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ABSTRACT Ensuring reliable data transmission in all Vehicular Ad-hoc Network (VANET) segments
is paramount in modern vehicular communications. Vehicular operations face unpredictable network
conditions which affect routing protocol adaptiveness. Several solutions have addressed those challenges,
but each has noted shortcomings. This work proposes a centralised-controller multi-agent (CCMA)
algorithm based on Software-Defined Networking (SDN) and Delay-Tolerant Networking (DTN) principles,
to enhance VANET performance using Reinforcement Learning (RL). This algorithm is trained and
validated with a simulation environment modelling the network nodes, routing protocols and buffer
schedules. It optimally deploys DTN routing protocols (Spray and Wait, Epidemic, and PRoPHETv2) and
buffer schedules (Random, Defer, Earliest Deadline First, First In First Out, Large/smallest bundle first)
based on network state information (that is; traffic pattern, buffer size variance, node and link uptime, bundle
Time To Live (TTL), link loss and capacity). These are implemented in three environment types; Advanced
Technological Regions, Limited Resource Regions and Opportunistic Communication Regions. The study
assesses the performance of the multi-protocol approach using metrics: TTL, buffer management,link
quality, delivery ratio, Latency and overhead scores for optimal network performance. Comparative
analysis with single-protocol VANETs (simulated using the Opportunistic Network Environment (ONE)),
demonstrate an improved performance of the proposed algorithm in all VANET scenarios.

INDEX TERMS Delay-Tolerant networks, Performance Analysis, Reinforcement Learning, Simulator,
Software-Defined networking, Vehicular Ad-hoc Networks.

I. INTRODUCTION

IN the ever-evolving landscape of modern vehicular op-
erations, the effectiveness of communication networks is

paramount. Modern vehicular communications are organised
as a wireless network that enables communication among
vehicles (V2V) and infrastructure (V2I). An active Vehicular
Ad-hoc Network (VANET) is one that can dynamically
adjust its topology and routing based on the road traffic
conditions, network scalability, vehicle mobility and network
quality [1], [2], yet they are expected to have maximum
efficiency in data transmission. Due to the critical nature

of their communications, where any disruption could mean
the difference between life and death, these networks have
to be designed with fault-tolerance in mind. Most of these
networks utilise traditional network protocols in transmitting
messages across the entire VANET, such as the connection-
oriented Transmission Control Protocol (TCP) and others
utilise their known routing protocols specifically designed to
operate in VANETs, like Topology based routing, Position
based routing, Geo cast routing, Broadcast routing and
Cluster based routing protocols [3], [4]. V2V is specifically
based on transmission based protocols (unicast, multicast
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and broadcast) and information based protocols(topology and
position). These protocols can be classified as proactive,
reactive or hybrid. Alternatively they are classified as being
power aware and predictive mobility routing protocols. How-
ever, the functionality and performance of these protocols
falls apart when they are exposed to high-latency or highly-
disrupted network conditions. Since developing new VANET
protocols has proven to been hard [5], work has been
done to overcome these challenges with the incorporation
of Delay-Tolerant Networking (DTN) [6], Software-Defined
Networking (SDN) [7] and Machine Learning technologies
[8]. These technologies utilise various DTN protocols like
Spray and Wait [9], [10], Probability Based Spray and Wait
(PBSW) [11], Epidemic [12], Probability Routing Protocol
using History of Encounters and Transitivity (PRoPHET)
[13], [14], PRoPHETv2 [15], [16], MaxProp [17] and Rapid
Adaptive Routing Protocol for Intermittently Connected De-
lay Tolerant Networks (RAPID) [18] in an ad-hoc manner
in order to reliably transmit information from source to
destination. However, these protocols also have limitations
and thus only work very well in specific use cases such as
if the movement of the communicating nodes is predictable
or if the network resources required to buffer the transmitted
data are sufficient [19]. When it comes to Machine Learning,
techniques like Supervised, Semi-supervised, Unsupervised
[20] and Reinforcement Learning (RL) [21], [22], [23], have
been put to great usage in solving the vehicular challenges
as well.

VANETs require fast data processing, which is ideal for
limited resource zones and infrastructure-limited settings.
DTN technologies are useful in these cases since they per-
form better in environments with sporadic connectivity and
disruptions than their more connection-oriented counterparts.
Routing efficiency and network management of DTNs is
further improved with the integration of SDN [6] which
introduces centralized control, flexibility and security by
separating the control plane from the forwarding plane.
Optimization problems such as these can be solved and
automated with the use of an RL agent, since it can adapt,
in real-time, to changes in DTNs and SDNs by adjusting
network parameters needed to improve performance, which
is more than what can be said for other machine learning
approaches.

This research proposes an integration of all these
paradigms, which is an approach to optimize vehicular
communication networks, thereby bolstering their resilience,
efficiency, and adaptability. For this approach to be examined
appropriately, simulations are required to understand whether
positive results can be achieved when multiple DTN proto-
cols are used in combination (in a heterogeneous manner), as
opposed to each working alone, as in homogeneous networks
currently. Unfortunately, the most prevalent simulation tools
for this, such as the Opportunistic Network Environment
(ONE) simulator, only allow homogeneous network simu-
lation scenarios.

The primary objectives of this research are;

• To develop a robust Centralised Controller Multi-agent
(CCMA) RL-based algorithm as the SDN controller in
the SDN-DTN combined architecture to optimize the
VANETs.

• To develop a simulation environment which mimics the
behaviour of network nodes, communication dynamics
and varying network conditions present in DTN-based
VANET environments. The simulator’s capability to
mimic various DTN protocols, including Spray and
Wait, Epidemic and PRoPHETv2, as well as buffer
scheduling strategies such as Defer, Earliest Dead-
line First (EDF), First in First Out (FIFO), Random
and Largest/Smallest Bundle First (L/SBF), provides
a comprehensive evaluation platform for the proposed
algorithm.

• To compare the performance of both the heterogeneous
(multi-protocol) and the homogeneous (single-protocol)
approaches.

