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ABSTRACT In a time division duplex (TDD) based massive multiple-input multiple-output (MIMO) system,
a base station (BS) is required to obtain accurate estimation of channel state information (CSI) for a user
terminal (UT). Because of the time-varying nature of the channel, the length of pilot signals is limited and
the number of orthogonal pilot signals is finite. Hence, the same pilot signals are required to be reused in
neighboring cells and thus its channel estimation performance is deteriorated by pilot contamination from
the neighboring cells. The minimum mean square error (MMSE) channel estimation can be used to reduce
the influence of pilot contamination. However, it needs to know the covariance matrix of channels for all
the UTs, which is unknown to the BS in practice. In this paper, we propose two methods of deep learning
aided channel estimation to reduce the influence of pilot contamination. One method uses a neural network
consisting of fully connected layers, while the other method uses a convolutional neural network (CNN). The
neural network, particularly the CNN, plays a role in extracting features of the spatial information from the
contaminated signals. The former method is better in terms of the training speed, however, the latter one can
estimate the channel more accurately. We evaluate the proposed methods under two scenarios, i.e., perfect
timing synchronization and imperfect one. Simulation results confirm that the proposed methods are better
than the LS and covariance estimation methods via normalized mean square error (NMSE). In addition,
we also investigate the impact of channel aging, and show that including some expected data into training
datasets can avoid the great degradation of estimation quality.

INDEX TERMS Channel estimation, deep learning, massive MIMO, pilot contamination.

I. INTRODUCTION
Massive multiple-input multiple-output (MIMO) is one of
the promising technologies in the fifth generation (5G) and
beyond [1]–[4]. The basic concept of the massive MIMO
technique is that a base station (BS) equips with hundreds
of antenna arrays to serve tens of user terminals (UTs) si-
multaneously. A large number of antennas at the BS enable
spatial multiplexing to the UTs over the same time-frequency
resource [1], which achieves high spatial efficiencies. In addi-
tion, the massive MIMO systems have a lot of benefits, such

as high data rates, high energy efficiencies, and simple linear
transceiver design [5].

To fully exploit these advantages, it is necessary for the BS
to have accurate channel state information (CSI). The channel
estimation is an important operation since the performance of
the massive MIMO systems depends on the quality of the es-
timation. The channel response is assumed to be constant for
time and frequency domains within the coherence block, and
thus the channel estimation is performed once per coherent
block. When operated with time division duplex (TDD), the
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characteristic of reciprocity between uplink (UL) and down-
link (DL) can be exploited, so that pilot signal transmissions
are conducted in the only UL. Therefore, the coherence block
is divided into three categories, the UL pilot signal transmis-
sions, the UL data signal transmissions, and the DL data signal
transmissions. To increase the spectral efficiencies, the length
of pilot signals should be small. However, as the number of
UTs becomes larger, the length of pilot signals has to be
large to keep the orthogonality to the signals of each UT.
Thus, the resource for data transmission blocks is limited. To
avoid this issue, the same pilot signal of its own cell is reused
in neighboring cells. Therefore, the BS cannot separate the
signals from the UTs using co-pilots in the other cells. Hence,
the channel estimation performance degrades largely because
of the inter-cell interference of the same pilot signals from
the other cells, which is called pilot contamination [1]. It is
hard to mitigate the effects of the pilot contamination even if
the number of BS antenna arrays is infinite, unlike intra-cell
interference, fast-fading, and noise at the BS [5].

A lot of approaches have been proposed to estimate chan-
nels in TDD-based massive MIMO systems under the exis-
tence of pilot contamination. In [6], a covariance-aided chan-
nel estimation is proposed, in which the minimum mean
square error (MMSE) channel estimation is derived. It is
shown that the pilot contamination can be removed com-
pletely when the covariance matrices satisfy a certain non-
overlapping condition. With making use of the idea, a coor-
dinated approach for assigning the pilot signals is proposed
so that the covariance matrices could be transformed into the
structure satisfying the required condition. However, the chan-
nel covariance matrix that expresses channel spatial correla-
tion is needed, and the BS does not possess this information
in advance [7]. The method of using extra pilots [8] is pro-
posed to estimate the covariance matrix. It can eliminate the
effects of interference to some extent. However, the available
coherence block for sending data is limited because of the
time varying nature of the channel. Besides, such information
is also needed in the Joint Spatial Division and Multiplexing
(JSDM) scheme [9], which reduces the channel estimation
training overhead. The blind method proposed in [10] does
not need a priori information. This scheme can distinguish
the interference subspace from the desired signal subspace. It
exploits the eigenvalue distribution of the sample covariance
matrix calculated from the received signals, which tells the
desired signals from interfering ones. Therefore, it is possi-
ble to separate blindly the desired signal subspaces and the
interfering ones. To distinguish the eigenvalue groups clearly,
the power margin between the signals should be large. Thus,
pilot contamination can be mitigated when the power margin
between the desired signals and the interfering ones is signifi-
cantly large. The authors of [11] proposed a time-shifted pilot
transmission protocol. When the users of a certain cell are
transmitting pilot signals, the users of the neighboring cells
are receiving downlink data. After every group has finished
the phase of sending pilot signals, all the users send uplink
data. This method can avoid pilot contamination. However,

