVs move on the road segment and enter/leave the road as
time passes. We assume that each AV is within the coverages
of the MBS and one of the SBSs, and is connected to both
BSs.1 Time is partitioned into scheduling slots of constant du-
ration T . In each slot, a portion of generated computing tasks
from different AVs are offloaded to the edge servers through
their connected BSs to mitigate the on-board computation
load. An AV with tasks to be scheduled for offloading is re-
ferred to as active AV. The task offloading decisions2 for active
AVs are made by the BSs providing the coverages based on
instantaneous network state information, e.g., task generation
status, vehicular traffic load, and inter-cell interference due to
uplink task transmissions. For modeling tractability, we parti-
tion the road segment under the MBS into Z road zones whose
indexes are represented by set Z0 = {0, 1, . . ., Z − 1}, and the
task offloading decisions for all active AVs (if any) in a zone
at a scheduling slot are assumed identical. Denote Zk (⊂ Z0)
as the subset of zone indexes under SBS Sk (k = 1, 2, . . ., n).
As the length of each scheduling slot is usually short (in the
timescale of milliseconds), the number of active AVs in zone
z of Sk at slot t is assumed unchanged, denoted as Nk,z,t . At
each time slot, BSs collect the updated task generation status
from their covered AVs to determine Nk,z,t . Each AV also
periodically sends its location information to the main server
through the MBS. When AVs move across different BS cov-
erage areas, the MM function in the main server is triggered
for the connection handover to maintain the continuity of task
offloading.

Radio resource reservation is conducted in a large-
timescale planning stage, where the pooled radio resources

1Besides task offloading, AVs and BSs are connected to exchange control
signaling for different functionalities (e.g., MM, TE).

2A generated task from an active AV is offloaded to either its local SBS or
the MBS.
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FIGURE. 1. An illustration of the two-tier C-AVN with layered edge computing.

are sliced among BSs over planning time windows based on
network traffic load conditions. Each window is composed of
an integer number of scheduling slots. In a small-timescale
operation stage, certain types of tasks generated from active
AVs in each scheduling slot are offloaded to selected BSs,
and radio resources on the BSs are also allocated to each
active AV for task transmission. As the length of each plan-
ning window is usually in a large timescale (e.g., hours), the
average number of AVs in road zone z of Sk (k = 0, 1, . . ., n),
denoted by Mk,z, within one window time is assumed con-
stant [20], but can vary between consecutive windows to re-
flect large-timescale vehicular traffic load dynamics. A macro-
scopic fluid-flow vehicular mobility model [23] is adopted
to describe the relation between the mean velocity for AVs
in zone z of Sk , denoted by vk,z, and Mk,z in one planning
window, given by

vk,z = vlim

(
1 − Mk,z

Mmax

)
(1)

where vlim denotes the driving speed limit for each AV on the
road, and Mmax is the maximum number of AVs in each road
zone. From (1), the variation of Mk,z is caused by the change
of AV velocities in each road zone over planning windows.

B. COMPUTING TASK MODEL
Two types of autonomous driving computing tasks are con-
sidered to be offloaded to an edge server for enhanced pro-
cessing efficiency: object detection and data fusion [2], [3],
while other tasks (e.g., object tracking, vehicle localization)
are executed on AVs. For object detection, each generated
task is to extract the coordinates of detected objects; For data

FIGURE. 2. An illustration of main functional modules for autonomous
driving with computation offloading.

fusion, the extracted object coordinates associated with their
moving trajectories are combined with the obtained vehicle
location, which are further processed in the data fusion mod-
ule to predict three-dimensional (3D) coordinates in a local
dynamic map (LDM) for AV motion planning [3]. The basic
work-flow for autonomous driving is illustrated in Fig. 2.

Each computing task is assumed to have a fixed size of H
bits and a latency bound requirement, D, which is set to equal
the scheduling slot duration, T , indicating how fast the sys-
tem should respond to network changes. As shown in Fig. 2,
task processing in the data fusion module is dependent on
the output from the object detection/tracking module and the
localizer, where each computing task is processed in parallel.
Thus, the task generation rate at the data fusion module is
considered two times that at the object detection module. In
addition, each task has a minimum frame rate requirement for
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processing (i.e., the rate of feeding tasks into the processing
engine), denoted by Rmin, which guarantees a minimum fre-
quency of updating the LDMs to keep up with the real-time
environment [2].

As the duration of each scheduling slot is small (e.g., 50 ms
to 100 ms), we assume that there is at most one computing task
generated from each AV at the beginning of each scheduling
slot [24]. The task generation at each slot is assumed to follow
the Bernoulli distribution with probability p which is also
the AV activation probability. Thus, the average overall task
arrival rate at an AV is given by

λ = p

T
. (2)

Suppose that a transmission buffer space is allocated for task
offloading, and each generated object detection or data fusion
task is put into the transmission buffer to be offloaded through
a single on-board wireless transceiver as shown in Fig. 2.
Each task needs to be processed within the scheduling slot
duration; otherwise, it will be discarded [9], [14]. Denote
Ck (k = 0, 1, . . ., n) as the computation capacity (in the unit
of CPU cycles per second) of the edge server connected to BS
Sk , and ϕ as the computation intensity, i.e., the number of CPU
cycles required to process one information bit. As the amount
of computation resources on edge servers are usually much
greater than on AVs and the computation output is usually
small in size, the bottleneck in terms of latency is likely to
be the transmission time consumed for offloading each task.
In comparison, the processing delay for each offloaded task
and the delay of transmitting the computation output back to
AVs are negligible [9], [24], [25].

C. COMMUNICATION MODEL
Before the network operation starts, the MBS and each of the
SBSs are pre-configured a set of orthogonal radio resources
for uplink transmission, the amounts of which are denoted
by Wm and Ws, respectively. With non-overlapped commu-
nication coverages, all the SBSs reuse the same portion of
radio resources to exploit the resource multiplexing gain under
controlled inter-cell interference.