To evaluate the model’s performance in optimizing het-
erogeneous SDN-DTNs, the research considers Time To
Live (TTL), link quality, buffer management, delivery ratio,
latency and overhead as the metrics under study for their
significant influence on VANET efficiency. This research
firstly presents results on the model’s learning performance,
and the optimisation performance of the TTL, link quality
and buffer management network metrics. The model’s metric
optimization performance is then compared to the perfor-
mance observed when individual DTN protocols optimize
homogeneous DTNs, as reported by simulation results from
the famous state of art ONE, as detailed in the methodology.
For this comparison, the TTL, delivery ratio, latency and
overhead network metrics are considered, as they are the
ones reported by both the ONE and the novel simulator in
their simulation results. All these comparisons are performed
in three different VANET environments:

• Limited Resource regions; those characterised by little
to no resources.

• Opportunistic Communication Regions which mostly
depict the DTN environments.

• Advanced Technological Regions, which are charac-
terised by the sufficient resources.

All these environments are further discussed in the method-
ology. The core of the proposed algorithm lies in its ability to
make informed decisions based on network state information
from the simulator. The embedded parameters in these
states include link availability and quality, data exchange
and differences in buffer sizes. The algorithm employs RL
technique to dynamically deploy DTN protocols and buffer
schedules that are tailored to the prevailing network condi-
tions. This dynamic decision-making process ensures that the
communication strategy adapts to changing circumstances
and optimally utilizes available resources.

2 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJVT.2024.3396637

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



The fusion of VANETs with the heterogeneous SDN-
DTN architecture, operated by a CCMA RL-based model,
represents a pioneering approach to enhancing the resilience,
efficiency and adaptability of vehicular communication net-
works. By leveraging the simulation environment, the pro-
posed algorithm, DTN routing protocols and buffer schedul-
ing strategies, this research strives to contribute not only to
the field of vehicular communication but also to the broader
domain of dynamic network optimization. As subsequent
sections delve deeper into the key concept descriptions of the
technologies involved, related works performed, the nuances
of the proposed approach, discussion and conclusion of this
work, a comprehensive understanding of its potential to
revolutionize vehicular communication networks unfolds.

The remaining paper is organized as follows: Section II
discusses VANET and the key technologies used along side
it. Section III discusses all the approaches utilised to optimise
VANETs. Section IV presents the proposed algorithm and
the state of art ONE. Section V presents key results and
highlights obtained from this investigation. Section VI gives
concluding remarks.

II. BACKGROUND
A. VANETs
VANETs present a paradigm shift in network design, ad-
vocating for data processing and decision-making to oc-
cur since they are characterised by environment with no
physical infrastructure, as in Fig. 1. Within the VANETs,
each vehicle is equipped with an Onboard Unit (OBU) for
exchange of messages [24], which functions similarly to a
vehicle computer but includes additional features to support
VANET services . On the infrastructure side, Roadside Units
(RSUs) are deployed along the roadside to form a network
[25]. VANETs applications are greatly observed in collision
avoidance, traffic systems, traffic violation, toll collection,
geo location services, informatics [26]. In V2V, the OBUs
communicate to each other either directly or through the
RSU using several communication standards(IEEE 802.11p,
Dedicated Short Range Communications (DSRC), cellular-
Vehicle-to-Everything(C-V2X) and European Telecommuni-
cations Standards Institute (ETSI)) [27]. All these are key
requirements for real time transmission Like in the traditional
networks [1], some of the characteristics of VANETs include;
mobility, intermittent connectivity, limited device resources,
peer-to-peer network architecture, dynamic network topol-
ogy, limited communication range and low data transfer
rates.

Understanding these characteristics is essential when de-
signing, deploying and managing VANETs to meet the
specific requirements of mission critical operations. To ad-
dress the challenges faced in the VANETs, dynamic routing
protocols and Quality of Service (QoS) requirements for the
data types are critical to sustain communication in a VANET.

This approach aims to reduce latency, enhance respon-
siveness and enable decision-making using multiple routing

FIGURE 1. Dynamic vehicular Ad-hoc Network.

protocols that are suitable in different environments. In the
context of vehicular communication networks, this concept
gains significance due to the criticality of timely information
dissemination, particularly in tactical scenarios where split-
second decisions can shape outcomes.

B. DTNs
DTNs employ a store-carry-and-forward data transmission
strategy to improve communication performance in settings
characterized by limited network resources, frequent or
prolonged connectivity disruptions, variable data delivery
times, and peer-to-peer communications. These character-
istics present themselves in vehicular operations, disaster-
stricken zones, underwater networks, and satellite-based
space networks [28]. DTNs operate on opportunistic routing
protocols to select feasible paths (when available) over which
to transmit network traffic. This transmission is carried out
in a hop-by-hop fashion, ensuring minimal data loss due
to the DTN’s intermittency. Some of these opportunistic
DTN routing protocols include; Spray and Wait, PBSW,
Epidemic, PRoPHET, PRoPHETv2, MaxProp and RAPID.
For better deployments, DTNs are firstly simulated to have
the environments tested prior and some of the commonly
used simulators are the ONE [29], Network Simulator-3
(ns3) [30], Contact Simulator, Epidemic Routing Simulator
(EpiSim), SimBet, PROTON and DTN-NS3.

Due to the observed challenges in DTNs and their ad-
hoc nature, there arises a necessity to centrally administer
them despite said nature. This requirement has led to the
introduction of SDN, which primarily aims to centralise
control of routing processes with greater flexibility, without
sacrificing mobility. Consequently, the integration of these
two architectures emerges as a superior solution, as it en-
hances overall performance in comparison to their separate
implementations.

C. SDNs
SDNs, as illustrated in Fig. 2, separates the control plane
from the forwarding plane, enhancing network flexibility
by centralizing control and management functions within
a controller, while the forwarding devices solely focus on
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FIGURE 2. SDN Architecture

data forwarding [31], [32]. This methodology introduces
security by virtue of the centralized control it introduces to
the network. SDN is based on the following key aspects;
control plane versus forwarding plane, decoupling control
and forwarding, centralized control, flexibility and malleabil-
ity, security benefits, traffic optimization and scalability [33].
In order to simulate SDN environments, researchers make
use of controllers like POX, RYU, TREMA, FloodLight and
Open DayLight [34] and simulators like Mininet, Estinet and
PlanetLab [35], [36].