during the phase of sending pilot signals, the users at the
cell-edge receive interference from the BSs in the neighbor-
ing cells. In [12], a pilot contamination precoding method is
proposed. This method makes use of multi-cell cooperation.
The precoding matrix at the BS is made to minimize the sum
of inter-cell and intra-cell interference. When the number of
the BS antennas approaches infinity, pilot contamination can
be completely removed. However, this requires a centralized
processing at the BS and all BSs have to know the data of all
users.

In recent years, deep learning is often applied in the fields
of computer vision and natural language processing to solve
complex nonlinear problems. Moreover, it is also incorporated
into the area of wireless communication [13]. The nature
of channel in the massive MIMO systems is complicated,
and the non-linear optimization for the channel estimation
requires the high computational complexity. Therefore, deep
learning-based method is a candidate for addressing this prob-
lem because it has the ability to solve many non-convex and
non-linear issues. In [14], the deep learning is integrated into
direction-of-arrival (DoA) estimation and channel estimation
in massive MIMO systems. The scheme is designed to learn
the statistics of the channel model and acquire the sparsity
features in angle domain. In [15], it is proposed that using
neural network helps to improve the channel estimation per-
formance. This approach is designed by the structure of the
MMSE channel estimator, and the convolutional neural net-
work (CNN) [16] is presented as a class of low-complexity
channel estimator. In [17], it is shown that CNN and long
short-term memory (LSTM) can be applied in the fast time-
varying channel estimation. In [18], deep learning-based two-
stage channel estimation including pilot-aided stage and data-
aided stage is proposed. The data-aided stage has the iterative
structure of signal detection and channel estimation. The esti-
mated channel quality is improved because the length of data
symbols is much longer than that of pilot symbols. However,
all these methods [14], [15], [17], [18] assume a single-cell
layout and ignore the existence of pilot contamination while it
is quite often occurred in multi-cell layout scenarios.

To suppress the influence of pilot contamination in TDD-
based massive MIMO systems, we propose two kinds of chan-
nel estimation methods based on deep learning, i.e., neural
network (NN) and CNN. The NN-based estimation utilizes
a neural network consisting of fully connected layers, while
the CNN-based estimation utilizes a CNN. The motivation for
utilizing the neural network lies that it plays a role in extract-
ing features of the spatial information contained in the LS
estimated channel. In particular, CNNs have the advantages
that the spatial correlation can be exploited with the sliding
convolutional filters. Moreover, it is reasonable to use neural
networks that can handle a large amount of correspondences
between the LS estimated channel and the desired channel.
It is shown that the CNN-based estimation can achieve better
estimation performance than the NN-based estimation, while
the NN-based estimation takes less time to train the datasets
than the CNN-based estimation.
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The main contributions of this paper are summarized as
follows.
� Firstly, we propose a channel estimation method using

the deep learning in the presence of pilot contamination.
While the conventional method [8] consumes extra time
resources and its optimal parameters are unknown, the
proposed methods do not require the extra signals and
leverage the trained statistical information to estimate
the channel end-to-end.

� Secondly, in contrast to existing researches on channel
estimation using the deep learning [13]–[17], our goal
is to suppress the influence of pilot contamination that
occurs in practical environments. We give the explana-
tion of how the deep learning contributes to suppress the
inter-cell interference.

� Thirdly, through our computer simulation results, we
show that the proposed methods improve the normal-
ized mean square error (NMSE) of the channel com-
pared with the conventional method [8]. Moreover, we
investigate the impact of channel aging caused by the
change of environments such as the movement of UTs.
We consider two cases in which different statistical char-
acteristics of datasets are used in the training and the
evaluation, and the same ones are used.

The remaining of this paper is organized as follows.
Section II presents the system model and describes two
scenarios, i.e., timing synchronization and channel aging.
Section III describes the conventional covariance estimation
method for the MMSE channel estimation. Section IV pro-
poses two methods of deep learning-based channel estimation
in the presence of pilot contamination. Section V evaluates the
proposed methods in terms of the channel NMSE. Section VI
concludes this paper.

Notation: We use NC(0, R) as the circularly symmetric
complex Gaussian distribution with zero mean and the covari-
ance matrix R. The superscripts (·)T , (·)∗, and (·)H denote
transpose, conjugate, and the Hermitian transpose operator,
respectively. The IM denotes the M × M identity matrix.