Based on the Shannon capacity formula, the uplink trans-
mission rate from each AV in zone z to BS Sk at scheduling
slot t is calculated as

rk,z,t = Wk∑
z∈Zk

Nk,z,t ak,z,t
log2

(
1 + Ik,z,t

)
, z ∈ Zk, Sk ∈ B

(3)
where Wk = Wm, if k = 0, and Wk = Ws otherwise, with
the radio resources on Sk equally partitioned and allocated
among active AVs associated with Sk for task offloading
at slot t , ak,z,t is the object detection or data fusion
task offloading indicator for active AVs in zone z of Sk

at slot t , which equals 1 when the tasks are offloaded
to Sk and 0 otherwise, and Ik,z,t denotes the uplink
signal-to-noise ratio (SNR) or the uplink signal-to-
interference-plus-noise ratio (SINR), respectively, given

by

Ik,z,t = PkGk,z,tαk,t

σ 2
, if k = 0 (4)

or

Ik,z,t = PkGk,z,tαk,t∑
j={1,2,...,n}, j �=k

PjGk,z′,tα j,t + σ 2
, z′ ∈ Z j, if k �= 0.

(5)
In (4) and (5), Pk denotes the uplink transmission power which
is assumed identical and fixed for all AVs under Sk within
one planning window, Gk,z,t denotes the uplink channel gain
from an active AV in zone z to Sk at slot t , including path loss
and log-normal shadowing, averaged over a group of active
AVs in the zone, αk,t follows an exponential distribution with
unit mean, denoting small-scale Rayleigh fading component
under Sk at slot t [26], [27], and σ 2 is the average background
noise power. For analysis tractability, we assume that radio
resources are allocated to active AVs in each slot such that
the inter-small-cell interference for an active AV in zone z of
Sk only comes from uplink transmissions from active AVs (if
any) in zone z′ with the same zone position under every other
SBS (i.e., z′ modulo |Z j | equals z modulo |Zk|).

III. JOINT RAN SLICING AND COMPUTING TASK
SCHEDULING FRAMEWORK
In this section, we formulate a joint RAN slicing and comput-
ing task scheduling problem as a two-timescale optimization
framework: For the small-timescale task scheduling, our ob-
jective is to determine the AV task offloading decisions over
scheduling slots, to balance the network-wide computation
load with controlled task offloading changes; For the large-
timescale RAN slicing, we aim at optimizing the network-
level radio resource slicing ratios in each planning window, to
maximize the overall radio resource utilization while meeting
diverse QoS requirements. Due to the correlation between the
two-timescale problems, a hierarchical optimization frame-
work is established to jointly maximize the communication
and computing resource utilization.

A. SMALL-TIMESCALE COMPUTING TASK SCHEDULING
We first calculate the computation load of the server con-
nected to Sk (k = 0, 1, . . ., n) at scheduling slot t as

Lk,t =

∑
z∈Zk

Nk,z,t ak,z,tϕH

CkT
. (6)

The cost of having imbalanced computation load among the
servers at slot t , denoted as C1,t , is represented by the maxi-
mum instantaneous computation level [28]. That is,

C1,t = max
Sk∈B

{
Lk,t

}
. (7)

The cost of switching task offloading decisions from slot (t −
1) to slot t , denoted as C2,t , between the MBS and one of the
SBSs for AVs in all road zones is calculated by counting the
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total number of offloading switching events, given by

C2,t =
∑
Sk∈B

∑
z∈Zk

∑
l∈B′\Sk

ak,z,t al,z,t (8)

where B′ is the set including the MBS and the SBS covering
zone z. Therefore, the total cost of computation load balancing
by taking into account the task offloading switching cost at
slot t is a weighted sum of C1,t and C2,t , given by

Ct = βC1,t + (1 − β )C2,t (9)

where β is a real-valued weighting factor between 0 and 1.
Our overall objective is to achieve computation load bal-

ancing among BSs with minimal task offloading variations.
To capture the small-timescale network state transitions and
model the relation between states and offloading policies, we
describe the task scheduling problem as an MDP formulation.
The MDP formulation is represented by a four-dimensional
tuple at scheduling slot t , which includes a set of network
states, St , task offloading actions, At , from active AVs in
all road zones, state transition probabilities, P(St+1|St ,At ),
and an instantaneous reward function, R(St ,At ), defined on
states and actions. Specifically, to characterize the impact of
network dynamics on the computation load balancing cost, St

is designed to include the numbers of active AVs, Nt , under
the BS coverages, the set of uplink SINR (or SNR), It , for
active AVs in all road zones, and the set of task offloading
actions, At−1, taken in slot (t − 1).

The state transitions from t to (t + 1) include the updates
on 1) the AV active statuses in each road zone that lead to
the changes of Nt and It to Nt+1 and It+1, and 2) the task
offloading actions from At−1 to At . The problem objective is
to determine a set of stationary policies (i.e., probabilities of
choosing actions given each of the network states), denoted
by π∗(A|S), that maximize the accumulated system reward
over time, where S and A are steady states and actions when
t is large. The formulation also includes computation capacity
and task offloading latency constraints in each scheduling slot.
Based on the MDP, the problem is presented as a stochastic
optimization framework, given by

(P1) : min
π

E

[
1

L

L∑
t=1

C(St )

∣∣∣∣π
]

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
Sl∈B′

al,z,t ≤ 1, z ∈ Zk, Sk ∈ B (10a)

∑
z∈Zk

Nk,z,t ak,z,t ≤ CkT
ϕH , Sk ∈ B (10b)

H
rk,z,t

ak,z,t ≤ D, z ∈ Zk, Sk ∈ B (10c)

where L is a large positive integer number, constraint (10a)
indicates that active AVs in zone z offload tasks to either the
MBS or the SBS covering the zone at each slot, constraint
(10b) indicates the per-slot computation load on each server
cannot exceed its capacity, and constraint (10c) denotes the
per-slot offloading latency for each object detection or data
fusion task should be bounded.