D. Reinforcement Learning
The core components of RL include the agent, environment,
actions, states, rewards, and policies. The agent’s objective is
to find an optimal policy, a mapping from states to actions,
that maximizes its long-term expected reward.

By integrating VANETs with a reinforced SDN-DTN
architecture, this research extends the benefits of localized
data processing to the realm of centralized control and
dynamic routing.

The effectiveness of the integrated approach is evaluated
through a comprehensive set of performance metrics. These
metrics include TTL, which measures the time a message
remains viable in the network, buffer management efficiency,
which assesses the utilization of node buffer resources, and
link quality, which indicates the reliability of communication
links , delivery ratio [37], [38], latency and Overhead [44].
Through the systematic analysis of these metrics, the re-
search assesses the extent to which the proposed approach
optimizes vehicular communication networks.

III. RELATED WORK
In this section, a comprehensive review that delves into
relevant works that revolve around the integration of SDN,
DTN and RL, aiming to transform the realm of vehicular
communication networks have been highlighted.

VANETs, with their limited wireless capacity and sus-
ceptibility to disruptions, raise the possibility of information
replication which could enhance redundancy and accessibil-

ity, yet introduces security concerns by broadening potential
attack points. Duplicating information diverts resources from
other tasks and sparks information availability, security and
resource allocation trade-offs. This research emphasized a
need to formulate measures that handle the trade-offs to
ensure that networks can securely overcome the resource-
constrained scenarios. Pratima et al proposed multi-layered
Vehicular-Internet of Things framework that enhanced in-
telligence, security, reliability and efficiency in VANET
environments [39].

Fahad et al introduced an SDN based self-organizing
map for the 5G based VANET to improve on its security
considering the Distributed Denial of Service (DDOS) [40].
Various surveillance tools, such as Unmanned Aerial Ve-
hicles (UAVs) have also been put to play [41]. However,
these UAVs are confronted with security concerns, primarily
because of their high mobility, resulting in inconsistent com-
munication. Such challenges culminate in compromised and
unreliable communication, characterized by buffer overflow
and DDOS attacks.

Since VANETs are mostly affected by high vehicle mo-
bility, researchers in [42] introduced a DTN based routing
protocol which was used to minimise energy consumption
especially in low density VANETs where it is practically
hard to reach other vehicles, thus maximising delivery ratio
and overhead. Researchers in [43] proposed a reinforcement
based routing protocol that enhanced energy consumption in
VANETS and also greately reduced overhead

The integration of SDN and DTN has been individually
examined to address issues within VANETs. A novel ap-
proach was investigated that combines these architectures
(SDN-DTN). Zacarias et al delved into melding SDN and
DTN within a battlefield setting, emulating the tactical net-
works using UAVs, a subcategory of Vehicular communica-
tion [6]. These UAVs were used to expedite the transmission
of data, especially video and audio, tackling the persistent
problem of sluggish information exchange in combat zones.
The VANET set up utilized SDN controllers arranged in
a master-slave hierarchy to oversee and guide the UAV-
gathered data to its end location. This methodology sought to
refine data pathways and boost the speed of information relay
in demanding battlefield situations using a traditional (Inter-
net Protocol) IP-based DTN routing mechanism. Nonethe-
less, a prominent issue arose concerning the modification of
video and audio resolutions in line with fluctuating network
conditions. Given the frequently changing and unpredictable
networking conditions on battlefields, tailoring the resolu-
tions of audio-visual content became essential to guarantee
consistent and effective data delivery.

In the intricate landscape of modern vehicular commu-
nication networks, having highlighted the relevant works
undertaken like DTN based traditional routing protocols,
SDN driven techniques and ML based approaches, the need
for agile, adaptive, and efficient methodologies to combat
the SDN traditional routing protocols, homogeneous protocol
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architectures as exhibited in DTN architectures, has never
been greater.

IV. METHODOLOGY
A. Proposed Approach
The main idea of this study is to borrow architectural and
functional characteristics of SDNs to enhance VANET per-
formance using a heterogeneous DTN-protocol deployment
strategy effected by an RL model. This study employs an RL
model, emulating a centralised SDN controller’s functional-
ity, which dynamically assigns DTN routing protocols and
buffer schedules to each node participating in a VANET,
based on the VANET’s state information transmitted to
it from the nodes via out-of-band back-haul communica-
tion infrastructure, such as the V2I Internet of Vehicles
(IoV) infrastructure [44]. The back-haul network could be
using Optical-Fibre, Ethernet, LTE or other high-capacity
connection-oriented means.

The VANET state information is received when each of the
VANET nodes forwards their state information (connected
neighbours, link availability, link quality, node buffer utili-
sation, and data exchanged) to the RL agent (controller).

The RL agent in Fig 5 is a dedicated computing compo-
nent, reachable via Vehicle-to-Infrastructure (V2I) connec-
tivity between the RSUs and the VANET nodes (vehicles).
This connectivity facilitates the state and action information
exchange between the RL agent and the VANET nodes.

After the state information is received by the controller,
as an output, it will reward each node with the expected
protocol and buffer schedule as per environment. The se-
lected protocol will help improve on the delivery ratio,
TTL, Latency and Overhead performance so as to leverage
the exchange of information in the VANET. When the
environment states fluctuates, the new states will be sent to
the controller and different protocols will be fed back to the
VANET.

To train and evaluate this RL model, it is exposed to
a comprehensive simulation environment that emulates the
behavior of vehicular communication networks discussed in
Subsection D, ensuring a controlled, yet realistic, evaluation
of the integrated SDN-DTN approach. The summarised setup
of the entire proposed approach is as in Fig. 3.

The proposed solution assumes constant connectivity be-
tween the RL agent and the VANET nodes. However, in the
event of disconnection, the RL agent only acts on the state
information reported by connected nodes and optimises the
sub-VANET associated with them while others recover.

