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ABSTRACT Characterizing risky driving behavior is crucial in a connected vehicle environment, particularly
to improve driving experience through enhanced safety features. Artificial intelligence-backed solutions are
vital components of the modern transportation. However, such systems require significant volume of driving
event data for an acceptable level of performance. To address the issue, this study proposes a novel framework
for precise risky driving behavior detection that takes advantage of an attention-based neural network model.
The proposed framework aims to recognize five driving events including harsh brake, aggressive acceleration,
harsh left turn and harsh right turn alongside the normal driving behavior. Through numerical results, it is
shown that the proposed model outperforms the state-of-the-art solutions by reaching an average accuracy
of 0.96 and Fl-score of 0.92 for all classes of driving events. Thus, it reduces the false positive instances
compared to the previous models. Furthermore, through extensive experiments, structural details of the
attention-based neural network is investigated to provide the most viable configuration for the analysis of
the vehicular sensory data.

INDEX TERMS Attention model, auto-encoder, connected vehicles, LSTM, machine learning, recurrent

neural networks, vehicular sensing.

I. INTRODUCTION

With the advent of connected and autonomous driving
paradigm, detection of risky driving behavior (e.g., harsh cor-
nering, harsh braking, aggressive acceleration) has become an
essential component in a connected vehicle setting [1]. There
have been a variety of solutions presented to characterize
such events, which have proven to be effective. Driving event
characterization systems as the fundamental basis of accident
prevention models coupled with low latency vehicular con-
nectivity provided by 5G and Beyond [2] can be utilized in
intelligent transportation systems (ITS) for centralized traffic
control systems. Centralized control systems can be effective
tools for road safety and congestion control [3].

A major building block of an intelligent transportation sys-
tem is the Artificial Intelligence (AI) backbone to detect the
behavior of the system entities [4]. Some event characteri-
zation approaches leverage visual data to detect or predict

upcoming events. Using camera feed, existing systems can
extract information such as the rate of change in velocity,
direction, and the proximity to the surrounding objects to
be used in statistical models. Statistical models are designed
to output the occurrence probability of the road events from
the visual context. It is worth to note that visual systems are
dependant on the line-of-sight of the visual sensors which can
be blocked at times [5], therefore for the sake of reliability,
in-vehicle sensory data are needed for precise and reliable
analysis of vehicular events.

Most commonly used event characterization methods are
the threshold-based rules applied to Inertial Measurement
Unit (IMU) sensor data. Such methods employ diverse sig-
nal processing and filtering techniques to acquire noiseless
data that best reflect the driving event characteristics. The
threshold-based models categorize the events upon the sig-
nals exceeding static or dynamic thresholds [6]. The static

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 1, 2020

317


https://orcid.org/0000-0003-0220-7956
https://orcid.org/0000-0003-3156-5760
https://orcid.org/0000-0003-0220-7956
mailto:burak.kantarci@uottawa.ca

TAHERIFARD ET AL.: ATTENTION-BASED EVENT CHARACTERIZATION FOR SCARCE VEHICULAR SENSING DATA

thresholds are usually acquired based on physical charac-
teristics of the vehicles in experimental settings. However,
dynamic threshold-based systems often utilize more complex
mathematical calculations to obtain the desired thresholds at
any time. The threshold-based methods rely heavily on the
physical characteristics of an individual vehicle [7] for ef-
fectiveness; hence threshold-based systems cannot be easily
adopted world-wide.

To build systems that can be widely used in an intelligent
vehicular environment, Al-based models can bypass the afore-
mentioned issues by learning the characteristics of the driving
events. Recurrent neural networks [8] are a category of neural
networks that are capable of learning the characteristics of
high frequency signals. Recurrent networks do not build on
the physical features of a vehicle; therefore allowing for the
models to be globally used on different types of vehicles.
On the other hand, neural networks are data hungry and are
able to achieve higher levels of accuracy and precision under
the availability of sufficient volume of data for training [9].
Although neural networks can overcome the shortcomings
of the previous issues concerning accuracy and reliability in
the detection of various event types from vehicular sensory
data, the lack of anomalous driving patterns to properly train
a neural network for the task remains a challenge.

In our earlier work, we proposed a long short-term mem-
ory (LSTM)-based auto-encoder network which resulted in
0.93 accuracy in classifying the risky driving behaviour under
limited training data [10]. This article substantially differs
from the previous work by proposing a novel solution for the
first time to characterize risky driving behavior using limited
vehicular sensor data while minimizing the false positives
which are the primary factors for low reliability of a detec-
tion system. To this end, an attention-based auto-encoder net-
work is proposed to reconstruct and precisely classify driving
event data. Specifically, the attention-based neural network
performs a self-supervised task to encode behavior charac-
teristics of the input event data as fixed-size vectors. The
encoded representations is then used by the decoder network
to reconstruct the input signal. The decoder network is capable
to output accurate synthetic signals and classify the signals
through an attention operation which enables the network
to gain importance information about the signals. Extensive
experiments are carried out to study the effect of the network
internal structure on the characterization task and to enable
the maximum network performance potential. Experimental
results show that the proposed attention-based neural network
model can result in an average accuracy of 0.96 and an F-1
score of 0.92 for all classes of driving events.

The rest of the article is organized as follows: section II
discusses the state-of-the-art driving event characterization
methods as well as the latest advancements in neural net-
works. Section III investigates the proposed attention auto-
encoder model in further details. The event characterization
performance as well as internal structure investigation results
are presented in Section IV. Finally, Section V concludes the
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article and discusses future research directions, challenges and
open issues.

Il. RELATED WORK

Recent research shows that vehicular event characterization
can be achieved through a variety of approaches includ-
ing threshold-based and intelligent models. Threshold-based
methodologies generally fall into static and dynamic systems
while intelligent systems can be categorized based on the
system input detailed in this section. Intelligent systems per-
form the characterization task by using either visual driving
context, inertial sensor event data, or hybrid in which one
type of data is applied to augment the other input [11]. More-
over, there is a growing body of studies in the field of neural
networks that makes time-series analysis via neural networks
more viable than before [12].