In (P1), the state and action dimensions are calculated as
3 · ∑n

k=0 |Zk| and
∑n

k=0 |Zk|, respectively, where | · | denotes
set cardinality. As the dimensions increase with n, both the
state and action spaces can be large. In addition, the state
transition probabilities can be difficult to obtain. Therefore,
the conventional value-iteration based MDP algorithms may
not be applied in solving the formulated problem [9]. We
develop a deep reinforcement learning (DRL)-based frame-
work to learn the optimal task offloading policies by itera-
tively interacting with the network environment (see details in
Section IV).

B. LARGE-TIMESCALE RADIO RESOURCE SLICING
For the small-timescale computing task scheduling, we op-
timize the task offloading decisions over scheduling slots
to achieve computation load balancing with minimal task
offloading changes. It is observed in our preliminary work
that the offloading variations should be small (e.g., about 10
switching events over a 1000 time-slot window for a C-AVN
covering 10 road zones) [1], which indicates that a stationary
policy should select a fixed BS (either the MBS or one of the
SBSs) for offloading tasks over sequential slots for all active
AVs in one road zone. Therefore, given the stationary task
offloading policy, we further optimize the network-level radio
resource slicing among BSs to maximize the overall commu-
nication resource utilization in one planning window, while
guaranteeing diverse QoS for different autonomous driving
tasks.

Based on the stationary task offloading policy, we calculate
the average uplink transmission rate, rk,z, from an AV in zone
z to BS Sk (k = 0, 1, . . ., n), given by

rk,z = W γk fk,zRk,z

Mk,z
(11)

where W (= Wm + Ws) is the overall radio resources ab-
stracted from all BSs, γk is the ratio of radio resources sliced
for Sk , fk,z is the average fraction of radio resources reserved
for AVs in zone z of Sk . As the SBSs reuse the same portion
of radio resources, the slicing ratios, γi (i = 1, 2, . . ., n), are
the same for all the SBSs. In (11), Rk,z is the uplink spectrum
efficiency averaged over L scheduling slots, based on the task
offloading decision ak,z,t , given by

Rk,z = 1

L

L∑
t=1

ak,z,t log2

(
1 + Ik,z,t

)
. (12)

Let ak,z denote the stationary task offloading policy for AVs
in zone z of Sk in a planning window. As in [12], [29], we
choose a logarithm function, a concave function with dimin-
ishing marginal utility, to describe the average network utility
obtained when tasks are offloaded from an AV in zone z of Sk .
That is,

U(rk,z ) = log(rk,z ). (13)

As indicated in Subsection II-B, the probability of task gen-
eration at an AV in each slot follows a Bernoulli distribution.
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Since the number of scheduling slots in a planning window
is usually large, the task generation can be described as a
Binomial process, which is further approximated to a Pois-
son process with the rate parameter, λ, as given in (2). We
apply the effective bandwidth theory [30] in calculating the
minimum average uplink task transmission rate (in the unit of
bit per second) to guarantee a task offloading delay bound in
a statistical way, given by [29]

rmin = − H log ε

D log
(

1 − log ε
λD

) (14)

where ε is the delay violation probability bound which is a
small value. If the average uplink task transmission rate is
at least rmin, the delay violation probability is bounded by ε.
In addition, the minimum frame rate requirement, Rmin, for
transmitting tasks is set to equal the average task generation
rate λ. That is,

Rmin = λH. (15)

The complete formulation of the large-timescale RAN slic-
ing problem is presented as

(P2) : max
γk , fk,z

∑
Sk∈B

∑
z∈Zk

Mk,zak,zU(rk,z )

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ak,z
(
rk,z − rmin

) ≥ 0, z ∈ Zk, Sk ∈ B (16a)

ak,z
(
rk,z − Rmin

) ≥ 0, z ∈ Zk, Sk ∈ B (16b)∑
z∈Zk

ak,z fk,z = 1, Sk ∈ B (16c)

fk,z ∈ (0, 1), z ∈ Zk, Sk ∈ B (16d)

γ0 + γi = 1, i ∈ {1, 2, . . ., n} (16e)

γk ∈ (0, 1), k ∈ {0, 1, . . ., n}. (16f )

By maximizing the aggregate network utility for task of-
floading, the objective of (P2) is to determine the optimal
ratios, γk , of sliced radio resources on Sk , and the average
fraction of radio resources, fk,z, reserved for AVs in zone z
of Sk , given ak,z and Mk,z, for statistical QoS guarantee. In
(P2), constraint (16a) guarantees a probabilistic delay bound
for task offloading, constraint (16b) provides the minimum
frame rate guarantee for transmitting tasks, constraint (16c)
indicates that radio resources on Sk are only reserved for
AVs under its coverage, and slicing ratio constraint (16e)
indicates that all the SBSs reuse the same portion of sliced
resources.

To solve (P2), we first determine optimal fk,z as a function
of ak,z, and then the problem is transformed to a convex
optimization problem with decision variables γk (see details
in Subsection IV-B).

C. JOINT RAN SLICING AND COMPUTING TASK
SCHEDULING FRAMEWORK
From the two-timescale problem formulations, whether the
optimal task offloading policy can be obtained from (P1)
depends on how radio resources are sliced among the BSs. If
the radio resources are not properly sliced, the network-wide

FIGURE. 3. Joint RAN slicing and computing task scheduling framework.

computation load balancing may not be reached, due to the
possible violation of task transmission delay constraint in
(10c). The radio resource slicing ratios on each BS need to be
optimized as in (P2) for balanced computing task offloading.
Therefore, the two-timescale problems (P1) and (P2) should
be solved together to obtain a set of optimal slicing ratios for
computation load balancing such that the communication and
computing resource utilization is jointly maximized.