B. RL Model Design
Constructed within the environment-agent framework, as in
Fig. 3 and Fig. 4, an advanced RL agent takes on the
pivotal role of a decision-maker (similar to that of an SDN
controller), orchestrating optimal routing protocol and buffer
schedule choices based on observed network conditions.

FIGURE 3. Proposed solution deployment architecture: An RL agent,
acting as an SDN controller for the VANET, is deployed at the core of the
VANET infrastructure. It obtains VANET state information from the VANET
nodes (vehicles) and it assigns them a DTN routing protocol and buffer
scheduling algorithm as a response action to optimise the VANET, both of
which are transmitted over an out-of-band back-haul network. The details
of the data exchanged in the Environment States and RL Actions are as
shown in Fig. 3

The designed RL model adopts a deep Q-learning method
supplemented by experience replay. Within this framework,
a Deep Neural Network is used to ascertain Q-values from
a defined batch of network states. Action selections are
guided by the epsilon-greedy approach, where actions start
randomly but become progressively more deterministic [45].
This form of using neural networks is known as Deep-Q
Networks (DQN). The structured architecture developed in
this study comprises:

ENVIRONMENT

AGENT

RL model Output

StateAction

Reward

Routing protocol
Buffer schedule

Link availability
Link quality
Message passing
Buffer size difference

Simulator Output

Routing protocol
Buffer schedule

RL model Input

Link availability
Link quality
Message passing
Buffer size difference

Simulator Input

FIGURE 4. Detailed Environment-Agent data exchange during RL agent
training and evaluation
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1) Flattening layer: Transforms multidimensional data
into a linear array of input elements.

2) Four sequential fully connected Layers each with 16
neurons and followed by a Rectified Linear Unit
(ReLU) activation function to prune insignificant fea-
tures.

3) Dropout layer: Functions as a regularizer by sporadi-
cally excluding features from prior layers.

4) Three Subsequent fully connected layers: Each trailed
by a ReLU activation function. This structure is du-
plicated to produce outputs for every node’s routing
protocol and buffer management strategy. For instance,
with a network state reflecting 8 nodes, 16 such
layer clusters would exist: half for determining routing
protocols for each node and the other half for buffer
management strategies.

5) Softmax layers: These layers create a probability distri-
bution for each output, facilitating the selection of the
most suited routing protocol and buffer management
strategy for each node.

6) Concatenation layer: Merges all output distributions
into an array, which is then relayed back to the
environment. This architecture is further illustrated in
Fig. 5:

The agent’s state space, constituting a fundamental com-
ponent of the RL process, is composed of critical attributes
such as the quality of communication links, link capacities,
messages passed over the network and disparities in buffer
sizes between connected nodes. This information is encap-
sulated in an L × N × N multi-layered adjacency matrix,
where N is the number of nodes in the network and L is the
number of layers, each corresponding to one of the attributes
mentioned previously. These multidimensional states offer
a comprehensive snapshot of the network’s status, serving
as the foundation for the agent’s decision-making process.
The agent’s action space is designed to enable the agent to
select from the DTN routing protocols and buffer scheduling
algorithms implemented in the simulator. These actions are
encapsulated as an array of probability distributions for
selecting the most appropriate routing protocol and buffer
schedule for each node in the network. This enables the
agent to adapt to varying communication scenarios with
granularity and precision, by assigning each node its own
routing protocol and buffer schedule to execute, to optimise
the network through network heterogeneity. Crucially, the
RL agent’s decision-making prowess is galvanized by a well-
defined reward signal. The choice of protocol and buffer
schedule is tantamount to the agent’s strategic move, which
inherently determines the immediate reward, since these
parameters have significant bearing on the efficiency of data
transmission, retention, and delivery within the network.
Thus, the reward signal is calculated based on parameters
determined to be crucial to the efficiency of a DTN-like
environment, like a VANET, and determined to be influenced
by or compensated for with the (routing protocol, buffer

schedule) combinations assigned to each node by the RL
agent. These parameters are:

1) TTL score: TTL refers to the number of intermediary
nodes that a data bundle is left to traverse within a
network before it expires. TTL is a crucial mecha-
nism in network communication to prevent data pack-
ets from circulating indefinitely in cases of network
anomalies or failures and ensuring timely delivery
of data, thereby optimizing network resources [46].
In the simulator, the TTL component of the reward
signal is expressed as a cumulative average of the TTL
values of all delivered data bundles from the start of a
simulation. The simulator tracks two of its components
defined by (1) and (2):

Ni = Ni−1 + n (1)

Ai =

{
[Ai−1∗Ni−1]+

∑n
j=1

tji
M

Ni
, ∀Ni > 0

Ai−1, otherwise

}
(2)

where; i = current simulation time step,
i – 1 = previous simulation time step,
n = number of delivered bundles in current time step;
i,
Ai = cumulative average TTL of delivered bundles
(as at simulation time step; i),
Ni = cumulative number of delivered bundles in the
network (as at simulation time step; i),
tji = TTL value of delivered bundle (j) at current time
step; i M = maximum allowed TTL value in network
simulator (> 0)
Initial condition: At i = 0, N0 = 0 and A0= 0

Properly managing TTL ensures that data packets
are not endlessly circulating in the network, thereby
minimising network congestion. In a VANET scenario,
it is not just about transmitting messages but ensuring
they are timely, especially when decisions need to be
made in real-time based on received intelligence.

2) Link quality score: This is a measure of how good
a communication link is regardless of the traffic on
the link. This metric gauges the degree of impair-
ment or degradation in the performance of the link,
accounting for factors such as signal interference, noise
and other factors that can negatively affect a link’s
overall quality. This measure is valuable in assessing
the overall health and reliability of a communication
link, aiding in identifying and addressing issues that
might compromise the efficiency of data transmission.
In the simulator, the link quality component of the
reward signal is calculated using (3):

Li =

{ ∑n
j=1lji

n , ∀n > 0
0, otherwise

}
(3)

where;
n = number of links in the network that are up (as at
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Routing protocols

Buffer Schedules

Input state Output action

FIGURE 5. The Proposed Deep Q-Learning Model Architecture

simulation time step; i),
lji = link quality (in the range (0, 1)) of link; j (as at
simulation time step; i),
Li = average link quality of all links in the network
that are up (as at simulation time step; i)

A high link quality is paramount in vehicular opera-
tions where terrain and adversarial electronic warfare
tactics might affect signal strength. Ensuring consistent
link quality means that units remain in touch, even in
hostile environments.