A. THRESHOLD-BASED SYSTEMS

The systems in this category mainly depend on the rate of
change in inertial or positional sensor data during a driving
event. Noise reduction, force monitoring, and unsafe threshold
calculation are the major components of the research related
to threshold-based systems [13].

In [14], the authors propose a static threshold applied on a
unique system that combines velocity and acceleration of the
vehicles while considering the vehicle dynamics and the road
conditions to classify driving behaviors. The experiments are
conducted on pre-recorded minibus taxi trip data in order to
characterize the driving behavior which is beneficial for fleet
management systems. Driving speed and correlation between
lateral acceleration and velocity are studied in [15] where the
authors conclude that lateral acceleration and vehicle speed
are inversely related to each other by analyzing trip data of
vehicles on highways with different topographies and speed
limits. The study shows that lateral acceleration decreases as
the vehicle speed increases, therefore lateral threshold value
should be dynamically changing with the speed of the vehi-
cles. By utilizing positional satellite data, the study in [16]
proposes an irregular driving identification system. The pro-
posed model in the study aims to increase positional measure-
ment accuracy to less than 50 centimeters and were able to
accurately identify driving behavior applying static threshold
to the calibrated GPS data. A driving identifier system is pro-
posed in [17] so to recognize dangerous and non-dangerous
modes. The proposed system is reported to be useful for insur-
ance fee estimation by first categorizing the sensor data into
four distinct events using their pre-defined set of rules, and
then applying static thresholds in order to label each event as
dangerous or non-dangerous.

Hu et al. [18] aim to dynamically identify the normal driv-
ing behavior and alert the abnormal events when the measure-
ments exceed the normal region. Smartphone-based detection
systems are regularly studied in the literature [19]-[21]. Such
studies rely on the accessible on-board sensors smartphones
provide, mainly accelerometer, gyroscope, and GPS [22],
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[23]. Vavouranakis et al. [24] contribute to sensor accuracy
improvements with sensor calibration and data pre-processing
methods. Using the calibrated sensor data, researchers de-
sign a driving event recognition system that can characterize
safe and unsafe events. Furthermore, several studies attempt
to provide more sophisticated mathematical calculations [25]
to compensate the inaccurate measurements of portable sen-
sors [26], [27]. These systems aim to distinguish between
device and vehicle movements in order to reduce false event
characterizations caused by device movements.

B. INTELLIGENT EVENT RECOGNIZER SYSTEMS

Safety, efficiency, and driving comfort form the highest pri-
ority targets for the automotive industry that are aimed to be
ensured through data-driven approaches [28]. Modern auto-
motive industry relies on machine learning and neural net-
works for driver assistance and autonomous driving systems
[29]-[31]. Machine learning algorithms are also proven to be
effective in the connectivity infrastructures such as ITS [32],
[33]. Computer vision methods have been in the center of
focus in the literature to characterize driving events [34], [35].
The systems of this type mainly extract abnormal information
from visual context taken from dashboard mounted camera
sensors. Maaloul et al. The research in [36] adopts a statistical
approach on optical flow of road videos to intelligently define
driving accidents. A combined model of road condition data
and driver’s eye movement detection is proposed in [37] to
predict driving behaviors ahead of time. The research in [38]
presents the idea of driver’s brain signal processing with ma-
chine learning-based clustering and classification algorithms
to study the driving behavior.

There have been several innovations in the field of signal
processing using neural networks [39]. In particular, recurrent
neural networks (RNNs) are specifically designed to store and
learn features from time dependent and sequential data. The
major issue of using such networks for high frequency signal
processing is the phenomenon of vanishing gradient [40] that
causes the recurrent networks to discard longer-term features.
However, novel resolutions are proposed in [41], [42] which
enables feasible longer-term data processing using RNNs.
Moreover, auto-encoders (AEs) that are suitable tools for
analysis where data is limited, are studied for anomaly de-
tection [43], [44]. For instance, Malhotra et al. [45] attempt to
perform ‘Remaining Useful Life (RUL)’ analysis of machines
incorporating AE networks and anomaly detection techniques.
Safe airplane navigation analysis is performed on rare data us-
ing such techniques in [46]. As stated by the researchers, AE
networks have proven to be more reliable input representation
schemes to systems.

In addition to these, attention-based neural network
model [47] is proposed to mimic human brain behavior in a
neural network. Attention is expanded to various use-cases
including the AE networks [48], [49], and introduces the ben-
efit of selectively focusing on sections of the input data that
contain the desired events.
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FIGURE 1. Raven sensor orientation. The android-based device is mounted
on the dashboard.

Inspired by the recent research, our work utilizes attention-
based encoder-decoder networks to advance driving event
characterization systems and lower the false positives in the
case of limited volume of training data. In order to achieve
lower prediction delay, IMU data is utilized as the system
input to gain direct measurements of forces applied to vehicles
during the events [50]. Using the attention model, it is possible
to strengthen the training of characterization network with
precisely reconstructed data which leads to higher inference
accuracy. Indeed, the impact of hyper-parameters and dimen-
sions of the network require thorough analysis, which are also
in the scope of this study as presented in the next sections.

IIl. METHODOLOGY
In this section, the process flow and the data gathering method
are discussed and illustrated in Fig. 3.

At the beginning of the process, the sensing device, i.e.
Raven, starts recording the accelerometer data along three
directions. The signals are then sent to the pre-processing
module to be distributed to the network. In the pre-processing
module of the system, the event signals are sliced into the
desired length signal windows. The windowed signals are
duplicated and varied by random noise before being sent to the
generator module for offline training process. Alternatively,
real-time signals are sent to the characterization module, di-
rectly, for real-time inference process.

The second step is introduced to supplement the training
data with more variety and quantity. In this module, the un-
derlying behavioral features of the events are learned from the
noisy variants of the input signal utilizing a denoising auto-
encoder network [51]. The learned features are then passed
through the decoder network to populate the training dataset
with synthetically created signals. Further details of the mod-
ule along with existing experimental proofs of the network’s
legitimacy is provided in the corresponding section.