Here, we present a joint RAN slicing and computing task
scheduling problem framework, as shown in Fig. 3, to deter-
mine the optimal stationary task offloading policy, a∗

k,z, and
the optimal radio resource slicing ratios, γ ∗

k , with the average
fractions of radio resources, f ∗

k,z, reserved for AVs in each
road zone. Initially, the radio resources on the BSs, Wm and
Ws, are pre-configured as input parameters to the computing
task scheduling problem (P1). After (P1) is solved at the first
iteration, the task offloading policy, a(1)

k,z , is obtained and fed
into the RAN slicing problem (P2) to solve for the updated
radio resource slicing ratios, γ

(1)
k , and f (1)

k,z , for maximizing
the overall radio resource utilization under current offload-
ing policy. With γ

(1)
k , the second iteration starts by solving

(P1) and (P2) sequentially again to determine a(2)
k,z , γ

(2)
k , and

f (2)
k,z . The whole process repeats until in the m th iteration,

the obtained task offloading policy a(m)
k,z is close to a(m−1)

k,z ,
which indicates the convergence is reached. The output from
(P1) and (P2) is the set of optimal solutions, γ ∗

k , f ∗
k,z, and

a∗
k,z, that jointly maximize the radio resource and computing

resource utilization. We discuss in detail in Subsection IV-B
how the joint optimal solutions are obtained by solving the
two-timescale problems with convergence guarantee. In the
proposed framework, the number of task offloading decision
changes over sequential scheduling slots is minimized to re-
duce the offloading switching cost. However, with variations
of Mk,z due to AV mobility change over planning windows,
the optimal task offloading policy, a∗

k,z, and optimal radio
resource slicing ratios, γ ∗

k , are updated accordingly to adapt
to the large-timescale traffic load dynamics in each road zone
(see simulation results in Subsection V-A). When moving
across road zones, AVs may need to change the offloading
policy according to a∗

k,z to maintain the maximal computing
resource utilization.
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FIGURE. 4. The proposed cooperative MA-DQL framework with fingerprint.

IV. LEARNING-ASSISTED HIERARCHICAL APPROACH
In this section, we present a learning-assisted approach to
solve the two-timescale RAN slicing and computing task
scheduling problems for joint optimal solutions.

A. COOPERATIVE MA-DQL FOR TASK SCHEDULING
As stated in Subsection III-A, the small-timescale comput-
ing task scheduling problem, (P1), has a large state space
and likely lacks information of state transition probabilities.
Therefore, we consider to employ a DQL based method to
approximate the functional relation (i.e., action-value func-
tion) between each state-action pair and reward (i.e., Q-value)
using deep neural networks (DNNs) [31]. The Q-values under
each state are obtained for different actions, and the best
action can be chosen to maximize the long-term accumulated
reward. Specifically, the Q-value for each state-action pair is
iteratively updated using the Bellman equation, given by [32]

Q (St ,At ) = (1 − η)Q (St ,At )

+ η

[
R(St ,At ) + ρ max

At+1
Q(St+1,At+1)

]
(17)

where η denotes the learning rate and ρ is the future reward
discounted factor per learning step. If a single-agent DQL is
adopted, the learning module needs to be located in the main
server and collects real-time network-wide state information
in each road zone over task scheduling slots, leading to large
signaling overhead due to the wide macro-cell coverage area.
Further, the size of action space increases with n and |Zk|,
which can degrade DQL performance. With the layered edge
computing architecture, we develop an MA-DQL framework
with reduced local network state and action spaces. In the
proposed framework shown in Fig. 4, the local servers act
as learning agents to cooperatively learn the optimal task
offloading decisions. Each agent maintains its own learning

module to iteratively train the parameters of two deep Q-
networks (DQNs), i.e., evaluation Q-network and target Q-
network, to determine a set of optimal Q-values based on
local observation on the network environment. Specifically,
each agent takes task offloading actions for AVs under its local
SBS coverage at a scheduling slot. All the agents’ actions are
synchronized at the main server to calculate a joint system
reward which is then sent back to the agents to create DQN
training samples.

Cooperative MA-DQL module design: The local observa-
tion under agent k (k = 1, 2, . . ., n) at scheduling slot t , de-
noted by Ok,t , is a function of the global network state St ,
given by

Ok,t = F (St , k) = {Nk,t , Ik,t ,Ak,t−1} (18)

where F (·) denotes the function mapping, Nk,t = {Nk,z,t , z ∈
Zk}, Ik,t = {I0,z,t , Ik,z,t , z ∈ Zk}, and Ak,t−1 = {ak,z,t−1, z ∈
Zk}. Based on Ok,t , agent k takes task offloading actions, Ak,t ,
for AVs in road zones under SBS Sk , denoted by

Ak,t = {ak,z,t , z ∈ Zk}. (19)

The actions taken at slot t from all the agents are synchronized
at the main server to determine a joint system reward Rt ,
calculated as

Rt = −Ct − E1

∑
Sk∈B

1

⎛
⎝∑

z∈Zk

Nk,z,t ak,z,t >
CkT

ϕH

⎞
⎠

− E2

∑
Sk∈B

∑
z∈Zk

1

(
H

rk,z,t
ak,z,t > D

)
(20)

where E1 and E2 denote the penalties if constraints (10b)
and (10c) are violated in (P1), and 1(·) is an indicator func-
tion which equals 1 if condition is satisfied and 0 other-
wise. In (20), Rt is expressed as a negative function of the
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computation load balancing cost with penalties of violat-
ing computation capacity and task offloading latency con-
straints. With Rt feeding back to each agent, the learning tuple,
[Ok,t ,Ak,t , Rt ,Ok,t+1], for agent k is generated and stored
in the agent’s replay memory. The replay buffer is randomly
sampled at the end of each learning episode to iteratively
train the evaluation and target DQN parameters, θk and θ̂k ,
to approximate the action-value function Q(Ok,t ,Ak,t ). This
process is called experience replay. However, the designed co-
operative MA-DQL module faces non-stationary performance
caused by two issues: 1) The learning tuples generated at each
agent cannot reflect the complete dynamics of the environ-
ment that the agent learns; 2) Each agent does not track policy
updates of the other agents that affect network environment
dynamics. To solve the non-stationarity issues, we revisit the
local observation design of each agent to include additional
information to stabilize the learning performance.