II. SYSTEM MODEL
We assume L hexagonal cells, where each cell contains one
BS equipped with M antennas and K UTs with single antenna.
The channel from the k-th UT of the j-th cell to the BS in
the l-th cell is denoted by hl jk ∈ CM . Typically, uncorrelated
Rayleigh fading is often used as the channel model. However,
it is practically questionable that the signals are equally likely
to arrive at the BS from all directions [19]. In addition, practi-
cal massive MIMO channels are spatially correlated from the
measurement campaigns [20], [21]. We assume that the spatial
correlated channels the correlated Rayleigh fading model as
follows

hl jk ∼ NC(0, Rl jk ), (1)

where Rl jk denotes the channel covariance matrix, which
describes the macroscopic propagation characteristics. When
the spatial correlation is independent, it can be expressed as

Rl jk = βl jkIM , which is a diagonal matrix. βl jk is the large-
scale fading coefficient between the BS in the l-th cell and
the k-th UT in the j-th cell. However, we consider the spatial
correlated channel, whose covariance matrix is represented by
non-zero off-diagonal elements and non-identical diagonal el-
ements [22]. The covariance matrix of the channel is modeled
as

Rl jk = βl jk

∫ π

−π

p(θl jk )a(θl jk )a(θl jk )H dθl jk, (2)

where p(θ ) is the power spectrum of an angle of arrival
(AoA), and a(θ ) is the steering vector of a uniform linear
array (ULA). Here, the following range of θ is excluded,
{θ : p(θ ) < ε}, where ε is some small number. The power
spectrum p(θ ) is assumed to be the Laplace distribution with
a standard deviation equal to 2◦. This models the scattering
of the received power around the center of the propagation
paths. We consider two cases of perfect timing synchroniza-
tion throughout the multi-cell system, and imperfect one. In
addition, we deal with the case of channel aging.

A. TIMING SYNCHRONIZATION
1) CASE OF PERFECT TIMING SYNCHRONIZATION
Most multi-cell literature assumes perfect timing synchroniza-
tion for simplicity. The τ -length pilot signal allocated to the
k-th UT in the j-th cell is expressed as s jk ∈ Cτ , and ‖s jk‖2 =
τ . Ideally, the pilot signals allocated to the users within the
same cell and the neighboring cells should be orthogonal to
each other as

sH
jks j′k′ =

{
τ, ( j = j′ and k = k′)
0, (otherwise)

. (3)

If the pilot signals satisfy Eq. (3), the pilot contamination does
not occur. That is, the BS can estimate the desired channel
without the inter-cell interference. However, the number of
orthogonal pilot signals is limited by the channel coherence
time, and then the number of users which can be served is
limited. Therefore, the same pilot signals or non-orthogonal
pilot signals are used in the neighboring cells. The estimated
channel becomes correlated with the channel of the users
using non-orthogonal pilot signals. As a result, the accuracy
of channel estimation is degraded because of the interference
from the users in the neighboring cells. We consider the k-th
UT in each cell using the same pilot signal sk such as

sH
k sk′ =

{
τ, (k = k′)
0, (otherwise).

(4)

The BS in the l-th cell receives the superposition of the pilot
signals from the UTs in all the cells, and it is expressed as

Y l =
K∑

k=1

hllksT
k +

L∑
j �=l

K∑
k=1

hl jksT
k + Nl . (5)

Here, Nl ∈ CM×τ is the additive white Gaussian noise
(AWGN) with zero-mean and element-wise variance σ 2

n . To
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FIGURE 1. TDD scheduling protocol in the case of imperfect timing
synchronization. The coherence time consists of block for uplink pilot
transmission and one for uplink data transmission. A cyclic prefix of L2

symbols and a cyclic postfix of L1 symbols are inserted into each block.

estimate the channel, the BS in the l-th cell projects its re-
ceived signal Y l on s∗

k . This is called LS estimation [6], and
the BS in the l-th cell can obtain

ĥ
LS
llk = hllk +

L∑
j �=l

hl jk + 1

τ
Nl s

∗
k . (6)

MMSE-based channel estimator [6] is a typical method to
suppress pilot contamination. The BS in the l-th cell with this
method estimates the channel to the k-th user in the same cell
as follows

ĥ
MMSE
llk = RllkQ−1

lk ĥ
LS
llk . (7)

The channel covariance matrix is defined as Qlk =
E[hLS

llk (hLS
llk )H ]. It is given by Qlk = ∑L

j=1 Rl jk + σ 2
n /τ IM .

The MMSE channel estimation exploits statistical information
of the channel covariance matrix. If the BS knows the matrix
Rllk and Qlk in Eq. (7), the BS can calculate the estimated
channel ĥllk . However, in practice, the BS usually does not
possess these matrices in advance.

2) IN THE CASE OF IMPERFECT TIMING SYNCHRONIZATION
Even though perfect timing synchronization is possible to
achieve between a BS and its served UTs, it is difficult to
achieve timing synchronization throughout the multi-cellular
network [23]. The UT in the l-th cell is in perfect timing
synchronization with the l-th BS. However, there is an ε jTs

mismatch between the signal from the UT in the j-th cell
and the one from the UT in the l-th cell. Here, Ts is a sym-
bol interval, and ε j ∈ [−0.5, 0.5) is a random variable and
follows the uniform distribution. Note that the value εl is
fixed at 0 because the UT in the l-th cell is in perfect timing
synchronization.