3) Buffer management score: This term signifies the
effectiveness of the node’s internal processes in man-
aging data bundles, encompassing the steps from their
generation or arrival, through their successful trans-
mission or forwarding, to their eventual removal from
the node’s memory or storage [46], [47]. This metric
offers insight into the node’s ability to ensure that
there is still sufficient node buffer storage space left
to receive and persistently store data bundles until
they are successfully transmitted to their destination
or to an intermediary node. In this simulator, the
buffer management component of the reward signal
is calculated using (4):

Bi =

{ ∑n
j=1

lji
sji

n ∀n, sji > 0
0, otherwise

}
(4)

where; n = number of nodes in the network that are
up (as at simulation time step; i),
Bi = average buffer management score of all n network
nodes (as at simulation time step; i),
lji = buffer space left (as at simulation time step; i)
on node VJ

sji= total buffer size (as at simulation time step; i) of
node VJ

Effective buffer management is crucial when multiple
data streams, such as video surveillance, voice com-
munication, and data packets, compete for network
resources. In tactical situations, deciding which data to
prioritize can significantly impact mission outcomes.

4) Delivery ratio: This refers to the number of suc-
cessfully delivered message bundles at the destination
about the total bundles generated at the source. It eval-
uates the bundle count that is confirmatory evidence
for efficient communication in DTNs. In this research,
bundle delivery is defined in (5):
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Dt =

{ ∑n
j=1

djt
wjt

n ∀n, wjt > 0
0, otherwise

}
(5)

where;
n = DTN node count.
Dt = average bundle count of all n DTN nodes at
time t,
djt = cumulative numbers of bundles that were
generated by node Vj at time t and were successfully
delivered to their destination
wjt = cumulative bundle count generated by node Vj

at time t

5) Overhead: This simply means the extra bundles trans-
mitted beyond the actual payload where a lower over-
head implies a minimal resource utilisation.

6) Latency: Time taken to propagate messages from
source to destination, where a lower latency depicts
a better performance

C. RL Model Training and Validation Procedure
The training and evaluation of the RL model is done using
the novel simulator detailed in Sub-section D. The hyper
parameters used to develop the RL model are summarised
in Table 1. This linkage between decisions and rewards forms
the essence of the RL agent’s learning process, steering it
toward optimal strategies that resonate with the overarching
goal of communication optimization.

TABLE 1. Table detailing all the model training and validation Hyper

Parameters.

Hyper Parameter Value
Training Epochs 512

Training Episodes 50

Learning rate 0.02

Batch size 4

Replay memory size 10

Epsilon decay rate 0.95

Discount factor 0.99

Validation Epochs 128

Validation Episodes 50

Network size (Number of nodes) 8, 16, 32, 64

In addition, the model’s training and validation is per-
formed on a workstation with the following specifications:

• 10 Intel® Xeon(R) Gold 6230R 64-bit central process-
ing units (CPUs) with 2.10GHz processing speed,

• 2 NVIDIA TU104GL Quadro RTX 5000 graphics pro-
cessing units (GPUs), and

• 125.5 Gibibytes (GiBs) of random access memory
(RAM)

D. Novel Simulation Environment Setup
The novel simulator mimics a centrally-controllable VANET,
easily configurable to simulate a range of network properties
(such as the frequency of bundle generation from each
node, network size, link capacity, DTN routing protocols
and buffer schedules employed and node buffer sizes) as
depicted in Fig.6 and capable of interacting with RL models.
This prompted for the utilisation of OpenAI Gymnasium
as the framework to build the simulator, since it is highly
regarded and utilised in training RL models in a multitude
of ways [45].
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Buffer Schedules

Routing Protocols
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FIGURE 6. One of the proposed simulation environments depicting 8
nodes running all the three network protocols, buffer schedules and
environment characteristics.

Epidemic, Spray and Wait, and PRoPHETv2 are imple-
mented within the simulator. In addition, six buffer man-
agement scheduling algorithms are integrated to regulate
the utilisation of the storage space allocated to buffering
DTN bundles on each node in the simulated networks. These
scheduling algorithms include [49]:

1) Position-based algorithms: Random and FIFO; These
algorithms select the next bundle in the buffer to
transmit basing on their position in the buffer’s queue.
FIFO prioritises bundles at the head of the queue
for transmission while Random, selects any bundle at
random for transmission. These algorithms are simple
and unbiased, since they are selected for transmission
without any priority or discrimination based on content
or characteristics. However, they may not always be
the most efficient scheduling strategies, especially in
scenarios where bundles have different levels of im-
portance or where some bundles have more stringent
timing requirements. In such cases, more advanced
scheduling algorithms like priority scheduling or EDF
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scheduling may be employed to optimize network
performance.

2) Time-based algorithms: EDF; This is a scheduling
algorithm used in buffer scheduling and real-time sys-
tems. EDF refers to a mechanism where data packets
are scheduled for transmission or processing based on
their respective deadlines [50]. In the realm of buffer
scheduling, EDF ensures that packets or tasks with
imminent deadlines are processed ahead of those with
later deadlines, that is, the packet or task with the
earliest deadline is given priority and transmitted or
executed first. In this research, the DTN bundle’s TTL
is used to determine the time of expiry and those nodes
configured to use this scheduling algorithm expedite
bundles with the smallest TTL values (earliest deadline
to expire).

3) Size-based algorithms: Smallest/Largest Bundle First
(SBF/LBF); These are algorithms that prioritise bundle
transmission basing on the size of their payloads,
where either the smallest bundles or largest bundles
are transmitted first. This is advantageous in situations
where node buffer storage space or link capacity are
severely lacking in the DTN. SBF takes advantage
of available lower-capacity links and thus increases
bundle throughput despite the low capacity, while LBF
ensures bundle storage space is available to receive
(and buffer) more bundles by evicting those taking up
the most space in a node’s buffer.