Finally, the characterization network is trained with the
more robust training dataset created by the generator module.
The trained network is then used to infer the live-signals and
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FIGURE 2. System pipeline overview. Signals are recorded by Raven sensors and sent to the generator module for training synthetic data reconstruction.
Synthetic data is then used to train a self attention-based spatial-temporal encoding network for event classification. Generator module enhances the
training data by denoising and augmenting the input data while the characterization module learns to put more emphasis on eventful sections of the

signals.

detect risky driving events in real-time. This module consists
of three individual networks to extract spatial, temporal, and
attention encoding of the input signals, sequentially. Detected
events form the output of this module which is sent to the
device for safety notification and applications. The purpose of
each module in the process flow along with their formulation
are explained in detail in individual sections.

A. SYSTEM OVERVIEW

Our proposal for the driving event characterization builds on
a three-stage model that employs recurrent and attention auto-
encoder models to recognize various risky driving behavior
in a signal. Fig. 2 illustrates an overview of the proposed
process flow. Accelerometer signal along three orientation
axes of the vehicles is captured and fed into the process flow
as the input. In the pre-processing module, the data splits into
n equally sized windows through a sliding window mecha-
nism. Before training, the data windows are multiplied and fed
into the denoising recurrent auto-encoder network with added
random noise. The decoder network attempts to reconstruct
the original signal, thus creating noise-less variations of the
original input windows. Then the reconstructed training data
are used to train an attention-based encoder network for event
characterization. The characterization module uses softmax
output layer in order to classify the signals under multiple
categories.

Inference can seamlessly be performed by passing the un-
seen signals to the characterization module. The more detailed
explanation of each module can be seen in the following
sections.
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B. DRIVING EVENT DATASET GATHERING

The proposed system collects accelerometer sensor data as
the input along x, y, and z axes of the vehicle over vari-
able time spans. Raven OBD-II sensor kit [52] which is an
android-based connected vehicle device is mounted on a car
dashboard to record sensory data. Raven is equipped with an
inertial measurement unit (IMU) sensor with the following
orientation specifications: X-axis along the latitudinal axis
of the vehicles, Y-axis along the altitude, and Z-axis along
the longitudinal as shown in Fig. 1. The collected data is
almost evenly distributed between five distinct driving behav-
iors, namely: Regular driving (RD), Harsh left lane change
(LT), Harsh right lane change (RT), Harsh braking (HB), and
aggressive acceleration (AA). It’s worth noting that the data
was recorded on a number of vehicles with different physical
attributes and no filtering or signal processing methods were
applied.

C. PRE-PROCESSING MODULE

Pre-processing module initiates the proposed pipeline. Multi-
ple raw driving signals of various time length and three axes
(i.e. X, Y, and Z) are fed into the module. Since the follow-
ing modules are designed to take fixed-sized input, a sliding
window mechanism splits the data into several event windows
of size x. In order to keep the formulations consistent, a sum-
mary of the used parameters is presented in Table 1. Given
a driving event signal of E with duration of 7 captured along
axes a = 3 (Ef* € R"™*“), the windowing mechanism outputs
several evenly split windowed signals W,, € R“**, where W
is the signal window, n is the number of created windows, a

VOLUME 1, 2020



IEEE Open Journal of

Vehicular Technology

Sensing Platform

Step 1:

Pre-processing,

Generator

1
]
1
]
: Step 2:
I
. Module

S e scoaeee-

Step 3:
Characterization
b Module

i

Notification

[ Device [«

FIGURE 3. General flow diagram for training and inference process of the
proposed solution through the three modules.

is the number of axes in the signal, and x denotes input size
required by the auto-encoder network. To preserve signal cor-
relations and provide the system with more signal variation,
the sliding mechanism [53] splits the signal with overlap as
demonstrated in Fig. 4. To perform experiments on the result
of overlapping section of the data on the model performance,
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TABLE 1. Network Parameter Descriptions

Parameter Description
Input window size
Input dimension
Raw signal duration
Event raw signal
Windowed Signals
Number of signal windows
Bottleneck dimension

X
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he Hidden states of the encoder
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Sn

Tn

v;

y

p

Hidden states of the decoder
Spatial encoded vector of input window n
Temporal encoded vector of input window n
Attention vector
Input labels
Predicted probability

Raw Signal

Windowed Signals

~ D

Overlapping sections

Il I 1

FIGURE 4. Single dimensional raw signal windowing with variable
overlapping into n flexible sections. The signal is simplified for clearer
depiction.

and due to the variable input data length, this module can
split data into windows with different overlap values; thus, the
overlap between the last two windows is flexible to avoid data
loss. The aforementioned overlap value results are presented
in the next section.

At the second stage, the pre-processing module identifies
the module that the data is going to be streamed through.
The training data is sent to the generator module while the
inference signals are passed directly to the characterization
module. Each training data window is duplicated into m varied
training data windows with added random Gaussian noise.
We then have W,,, € R***, obtained from each input signal
window W,. The data duplication is performed in order to
overcome the issue of scarce risky driving data which often
causes data imbalance for deep learning-based event char-
acterization systems. Each copy of the signal is augmented
with random noise to gain variations of an event signal. The
noisy data windows are then fed into the generator module to
initiate denoising before being classified in the characteriza-
tion module. However, inference data skips this stage and is
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FIGURE 5. Generator module network architecture. To gain multiple variants of individual events, each event window is first fused with noise. The LSTM
auto-encoder learns to reconstruct each noisy variant of the input signal. The network is also an effective noise filtering technique.

directly fed to the Characterization module to be identified to
the corresponding categories.