It is assumed that pulse shaping filters are designed so that
they satisfy the Nyquist criterion for avoiding the intersymbol
interference (ISI). The impulse response of the filters is

Rp(mTs) =
{

0, (m �= 0)

1, (m = 0).
(8)

The scheduling protocol, when sending a pilot signal, is
shown in Fig. 1. Based on the discrete-time model [23], the

BS in the l-th cell receives

yl [i] =
K∑

k=1

hllksk[i]

+
L∑

j �=l

K∑
k=1

L2∑
m=−L1

Rp(mTs − ε jTs)hl jksk[i − m]+nl [i]

(9)

at the time i, where sk = [sk[0], . . ., sk[τ − 1]]T is used, and
nl [i] is the i-th column of Nl . The last L2 and the first L1 pilot
symbols are inserted into before and after the block of UL pi-
lot transmissions, respectively. The Rp(mTs − ε jTs),∀m �= 0
is no longer zero, and the term of the inter-cell interference
signals are affected by the ISI due to the random ε j . This
is the difference between perfect timing synchronization and
imperfect synchronization.

B. CHANNEL AGING
We also consider a quasi-static block fading channel model to
investigate the impact of channel aging as in [24]. In general,
the channel changes over time because of the movement of
UTs. As a result, the channel coefficients keep constant within
one symbol, but change from symbol to symbol. Therefore,
the estimated channel at the BS is different from the real one
when precoding the transmitted signals or combining the re-
ceived signals. This is called channel aging. The time varying
channel is commonly modeled by the Gauss-Markov block-
fading model. Typically, the Jake’s model is used, which is
an autoregressive model, and assumes that the propagation
path is composed of two-dimensional isotropic scatter [25].
For simplicity, we use the autoregressive model of order 1.
The channel between the l-th BS and the k-th user in the j-th
cell at the n-th symbol is given by

hl jk[n] = αhl jk[n − 1] + el jk[n], (10)

where el jk[n] ∼ CN (0, (1 − α2)Rl jk ) is the stationary Gaus-
sian channel error vector because of the time variation of the
channel, independent of hl jk[n − 1]. The temporal correlation
parameter α is given by

α = J0(2π fDTs), (11)

where J0 is the zeroth-order Bessel function of the first kind,
and fD is the maximum Doppler shift. The maximum Doppler
shift fD is given by

fD = v fc

c
, (12)

where v is the velocity of the UT, c = 3.0 × 108 m/s is the
speed of light, and fc is the carrier frequency.

The relative movements between the UTs and the BS cause
Doppler shift. This is a crucial cause of channel aging. The
maximum Doppler shift is in proportion to the velocity of
UTs according to Eq. (12). As the maximum Doppler shift
increases, the temporal correlation decreases in Eq. (11). That
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is, as the velocity of UTs increases, the variation of the chan-
nel coefficients becomes large. In practice, most UTs move
around, and it is needed to evaluate the effects of channel
aging.

III. CONVENTIONAL CHANNEL ESTIMATION METHOD
This section explains the conventional method to estimate the
covariance matrices required for the MMSE channel estima-
tion [8]. In this method, another extra pilot signal is added
besides the ordinary pilot signal to make use of estimating the
covariance matrix. As described in Section II, the BS in the
l-th cell has to obtain the matrix Rllk and Qlk for the MMSE
channel estimation.

A. ESTIMATION OF Qlk

The covariance matrix Qlk = E[ĥ
LS
llk (ĥ

LS
llk )H ] is estimated by

some samples of the LS estimated channel for the received

signals, ĥ
LS
llk[1], . . ., ĥ

LS
llk[NQ]. The sample covariance matrix

is obtained as

Q̂
(sample)
lk = 1

NQ

NQ∑
n=1

ĥ
LS
llk[n]

(
ĥ

LS
llk[n]

)H
, (13)

where NQ is the number of observations. However, it is more
challenging to obtain the sample covariance matrix whose
eigenvalues and eigenvectors are well aligned with those of
the matrix Qlk[8]. To solve this problem, the covariance ma-
trix is estimated as the convex combination

Q̂lk (η) = ηQ̂
(sample)
lk + (1 − η)Q̂

(diagonal)
lk , (14)

where η ∈ [0, 1] is a constant. Here, Q̂
(diagonal)
lk is the diagonal-

ized sample covariance matrix Q̂
(sample)
lk . When the constant η

is smaller than 1, the off-diagonal elements of Q̂lk are under-
estimated and their values are treated as unreliable.