4) Defer: When a packet is deferred, it is temporarily
held back and not immediately sent or forwarded to
its intended destination. Buffer scheduling mechanisms
of VANET make decisions about when to transmit
or process packets based on various criteria such as
priority, available bandwidth, or the specific scheduling
algorithm in use. Deferring packets can be a deliberate
strategy to enhance network performance by ensuring
that higher-priority or more time-sensitive packets are
processed or transmitted first, while lower-priority or
less time-sensitive packets are delayed preventing con-
gestion in the DTN.

This study concentrates on the resource-based attributes
within DTNs, as they are the primary determinants influ-
encing MANETs, including VANETs, across various sce-
narios. Key network characteristics emphasized during the
modelling phase encompass: link capacity, link loss, link
uptime, node buffer size, node uptime and bundle TTL. For
a comprehensive simulation, the following aspects are also
integrated:

1) Traffic Pattern: This parameter reflects the quantity of
bundles generated by a node at specific time intervals
throughout the simulation. A consistent traffic pattern
is adopted to replicate situations in VANETs where
content, such as video streams from reconnaissance

operations, is transmitted at a constant rate across the
network.

2) Buffer Size Variance: This factor represents the degree
to which the buffer size of a node fluctuates during
the simulation. Random variance suggests the buffer
size can either increase or decrease unpredictably,
simulating conditions where VANET devices might ex-
perience inconsistent storage availability. Conversely,
a stable variance implies the buffer size remains un-
changed, reminiscent of advanced VANET devices
with dedicated buffering capacities for network traffic.

To determine how the RL model shall optimise VANETs,
the simulator is configured to mimic three network environ-
ments; Limited Resource Regions, Opportunistic Commu-
nication Regions and Advanced Technological Regions, as
summarised in Table 2. These environments serve as use
cases to depict the network scenarios exhibited in VANETs.

E. ONE Simulation Setup
To evaluate the behavior and performance of homogeneous
VANETs, where a single protocol operates throughout the
entire network, researchers use the ONE simulator. This
simulator inherently supports such a configuration, allowing
the utilization of only one protocol at a given time, unlike
the proposed approach. Various simulation environments are
established to represent the three distinct protocols. The
specific simulation parameters can be found in Table 2.

To gain insights into the dynamics and effectiveness of
homogeneous vehicular DTNs, this table provides a com-
prehensive overview of the specific simulation settings, en-
compassing key variables and configurations that influenced
the performance evaluation. The utilization of the ONE
simulator, coupled with the specified parameters, allows for
a targeted examination of the homogeneous vehicular DTNs,
providing valuable insights into the system’s operation under
the conditions of exclusive reliance on a single protocol.

The setup depicts the VANETs that adopt one routing
protocol at a time for communication and the rest of the
other parameters. These parameters are configured in the
ONE simulator source code obtained [49], [48] compiled and
run with the Eclipse Integrated Development Environment
(IDE) [51], [52], to obtain results which are compared with
the results obtained from the algorithm setup proposed.

V. SIMULATION RESULTS AND MODEL PERFORMANCE
EVALUATION
A. Model Learning Performance
The analysis involves examining the overall learning perfor-
mance trend of the model across different network densities
by plotting both training and validation results.

Figure 7 shows how the model’s training performance
varies as the network density increases. The performance
ranges from a minimum of 40% to a maximum of 84%,
indicating a considerable improvement in its effectiveness
with denser networks.
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TABLE 2. Configuration Summary of Simulated Networks.

Network Scenario Limited Resource regions
(worst-case)

Opportunistic Communication
Regions (average-case)

Advanced Technological Re-
gions (best-case)

Link capacity (bps) 32k 16M 64 G

Link loss (% of link capacity) 75 25 5

Node buffer size (bytes) 16M 1G 32G

Bundle TTL (hops) 2-32 64 128

Node uptime (% of simulation time) 25 50 99.999

Link uptime (% of simulation time) 15 50 99.999

Buffer size variance Random Constant

Traffic pattern Constant

Routing Protocol Epidemic, Spray and Wait, PRoPHETv2

Validation results, represented in Fig 8, reveal performance
consistent with the model’s training performance, thereby
validating the model’s effectiveness in new scenarios never
before seen. Even in environments where performance was
initially less favorable, the minimum validation score reached
55%, indicative of the model’s effectiveness across different
network densities.
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FIGURE 7. Comprehensive understanding of the model training
performance under different levels of network complexity. This is crucial
for assessing the model’s effectiveness and robustness in diverse
network environments.
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FIGURE 8. Validation results depicting the model’s performance across
varying network complexity. The graphs showcase the model’s
effectiveness diverse environmental conditions.

Where
LRR: Limited Resource Regions

OCR: Opportunistic Communication Regions
ATR: Advanced Technological Regions

To show how the model optimises the network metrics
critical to the efficient performance of VANETs, multiple
simulation scenario epochs, each spanning multiple point-
in-time episodes (as described in the configuration in Tables
2 and 1) were executed. The outcomes are discussed in the
following sections.

B. Training Phase
An exhaustive data collection and analysis process is em-
ployed to delve deeply into the performance trends of the
link quality, TTL and buffer management metrics within the
vehicular communication perspective.

1) Episodes
During each epoch, comprised of 50 episodes, the average
trend in all metrics measured is observed to be relatively
stable throughout, with the link quality score remaining
mostly stable between 0.70 to 0.745, as shown in Fig.
10. Buffer management and TTL scores, in Fig. 9 and 11
respectively, show an increase between episodes 0 to 5 before
stabilising at their respective levels. Obviously, the networks
with more resources would perform much better, but as seen
in the worst-case scenarios where networks are granted fewer
resources, the proposed algorithm still manages to score
above 0.7 by rapidly optimising the network resources before
a steady state is reached, a phenomenon that is graphically
presented in Fig. 9, 10 and 11.

