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ABSTRACT Unmanned aerial vehicles (UAVs) are regarded as an emerging technology, which can be effec-
tively utilized to perform the data collection tasks in the Internet of Things (IoT) networks. However, both the
UAVs and the sensors in these networks are energy-limited devices, which necessitates an energy-efficient
data collection procedure to ensure the network lifetime. In this paper, we propose a multi-UAV-assisted
network, where the UAVs fly to the ground sensors and control the sensor’s transmit power during the data
collection time. Our goal is to minimize the total energy consumption of the UAVs and the sensors, which
is needed to accomplish the data collection mission. We formulate this problem into three sub-problems
of single UAV navigation, sensor power control as well as multi-UAV scheduling and model each part as
a finite-horizon Markov Decision Process (MDP). We deploy deep reinforcement learning (DRL)-based
frameworks to solve each part. Specifically, we use deep deterministic policy gradient (DDPG) method to
generate the best trajectory for the UAVs in an obstacle-constraint environment, given its starting position
and the target sensor. We also deploy DDPG to control the sensor’s transmit power during data collection. To
schedule activity plans for each UAV to visit the sensors, we propose a multi-agent deep Q-learning (DQL)
approach by taking the total energy consumption of the UAVs on each path into account. Our simulations
show that the UAVs can find a safe and optimal path for each of their trips. Continuous power control of the
sensors achieves better performance over the fixed power approaches in terms of the total energy consumption
during data collection. In addition, compared to the two commonly used baselines, our scheduling framework
achieves better and near-optimal results.

INDEX TERMS Data collection, unmanned aerial vehicle (UAV), Internet of Things (IoT), deep reinforce-
ment learning (DRL), energy consumption.

I. INTRODUCTION
Over the past few years, unmanned aerial vehicles (UAVs),
commonly known as drones, have been increasingly used in
a broad range of applications, including military services,
surveillance and monitoring, telecommunications, and good’s
delivery [1], [2]. Due to their inherent desired features such
as low cost, flexible maneuvering and ease of deployment [3],
the UAVs can efficiently replace human operators in scenarios
where it might be costly or hazardous.

With the recent advancements in the field of Internet-
of-Things (IoT), wireless sensor networks (WSNs) have

been widely deployed as a surveillance technology to mon-
itor the surrounding environment, e.g., temperature and air
pollution [4], [5]. These IoT sensors are usually energy-
constrained devices with limited transmission ranges whose
sensed data needs to be gathered and sent to the control
center [6]. In that respect, UAVs, as mobile data collectors,
can fly close to the dispersed sensors and collect the infor-
mation. Compared to ground data collection schemes, UAVs
are more efficient as they can easily adjust their path to
reach a sensor by avoiding terrestrial obstacles [7]. In ad-
dition, due to their high altitude, the UAVs have a higher
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chance of exploiting the Line-of-Sight (LoS) links to ground
sensors [8].

However, despite all the advantages that UAVs have
brought into communication networks, they have limited en-
ergy storage which poses a crucial challenge. After dispatch-
ing from the origin, they need to navigate towards the sensors
while avoiding collisions with any obstacle. Also, using a sin-
gle UAV to perform data collection from a large set of sensors
distributed in a wide area may result in task failure. Col-
laborative multi-UAV approaches can be utilized to increase
the chance of accomplishing the mission while reducing its
completion time [9]. On the other hand, when the UAV arrives
at the sensor’s location and hovers above it to start the data
collection, the communication link may experience different
channel gains depending on the multi-path propagation en-
vironment. Hence, the sensor’s transmission power needs to
be controlled optimally to prolong its lifetime and provide
reliable communication.

The complexity of the problem mentioned above makes it
hard to be solved using traditional optimization techniques,
which are usually time-consuming and need a complete model
of the environment. Reinforcement learning (RL) allows us
to find the solution by letting the agents, in our case, the
UAVs, interact with the environment without knowing the
model. In that way, the UAVs can make their own decisions
after some trial and error during the training phase. Motivated
by the above observations, we formulate the energy-efficient
data collection problem as a finite-horizon Markov decision
process (MDP). To overcome the computational complexity
caused by the state space’s high dimensionality, we propose
a multi-UAV deep reinforcement learning (DRL)-based ap-
proach to minimize the energy consumption on both the UAVs
and sensors sides. In particular, we develop and combine
three different DRL frameworks for UAV’s navigation, task
scheduling, and the sensor’s power control, respectively. We
consider a delay-tolerant scenario where each sensor caches
the sensed data and transmits it to a UAV upon the re-
quest [10].

The main contributions of this paper are summarized as
follows:

1) We first propose an obstacle-aware navigation frame-
work based on a deep deterministic policy gradient
(DDPG) [11] method to help the UAV adjust its trajec-
tory and speed from any given starting point towards its
destination sensor with minimum energy consumption.

2) We propose a DDPG-based approach to control each
sensor’s transmit power while sending the data to the
UAV. Unlike most of the related works, the transmit
power of the sensor is not supposed to have discrete
levels and can adaptively be changed depending on the
multi-path propagation environment.

3) We propose a multi-UAV scheduling framework by in-
corporating the data provided by the navigation frame-
work, with the aim to minimize the UAVs’ overall en-
ergy consumption to accomplish the data collection,
subject to their limited energy constraints. A deep

Q-learning (DQL) [12] algorithm is developed to gen-
erate the activity plan of each UAV by providing a list
of sensors that needs to be visited in order, considering
the energy consumption between each two of them.