D. GENERATOR MODULE

The generator module is responsible for enriching the training
dataset. This subsection introduces the proposed deep neural
network utilized in the generator module to not only learn the
underlying features of the signals but to also denoise the noisy
signals in a vehicular environment. The learned features of the
signals by the auto-encoder network allows us to multi-fold
the existing training dataset and introduce precise variations of
event signals to the dataset. The gained improvements of the
method is explained and illustrated in the following sections.
The solution adopted here is a recurrent deep auto-encoder
network which is suitable for extraction of event behavior in
sequential data and is capable of reproducing feature-rich and
noise-free data [54]. The objective of such network is to recon-
struct synthetic data learned from the underlying features of
input operating as a self-supervised process. The auto-encoder
utilized in this module is a denoising auto-encoder which
learns to derive the original input from the noisy input. Signals
with added noise are fed as input to this type of auto-encoders
and the network does not see the original signal. Therefore,
the network is not able to predict the output without learn-
ing the under-lying features of the signals. Denoising auto-
encoders take disrupted input and learn to identify its features.
High dimensional data and massive size are often simpler to
identify in lower dimensions. Therefore, the network maps the
input onto a bottleneck of lower dimension which carries the
input features.

The auto-encoder consists of three components: encoder,
code, and decoder as illustrated in Fig. 5. The encoder maps
the input onto a fixed-size context vector of lower dimen-
sionality known as code or the bottleneck. The code is a
reduced and compressed representation vector that contains
the intrinsic characteristics of the input. The decoder network
then pursues reconstruction of the original signal from the
noisy signal only when the last node of the code is generated.
This component works backwards and generates each data
point in reverse order, i.e., from the last to the first [43].
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Furthermore, auto-encoders can be implemented using variety
of layer and neuron types. While convolutional kernels can be
utilized to extract spatial features, recurrent layers that can
be employed for temporal feature learning are constructed
using feed-forward networks. Since accelerometer sensor data
analysis depends on timely features, a recurrent auto-encoder
network is chosen as a classifier in this study.

The encoder network of this module is designed with 2
recurrent hidden layers to capture the temporal characteristics
of the signals. Though, the conventional recurrent networks
lead to the vanishing gradient issue which causes the net-
work to be unable to update its weights and biases prop-
erly during the back-propagation. To overcome the issue, this
study implements the network with Long short-term memory
(LSTM) [55] layers of decreasing sizes that map the input
to the bottleneck of size d = 100 in the last hidden layer.
The symmetrical recurrent decoder network uses the encoded
bottleneck vector to reconstruct noise-less signals. Utilizing
Adam optimization method [56], the network minimizes the
mean squared error between each data-point of the hypothesis
and the original signal at each batched train as shown in
Eq. 1:

ey)

Z Z (x) — y(,-))z

where j € {1,2,...,t} and i € {1,2,...,a} where a is the
axis dimension of the input signal and ¢ is the length of the in-
put signal. This module utilizes the Mean Square Error (MSE)
loss function as opposed to the cross-entropy loss since the
span of sensor measurements exceed the range [0, 1]. Given
a sequential input signal of single axis and variable length ¢:
X = {)c1 Jx2 ., x"}, the last encoder hidden layer Ay, learns
of the intrinsic input features : hy, = {hée, h%e, A hge} where
d denotes bottleneck size which is set to 100 in our proposed
model. The symmetrical decoding network starts to predict
y' upon generation of the last node in the bottleneck (i.e.
hge). This process is performed by predicting from the last
state towards the start (i.e. {y’,y' "', ..., y!}) considering the
previous states in each prediction, i.e., y* = f(h)-,, h’zfa,] ).
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The Generator module runs 10 times for each signal input.
Each time with a noisy variation of the input to generate 10
synthetic signals that have the same average statistics with the
input but with different values. The synthetic signal genera-
tion which share the same behavior features as the raw input
signals grants the possibility to expose the characterization
network to higher quantities of training data as well as training
data with slight variation. This exposure results in a more
robust training process which leads to the higher performance
outcome.

It is worth to note that extensive experiments on several
recurrent cell types, the number of the hidden layers, and
various hyper-parameters of the network are carried out in
order to choose the network details. The impact of all the
details on the network performance are presented in the next
section.

E. CHARACTERIZATION MODULE

The characterization module is used to categorize the unseen
signals under the five aforementioned driving events and gets
activated to train on the generator module outputs or directly
operates to characterize the inference signals as shown in
Fig. 6.

In the training process, the reconstructed data from the
generator module is fed into the characterization module as
the input. The module encodes the spatial features of the
signals utilizing the custom-sized convolutional filters. Con-
ventional convolutional layers are designed as square-shaped
filters to output features along both directions in a 2D input
which make them effective tools on images with observable
objects. However, accelerometer signal E? € R'*? is unique
two-dimensional data in a sense that the data only has im-
mediate correlation and feature along the axis of time. The
other axis consists of signals independent of each other with
longer-term relations. Therefore, we implemented a specific
convolutional kernel in order to capture short-term timely
features as well as long-term relations between signals of
different axes. The convolutional kernel is implemented with
the height equal to number of signal axes a and with stretched
kernel width. Doing so lets the convolutional kernel observe
a wider body of the signals and therefore have longer-term
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information. Moreover, the operational nodes in the convo-
Iutional network are utilizing Leaky ReLU [57] activation
functions which passes a small positive gradient when the unit
has a value of zero as Eq 2:

X x>0
0.01x otherwise

f(x:wx—i—b):{ 2)
where x is a function of weights and biases of convolutional
layer. Using Leaky ReL.U allows us to avoid the problem of
“dead ReLU” which restricts the network learning from nodes
with a derivative of zero. In order to downsize the extracted
features by the convolutional network and store more promi-
nent characteristics, an average pooling layer is applied to the
convolutional network output as illustrated in Fig. 9.

The second unit of the networks is an attention-based recur-
rent network to encode temporal dynamics of the signals. The
downsized features S, = AvgPool(f(x)) are fed to the Long
Short-Term Memory layers. There are two LSTM layers with
cell size of equal to the number of windowed input of the
network. At any moment, the recurrent cells utilize the mem-
ory of the previous stages, therefore preserving the temporal
history of the signals.