Augmented observation with fingerprint: The first issue
causing non-stationarity comes from the partially-observable
network environment seen by each agent. If Q(; θk ) is learned
based on global state transitions, the real network dynamics
can be captured. However, it is infeasible to share the com-
plete information of every agent’s updated local observation
in each scheduling slot, due to large amount of information
exchange and simultaneous actions taken from all the agents.
Therefore, we create an approximated fully-observable multi-
agent setting, where each agent k shares its computation load
ratio, Lk,t−1, at the end of previous slot (t − 1) to all the other
agents through the main server. As a function of Nk,t−1 and
Ak,t−1, Lk,t−1 reflects the up-to-date local state of agent k at
an aggregate level. Likewise, agent k gets the aggregate local
state information from all the other agents (including the main
server), denoted by set L−k,t−1, where the subscript −k indi-
cates the set of indexes except agent k. Thus, the augmented
observation to approximate a fully-observable environment
for agent k at slot t is designed as

O( f )
k,t = {Ok,t ,L−k,t−1}. (21)

To solve the second non-stationarity issue, we add two indi-
cators to each DQN training sample of agent k, i.e., rate of
exploration, ε−k , and learning episode iteration number, e−k ,
shared by the other agents to track their updated policies, as
the policy of each agent is a function of its learning explo-
ration rate and iteration number. The rate of exploration for
each agent is updated once every learning episode. These two
indicators are referred to as low-dimensional fingerprint on
the agents’ full policies except agent k, given by [33]

F−k = {ε−k, e−k}. (22)

Using lightweight F−k to reflect the full policies, π−k , has low
complexity, which indicates where along the learning path the
current training sample is originated from.

Cooperative MA-DQL algorithm: An episodic learning set-
ting is considered, where each agent sets a total number of
K learning episodes, each consisting of L learning steps. The
vehicular network environment is initialized, including AV

traffic patterns, BS and edge computing parameter configura-
tion, and wireless channel realization. In each learning step,
every agent makes task offloading decisions based on the
augmented network observation. The actions taken by all the
agents are synchronized at the main server in current time step
to calculate a joint system reward fed back to each agent. The
actions also lead to the transition of network observation to
the next time step. A learning tuple (sample) is then created to
train the DQN parameters of an agent.

L(θk ) =
∑
t∈Tk

π−k (A−k,tr |O( f )
k,tr

)

π−k (A−k,t |O( f )
k,t )

×
[
Rt +ρ max

Ak,t+1
Q̂(O( f )

k,t+1,Ak,t+1; θ̂k )−Q(O( f )
k,t ,Ak,t ; θk )

]2

.

(23)

After multiple episodes of training, the set of optimal DQN
parameters are converged to calculate the optimal Q-values.
Specifically, for agent k, the action set, Ak,t , is taken under the
network observation, O( f )

k,t , at learning step t according to the
ε-greedy policy. Then, an augmented state transition training
sample, [O( f )

k,t ,Ak,t , Rt ,O( f )
k,t+1,F−k], is collected and stored

in its replay memory Jk . Since agent k knows the other
agents’ policies and treats them as part of the network environ-
ment, an importance sampling method is used to train the off-
environment using learning tuples gathered in different time
steps to stabilize the experience replay [33]: In each episode, a
mini-bath, Dk , of training samples are randomly selected from
Jk at the time of reply, denoted by tr , to train the evaluation
DQN parameter θk by minimizing an importance weighted
loss function based on stochastic gradient descent [33], [34],
given in (23). In (23), Tk indicates the set of time instants when
the training samples in Dk were generated, π−k (A−k,t |O( f )

k,t )
denotes a joint policy on the augmented observation in slot
t for all the agents except agent k, which can be estimated
using F−k , and Q(; θk ) and Q̂(; θ̂k ) denote Q-value functions
approximated by the evaluation and target DQN parameters
θk and θ̂k , respectively. After every J episodes, θk is copied
to θ̂k to update the target network parameters. The detailed
cooperative MA-DQL algorithm is presented in Algorithm 1.

Proposition 1: The convergence of the proposed coopera-
tive MA-DQL algorithm in solving (P1) is enhanced by using
the off-environment importance sampling on augmented DQN
training tuples to stabilize the experience replay.

The proof of Proposition 1 is provided in Appendix A.
Note that the proposed algorithm is operated in two

stages: centralized DQN training and distributed implemen-
tation [26], [27]. In the first stage, Algorithm 1 is executed
among the learning agents cooperatively to generate joint sys-
tem reward in each learning step for training their individual
DQN parameters. After optimal θk (k = 1, 2, . . ., n) are ob-
tained, each agent implements its own trained DQL module
independently in the second stage, where the task offloading
actions that generate the optimal Q-values are taken under
every local observation. When the AV traffic load changes
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significantly due to vehicle mobility variations over planning
windows, the centralized DQN training is invoked again and
the whole process is repeated to update the optimal DQN
parameters of all the agents to adapt to the vehicular traffic
load variations.

B. HIERARCHICAL SOLUTION FOR JOINT OPTIMIZATION
In the proposed two-timescale joint framework, problems
(P1) and (P2) are cooperatively solved in an iterative manner
for the optimal task offloading policy and the optimal radio
resource slicing ratios. In this subsection, we discuss how
(P2) is solved using the convex optimization technique and
how the joint optimal solutions are iteratively obtained with
convergence guarantee.