B. ESTIMATION OF Rl lk

In addition to the ordinal pilot signal, another pilot signal is
transmitted to estimate Rllk . In this time, the l-th UT does
not send pilot signals, and only the UTs in the other cells do
so. The BS receives the NR pilot signals, and computes its

sample covariance matrix Q̂
(sample)
lk,−k . This matrix is considered

as the sum of the covariance matrix of all the UTs causing
the interference of the pilot contamination. The covariance

matrix Q̂
(sample)
lk is already obtained, and another one R̂

(sample)
llk

is estimated as follows

R̂
(sample)
llk = Q̂

(sample)
lk − Q̂

(sample)
lk,−k . (15)

As in the case of the matrix Q̂lk , using a constant μ ∈ [0, 1],
the matrix R̂llk can be estimated as

R̂llk (μ) = μR̂
(sample)
llk + (1 − μ)R̂

(diagonal)
llk . (16)

IV. DEEP LEARNING-BASED CHANNEL ESTIMATION
This section proposes the deep learning-based channel esti-
mation in multi-cell massive MIMO systems in which pilot

FIGURE 2. Amplitude spectrum of the angle domain for the LS estimated
channel, the desired channel and the interference channels.

contamination occurs. In [15], the MMSE channel estimation
is transformed into the structure of a neural network under
some certain assumptions. However, their method can not be
used as it is since it is designed in a single cellular network
without pilot contamination. We consider the scheme of neu-
ral networks for reducing the effects of pilot contamination
that can occur in a more practical environment. First it is
shown how the neural network can help against inter-cell
interference of pilot contamination in the multi-cell massive
MIMO system. After that, we present two proposed methods:
NN-based estimation and CNN-based estimation.

A. SUPPRESSION OF PILOT CONTAMINATION
THROUGH LEARNING
The LS estimated channel contains the sum of the channels
for all the UTs using the same pilot signal as in Eq. (6).
Therefore, for accurate channel estimation, it is necessary
to retrieve the desired channel from the interference-affected
LS estimated channel. The channel covariance matrix Rllk

integrates the power spectrum of the AoA and the steering
vector in terms of the angular domain as in Eq. (2). Therefore,
by performing the discrete Fourier transform (DFT) on the
channel vectors hllk , we can obtain the information of the
AoAs and the magnitudes of signals. That is, the LS estimated
channel contains such information of both the desired UT of
its own cell and the interfering UTs of the other cells. Fig. 2
shows the DFT-processed data of the LS estimated channel,
the desired channel, and the interference channels, assuming
one desired UT and six interfering UTs. If the AoA of each
signal does not completely overlap, each spectrum can be
separated. To estimate the desired channel, we exploit the
following information such as the statistical AoAs and the
distance-dependent magnitudes of signals.

1) The large scale coefficient of the target cell βllk is often
larger than that of the other cells βl jk, (l �= j)

2) The AoAs of the desired and interference signals are not
exactly the same.
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FIGURE 3. Framework for the proposed methods. The upper part and the lower part show the structure in the NN-based estimation using the fully
connected layers and the CNN-based estimation using the convolutional layers, respectively.

These items are not the assumptions that must be always
made since our method is not the model-based algorithm but
the data-driven one. Let χ be the information related to the
channel covariance matrix such as the AoA and the mag-
nitude of signals. The MMSE estimation can be expressed

as ĥ
MMSE
llk = W χ ĥ

LS
llk . However, in the practical environment,

since the information χ is unknown in advance, the covariance
matrix W χ is required to be obtained from the LS estimated
channel. The channel is estimated with

ĥllk = Ŵ χ ĥ
LS
llk (17)

= E
[
W χ |ĥLS

llk

]
ĥ

LS
llk . (18)

Here, Ŵ χ is obtained using the information contained in the
LS estimated channel as follows

Ŵ χ =
∫

p(χ |ĥLS
llk )W χdχ, (19)

where p(·|·) represents the conditional probability density
function.

To realize Eq. (17), the method using neural networks is
suitable since they are good at extracting features from large
amounts of training data and making end-to-end inferences
about unknown data. The LS estimated channel has distin-
guishable features, and it is necessary to assume a large
amount of information χ as in Eq. (19). Therefore, we can ex-
pect that the performance of the neural network-based method
approaches that of the MMSE channel estimation in which the
covariance matrix information is fully known. Eq. (17) can be

expressed as ĥllk = f (ĥ
LS
llk ) because it takes the LS estimated

channel as its argument. Here, f denotes a mapping from the
LS estimated channel to the desired channel. Thus, the LS
estimated channel can be used as the input data to the neural
networks.

B. FRAMEWORK OF DEEP LEARNING-BASED CHANNEL
ESTIMATION
We propose two kinds of deep learning-based channel estima-
tion method. One is composed of fully connected layers and
activation functions, the other is composed of convolutional
layers and activation functions. Fig. 3 shows the framework
of our proposed methods in which the neural network consists
of three layers and activation functions connected with them.
The upper part is a model using all three fully connected
layers, and the lower part is a model of a CNN using con-
volutional layers. We call the method using the former model
the NN-based estimation, and the latter one the CNN-based
estimation.