The utilized driving event dataset consists of periods of reg-
ular driving along with sudden risky event signals. In order to
lower the false negative predictions, emphasizing the distinct
periods that contain the events is necessary. The recurrent
network output r,, = LSTM(S,,) is fed into the attention layer
for importance assignment to the each input data section. The
hidden state of the second LSTM layer feeds the input to the
attention layer as the last step before classification. The main
purpose of this layer is to weigh out the false detections caused
by the dynamics of certain sections in a signal where there is
no significant movement information.

As illustrated in Fig. 7, each encoded signal section is
mapped to a latent space utilizing the following function in
Eq. 3 where W; € R/ and b; € R are weight and bias
matrix of the direct input to the hidden layer of size h,.

H; = tanh(Wili, + b;) 3)

To learn the importance of each section of the signal, the
nonlinear representation H; is fed to a softmax activation
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FIGURE 7. Self-attention layer. The encoded inputs are transformed using
a non-linear function and then normalized into attention weight matrix of
each signal section. Encoded inputs are then multiplied with the attention
weights in order to output weighted input representation.

function which is formulated in Eq. 4 where v; denotes to
attention vector of each training iteration. The attention vector
is learned during the training, and is then connected to a
softmax layer for the purpose of final signal classification.

B exp(H] v;)
Zi exp(H,'T vi)
The classification layer aims to minimize the cross-entropy
error of all labeled sections of the signals, calculated through

Eq. 5 where p is the network predictions which is a function of
network input and y denotes to the target label of the signals.

CE = -y log(pe,)) ©)

c

“4)

The characterization module also utilizes the Adam opti-
mizer function. Adam optimizer is a decaying momentum op-
timizing method modeled on physical friction [56]. It updates
parameters through Eq. 6, and stores exponentially decaying
average of past squared gradients (v, = fov;—1 + (1 — ﬂg)gf)
and an exponentially decaying average of past gradients (m; =
Bimy—1 + (1 — B1)gr).

®t+l =0 — 1y (6)

_n
A/ 17; + €
Adam optimizer has a tendency of 0 bias during the initial
steps. To fix the bias issue in the gradients, corrected estimates
of initial moments are calculated as shown in Equations 7
and 8.
my
=1 7
Ut

)

®)

IV. PERFORMANCE EVALUATION

In this section, we describe the setting values used in the
data gathering as well as the training process of the pro-
posed model in Sections A and B. The detailed experiments
regarding the internal structure of the system is provided in
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TABLE 2. Dataset Details

Event Type Event Count | Window Count
Harsh brake 13 104
Aggressive acceleration 12 108
Harsh left turn 16 126
Harsh right turn 15 121
Regular driving 14 113

Section C. Last but not least, a comparison of the final result
of the pipeline in comparison with state-of-the-art models is
presented in Section D.

A. DATASET AND COLLECTION SETTINGS

To collect proper sensor data for the study, accelerometer
sensor data along three axes of vehicle direction is chosen
to record four risky driving events, namely aggressive accel-
eration, harsh braking, harsh left and right lane change as
well as various non-risky driving sessions. Using the Raven
OBD-II sensor kit, a total of 70 sessions were recorded from
several vehicles. The sessions are roughly distributed among
all five categories evenly and are of various durations from 2
to 3.6 seconds. The IMU sensor sampling frequency is set to
25 Hz. In total, 16 harsh left turn, 15 harsh right turn, 13 harsh
braking, 12 aggressive acceleration, and 14 event-less sessions
are captured and sliced into 572 windows of 600 milliseconds
using 50% overlap setting between two sequential windows.
A more detailed distribution of the dataset can be found in
Table 2.

Last but not least, randomly selected 70% of the data ses-
sions were split as training and the rest as testing set. To keep
the comparisons fair, the same train and test set were utilized
in all our experiments.

B. EXPERIMENTAL SETTINGS

Initially, ten random Gaussian noise of mean zero and stan-
dard deviation of 0.1 by probability distribution are added to
each window of data to obtain noisy variations of the input as
shown in Eq. 9

w2
L

e 20.1)7? )

1
Pe ) = A

The noisy data is then fed into the generator module which
is a three-layer stacked denoising auto-encoder network with
layer sizes of 600, 300, 100, respectively. The last encoder
layer is used as the vector bottleneck layer. Google’s Tensor-
flow framework was employed to deploy the auto-encoder net-
works. The decoding network is symmetrical to the encoder
i.e. the decoder is implemented with layers of 100, 300, and
600 nodes, respectively. The layers consist of LSTM cells in
order to preserve longer-term memory of the data.

The generator network optimizes its error, calculated by
Mean Squared Error (MSE), utilizing Adam optimizer with
decay values of 81 = 0.9, B, = 0.999 and € = 108 on each
iteration. A learning rate of 0.03 is chosen for network param-
eter optimization on each training epoch.
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TABLE 3. Signal Overlap Test Results

Precision

Recall

F1-Score

0.7368 +0.0131

0.7778 +0.0129

0.7568 +0.0134

0.8286 +0.0138

0.8056 4+0.0136

0.8169 +0.0137

0.8824 4+0.0129

0.8333 +0.0126

0.8571 +0.0125

0.8889 +0.0108

0.8889 +0.0131

0.8889 +0.0136

0.9429 +0.0085

0.8919 £0.0098

0.9167 £0.0096

Overlap Value Train Accuracy Test Accuracy
no-overlap 0.9114 4+0.0108 0.8953 4+0.0127
20% 0.9347 4+0.0140 0.9244 4+0.0153
30% 0.9444 +0.0128 0.9419 4+0.0131
40% 0.9562 +0.0117 0.9521 4+0.0106
50% 0.9704 £0.0073 0.9651 +0.0089
60% 0.9859 +0.0063 0.9593 40.0085
70% 0.9837 +0.0077 0.9588 4+0.0108

0.9167 0.0065

0.8919 +0.0071

0.9041 £+0.0070

0.8824 +0.0109

0.9091 40.0103

0.9055 +0.0101

The auto-encoder network is trained for 1000 iterations
before stopping and the output signals are kept as training
dataset to the characterization encoding network.