For solving (P2), we first express fk,z as a function of ak,z.
Given γk and ak,z, (P2) is decoupled into (n + 1) subprob-
lems, since each BS independently reserves radio resources
for AVs in each zone under its coverage. The subproblem for
BS Sk (k = 0, 1, . . ., n) is formulated as

(SP2) : max
fk,z

∑
z∈Zk

Mk,zak,z log

(
W γk fk,zRk,z

Mk,z

)

s.t.

⎧⎨
⎩

∑
z∈Zk

ak,z fk,z = 1 (24a)

fk,z ∈ (0, 1) (24b)

Proposition 2: Given the stationary task offloading policy
ak,z, the optimal average fraction of radio resources reserved
from Sk for AVs in zone z is given by

f ∗
k,z =

⎧⎨
⎩

Mk,z∑
z∈Zk

Mk,zak,z
, if ak,z = 1

0, otherwise.
(25)

The proof of Proposition 2 is given in Appendix B. By
substituting (25) into (P2), the problem is transformed to

(P3) : max
γk

∑
Sk∈B

∑
z∈Zk

Mk,zak,z log(γk )

s.t. (16a), (16b), (16e), (16f)

where radio resource slicing ratios, γk (k = 0, 1, . . ., n), are
the decision variables. Given ak,z, (P3) is a standard convex
optimization problem and the CVX optimization toolbox [35]
is used to solve (P3) efficiently for a set of optimal solutions.

As mentioned in Subsection III-C, if the initial sliced re-
sources on the MBS and SBSs cannot support the transmis-
sion of scheduled computing tasks with delay satisfaction, the
optimal stationary task offloading policy for a network-wide
balanced computation load may not be obtained directly by
solving (P1). Therefore, we propose to iteratively solve (P1)
and (P3) in sequence to adjust the radio resource slicing
ratios for achieving the optimal task offloading policy with
QoS guarantee such that the communication and computing
resource utilization is jointly maximized. Specifically, in the
first iteration, (P1) is solved for ak,z which is then fed into (P3)
as input to solve for γk . If we incorporate constraints (16e)
and (16f) into the objective function of (P3), the objective
becomes a function of single variable γ0 or γi (i = 1, . . ., n).
Thus, the maximum of the objective function is reached when

γ0 =

∑
z∈Z0

M0,za0,z∑
Sk∈B

∑
z∈Zk

Mk,zak,z
. (26)

Although the optimal value in (26) may not be achieved under
the delay and throughput constraints (16a) and (16b), it is
clearly seen from (26) that by solving (P3), the ratios of
sliced radio resources on the MBS and the SBSs are adjusted
in proportion to the computation loads transmitted to the
BSs. Therefore, even if the pre-configured Wm and Ws can
be imbalanced, γk (k = 0, 1, . . ., n) are gradually optimized,
by solving (P1) and (P3) iteratively, for the transmission of
scheduled computing tasks to achieve network-wide compu-
tation load balancing with per-slot delay guarantee. In such
a way, the optimal stationary task offloading policy and the
optimal radio resource slicing ratios among the BSs are jointly
obtained. The convergence of solving (P1) is achieved accord-
ing to Proposition 1 and the convergence of solving (P3) is
also guaranteed based on the convex optimization problem
property [36]. A detailed algorithm of the proposed learning-
assisted hierarchical solution for solving the two-timescale
RAN slicing and computing task offloading problem is pre-
sented in Algorithm 2.
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The time complexity of Algorithm 2 is analyzed as follows:
Suppose the convergence is reached after running Algorithm 2
for N iterations. In each iteration, Algorithm 1 is first executed
with the time complexity of O(KL) to create DQN learning
tuples and O(K ) to train the DQN parameter θk for agent
k. As all the agents train their individual DQL modules in
parallel, the overall time complexity of Algorithm 1 is given
by O(KL) + O(K ) = O(KL). Then, problem (P3) with 2 de-
cision variables is efficiently solved using a standard convex
optimization algorithm (e.g., interior-point method [36]) with
constant time complexity. Therefore, the total time complexity
of Algorithm 2 is calculated as O(NKL).

V. SIMULATION RESULTS
Computer simulations are conducted to demonstrate the ef-
fectiveness of the proposed joint RAN slicing and computing
task scheduling framework. Algorithm 1 is implemented in
Python 3.7 IDE with TensorFlow 1.14.0. A two-lane bidirec-
tional road segment of 1.5 km is created using the Simulation
of Urban MObility (SUMO) traffic simulator [37], with real
vehicular traffic trace loaded from a provincial roadway in
Xinjiang, China. Each AV is driven on the road with the
moving speed set in-between 20 m/s and 28 m/s. One MBS
and three SBSs are deployed with minimum distances of 20 m
and 10 m away from the road to provide the communication
radiuses of 750 m and 250 m, respectively. The road segment
is partitioned into 15 zones, 5 zones under each SBS coverage.
The maximum number, Mmax, of AVs in each road zone is set
as 40. The uplink transmission power from each AV to the
MBS and one of the SBSs are set as 500 mW and 200 mW,
respectively. The amount of aggregated radio resources, W ,
is set to 20 MHz. The computation capacities on the main

TABLE II Network and Learning Parameters

server and each of the local servers are configured as 3.6 GHz
(CPU cycles per second) and 2.4 GHz, respectively, with the
computation intensity of 300 cycles per bit. Each local server
is equipped with a DQL module where two DNNs are cre-
ated to represent the evaluation and target DQNs. Each DNN
is composed of three (fully-connected) hidden layers with
(128, 64, 64) neurons between the input and output layers,
and the ReLu non-linear activation function is used for each
hidden layer. At each learning epoch, the ε-greedy policy is
adopted with the initial rate of exploration and the exploration
rate decay step size set as 0.9999 and 0.0001. Since ε is
updated every 4 episodes in the simulation, the total learning
episodes is set around 40000 to ensure a thorough exploration
on the action set. Other simulation parameters are summarized
in Table II.