4) We conduct simulations to evaluate the performance of
our proposed frameworks. Our simulation results show
that the UAVs learn to navigate in the environment
safely with a low collision rate. In addition, the power
control model can successfully control the trade-off be-
tween the UAV’s hovering and communication power
and the sensor’s transmit power, and the multi-UAV
scheduling framework can achieve better performance
comparing to the random and greedy baselines.

The remainder of this article is organized as follows: In
Section II, we review the related works. Section III describes
the system model for the considered scenario. Section IV
presents the background of DRL. We propose our DRL frame-
works utilized to solve the data collection problem in Sec-
tion V. Section VI presents the simulation results for each
of our frameworks. The conclusion of this paper is given in
Section VII.

II. RELATED WORKS
The design of trajectory planning for UAV data collection
has attracted increasing research attention recently. Existing
approaches have exploited various optimization techniques.
References [13], [14] focus on minimizing the task comple-
tion time in multi-UAV systems. Reference [13] solves the
completion time minimization problem for a multi-UAV sys-
tem by jointly optimizing the UAVs’ data collection position
and speed and sensors’ transmit power, subject to the load
requirement and energy constraint. The authors in [14] adopt
a two-step approach that first optimizes the number and lo-
cations of cluster heads which aggregate the data from all
sensors then determines the trajectories of the UAVs. Addi-
tionally, a heuristic genetic algorithm is designed to achieve a
sub-optimal solution with low complexity. However, both [13]
and [14] ignore the impact of small-scale fading.

Reference [6] investigates the UAV energy consumption
minimization problem of data collection in a sensor network
where the aggregated data of different cluster heads have
heterogeneous deadlines. To solve the problem, the authors
propose a bi-level solution that first optimizes the number and
locations of the cluster heads based on K-means clustering
and then minimizes the number of UAVs and the trajectory
length by using a heuristic approach [15]. Different from [6],
reference [16] aims to minimize the overall energy consump-
tion of both the UAV and the sensors. To this end, the authors
jointly optimize the data collection locations, the sensors to
collect, and the UAV’s trajectory under the constraints of the
individual energy availability of the sensors. Different from
the above works, which consider two-dimensional trajectory
planning, the authors in [17] optimizes three-dimensional tra-
jectory jointly with communication scheduling to maximize
the minimum transmission rate of the sensors. The three-
dimensional (3D) trajectory modelling allows the system to
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incorporate more practical elevation angle-dependent Rician
fading channels. However, the proposed approaches in [16]
and [17] only apply for single-UAV systems.

The above-reviewed optimization techniques require the
knowledge of complete system information in advance and
can only perform data collection in a pre-scheduled man-
ner. Hence, these approaches are not applicable in dynamic
environments where instant system information may not be
available. To handle data collection in a time-varying envi-
ronment, research efforts have resorted to RL and DRL ap-
proaches which enable the UAVs to acquire solutions without
knowing the complete system information. References [10],
[18]–[22] investigate the data collection problem for single-
UAV systems. The authors in [10] devise a Q-learning-based
mechanism that achieves the optimal energy efficiency of
the UAV, which needs to collect sensor data and return to a
charging point before energy depletion during each charging
circle. Reference [21] develops a double DQN-based mech-
anism to maximize the amount of collected data subject to
completion time and navigation constraints. However, the ap-
proaches introduced in [10] and [21] only work for discrete
flying actions. The focus of references [18]–[20], [22] is to
minimize the age of information (AoI) of data collected from
the distributed sensors. Reference [22] proposes an AoI-based
trajectory planning algorithm for fresh data collection us-
ing a DRL technique. The authors in [19] introduce a DRL
approach to optimize the UAV’s trajectory and the commu-
nication scheduling of the sensors. However, the proposed
algorithms do not take into account the energy consumption
of the UAV. Reference [18] devises a DRL algorithm that
achieves the same goals of [19] under the additional energy
constraint of the UAV. The authors in [20] develop a DQN-
based algorithm that minimizes the average AoI of the sensors
while maintaining their packet drop rate as low as possible.
However, neither [18] nor [20] considers the impact of the
energy consumption of the sensors.

In addition to the above-reviewed designs for single-UAV
systems, research efforts have also been devoted to addressing
data collection in multi-UAV systems with DRL approaches.
Reference [23] devises a sequential deep model for simul-
taneous task allocation and trajectory planning to maximize
data collection ratio and geographic fairness with minimized
total energy consumption of the UAVs. In [24], the authors
propose a multi-agent DQL algorithm to maximize the min-
imum throughput by the joint optimization of path design
and channel resource assignment in a UAV-enabled wireless
powered communication network, where the UAVs can fly
according to a discrete set of actions. References [25] and [26]
aim to minimize the overall flight time of the UAVs under their
individual energy constraints. The authors in [25] develop
an option-based hybrid DRL method that allows the UAV
to choose between two algorithms to handle deterministic
and ambiguous boundary scenarios. However, the impact of
obstacles on the navigation of the UAVs is ignored. Refer-
ence [26] addresses the obstacle-aware navigation based on a
joint learning approach which first obtains the shortest route

for data collection in an obstacle-constrained scenario based
on DDPG and then determines the best schedule of the UAVs
based on Q-learning. However, the proposed approach does
not consider the power consumption of the sensors. Addition-
ally, to our knowledge, none of the existing DRL-based data
collection designs for multi-UAV systems takes into account
the impact of small-scale fading. Being aware of the limita-
tions, we aim to address the continuous trajectory planning for
multi-UAV data collection in a practical obstacle-constrained
environment with small-scale fading and power consumption
of both UAVs and sensors taken into consideration.