The LS estimated channel vector ĥ
LS
llk ∈ CM for the re-

ceived pilot signals is given as input data of the neural net-
work, and the desired channel vector ĥ

prop
llk ∈ CM is output.

The input-output correspondence is computed by the internal
weight parameters of the neural network, and the underlying
loss function is defined as follows

L = E
[
‖hllk − f (ĥ

LS
llk )‖2

2

]
. (20)

1) NN-BASED ESTIMATION
In the model of the NN-based estimation, the number of nodes
is 4M in the first layer, 64M in the second layer, and 2M in the
last layer. The rectified linear unit (ReLU), r(x) = max(x, 0),
is used as the activation function. If the weight parameters
at the i-th layer is denoted by W i and bi, the model of the
NN-based estimation fNN is defined as

fNN(x) = W 3 · r(W 2 · r(W 1x + b1) + b2) + b3. (21)

Here, x ∈ R2M is the input for fNN, and is being con-

verted from complex into real, x = [Re(ĥ
LS
llk )T , Im(ĥ

LS
llk )T ]T .

72 VOLUME 2, 2021



Thus, the desired channel is obtained from ĥ
prop
llk = f (ĥ

LS
llk ) =

fNN(x). Here, the batch size of the input is set to one for sim-
plicity, however in practice, the multiple batches of datasets
can be handled simultaneously.

When using this estimation method, the values of the
weight parameters must be determined through offline train-
ing beforehand. Given a training dataset, the weight param-
eters are updated in the direction that the values of the loss
function Eq. (20) becomes smaller through the Adam opti-
mizer. This training operation is performed until the values of
the loss function converge. In addition, the loss function is l2
regularized to prevent overlearning. Once the training is done,
it is ready to be used online. During the pilot signal trans-
mission of the UL, the LS estimated channel of the received
signal at the BS is given as an input to the neural network. The
desired channel is estimated through Eq. (21) using the trained
weight parameters. The trained model contains a large number
of corresponding patterns between the LS estimated channels
and the desired ones. The weight parameters are determined
such that Eq. (20) is small for data with the same statistical
properties. Thus, even for datasets that are not identical to
the training dataset, our proposed method can be used if the
channel model is equal to the one in training.

In addition, it might be possible to deal with the case of
hardware impairments by training with the dataset generated
under such conditions. Traditional algorithms often assume
a certain model, while a data-driven manner can learn how to
map the LS estimated channel into more accurate channel. We
would like to leave this topic as our future research.

2) CNN-BASED ESTIMATION
In the model of the CNN-based estimation, the convolutional
layer is used for the first and second layers, and the fully
connected layer is used for the last layer after vectorizing the
feature map of matrix data. The first layer has 16 filters of
4M × 1, the second layer has 32 filters of 4M × 1, and the
last layer has 2M nodes. The features from the input infor-
mation are extracted by the convolutional layer to generate a
feature map. After that, the fully connected layer converts the
resulting feature map into the desired number of dimensions.
As in the case of the NN-based estimation, the input x is
being separated into the real and imaginary parts, and thus the
size of the input is 2M × 1 × 1. The model in the CNN-based
estimation fCNN is defined as

fCNN(x) = W 3 · vec(r(Conv (r(Conv (x))))) + b3, (22)

where Conv(·) is the operation of the convolutional layer.
In general, CNNs exploit spatial local correlation with the

sliding convolutional filters. As mentioned above, the LS es-
timated channel, which is the input data, contains information
such as the AoAs and the magnitudes of signals. Therefore,
the CNN plays a very powerful role in extracting these fea-
tures among the input elements, and is expected to have a
higher performance than the NN-based estimation. In the field
of image processing, relatively small filters are used, however

TABLE 1. Simulation Parameters

FIGURE 4. Channel NMSE versus the number of BS antennas in the case of
perfect timing synchronization.

in our CNN-based estimation, the filter size is larger than
the input size. This is because the input data of complex is
separated into real and imaginary parts, and it is necessary to
include all the elements of 2M in extracting the features. This
point has important implications for reducing the effects of
pilot contamination. Other settings and usage are the same as
those of the NN-based estimation.

V. SIMULATION RESULTS
This section evaluates the performance of the proposed meth-
ods through computer simulations. The simulation parameters
are listed in Table 1. We consider 7 hexagonal cells, the center
of which is its own cell. The other cells are arranged around it.
The UTs are located randomly, satisfying dll ∈ [700, 1000] m,
dl j ∈ [1000, 2000] m, where dl j denotes the distance from the
BS in the l-th cell to the UT in the j-th cell. In the simulation
from Fig. 4 to Fig. 7, a single UT is distributed in each cell.
Note that UTs in the same cell do not cause interference with
each other since they have orthogonal pilot signals among
their own cell. Thus, our results are the same even in the case
that multiple UTs are distributed in each cell as long as the
channel does not change so that the orthogonality among pilot
signals is kept. We assume the spatial correlated channel. In
this computer simulations, the channels and the corresponding
signals are generated based on the system model in Section II.
Each element of datasets includes the channels generated
based on different covariance matrices and the corresponding
received signals of pilot transmissions. That is, the noise,
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channel, and covariance matrix of datasets are varying in each
sample. We use the channel NMSE as the metric of a channel
estimation accuracy,

NMSE = E
[‖hllk − ĥllk‖2

2

]
M

, (23)

where M is the number of BS antennas. We evaluate the
NMSE for the LS estimation, the MMSE estimation in which
the covariance matrix is known, the method [8] in Section III,
the proposed methods in Section IV.