2) Epochs
To get an understanding of how the proposed model im-
proves in performance over multiple simulations, the study
scrutinizes the same performance metrics over the course of
500 epochs. The outcomes in Fig. 12 show progressive im-
provement in buffer management score, with the worst-case
performance capping out at around 0.83 in limited resource
regions. In Fig. 13, it is observed that the link quality score
is relatively stable, with a very significant improvement in
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FIGURE 9. Buffer management performance score across episodes
during model training
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FIGURE 10. Link quality performance score across episodes during
model training

trend between epochs 0 - 50 in the worst-case scenarios,
while in Fig. 14, the TTL score remains relatively stable all
through, indicating no increase in performance improvement
in preventing data expiry in environments with randomly-
moving nodes.

C. Validation Phase
This phase, which is critical in establishing how well the
model generalises its observations outside of the training set,
presents results that mirror those from the training phase.
Such similarity is an indicator of a well-trained and consis-
tent model. Notably, there is minimal over fitting, meaning
the model did not just memorize the training data but
understood it, thereby exhibiting similar robust performance
when exposed to new unseen scenarios. In the context of
vehicular communications, this translates to a system that is
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FIGURE 11. TTL performance score across episodes during model
training

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0
0 . 6 5

0 . 7 0

0 . 7 5

0 . 8 0

0 . 8 5

0 . 9 0

0 . 9 5

1 . 0 0

Bu
ffe

r m
ana

gem
ent

 Sc
ore

T i m e  ( E p o c h s )

 L i m i t e d  R e s o u r c e  R e g i o n s
 O p p o r t u n i s t i c  C o m m u n i c a t i o n  R e g i o n s
 A d v a n c e d  T e c h n o l o g i c a l  R e g i o n s

FIGURE 12. Buffer management performance score across epochs during
model training

adaptable, reliable and resilient, irrespective of randomness
in the communication landscape.

Given the 120-epoch configuration, the system’s perfor-
mance in Fig. 15, 16 and 17 align closely with the epoch-
based analysis observed during the training sessions. This
is consistent in the episodic perspective as well, shown in
Fig. 18, 19 and 20. As can be noted, the validation results
indicate a slight reduction in performance since the model
is operating on never-before-seen data. However, there is
still consistency in the performance results, highlighting the
robustness of the training regimen.

D. Impact of Network Density on Model Performance
The metrics, including link quality score and buffer manage-
ment are of particular importance in vehicular communica-
tions. In operational environments where every millisecond
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FIGURE 13. Link quality performance score across epochs during model
training
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FIGURE 14. TTL performance score across epochs during model training

and data packet can be of strategic significance, the observed
high performance of these metrics during both training and
validation phases attests to the model’s suitability for ve-
hicular applications. The scalability analysis, as the network
expands from 8 to 64 nodes (while keeping the world size
intact) observed in Fig. 21 and 22, should be noted that there
is a decline which is attributed to duplicated messages that
may congest the network, thus affecting overall performance
as the network gets denser. For the link quality, network
congestion will degrade network links as well, thus the
decline.

E. Impact of Node Buffer Size on Model Performance
In VANETs, buffer size increment is a crucial aspects related
to ensuring efficient communication, handling intermittent
connectivity, and managing data traffic effectively. Since
vehicles often operate in dynamic environments with varying
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FIGURE 15. Buffer management performance score across epochs during
model validation
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FIGURE 16. Link quality performance score across epochs during model
validation

connectivity conditions. Increasing the buffer size allows
vehicles to store more data packets, messages, or information
when connectivity is available and transmit them oppor-
tunistically when communication links are established or
improved. Fig. 23 accurately depicts a clear scenario which
happens with increasing buffer sizes of 100, 500 and 1000
Mebibytes (MiB) as more bundles are effectively delivered.

F. Performance Comparison with Homogeneous VANETs
To understand how the proposed heterogeneous approach
compares against the homogeneous approach, simulation
results from the novel simulator and the ONE simulator were
utilised respectively for this comparison. These results are
presented in Table 3.

TTL, delivery ratio, latency and overhead were the metrics
used to analyze and compare the performance of both the
homogeneous and heterogeneous protocol approaches.
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TABLE 3. Performance comparison of the homogeneous approach (running individual protocols) against the heterogeneous approach (as in the

Proposed framework)

Performance
metric

TTL performance Delivery Ratio performance Latency (s) Overhead value

Network
Size

8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64

Environment Limited Resource Regions
Epidemic 0.82 0.85 0.86 0.91 0.05 0.06 0.12 0.16 45.74 45.84 46.04 46.17 0.04 2.22 8.33 26.24

Spray and
Wait

0.82 0.83 0.84 0.85 0.04 0.05 0.06 0.07 24.67 36.09 37.85 45.58 0.01 0.86 5.47 8.76

PRoPHETv2 0.81 0.82 0.85 0.87 0.01 0.15 0.20 0.27 20.34 29.52 38.53 45.75 0.03 1.1 6.49 15.90

Proposed
Framework

0.85 0.89 0.91 0.93 0.30 0.82 0.92 0.95 19.84 38.10 38.13 41.68 0.327 1.45 6.83 15.0

Environment Opportunistic Communication Regions
Epidemic 0.85 0.86 0.89 0.92 0.32 0.39 0.48 0.54 22.77 37.13 37.26 39.13 0.06 2.73 11.21 42.38

Spray and
Wait

0.90 0.91 0.92 0.93 0.05 0.06 0.06 0.07 22.68 22.90 22.96 33.67 0 0.12 0.23 0.44

PRoPHETv2 0.84 0.85 0.86 0.90 0.35 0.40 0.45 0.48 21.08 21.80 21.96 22.86 0 0.26 0.78 10.33

Proposed
Framework

0.92 0.93 0.94 0.95 0.50 0.72 0.90 0.95 1.191 3.471 8.150 17.24 1.02 1.417 4.17 15.72

Environment Advanced Technological Regions
Epidemic 0.94 0.96 0.97 0.98 0.56 0.63 0.74 0.84 19.81 20.07 20.48 21.08 1.50 49.05 191.29 710.37