III. SYSTEM MODEL
We consider a cooperative multi-UAV data collection task
with N sensors randomly located on the region and M UAVs to
collect the data gathered by the sensors. The position of UAV
m and ground sensor n can be characterized by the coordinate
(xm, ym, zm) and (xn, yn, 0), respectively. All the UAVs start
from the origin (e.g., charging station), move towards the
sensors, and go back to the origin when the data collection is
finished. We assume that when a UAV arrives at the sensor’s
location, it hovers above the sensor and activates it by sending
a query signal. During each communication round, the UAV
can acquire the channel gain by exchanging signals and, based
on that, controls the transmit power of the sensor. After the
sensor has sent all its data, the UAV flies to the next target
until all the data is collected.

A. ENVIRONMENT AND NAVIGATION MODEL
Since autonomous navigation in a real-world environment can
be complex, we consider a 3D virtual environment with dense
obstacles to match the complex urban areas. Our goal is to
train a UAV to fly from any arbitrary starting location to any
arbitrary destination avoiding collision with the obstacles and
flying out of the borders of the environment.

For simplicity, we assume that the UAV flies at a fixed
altitude h. Therefore, the position of UAV m in the 3D space
is characterized by (xm, ym, h), and its movement is restricted
to x − y plane. The control profile of the UAV consists of its
speed and orientation angle, and the UAV’s dynamic at time t
can be characterized by

xt+1
m = xt

m + vt
m × cos(φt

m)

yt+1
m = yt

m + vt
m × sin(φt

m),
(1)

where vt
m and φt

m are the UAV’s speed and orientation angle,
respectively.

Similar to [27], we assume that the UAV knows its current
location and the destination by using GPS signals. To illus-
trate the UAV’s perception of the surrounding environment,
we assume that the UAV is equipped with range finders that
can identify the distance from itself to obstacles in multiple
directions. We know that if an obstacle’s height is less than
the UAV’s altitude, it can simply be avoided and has no effect
on the trajectory of the UAV. Without loss of generality, we
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assume that all the obstacles in the environment have heights
greater than the UAV’s altitude.

B. UAV ENERGY CONSUMPTION MODEL
The energy consumption of the UAV includes two main
components, namely the communication-related energy and
propulsion energy. The communication-related energy is used
in communication circuits of the UAV to send, receive
and process the signals, which is negligible compared to
the propulsion energy [28]. We assume the communication-
related power is a constant denoted by Pc. The propulsion
energy is needed to keep the UAV flying and hovering, which
can be expressed as a function of its speed [29], i.e.,

Pnav (v) = P0

(
1+ 3v2

U 2
t ip

)
+ Pi

(√
1+ v4

4v2
0

− v2

2v2
0

) 1
2

+ 1

2
d0ρκAv3, (2)

where P0 and Pi are constant parameters representing the
blade profile power and induced power in hovering status, Utip

denotes the tip speed of the rotor blade, v0 is the mean rotor-
induced velocity during hovering. Moreover, the parameters
d0, κ , ρ and A represent the fuselage drag ratio, rotor solidity,
air density and rotor disc area, respectively.

To obtain the power consumption during hovering, we let
v = 0 in (2), which gives us the hovering power

Ph = P0 + Pi. (3)

We should note that as the UAV hovers above a sensor, it
is using the communication-related power to receive the data.
Therefore, the total power consumption in the data collection
status is expressed as

Pdc = Ph + Pc. (4)

C. CHANNEL MODEL AND DATA COLLECTION RATE
During data collection, the UAV hovers above the sensor at
a high altitude, which increases the chance of establishing an
LoS link. Hence, for the uplink ground-to-air (G2A) channel,
we adopt the Rician fading channel consisting of a determinis-
tic LoS link and a random multipath fading component, where
the Rician factor is affected by the surrounding environment.
The channel between UAV m and sensor n at time t can be
modeled as [17]

ht [m, n] =
√
β[m, n]gt [m, n], (5)

where β[m, n] is the large-scale average channel power gain
accounting for signal attenuation, including both the pathloss
and shadowing, and gt [m, n] is the small-scale fading coeffi-
cient. Let dt [m, n] denote the distance between UAV m and
sensor n which is given by

dt [m, n] =
√

(xm − xn)2 + (ym − yn)2 + h2. (6)

We can express the average channel power gain βt [m, n] as

βt [m, n] = β0d−αt [m, n], (7)

where β0 is the average channel power gain at a reference
distance of d0 = 1 m, and α is the pathloss exponent that
usually has a value between 2 and 6. Due to the existence
of the LoS path, the small-scale coefficient follows the Rician
distribution.

In the considered scenario, the UAV sends an activation
signal to wake up the sensor. When the connection has been
established, the UAV gets to know the channel gain from
the sensor to the UAV based on the exchanged pilot signals.
We assume that the UAV and ground sensors use advanced
communication technology and are equipped with sectored
antennas. Thus, we can write the achievable data rate as

Kt [m, n] = B log

(
1+ Pt Gt |ht [m, n]|2

σ 2

)
, (8)

where B,Pt , Gt , σ 2 are the bandwidth of the channel, transmit
power of the sensor, the antenna power gain of the G2A link,
and noise variance on the UAV side at time t , respectively.
Since each UAV hovers above the sensor and the sensors
are located far enough from each other, the impact of signal
interference has not been considered in this paper. We use ζt to
denote the available data to be collected at the sensor at time
step t , which can be expressed as

ζ n
t = ζ n

t−1 − TsKt−1[m, n], (9)

where Ts is the time length of each time step. In addition, the
initial data amount to be collected at each sensor is denoted
by 	, i.e., ζ n

0 = 	.