In each iteration of Algorithm 2, (P3) is solved in MATALB
R2016b with the CVX optimization toolbox [35], where dif-
ferent network/service parameters are also initiated. The aver-
age task arrival rate, λ, and the task offloading policy, ak,z,
from (P1) are obtained as input in solving (P3). We first
evaluate the performance of the proposed joint RAN slic-
ing and task scheduling framework, which is further com-
pared with a computation-load-balancing-based task offload-
ing scheme in our preliminary work [1] and two other bench-
mark schemes [14], [38]. We focus on the performance eval-
uation in terms of maximum computation load ratio among
edge servers, number of task offloading switching events,
adaptation to vehicular traffic load variation, satisfaction of
diverse QoS requirements, and aggregate network utility.

A. PERFORMANCE EVALUATION
We first evaluate the convergence of the proposed cooperative
MA-DQL algorithm in solving (P1), where the initial radio
resource slicing ratios for the MBS and each SBS are set as
0.6 and 0.4 (Wm = 12 MHz and Ws = 8 MHz), respectively,
and the average number of AVs in each road zone is around
8. From Fig. 5, it is observed that the per-episode average
reward starts to converge at around 36000 episodes without
the offloading latency and computation capacity constraint
violation. In comparison, the learning performance continues
to fluctuate for the cooperative MA-DQL without fingerprint
added even after a thorough exploration on the action set.
Fig. 6(a) shows how the per-step maximum computation load
ratio averaged over the last learning episode converges to
the optimal solution by running Algorithm 2. However, the
iteration pattern towards convergence depends on the initial
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FIGURE. 5. Comparison of learning performance between the cooperative
MA-DQL with fingerprint v.s. without fingerprint (β = 0.5).

FIGURE. 6. Iteration of (a) maximum computation load ratio and (b) radio
resource slicing ratio in Algorithm 2.

ratios of sliced radio resources among BSs. If the initial slicing
ratios on the MBS and each of the SBSs match with the pro-
portions of computation capacities provided on the main and
local servers, respectively, the maximum computation load
ratio approaches the optimal solution with fast convergence.
Correspondingly, the radio resource slicing ratios are itera-
tively adjusted proportional to the current computation loads
scheduled on the servers until the maximum computation load
ratio stays unchanged, as shown in Fig. 6(b). We can see
from Fig. 6(a) that better load balancing is achieved with

an increase of weighting factor β which prioritizes balanc-
ing the computation load over controlling the task offloading
variations.

Figs. 7(a)–7(b) and Figs. 7(d)-7(e) show the stationary task
offloading policies (i.e., number of road zones associated with
different BSs for task offloading from AVs) in each iteration
of Algorithm 2 under different β and initial radio resource
slicing ratios. In each iteration, the task offloading policy
is determined based on the sliced radio resources obtained
from the previous iteration. Initially, the zone-BS association
policy may not reflect a balanced computation offloading due
to imbalanced radio resource pre-configuration. However, the
radio resource slicing ratios are gradually adjusted in propor-
tion to the computation load distribution in each algorithm
iteration, as displayed in Fig. 6(b), which eventually lead to
a converged association policy for task offloading (i.e., the
association policy stays unchanged between consecutive al-
gorithm iterations). It can also be seen from Fig. 7(a)-7(b)
that the optimal computation load balancing is achieved when
β = 0.9999 by sacrificing slightly more task offloading vari-
ations than that in the case of β = 0.5. In both cases, the total
number of task offloading switching events averaged over the
last three learning episodes at the end of each iteration is
controlled, as shown in Figs. 7(c)-7(f), which is less than 20
within a 2000 time-step learning episode for AVs in all road
zones.

The aggregate network utility for task offloading is evalu-
ated in Fig. 8. As the radio resource slicing ratios are itera-
tively adjusted for achieving balanced computation load, the
aggregate network utility is increased accordingly until the
maximum utility is reached when the optimal task offloading
policy is obtained at the last iteration of Algorithm 2. Fig. 9
demonstrates the adaptation of the proposed framework with
network-wide AV traffic load variations due to vehicle mobil-
ity change over planning windows. The set of optimal radio
resource slicing ratios are adjusted by adapting to AV traffic
load conditions to maintain consistently balanced computa-
tion load among edge servers.

B. PERFORMANCE COMPARISON
We compare the performance of the proposed frame-
work (β = 0.9999, Mk,z = 8) with 1) a computation-load-
balancing-oriented task offloading framework without radio
resource slicing (Wm = 14 MHz, Ws = 6 MHz) [1], 2) a rein-
forcement learning (RL)-based task transmission rate maxi-
mization scheme with certain level of computation load bal-
ancing [38], and 3) an SINR-maximization-based offloading
selection policy to maximize the overall spectrum efficiency
for per-slot task offloading [14]. The maximum computation
load ratio and the average number of task offloading switching
events per scheduling slot are compared in Fig. 10. As the pro-
posed framework jointly maximizes the communication and
computing resource utilization, the optimal computation load
balancing is achieved with controlled task offloading varia-
tions. In comparison, the task offloading framework without
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FIGURE. 7. Stationary task offloading policy and total number of task offloading switching events per learning episode.

FIGURE. 8. Iteration of aggregate network utility.

radio resource slicing also achieves a balanced computation
load which, however, is not optimal due to the imbalanced
radio resource pre-configuration among BSs. The RL-based
rate maximization scheme aims at maximizing the network-
wide task transmission rate in a long run, while maintaining
certain degree of wireless traffic load balancing with frequent
offloading variations. The SINR maximization scheme sacri-
fices both computation load balancing and number of offload-
ing switching events to achieve highest spectrum efficiency
for per-slot task offloading.

Fig. 11(a) shows a comparison of maximum task of-
floading latency between the proposed framework and

FIGURE. 9. Adaptation of maximum computation load ratio and optimal
radio resource slicing ratio γ∗

0 (after Algorithm 2 converges) to different AV
traffic load conditions (β = 0.9999).