A. CASE OF PERFECT TIMING SYNCHRONIZATION
In Fig. 4, the channel NMSE versus the number of BS an-
tennas M is illustrated in the case of perfect timing synchro-
nization. We compare two proposed methods (NN-based es-
timation and CNN-based estimation) with the LS estimation,
the MMSE estimation with the known covariance matrix, and
the conventional method [8]. The LS estimated channel is
contaminated by the inter-cell interference due to allocating
the same pilot signal as in Eq. (6), which shows the worst es-
timation. The MMSE estimation is conducted with the perfect
covariance matrix and therefore shows the best performance
as an indicator of the accuracy limit. Note here that the co-
variance matrix is unknown in practical environments.

The proposed methods, the NN and the CNN-based es-
timation, achieve much better estimation performance than
the LS estimation. The NMSE of the NN-based estimation
is degraded as the number of BS antennas M increases, while
that of the CNN-based estimation is improved. This indicates
that exploiting spatial local correlation in CNNs contribute
significantly to the channel estimation in pilot contamination.
In the NN-based estimation, the correlation between nodes is
not well captured as the number of nodes increases. How-
ever, in the CNN-based estimation, it is possible to extract
the relationship between input elements using filters. On the
other hand, in our computer simulations of M = 64, it takes
209 seconds to train the datasets in the NN-based estimation,
and 498 seconds in the CNN-based estimation. Thus, the NN-
based estimation has the advantages of the speed of training.

The conventional method is evaluated with the various
number of pilot samples NR. In the figure legend, ‘optimized’
means that η,μ are selected such that the least MSE is
achieved, and ‘not optimized’ means that η = 1, μ = 1. Note
that the optimal η,μ are not known in advance in practical
environments. The NMSE is reduced by sending the addi-
tional number of samples NR. In the case of η = 1, μ = 1,
significant performance degradation is observed for a larger
number of BS antennas.

The conventional method has to consume many coherence
blocks to improve the performance accuracy, and what is
worse, the optimal parameters μ, η are not known. However,
the proposed methods, by capturing features such as the infor-
mation of the AoAs and the magnitudes of signals, can show
better estimation performance than the conventional method
without sending additional pilot signals.

FIGURE 5. Channel NMSE versus the number of BS antennas in the case of
imperfect timing synchronization.

FIGURE 6. Loss value versus the number of epochs with the NN-based
estimation in which the learning rate is different.

B. CASE OF IMPERFECT TIMING SYNCHRONIZATION
In Fig. 5, we show the channel NMSE versus the number
of BS antennas M in the case of imperfect timing synchro-
nization. We compare the case of imperfect timing synchro-
nization and the perfect one with respect to the two proposed
methods (NN-based estimation and CNN-based estimation).
In the training, the datasets of perfect timing synchronization
are used, however, the NMSE in imperfect timing synchro-
nization is almost the same as that in perfect timing synchro-
nization. Even if the imperfect timing synchronization occurs,
our proposed methods can distinguish the desired channel
from the other channels because the AoA information is kept
intact.

C. HYPER PARAMETER TUNING
We show how the NMSE performance changes for the vari-
ation of the hyper parameters, i.e., the learning rates and the
size of kernels. Fig. 6 shows the loss value versus the number
of epochs with the NN-based estimation in which the learning
rate is different. The BS antennas M is set to 64. The learning
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FIGURE 7. Loss value versus the size of kernel with the CNN-based
estimation.

rate is the parameter to decide how much the weights of the
NN is changed. In general, when the value is too large, the
loss function may diverge or pass by a global minimum point.
In contrast, when the value is too small, it may take a long
time to converge or the loss function may stay at a local
minimum point. In our result, assigning large learning rate,
0.01, converges at higher value than the others. This is because
the weights of the NN fluctuate widely and do not stay a global
minimum point. Fig. 6 also shows the smaller the learning rate
is, the longer the time to converge takes. A similar result is
obtained in the case of CNN-based estimation.

Fig. 7 shows the loss value versus the size of kernel with
the CNN-based estimation. The number of BS antennas M is
shown at the legend. The horizontal axis is normalized with
that of BS antennas M. As the size of kernel increases, the
loss value decreases drastically. However, when reaching 2M,
it reaches the bottom. This is because the input information,
the LS estimated channel, is divided into real and imaginary
parts. It means that handling the information of all elements si-
multaneously enables the CNN extracting features to improve
the estimation accuracy. The slight increase in loss values be-
tween 2M and 8M is due to the fact that we simulated a fixed
number of epochs, and the higher number of hyperparameters
takes longer to train.