IV. PRELIMINARIES
In this section, we present the background of reinforcement
learning frameworks used in the proposed solution. We intro-
duce MDP as the framework to model our problem. Then, we
explain the two DRL algorithms used to solve this problem.

In an MDP problem, an agent interacts with the environ-
ment by performing actions in discrete time steps. Specifi-
cally, at each time step t , the agent observes state st , takes
an action at , receives a reward rt based on st and at , and then
goes to the next state st+1. The transition tuple is shown by
(st , at , rt , st+1). A policy π (s) is defined as a mapping from
state s to an action or a distribution over actions. In fact, the
policy controls the actions of the agent, and therefore, the
rewards it receives from the environment. We define the return
Rt as the discounted sum of future rewards

Rt =
T∑
τ=t

γ τ−t rτ , (10)

where T is the final time step and γ is the discount factor
ranging from 0 to 1. The discount factor determines the im-
portance given to the immediate and future rewards. Higher
values of γ indicate that the agent cares more about the future
rewards, whereas the lower values show the opposite.
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Our goal is to find a policy that maximizes the expected
return from the start time step, which is expressed as

π∗ = arg max
π

E[R0|π ]. (11)

We define the action-value function Q(·) to approximate the
expected value of Rt when starting from state st , taking action
at , and then following the policy π :

Qπ (st , at ) = E[Rt |st , at ]. (12)

The well-known algorithm in RL, Q-learning (QL), is a tabu-
lar method that aims to find the Q-values for each state-action
pair (s, a), and after the training, follows the greedy action to
achieve the optimal policy as expressed in

π (s) = arg max
a

Q(s, a). (13)

However, QL is not efficient when the state and action spaces
are large, as we need to store the Q-value for each state-action
pair in the table. DRL techniques can be utilized to overcome
this challenge by combining deep neural networks (DNNs)
and RL. Now, we explain the two DRL algorithms used in
this paper, i.e., DQL and DDPG.

DQL makes use of a DNN to approximate the Q(·) function
by minimizing the loss L

L(θQ) = E
[
(Q(st , at |θQ)− yt )2] , (14)

where θQ denotes the weight vector of the DNN, and yt known
as target is expressed as

yt = r(st , at )+ γmax
at+1

Q(st+1, at+1|θQ). (15)

In [12], Mnih et al. introduced two major changes i.e.,
experience replay and target network to resolve the issue of
instability. To update the DNN, we use a mini-batch from an
experience replay buffer with state transition tuples collected
during learning (instead of the immediately collected sample).
Compared to immediate sampling used in traditional QL,
experience replay breaks correlations between sequentially
generated samples, thus can avoid divergence and smooth out
learning. Moreover, DQL uses an additional target network
to estimate target values yt for the training. A target network
has the same structure as the original DNN. However, its
weights are updated slowly with the original weights every
a few epochs and are held fixed in between.

The problem with DQL is that it only works for control
problems with a low-dimensional discrete action space. It is
hard to apply DQL to continuous control because it needs
to figure out the action that maximizes the Q(·) function in
(13), which is quite difficult. The DQL-based method can only
handle tasks with a limited discrete action space. However,
UAV control is a continuous control task.

DDPG [11] as an actor-critic method was designed for this
purpose. Both actor and critic are implemented by DNNs,
where critic is acted as Q(st , at |θQ). Thus, it uses the same
loss function as (14) for training. Actor uses a parameterized
policy π (st |θπ ) to generate an optimal action given state st .

Instead of minimizing a loss function, the actor network max-
imizes the Q(·) in (12) by applying the gradient which can be
written as

∇θπQ = E
[∇aQ(s, a|θQ)|a=π (s)∇θπ π (s|θπ )

]
. (16)

V. PROPOSED DRL FRAMEWORKS FOR AUTONOMOUS
DATA COLLECTION
In this section, we propose the DRL-based framework for
multi-UAV data collection problem. We divide the data collec-
tion problem into three parts: single UAV navigation, sensor
power control and multi-UAV scheduling. We show how to
model each part as an MDP and solve it with the aforemen-
tioned DRL methods.

A. MDP MODELING OF DATA COLLECTION PROBLEM
1) SINGLE UAV NAVIGATION
Suppose the UAV m is located at the start point (x0

m, y0
m, h),

aiming to fly towards the sensor n located at (xn, yn, 0). For
the purpose of navigation, the UAV needs to use its sensory
observation of the environment to avoid the obstacles, as well
as its relative position to the sensor to reach the destination.
The sensory observation of the UAV is obtained by using
the range finders. The relative position to the sensor can be
measured by GPS. Since the UAV flies at a fixed altitude,
we just consider the variable axes, and hence, the relationship
between the UAV and the sensor at time step t can be written
as

(ψ t
x, ψ

t
y ) = (xt

m, yt
m )− (xn, yn). (17)