The characterization module trains on the reconstructed
dataset for 1000 iterations. It optimizes the cross-entropy
error using Adam optimizer with decay values of 8 = 0.9,
B> = 0.98 and € = 1078 and the learning rate of 0.03 over the
iterations. Dropout layers of probability 0.6 are added to avoid
over-training the network. The spatial feature extraction units
are operating with custom-sized convolution kernels of size
3 x 15 and filter depth of 64. The output of the spatial feature
extraction unit is a linear code of size 1 x (n — 14) x 64,
where n is time length of each signal window. We select
no-padding in the convolutional steps. The pooling layers are
averaging 30 nodes i.e. filter size of 1 x 30 on each step
with stride value of 10. Temporal feature extraction network
is made of LSTM layers of 128 nodes, feeding the encoded
information into a self-attention module of size 256. Lastly, a
softmax layer is set as the output layer to classify the features
into five event classes.

C. INTERNAL STRUCTURE INVESTIGATION

To gain knowledge of how the structure and hyper-parameters
of the networks affect the performance of the pipeline, exten-
sive experiments ware conducted. The experiments are done
in a controlled manner to isolate the effect of the subject pa-
rameter from other parameters. Moreover, all the experiments
are performed 10 times and the average results are presented
with 95% confidence levels. In this section, first the effects of
the pre-processing and generator networks are presented and
then, we explore the internal structure effects of the character-
ization network.

As the first experiment, the effect of the overlap percentage
in the signal windowing mechanism is investigated. Introduc-
ing data overlap significantly improves the overall network
performance. The performance boost grows as the overlap-
ping section expands, though it reaches a point of diminishing
return after 50% and values of over that number do not show
performance benefits to the process flow (Table 3).

To study the generator module in detail, the number of
symmetrical and asymmetrical [58] LSTM auto-encoders are
deployed and tested on the dataset (Table 4). We conclude
that symmetrical designs are more consistent than and out-
perform the auto-encoders of asymmetrical shape. Moreover,
while the model performance improves with the number of
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stacked hidden layers, networks with more than three stacked
layers do not show any signs of improvement. As a result of
this experiment, a symmetrical network of 3 encoder and 3
decoder layers is chosen for further network investigations.

To test out the effectiveness of several recurrent and non-
recurrent neurons, a diverse range of state-of-the-art neurons
are selected and the final classification results of the process
flow are recorded as presented in Table 5. The most supe-
rior performance is obtained under the LSTM and Bi-LSTM
nodes. LSTMs are chosen since they reduce computation
complexity of the network compared with Bi-LSTMs, thus
reducing the training time.

Lastly, dimensionality of the signals are reduced to 2D
using Principal Component Analysis (PCA) method. PCA has
shown to perform poorly when the input data is noisy. To
study the usefulness of the generator module in denoising
of signals, the reconstructed signals exhibit more separation
of values, compared with original signals, in two dimensions
which can be described as better understanding of the under-
lying features in the signals by the network. The 2D repre-
sentation of original and reconstructed signals are shown in
Fig. 8.

The first experiment regarding to the characterization mod-
ule layer size is presented in Table 6. The characterization
encoding network is implemented with one to three spatial
feature extraction units as demonstrated in Fig. 9 (i.e. a combi-
nation of convolutional and pooling layers as a unit). Stacking
two spatial feature extraction units is shown to be the most
effective. With two convolutional units as default, the number
of needed recurrent layers is studied. The experimental results
show that stacking two recurrent layers slightly enhances the
classification outcome whereas three layers have virtually no
positive effect on the performance. Moreover, for practicality
of the attention mechanism in the tests, the module is first
trained with no attention layer, and then with an attention layer
of different sizes. As reported in the table, the introduction of
the attention mechanism has the most significant impact on
the performance, though high layer size is shown to lead to
the diminishing return of the performance.

As mentioned, a custom-sized convolutional filter is em-
ployed that is suitable for vehicular sensor data in the charac-
terization module. The experiments in Table 7 are performed
on the filter size in order to find the best fit kernel for the
vehicular sensory signals. Additionally, the impact of the con-
volutional padding and stride on the system performance are
investigated. Numerical results concerning the impact of the
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TABLE 4. Generator Network Depth Test Results

Precision

Recall

F1-Score

0.7347 £0.0164

0.7660 +0.0172

0.7500 +0.0170

0.9403 £0.0089

0.8892 +0.0106

0.9113 £0.0101

0.9384 +0.0109

0.8921 +0.0118

0.9147 +£0.0116

0.9224 +0.0091

0.9008 +0.0088

0.9114 +0.0089

0.4884 £0.0196

0.5526 +0.0169

0.5185 +0.0173

Shape Layers | Train Accuracy | Test Accuracy
2-2 0.9005 +0.0196 | 0.8659 +0.0217

Symmetrical 3-3 0.9765 £0.0073 | 0.9607 £0.0087
4-4 0.9776 £0.0091 | 0.9592 +£0.0103

5-5 0.9604 £0.011T | 0.9603 £0.0086

3-2 0.8654 +0.0181 | 0.7733 +£0.0170

Asymmetrical 3-4 0.9371 +0.0139 | 0.8895 +0.0140
3-5 0.9449 +£0.0093 | 0.9075 £0.0117

0.7500 £0.0138

0.7692 +0.0148

0.7595 +0.0141

0.8049 +0.0142

0.8049 +0.0123

0.8049 £+0.0136

TABLE 5. Generator Network Node Test Results

Precision

Recall

F1-Score

0.4808 +0.0149

0.5208 +0.0181

0.5000 +0.0173

0.9415 +0.0088

0.8924 +0.0106

0.9162 +0.0095

0.8734 +£0.0116

0.8828 +0.0109

0.8780 +0.0112

Node Type | Train Accuracy Test Accuracy
ReLU 0.7617 +0.0164 | 0.7368 +0.0183
LSTM 0.9711 +0.0087 | 0.9611 +0.0107