Spray and
Wait

0.91 0.92 0.93 0.94 0.81 0.82 0.85 0.87 18.31 19.06 19.93 20.09 0 0.12 0.23 0.44

PRoPHETv2 0.93 0.94 0.95 0.97 0.65 0.75 0.85 0.88 11.23 13.45 13.47 13.49 0.31 45.37 89.22 123.31

Proposed
Framework

0.97 0.98 0.99 0.99 0.94 0.95 0.96 0.98 5.975 7.692 10.37 14.96 0.50 32.61 90.54 268.03
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FIGURE 17. TTL performance score across epochs during model
validation

Generally, all protocols improve in TTL and delivery ratio
performance with increase in network resources and network
size due to longer and more frequent contact opportunities
present in denser VANETs, with more compute, storage and
communication resources.
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FIGURE 18. Buffer management performance score across episodes
during model validation

However, the latency is highest in Epidemic across all
environments, due to its growing overhead as network size
increases. The overhead, representing the level of data
replication present in the VANET, causes congestion since
data replicas in the VANET consume resources that would
otherwise facilitate timely data delivery. Epidemic is ob-
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FIGURE 19. Link quality performance score across episodes during
model validation
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FIGURE 20. TTL performance score across episodes during model
validation
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FIGURE 21. Analysis of Buffer management with increasing Network Size

served to have the highest overhead due to its flooding-based
nature and PRoPHETv2 with a lower overhead because
it does selective forwarding leading to optimum resource
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FIGURE 22. Analysis of Link quality with increasing Network Size
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FIGURE 23. Impact of buffersize increment on the bundle delivery count
with increase in network size.

utilisation. Spray and Wait, being a flooding-based protocol
like Epidemic, exhibits a lesser overhead due to the limit on
its replication while in the spraying phase, striking a balance
between delivery and resource consumption. The proposed
framework is noticed to have the least latency as it takes
advantage of the most optimal protocols in a given scenario.

The proposed heterogeneous approach (using the RL
agent) outperforms all other individually-utilised DTN pro-
tocols in TTL, delivery ratio and the latency performance, as
it deploys the most optimal protocol as required to maximise
the performance parameters. Despite its overhead, suffered
due to its use of the Epidemic (and other similar) protocol,
the approach minimises the other metrics sufficiently to
maximise its performance across the board.

In the context of vehicular communications, which fre-
quently contend with unstable network conditions, it is
prudent to advocate for the deployment of networks capable
of seamlessly utilising multiple DTN routing protocols con-
currently. This stands in stark contrast to the conventional ap-
proach of utilizing a single protocol in isolation. The superior
performance demonstrated by the proposed heterogeneous
approach suggests that such integrated configurations are
not only feasible but also highly advantageous, making
a compelling case for the adoption of integrated network
configurations, especially in contexts characterized by unpre-
dictable and challenging communication environments such
as vehicular operations.
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G. Results Synthesis
• In VANETs, communication extends beyond mere data

transmission; it focuses on ensuring a continuous, re-
silient, and real-time relay of vital information, even
in challenging environments and situations. Analyzing
outcomes from training and validation phases provides
valuable insights into the model’s potential and rele-
vance for VANET communication.

• Alignment between training and validation outcomes
and its significance in VANET scenarios: Striking a
harmonious balance between training and validation
results is particularly challenging in VANETs due to
their unpredictable nature. The consistent performance
observed suggests that the model can be relied upon in
actual vehicular environments, adapting to the distinct
conditions encountered.

• Adaptability across network sizes: Vehicular operations
in VANETs can range widely in size. Whether it
involves a specialized team of eight vehicles on a covert
mission or a 64-vehicle network supporting a larger
operation, effective communication remains essential.
The model’s proficiency across varying network sizes
underscores its flexibility and scalability, both crucial
attributes for a reliable VANET solution.

VI. CONCLUSION
The dynamic landscape of vehicular technology, especially
within VANETs, calls for innovations that are both ground-
breaking and reliable, especially in critical scenarios. The
results of this study highlight the significant impact of
integrating an RL agent into a system tailored to address
the complexities of vehicular communication networks.

During the training phase, the consistent performance
observed across various metrics confirmed the RL agent’s
ability to effectively navigate the specific challenges inherent
to vehicular environments. The model’s strong performance
during training demonstrated its intrinsic capabilities, a sen-
timent echoed during the subsequent validation phase, em-
phasizing its resilience and practical utility. Such reliability
is indispensable in VANETs, where errors are costly, and the
ramifications of any failures can be extensive.

Our detailed examination emphasized the RL agent’s po-
tential advantages over homogeneous networks (modelled by
the ONE simulator) within the VANET domain, in the Lim-
ited Resource, Opportunistic Communication and Advanced
Technological Regions. The model’s adaptive capacity to
utilize different protocols and buffer strategies, combined
with its flexibility across varying network sizes, underscores
its readiness for diverse vehicular scenarios. Whether ensur-
ing consistent communication during discrete operations or
facilitating large-scale maneuvers, the RL agent’s versatility
shines through.

Moreover, the utilization of network state information
and the strategic selection from an assortment of routing
protocols and buffer strategies mark an innovative approach

to vehicular communication management. Such agility and
adaptability, core strengths of the RL agent, align seamlessly
with the unpredictable nature of vehicular networks. How-
ever, due to the centralised nature of the controlling agent
and the reliance on established back-haul infrastructure, there
is need to explore offline redundancy through the use of
multiple RL-enabled controller instances deployed within
the VANETs themselves, to further improve on the system’s
reliability and robustness.

In summary, this study illuminates the potential synergies
between advanced technology and the complex realm of
VANETs in vehicular technology. Through its novel inte-
gration and remarkable performance, the RL agent paves
the way for more resilient, efficient, and adaptable vehic-
ular communication networks. The culmination of these
insights provides a road-map for an innovative era in ve-
hicular technology, characterized by reliability, innovation,
and unparalleled flexibility. Moving forward, exploring the
integration of alternative routing protocols remains a crucial
avenue to ensure optimal performance across varied VANET
environments.
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