We can denote the overall state of the UAV by st
nav =

(ψ t
x, ψ

t
y, v

t
m, φ

t
m, lt

0, . . . , lt
4), where lt

0 ∼ lt
4 ∈ [0, 100] show

the output of the range finders. The UAV can change its speed
and orientation angle along the path, which can be expressed
as

vt+1
m = vt

m +�vt
m,

φt+1
m = φt

m +�φt
m,

(18)

where �vt
m and �φt

m represent the throttle and steer-
ing signals. We denote the action of the UAV by at

nav =
(�vt

m,�φ
t
m ). Note that both elements in the action vector are

continuous variables.
The navigation task in an obstacle-constraint environment

is complex. The reward function must be somehow designed
to guide the UAV to reach its destination while satisfying
the constraints. Our proposed reward function is composed
of 4 parts: transition, energy consumption penalty, obstacle
penalty, and finishing reward. The transition reward is de-
signed as

rtrans = λ1�d, (19)

where λ1 is a positive constant, and �d shows the reduced
distance to the sensor after taking the action. �d is positive
when the UAV becomes closer to the sensor, motivating the
UAV to head for the sensor. We define the energy consumption
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penalty as

re = −λ2P(v), (20)

where λ2 is a positive constant, and P(v) is the power con-
sumption of the UAV defined in (2). The UAV receives this
penalty to adjust its speed and trajectory so that the energy
consumption along the way is minimized. To encourage the
UAV to avoid the obstacles, the obstacle penalty is designed
as

robs = −λ3e−λ4lmin , (21)

where lmin is the minimum value among the range finders.
If the UAVs becomes really close to an obstacle in either of
the range finder directions, the penalty would increase expo-
nentially. To further encourage the UAV to move towards the
sensor, it would get a large constant positive reward r f inish

when it arrives at the destination. The overall reward function
for the navigation framework is formulated as follows

rnav = rtrans + re + robs + r f inish. (22)

When there are multiple UAVs working together for data
collection, one UAV will consider other UAVs as obstacles if
they fly at the same altitude. In this case, the aforementioned
navigation approach can also be applied to avoid the collision
among UAVs.

2) SENSOR POWER CONTROL
After arriving at the target sensor, the UAV hovers above it
to gather the data. At each time step, the UAV sets a proper
transmit power for the sensor. Since we have assumed the
channel gain can be measured by the UAV at each time step,
we take the channel gain into the state space to provide the
UAV with better decisions. Low channel gain indicates that
the sensor must transmit more power for a certain amount of
data rate. Also, the amount of data remained at the sensor must
be considered, since it helps the UAV achieve the goal state
in which the remaining data must be zero. The state can be
written as st

spc = (gt , ζt ) where gt is the channel gain at time t ,
and ζt is the remaining data at the sensor. The action is simply
denoted by at

spc = Pt , where Pt is the transmit power of the
sensor controlled by the UAV.

For the reward function, we need to motivate the UAV
to collect data, i.e., in this case having a high data rate. In
addition, we must avoid using high transmission power in case
the channel is not in a good condition. We should note that
during data collection, the UAV itself is spending power for
communication and hovering as stated in (4). With all these
into consideration, we design the reward function as follows:

rspc = λ5TsKt − λ6Pdc − λ7Pt , (23)

where Kt is the data rate in (8), Pdc is the UAV’s power
consumption during data collection, and Pt is the transmission
power of the sensor. λ5, λ6 and λ7 are the coefficients that
control the tradeoff between these three components.

3) MULTI-UAV SCHEDULING
The data collection is a task where the UAVs need to plan
their destinations in a way that minimizes their navigation
energy consumption. We utilize the scheduling framework to
organize trip plans for each of the UAVs to visit the sensors.
We assume that a sufficient number of UAVs have been de-
ployed so that none of them runs out of battery to perform the
cooperative data collection task. We also try to distribute the
data collection task evenly to the UAVs to make the best use
of their data storage capacity.

We consider the stop points for each UAV, namely the N
sensors and the starting locations. We will denote the set of
stop points by � = {ω0, ω1, . . . , ωN }, where ω0 represents
the starting point and the rest of them are the locations of the
sensors. The cost of flying from point i to point j is equal
to the UAV’s energy consumption on that path, which can be
obtained by using the navigation framework and is denoted by
matrix Cost (i, j). We normalize the matrix values by dividing
them to the maximum value present in the matrix. Therefore,
the maximum cost between two points is +1.

We denote the status of sensor i by ν(i) ∈ {0, 1}, where the
value of 1 states that the sensor has been visited by one of
the UAVs. The state of UAV m can be written as st

sch,m =
(Pos(m), ν(1), . . . , ν(N )), where Pos(m) ∈ � is the UAV’s
current location, and ν(1), . . . , ν(N ) denotes the status of all
the sensors, which can be acquired by the help of a central
controller or through the information exchange among UAVs.
In this case, the action of UAV m is its choice for the next
target location represented by at

sch,m ∈ �.
We design the reward function to motivate the UAVs to find

the best route starting from ω0 and then coming back to it. The
reward is expressed as

rt
sch,m =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1 ifat
sch,m = ω0 and
∃ωi ∈ �− {ω0}
where ν(i) = 0

−1 ifat
sch,m = Pos(m)

−Cost (Pos(m), at
sch,m) otherwise.