RL-based rate maximization scheme. Both schemes guaran-
tee a bounded maximum task offloading latency. A compari-
son of network throughput is shown in Fig. 11(b). With the
maximized communication resource utilization, the overall
network throughput achieved by the proposed framework is
the highest, whereas the load-balancing-based task offloading
scheme without radio resource slicing attains slightly lower
throughput than the other schemes. The aggregate network
utility is compared in Fig. 12, where the proposed framework
achieves the highest utility because of joint maximization
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FIGURE. 10. Comparison of (a) maximum computation load ratio and (b)
per-slot task offloading changes.

of radio resource and computation resource utilization. In
contrast, the other schemes either maximize the utilization of
a single resource type or sacrifice the computation load bal-
ancing for increased performance gain, resulting in an overall
utility drop.

VI. CONCLUSION
In this paper, two-timescale RAN slicing and computation
offloading are jointly studied in a C-AVN in support of di-
verse autonomous driving tasks. To capture small-timescale
network dynamics, a computing task scheduling problem is
formulated as a stochastic optimization program with con-
straints on task offloading latency and computation capac-
ity. The objective is to achieve the network-wide computa-
tion load balancing with controlled task offloading variations
among edge servers. To deal with the large problem size with
potentially unknown state transition probabilities, we develop
a cooperative MA-DQL framework with fingerprint to learn
the stationary task offloading policy with stabilized learning
performance. Given the task offloading policy in a planning
window, a large-timescale RAN slicing problem is further
investigated to maximize the overall radio resource utiliza-
tion with statistical QoS guarantee for different autonomous
driving tasks. Due to the correlation between the problems of
two timescales, a joint optimization framework is established

FIGURE. 11. Comparison of task offloading latency and network
throughput.

FIGURE. 12. Comparison of aggregate network utility.

to maximize the communication and computing resource uti-
lization, where a learning-assisted hierarchical approach is
designed to iteratively adjust the radio resource slicing ra-
tios for the optimal computation load balancing. Extensive
simulation results are provided to demonstrate the efficacy
and advantages of the proposed framework, compared with
existing proposals, in achieving balanced computation load
with minimal task offloading variations, maximal commu-
nication resource utilization, diverse QoS provisioning, and
performance adaptation to AV traffic load dynamics.
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APPENDIX A
PROOF OF PROPOSITION 1
The learning convergence in a fully-observable multi-agent
DQL setting is enhanced by using the off-environment
importance sampling [33]. Specifically, for agent k, if the
Q-function is defined on the augmented observation in (21)
that approximates fully-observable network states, the Bell-
man equation for calculating the optimal Q-value conditioned
on all the other agents’ policies is expressed as

Q∗(O( f )
k ,Ak|π−k ) =

∑
A−k

π−k (A−k|O( f )
k )[R(O( f )

k ,Ak,A−k )

+ ρ
∑
O′( f )

k

P(O′( f )
k |O( f )

k ,Ak,A−k ) max
A′

k

Q∗(O′( f )
k ,A′

k )] (27)

where time index t is omitted for presentation clarity, and
O′( f )

k and A′
k denote the observation and action transitioned

to the next time slot for agent k. In (27), the non-stationarity
comes from the changing of the other agents’ policies, π−k ,
over time as agent k learns. If π−k can be consistently captured
or estimated, the optimal Q-value is learned to obtain the
stationary policy for agent k, where the learning performance
is guaranteed, similar to the case of single agent DQL. The
ε-greedy policy is adopted in the DQL module of each agent
to take actions, where agent k at each scheduling slot chooses
a random action in the action space with exploration rate εk

and selects the optimal action with probability (1 − εk ) that
achieves the maximum Q-value in current iteration. Also, εk

is consistently decreased in each learning episode ek , with a
fixed decaying step size of δ. Clearly, policy πk for agent k is
function of εk and ek . Likewise, the designed fingerprint, F−k ,
in (22) reflects the full policies, π−k , of all the other agents.
Therefore, at each time instant of collecting augmented state
transition tuple for agent k, F−k is always recorded to estimate
π−k used for the importance sampling. At the time of replay,
we learn the off-environment iteratively by minimizing L(θk )
to train θk that approximates the optimal action-value function
in (27).

APPENDIX B
PROOF OF PROPOSITION 2
Given ak,z and γk , (SP2) is reformulated as

(SP2′) : max
fk,z

∑
z∈Z′

k

Mk,z log( fk,z ) (28)

s.t.

⎧⎨
⎩

∑
z∈Z′

k

fk,z = 1 (29a)

fk,z ∈ (0, 1) (29b)

where Z′
k = {z ∈ Zk|ak,z = 1}. It is clear that (SP2′) is a con-

cave maximization problem with affine equality and inequal-
ity constraints satisfying the Slater’s condition [36]. There-
fore, the Karush-Kuhn-Tucker (KKT) conditions can be ap-
plied in solving (SP2′) for both primal and dual optimal
solutions with zero duality gap [36]. Specifically, a set of

(|Z′
k| + 1) KKT equations with (|Z′

k| + 1) variables are ex-
pressed as {

∇H (Fk ) + ν · 1 = 0

1TFk = 1
(30)

where Fk = [ fk,z] ∈ R|Z′
k | is the decision variable vector of

(SP2′), H (Fk ) denotes the objective function of (SP2′), ∇ is
the gradient operator, T is the vector/matrix transpose, 1 de-
notes the |Z′

k|-dimension vector with all elements one, and ν

is the Lagrange multiplier associated with equality constraint
(29a). By solving the equation array in (30), the primal and
dual optimal solutions for (SP2′) are obtained, respectively,
as

f ∗
k,z = Mk,z∑

z∈Z′
k

Mk,z
(31)

and

ν∗ = −
∑
z∈Z′

k

Mk,z (32)

which ends the proof.
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