D. IMPACT OF CHANNEL AGING
We focus on the impact of channel aging in the case of perfect
timing synchronization. As we mentioned in Section II-B, the
channel coefficients change from symbol to symbol according
to Eq. (10). The frame length is set to Nf = 200 symbols, and
the number of UTs is K = 2 in this subsection. The channel
varies in the part of pilot transmission and data transmission.
As a result, signals from other UTs that use the same pilot sig-
nal also become interference components, even though UTs in
each cell are given orthogonal pilot sequences to each other. In
each frame, τ = 2 symbols are used for estimating the uplink
channel, and the rest of them are used for sending data. We
investigate two kinds of the normalized Doppler frequency:

FIGURE 8. NMSE versus the number of BS antennas, which is evaluated
for the channel data with the maximum Doppler shift fDTs = 0.005.

fDTs = 0.005 and fDTs = 0.050. These values correspond to
the velocity of UTs v = 27 km/h and 270 km/h, respectively,
under the case of the carrier frequency fc = 2 GHz and the
symbol period Ts = 10−4 seconds.

In this subsection, the NMSE of the channel is calculated
as follows

NMSE = 1

M
× E

⎡
⎣ 1

Nf

Nf∑
n=1

∥∥hllk[n] − ĥllk
∥∥2

2

⎤
⎦ . (24)

This means that one estimated channel is compared with the
all varying channels in each frame. Eq. (24) is used as the
loss function. That is, the estimated channel is affected by the
varying channel within a frame. The parameter of the CNN
will be updated so that the MSE of channel within a frame
can be small. We compare the CNN-based estimation with
the LS estimation and the MMSE estimation with the perfect
covariance matrix. In the evaluation of the proposed method,
we use multiple training datasets with different normalized
Doppler shifts. Specifically, we compare the difference among
three datasets used for training, where fDTs is 0.005, 0.050
and [0,0.050]. In the case of fDTs = [0, 0.050], the channel
between each UT and the BS is generated by using randomly
selected value from 0 to 0.050.

Fig. 8 shows the NMSE versus the number of BS antennas
M, which is evaluated for the dataset with fDTs = 0.005. The
numbers in the legend are the normalized Doppler frequency
values of the training dataset. The NMSE of the proposed
method trained by the dataset with fDTS = 0.050 is degraded
compared to that trained by the dataset with fDTS = 0.005.
Furthermore, it can be confirmed that the estimation error
increases as the number of BS antennas increases. This is due
to the mismatch between the model of the datasets used in
training and that used in evaluation. The channel fluctuates
in the part of pilot transmission and data transmission. In the
CNN-based estimation, the weight parameters are determined
so that Eq. (24) becomes small during training. In other words,
the channel is estimated so that the average error value of the
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FIGURE 9. NMSE versus the number of BS antennas, which is evaluated
for the channel data with the maximum Doppler shift fDTs = 0.050.

entire frame is small. If the proposed method is trained by the
dataset with fDTs = 0.050, it estimates the channel matched
to the variation of fDTs = 0.050, whatever the value of fDTs

in the evaluated dataset is. Therefore, if a mismatch occurs
between the models of datasets in training and evaluation, the
estimation accuracy deteriorates.

Fig. 9 shows the NMSE versus the number of BS antennas
M, which is evaluated for the dataset with fDTs = 0.050.
The channel of the dataset used in the evaluation fluctuates
greatly. LS estimation and MMSE estimation try to estimate
the channel by using the pilot signal. Thus, the estimated
channel error increases as the channel fluctuates over time.
Due to this channel aging, the NMSEs of LS and MMSE
estimation evaluated by the dataset with fDTs = 0.050 are
worse than those evaluated by the dataset with fDTs = 0.005.
The proposed method achieves the lowest NMSE when using
the dataset with fDTs = 0.050 in training. However, if trained
by the dataset with fDTs = 0.005, the channel estimation ac-
curacy deteriorates due to the mismatch between the models
of datasets in training and evaluation.

In a real environment, it is difficult to perfectly match the
fDTs of the training dataset with the fDTs of the desired chan-
nel because the speed of the UT is constantly changing. How-
ever, as Fig. 8 and Fig. 9 show, using the training dataset with
fDTs = [0, 0.050], the proposed method can bring NMSE
closer to that when using the matching datasets. It is possible
to maintain some estimation accuracy by training on a dataset
with a mixture of various normalized Doppler shifts.

VI. CONCLUSION
In this paper, we proposed two channel estimation methods
based on deep learning in TDD massive MIMO systems un-
der the existence of pilot contamination. Simulation results
confirmed that the proposed methods are better than the LS
and the conventional covariance estimation in terms of the
channel NMSE. Our proposed methods also have the ability

to estimate the channel in the case of imperfect timing syn-
chronization for UTs in the neighboring cells and in the case
of channel aging.
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