(24)

In the first case, we penalize the UAV when it returns to ω0,
while there are unvisited sensors in the area. In the second
case, the UAV is penalized when it stays at the current lo-
cation, and hence, the UAV is motivated to fly between the
sensors to collect data. The last case, is a regular case where
the UAV gets a cost-related negative reward, when flying from
sensor m to the next sensor indicated by the action at

sch,m.
Having individual rewards may benefit one, while punish-

ing the others. However, the UAVs need to work cooperatively
to schedule their visiting tour. Therefore, by sharing the same
reward, we can ensure that they work as a team for the data
collection. We define the overall reward at time step t as

rt
sch =

∑
m

rt
sch,m. (25)
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Algorithm 1: DDPG Algorithm.

1: Randomly initialize critic Q(s, a|θQ) and actor
π (s|θπ ) with weights θQ and θπ

2: Initialize target network Q′ and π ′ with weights
θQ ← θQ and θπ

′ ← θπ

3: Initialize the replay buffer W
4: for episode = 1,2,... do
5: Receive the initial observation state s1

6: for t = 1,2,..., T DDPG
max do

7: Select action at = π (st |θπ )+Nt according to
the current policy and exploration noise

8: Execute action at , receive reward rt and
observe the new state st+1

9: Store transition (st , at , rt , st+1) in W
10: Sample a random minibatch of I transitions

(si, ai, ri, si+1) from W
11: Set yi = r(si, ai )+ γQ′(si+1, π

′(si+1|θπ ′ )|θQ′ )
12: Update critic by minimizing the loss:

L(θQ) = 1
I

∑
i[(Q(si, ai|θQ)− yi )2]

13: Update actor using the sampled policy
gradient: ∇θπ J ≈
1
I

∑
i[∇aQ(s, a|θQ)|s=si,a=ai∇θπ π (s|θπ )|si ]

14: Update the target networks:
θQ′ ← ηθQ + (1− η)θQ′

θπ
′ ← ηθπ + (1− η)θπ

′

15: end for
16: end for

B. DDPG TO SOLVE THE NAVIGATION AND SENSOR
POWER CONTROL PROBLEM
To deal with continuous control problems of navigation and
sensor power control, we use the well-known actor-critic ar-
chitecture, DDPG, as the framework to solve our problem.
DDPG algorithm is formally presented in Algorithm 1. The
algorithm works as follows.

The weight vectors θQ and θπ of the actor and critic net-
works are randomly initialized at the start of the algorithm
(Line 1). As described earlier, we use target networks π ′ and
Q′ to improve learning stability. The target networks have the
same structure as the original actor or critic networks. We ini-
tialize their weights in the same way as their original networks
(Line 2). The target networks use soft updates, where they
slowly track the original network weights (Line 14).

During the training process, the agent can interact with the
environment to learn the optimal policy. The agent takes its
actions according to the actor network and a noise process
Nt (Line 7). We add the noise process to ensure the agent’s
exploration in the environment. Otherwise, we will not be
able to try different actions, since the deterministic policy
outputs just a single action. After taking the action, the agent
receives a reward rt and observes the next state st+1. We use
a replay buffer to store the transition tuples (st , at , rt , st+1)
(Line 9). Then, a mini-batch is randomly sampled to train
the actor and critic networks (Line 10). We update the critic

Algorithm 2: Multi-Agent DQL Algorithm.

1: Randomly initialize critic Qsch,m(s, a|θQ) with
weights θQsch,m for all the UAV agents

2: Initialize target network Q′sch,m with weights

θ
Q′sch,m ← θQsch,m

3: Initialize the replay buffer Wm and ε for each UAV
4: for episode = 1, 2, . . . do
5: Receive the initial observation state s1

6: for t = 1,2,..., T DQL
max do

7: for m in {1,..., M} do
8: Select the action am

t for UAV m according to
ε-greedy policy

9: end for
10: Execute the actions together, receive individual

reward rm
t and observe new state sm

t+1 for each
agent

11: Compute the overall reward in (25) by
summing over the individual rewards

12: for m in {1,..., M} do
13: Update the agent’s reward and store the

transition (sm
t , am

t , rtotal , sm
t+1) in Wm

14: Sample a random minibatch of I transitions
(si, ai, ri, si+1) from Wm

15: Set yi = ri + γmax
ai+1

Q′sch,m(si+1, ai+1|θQ′ )

16: Update the Qsch,m by minimizing the
loss: L(θQsch,m ) =
1
I

∑
i[(Qsch,m(si, ai|θQ)− yi )2]

17: end for
18: end for
19: Decay ε by a factor if ε > εstop

20: Update the target networks when
episode%Nupd = 0

θ
Q′sch,m ← θQsch,m

21: end for

network weights θQ by minimizing the loss function in (14).
The sample-based version of the policy gradient is used to
update the actor weights θπ (Line 12,13).

C. MULTI-AGENT DQL TO SOLVE MULTI-UAV
SCHEDULING PROBLEM
We adopt the multi-agent DQL framework to find the best
scheduling plan for the UAVs, where each of them has a
separate Q-network that controls its policy. We have presented
the multi-agent DQL solution in Algorithm 2. Our algorithm
works as follows.

At the beginning, we initialize the network weights for each
of the UAVs. We also do the same procedure for the target
networks (Line 1,2). Unlike DDPG, the target networks are
updated every Nupd episodes by fetching the original network
weights (Line 20). As the training begins, in each time step,
the agents choose their actions by using the ε-greedy policy
(Line 8), where each agent chooses a random action with
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TABLE 1 Parameters Used in the Paper

probability ε, otherwise the greedy action arg maxaQ(s, a) is
selected based on the agent’s Q-network. After receiving all
the actions, the system generates the reward and the next state
for each of the agents (Line 10). We should note that according
to our formulation in (25), the updated reward is given to the
agents by summing over their individual rewards (Line 11).
Then, each agent stores its transition tuple in the replay buffer,
samples a random tuple, and updates the network weights by
minimizing the sample loss (Line 13-16). We decay ε in each
episode to reduce the rate of exploration, as the agent begins
to learn a better policy (Line 19).