BiLSTM 0.9703 +0.0081 | 0.9592 +0.0102
GRU 0.9667 +0.0099 | 0.9509 +0.0103

0.8804 +0.0117

0.8734 +0.0121

0.8768 +0.0120

TABLE 6. Characterization Network Module Test Results

Tested Dimension | Train Accuracy Test Accuracy Precision Recall F1-Score
1 0.9549 +0.0086 | 0.9477 £0.0119 | 0.8824 +0.0106 | 0.8571 £0.0119 | 0.8696 £0.0112
Conv 2 0.9741 +0.0065 | 0.9593 +0.0086 | 0.9394 +0.0068 | 0.8611 +0.0071 | 0.8986 +0.0069
3 0.9703 +0.0075 | 0.9535 £0.0083 | 0.9257 4+0.0084 | 0.8857 £0.0077 | 0.9052 £0.0081
1 0.9471 +0.0087 | 0.9128 £0.0109 | 0.8000 +0.0126 | 0.7778 +0.0128 | 0.7887 £0.0127
LSTM 2 0.9760+£0.0078 | 0.9708 £0.0084 | 0.9394 +0.0093 | 0.9118 £0.0091 | 0.9254 £0.0090
3 0.9732 +0.0081 | 0.9649 £0.0092 | 0.9116 £0.0101 | 0.9121 £0.0085 | 0.9118 £0.0093
no-attention | 0.9214 +0.0116 | 0.8837 £0.0151 | 0.7273 +0.0117 | 0.6857 +0.0138 | 0.7059 +0.0136
Attention 128 0.9624 +0.0081 | 0.9591 £0.0084 | 0.9091 +0.0067 | 0.8824 +0.0078 | 0.8955 +0.0073
256 0.9706 £0.0066 | 0.9649 £0.0084 | 0.9091 +0.0074 | 0.9091 £0.0073 | 0.9091 +0.0074
512 0.9697 £0.0061 | 0.9617 £0.0067 | 0.9017 £0.0065 | 0.8913 £0.0061 0.8964 +0.0063

TABLE 7. Convolution Module Setting Test Results

Precision

Recall

F1-Score

0.8732 +0.0093

0.8591 40.0085

0.8660 4+-0.0086

0.9028 +0.0072

0.8920 40.0064

0.8973 +0.0066

0.9048 +0.0080

0.8706 +0.0068

0.8873 +0.0072

0.9118 +0.0081

0.8857 +0.0079

0.8986 40.0080

0.9103 +0.0079

0.8920 £0.0075

0.9010 +0.0077

0.9115 +0.0078

0.8903 £+0.0066

0.9007 +0.0071

0.9089 +0.0084

0.8932 £+0.0086

0.9009 +0.0085

0.9048 +0.0075

0.8706 +£0.0071

0.8873 +0.0072

0.8788 +0.0105

0.8286 +0.0113

0.8529 £0.0109

0.7941 £0.0119

0.7500 +0.0141

0.7714 £0.0138

0.8926 +0.0085

0.8742 £0.0092

0.8833 +0.0088

0.8874 +0.0085

0.8617 +0.0081

0.8743 +0.0083

0.8894 +0.0081

0.8723 £0.0083

0.8807 +0.0082

0.9010 £0.0071

0.8988 40.0068

0.8998 40.0070

0.9384 +0.0091

0.8921 +0.0102

0.9147 +0.0098

0.9273 +0.0083

0.8968 40.0097

0.9117 40.0090

Test Setting Train Accuracy Test Accuracy
3x5 0.9592 40.0093 | 0.9379 £0.0091

Conv 3x10 0.9647 +0.0086 | 0.9593 £0.0084
Kernel 3x15 0.9715 £0.0102 | 0.9610 +0.0081
Size 3x20 0.9706 +0.0098 | 0.9593 +0.0085
3x25 0.9712 +£0.0088 | 0.9603 £0.0084

10 0.9730 +0.0081 | 0.9610 £0.0089

Pooling 20 0.9711 +0.0086 | 0.9609 +0.0093
Kernel 30 0.9735 £0.0078 | 0.9611 +0.0103
Size 40 0.9553 £0.0102 | 0.9419 £0.0094
50 0.9244 +0.0124 | 0.9070 £0.0133

Conv No-Pad 0.9711 £0.0092 | 0.9564 +0.0103
Padding 0-Pad 0.9703 £0.0083 | 0.9468 £0.0108
Same-Pad | 0.9694 £0.0085 | 0.9573 £0.0093

5 0.9701 +0.0079 | 0.9588 +0.0083

Stride 10 0.9721 £0.0076 | 0.9593 +0.0087
15 0.9719 +0.0088 | 0.9542 £0.0101

20 0.9637 £0.0083 | 0.9477 £0.0081

0.8857 £0.0075

0.8611 £0.0085

0.8732 £0.0081

activation functions in the convolution operations are reported
in Table 8. The same experiments are repeated on the recurrent
neurons in the generator module. Neurons are swapped in
the temporal feature extraction unit of the characterization
module in order to record the performance of the system with
each neuron type. The top performing settings are shown in
bold in the table.

D. NUMERICAL RESULTS
Ablation studies are carried out to examine the individ-
ual component’s effectiveness on the models performance.
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Furthermore, several state-of-the-art as well as baseline mod-
els are tested and compared to the proposed model so to
demonstrate the superiority of the model in terms of classi-
fication accuracy and lower false positive performance.