VI. SIMULATION RESULTS
In this section, we discuss the experimental setting and the
performance of the proposed frameworks. Our simulations
are performed with Python 3.7 and Tensorflow 2.0 on an
Intel Core i7-9700CPU with 16 GB RAM. The simulation
parameters regarding the UAV’s propulsion power and com-
munication channel are shown in Table 1.

For our DDPG model, we use a 2-layer feedforward neural
network architecture with 400 and 300 neurons in each layer
for the actor and critic. Furthermore, the Adam optimizer [30]
is used to update the network parameters, and similar to [11],
learning rates of 10−4 and 10−3 are chosen for the actor and
critic networks, respectively. In our implementation, Nt has
normal distribution with mean of 0 and variance of 0.2 to
explore the environment. We use minibatch sizes of 64, the
discount factor is γ = 0.99, and the soft target update rate
is η = 0.001. We use the same architecture and parameters
as the critic network in DDPG for each of the agents in the
multi-agent DQL model. ε starts from the value of 0.9 and
decays by the factor of 0.999 until reaching εstop = 0.05. We
update the target networks every 10 episodes (Nupd = 10) to
stabilize the learning process.

A. SINGLE UAV NAVIGATION
We simulate the obstacle-constraint environment, in which
the UAV starts from a random location and is expected to
fly to a destination. The target area is a 2D square of size
600× 600 m2 with obstacles randomly located in it. Here,
we aim to reach the destination by avoiding the obstacles and

FIGURE 1. Convergence of the DDPG model during the training for the
navigation task for different learning rates of actor and critic networks: (a)
the average return received by the UAV in the last 100 episodes and (b) the
average propulsion energy consumed by the UAV in the last 100 episodes.

minimizing the energy consumption of the UAV. The UAV’s
flight altitude h is set to 50 m. The reward is instantiated as:
λ1 = 0.3, λ2 = 0.002, λ3 = 50 and λ4 = 0.1.

First, we illustrate the convergence of the proposed method.
We trained the DDPG model for 5000 episodes, each of which
has a maximum of 30 time steps. In Fig. 1, the convergence
of the trained model with different learning rates of actor and
critic networks is presented. Fig. 1(a) shows the average return
formulated in (10) obtained by the UAV. Specifically, since we
are randomly choosing the starting and finishing points in the
area with different distances between them, the return received
by the UAV in each episode can be different. Therefore, we
average over the last 100 episodes to have a better view of the
convergence of our model. We can see that the UAV learns
to obtain the maximum accumulated reward in the obstacle-
constrained environment with the original learning rates. In
Fig. 1(b), we present the average propulsion energy consumed
by the UAV in the last 100 episodes. We can see that as the
model achieves a better return, the propulsion energy of the
UAV decreases. The energy penalty defined in (20) causes the
UAV to get higher rewards by decreasing the energy consump-
tion on its path to the destination. Although the learning rates
of 10−3 and 10−2 for the actor and critic networks perform
better at the beginning, they result in a lower performance
comparing to learning rates of 10−4 and 10−3. Hereinafter,
we set the learning rate as the latter ones.

In Figure 2, we present the trajectory followed by the
trained UAV for 3 different environments, where the green
circle shows the hovering location above the sensor, the red
squares show the positions of the obstacles, and the blue
dots indicate the trajectory of the UAV at each time step. We
change the locations of obstacles, starting position and the
destination and observe that the UAV is flexible to different
scenarios, because we considered the relative position to the
destination and the range finders for the navigation task. By
adopting the continuous control actions, the UAV is able to
change its path when getting close to an obstacle.

We also test the model for a period of 1000 episodes to
validate the successful navigation without any collision to
obstacles. The UAV reaches the target safely for 90.8% of the
test episodes.
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FIGURE 2. UAV’s trajectory in three different environment configurations.

FIGURE 3. Convergence of the DDPG model during the training for the
sensor power control.

B. SENSOR POWER CONTROL
We consider the scenario where the UAV hovers above a
sensor to collect its data. Considering the reward function in
(23), our goal is to jointly optimize the UAV and sensor’s
power consumption during data collection. We investigate the
impact of different coefficient, which can control the trade-off
between the two types of power consumption. We assume the
transmit power range of the sensor is between 0 and 0.1 W.

In Fig. 3, we illustrate the average return received by the
agent during training. Since in each episode, the agent may
experience different channel gains, we average over the last
100 episodes to smooth the curve. Compared to the navigation
task, the DDPG model converges faster (about 10 times). This
is particularly due to the fact that we have a much simpler
state and action spaces, which speeds up the convergence. Our
state consists of the values of channel gain and normalized
remaining data, and our action is the transmit power of the
sensor.

We compare the reward received by our adaptive model to
some fixed power scenarios in the testing phase. Since the
accumulated data collected by the UAV is constant in each

FIGURE 4. Joint penalty received by the UAV during the power control.

episode and equal to 100 Mbits, the accumulation of the first
term λ5TsRt in the reward function (23) would be the same for
all the scenarios. We added this term to the reward to motivate
the UAV to collect data from the sensor. Hence, we take it
out for comparison purposes and focus on the joint penalty
λ6Pdc + λ7Pt received by the agent. The penalty considers the
power consumed by both the UAV and the sensor jointly at
the same time. We choose the 3 values of 0.01 W, 0.05 W,
0.09 W for our fixed power scenarios. For ease of exposition,
we present the results for 100 episodes. In all the scenarios, the
environment experienced by the agent, i.e., the channel gains
it receives in a specific episode and time step, is exactly the
same. Fig. 4 shows the result for the case of λ6Pdc = 0.5 and
λ7 = 10. As we can see, the DDPG model achieves better per-
formance against the fixed power approaches. We should note
that as the transmit power of the sensor increases, we are likely
to have a higher data rate, and the time required to collect
all the data from the sensor decreases. As a consequence, the
UAV spends a smaller amount of power for its communication
and hovering. The model has learned the trade-off between
Pdc and Pt successfully, and can adaptively adjust the sensor’s
power by considering the environment. For example, when we
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FIGURE 5. Impact of UAV power penalty coefficient on the learned policy:
in (a) and (b) λ6Pdc = 0.5, and in (c) and (d) λ6Pdc = 2.

have a poor channel condition, it assigns a low power to the
sensor to compensate for the later time when we have better
channel conditions.

We also investigate the impact of coefficients on the learned
policy and the trade-off between the UAV and the sensor’s
power consumption. Fig. 5 presents the results for two differ-
ent cases. We keep the value of λ7 fixed while changing λ6Pdc.
In Fig. 5 (a) and (b) we consider λ6Pdc = 0.5, while in Fig. 5
(c) and (d) λ6Pdc = 2. We see that as we increase the penalty
for the UAV’s power, the agent learns to accomplish the task
earlier, leading to lower UAV power consumption. However,
the agent needs to increase the sensor’s power to achieve such
a goal, resulting in a higher sensor power consumption.

C. MULTI-UAV SCHEDULING
In this section, we study the behavior of the multi-agent
scheduling framework in the selected scenario, shown in Fig.
(6). The black spot at the bottom left shows the departure
point for the UAVs (ω0), the red squares show the positions
of the obstacle, and the green circles are the sensor locations
(ω1 − ω6). The UAVs start their trip from ω0 and fly to the
sensors to collect their data. For ease of illustration, we have
considered 2 UAVs, however the presented framework is ca-
pable of handling a general case with more UAVs.

Fig. 7 depicts the convergence of the model in terms of the
overall reward received by the agents in each episode of the
training phase. As we can see, at the beginning episodes, the
agents do not know how to interact with each other and receive
a high amount of penalty, but as we progress in training,
their policies improve, resulting in a lower penalty. We should
mention that in this scheduling environment, the agents do
not get any positive reward. The fluctuations appeared in the
figure are the result of using ε-greedy policies, which makes
the agents choose random actions during training to explore
the effect of taking different actions.

FIGURE 6. Considered scenario for data collection: the black spot shows
the departure point of the UAVs (ω0). The green circle illustrates the sensor
locations (ω1 − ω6).

FIGURE 7. Convergence of the DQL model during the training in terms of
the overall reward received by the agents.

TABLE 2 Scheduling Costs for Different Methods

We compare our proposed multi-agent approach to the ran-
dom and greedy baselines. In the random approach, the agents
choose the unvisited sensors randomly, whereas in the greedy
approach, the agents fly immediately to the next unvisited sen-
sor with the lowest energy consumption path. We also find the
optimal solution by doing an exhaustive search. In all the so-
lutions, the UAVs are required to collect data from the sensors
evenly to make use of their storage capacity and decrease the
data collection time. The results have been shown in Table 2.
The 2nd and 3rd columns indicate the scheduled trip for UAV
1 and UAV 2 respectively, e.g., 0→ 1→ 5→ 6→ 0 means
that the UAV departs at ω0, and then visits sensors ω1, ω5, ω6,
and finally goes back to the departure point ω0. Our measure
for this comparison is the total energy consumption of both
UAVs when flying according to the scheduled trip, shown
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as the cost in the last column of Table 2. We see that the
DQL model achieves a closer result to the optimal solution
comparing to the two other methods.

VII. CONCLUSION
In this work, we have proposed a DRL-based approach to
solve the data collection problem for multiple UAVs in IoT
networks with the aim to minimize the energy consumption on
both the UAVs and sensors sides. We have divided the original
problem into 3 sub-problems of navigation, sensor power con-
trol and multi-UAV scheduling and solved each sub-problem
by utilizing a DRL algorithm. In the navigation framework,
the DDPG algorithm has been deployed to enable each UAV
to generate its trajectory autonomously by adjusting its speed
and orientation angle, given the starting and finishing posi-
tions. The reward function has been designed to make the
UAVs avoid the obstacles with the help of their sensory obser-
vations. For the sensor power control, we have used the DDPG
to control the sensor’s transmit power adaptively based on the
current channel gain and the remaining data. To schedule the
trip plans for each UAV, we have proposed the multi-agent
DQL algorithm with the goal of minimizing the overall energy
consumption of the UAVs during their flight on the scheduled
paths. Our simulation results have shown that the UAVs can
safely fly towards the target by avoiding the obstacles. Also,
by controlling the sensor’s power, we can obtain better perfor-
mance than the fixed power approaches in terms of the total
power consumption of the UAV and the sensor during the data
collection time. Finally, our scheduling framework achieves a
performance close to the optimal solution.
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