The effect of each module in the pipeline is studied with
leave-one-out approach. First, the generator module is dis-
abled and the characterization module is trained and tested
on the original dataset to explore the effect the reconstructed
signals have on the system performance. Then, spatial feature
extraction, temporal feature extraction, and attention modules
of the characterization network are abandoned in individual
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TABLE 8. Module Activation Function Test Results
Module Nodes Train Accuracy Test Accuracy Precision Recall F1-Score
ReLU 0.9688 +0.0093 | 0.9535 £0.0105 | 0.8824 4+0.0086 | 0.8824 +0.0077 | 0.8824 +0.0081
Convolutional tanh 0.9664 +£0.0103 | 0.9477 £0.0091 | 0.8857 +0.0099 | 0.8611 £0.0081 | 0.8732 =£0.0090
LReLU | 0.9721 £0.0096 | 0.9590 +0.0084 | 0.9091 £0.0091 | 0.8824 £0.0090 | 0.8955 1+0.0091
LSTM 0.9703 +0.0085 | 0.9593 +0.0098 | 0.9118 +0.0093 | 0.8857 +0.0079 | 0.8986 +0.0085
Recurrent BILSTM | 0.9682 £0.0087 | 0.9532 £0.0095 | 0.9090 £0.0079 | 0.8841 £0.0086 | 0.8963 £0.0082
GRU 0.9702 £0.0094 | 0.9438 £0.0103 | 0.8824 +0.0098 | 0.8333 £0.0097 | 0.8571 £0.0093

2D Projection of test signals
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FIGURE 8. Signal 2D projections. The utilization of the generator module
acts as a noise filter which causes more distinction between the encoded
signals. Data-points are magnified for visualization purposes.
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FIGURE 10. Breakdown of the inference of the test-set using the proposed
pipeline. The main diagonal axis represents the correctly characterized
events.

experiments. It is worth noting that the structure and settings
of all the components are chosen from the internal structure
investigation reported in the previous section. The ablation
study results are stated in Table 9, in which the generator
module is referred to as “G,” the spatial and the temporal
feature extraction modules of the characterization module as
“S” and “T,” respectively. Last but not least, the attention
module is referred to as “A.”

Moreover, state-of-the-art models are trained and tested

on our dataset in order to illustrate a fair comparison of the

models. As the baseline to our research, a modified recurrent

LSTM driving event detection model [59] is implemented
and optimized in our previous work [10]. The baseline model
employs convolutional neural networks as well as recurrent
layers as feature extraction methods and trains a fully con-

nected neural network. The classification network of the base-
line model attempts to output the probability distribution of
the event categories using a softmax layer as the output. This
model achieves the test accuracy of above 77% with an F1-
score of 0.53 on the dataset. The “Regular Driving” event cat-
egory of signals are the events that the baseline model detects
best with 83% success rate while facing the worst detection

rate of with 74% in “Harsh Left Turn” category. However, the

Input signal Conv Unit

FIGURE 9. Demonstration of convolutional units. Each unit consists of

success rate of the proposed model is provided in Fig. 10. The

system is able to classify the “Harsh Left Turn” signals with

custom size kernels operating with Leaky ReLU functions and an average

pooling layer.
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only 2 miss-classified signals.
Additionally, the adopted spatio-temporal classification

method [60] that utilizes standard VGG-16 CNN architecture
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TABLE 9. Module Importance Test Results

Network Train Accuracy Test Accuracy Precision Recall F1-Score
Spatial 0.7849 +0.0144 | 0.71820 £0.0182 | 0.5000 +0.0140 | 0.5405 £0.0136 | 0.5195 +0.0138
Temporal 0.7965 +0.0178 | 0.7019 £0.0156 | 0.5610 +0.0167 | 0.5750 £0.0170 | 0.5679 +0.0169
ST 0.8372 +£0.0164 | 0.7857 £0.0132 | 0.5946 +0.0158 | 0.6286 +£0.0155 | 0.6111 +0.0157
STA 0.9241 +0.0124 0.9070 4+0.0130 0.7714 +£0.0119 | 0.7714 +0.0109 0.7714 +£0.0114
GST 0.8814 +0.0116 | 0.8663 £0.0133 | 0.6857 £0.0117 | 0.6667 £0.0146 | 0.6761 +0.0131
baseline 0.8517 +£0.0115 | 0.7753 +0.0135 0.5476 +0.0151 | 0.5227 +0.0143 | 0.5349 £0.0147
sparse AE 0.9509 +0.0101 | 0.9296 +0.0117 0.8491 +0.0088 | 0.8824 4+0.0096 | 0.8654 +0.0092
spatio-temporal | 0.8953 +0.0128 | 0.8142 +0.0139 0.6341 +£0.0150 | 0.6047 +0.0145 | 0.6190 £0.0147
GSTA 0.9774 +£0.0073 | 0.9608 £+0.0082 | 0.9275 +0.0079 | 0.9071 +0.0093 | 0.9171 +0.0085

for spatial feature extraction is able to reach 81% in classi-
fication accuracy and Fl-score of 0.62. This model employs
the pooling techniques to gain temporal information across
space and time from the data and is end-to-end classification
trainable using a classification loss. Furthermore, the adopted
sparse auto-encoder classifier network [61] classifies the sig-
nals at 93% accuracy and results in 0.86 F1-score. Last but not
least, our proposed system reaches the accuracy of 96% and
attains 0.91 F1-score improving 15% upon the baseline.

Lastly, since lowering the false positive predictions is a
major focus of ours, a prediction distribution of the test-set,
classified by our system is specified in Fig. 10 to provide more
insight into the efficiency of the model.

V. CONCLUSION

This article targets the rarely studied problem of characteriz-
ing the risky driving events in a connected vehicle setting. To
this end, the article has proposed a novel neural network based
process flow to not only advance the prediction scores of the
existing models, but to also address the data scarcity problem
in event characterization. The proposed model splits the driv-
ing event signals, learns the underlying behavioral features,
and de-noises them for the training process. In training, the
model extracts spatio-temporal features of the reconstructed
signals, leverages the attention model-based neural network,
and achieves more than 96% test accuracy which roughly
translates to 15% improvement over the baseline. This article
has also presented detailed experiments with regards to the
underlying parameters of the networks and their effect on the
task performance.

Extensions of this study and ongoing work include inves-
tigation of the possibility of augmenting the proposed model
with knowledge-based approaches so to further improve the
prediction performance of the proposed process flow in event
characterization from vehicular sensor data.
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