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ABSTRACT Powertrain electrification has heightened the need for an energy management strategy, which
has been a continuing concern in the development of electrified vehicles. The energy management control
unit manages power flow between different energy sources in an electrified powertrain that directly affects
vehicle performance. Developing an energy management strategy that is compatible with different real-world
driving scenarios has opened a significant field of study for researchers. Recent advances and progress
in intelligent control approaches have facilitated developing an intelligent energy management strategy.
However, there are inadequate numbers of studies on the latest energy management strategies. The presented
review paper aims to provide the requirements of intelligent energy management strategies as well as a
new categorization of them into principle-based, data-driven, and composite methods. Besides, enabling
technologies for implementing an energy management system with a comparison of different controller chips
are described to give readers an experimental view. Future trends and existing challenges are presented, which
generate fresh insight into energy management strategies.

INDEX TERMS Data-driven methods, electric vehicles, intelligent energy management strategy, reinforce-
ment learning, powertrain architecture.

I. INTRODUCTION
Lives on earth have been drastically affected by the air pol-
lution generated from vehicle emission, and global warming
has caused drastic climate changes. One of the promising
solutions is shifting toward fuel-efficient vehicle and electrifi-
cation transportation. Combining different sources of energy
such as a battery, an ultracapacitor (UC), a fuel cell (FC), and
an internal combustion engine (ICE) can help decrease fuel
consumption and emissions.

Pure electric vehicle (PEV), which has zero emission,
seems like a feasible solution, but its shorter operating range
compared to a conventional vehicle and the insufficient in-
frastructure to accept this technology have limited its acces-
sibility. The limited charging station, long charging time, im-
mature battery technology, high cost, and issues that happen
to the power network should be addressed for going toward

electrifying transportation [1]. Therefore, hybrid electric vehi-
cle (HEV) which consists of an ICE with at least one electric
machine (EM) is more popular. The added degree of freedom
from the EM in HEVs brings more complexity in powertrain,
however, this results in better performance, high power, and
low acoustic noise in comparison to conventional vehicles.

Energy management strategy (EMS) tries to navigate en-
ergy between several energy sources considering one or multi-
ple objectives while satisfying the driver’s power demand. En-
ergy consumption minimization, improving drivability, safety,
increasing component lifetime, and emission reduction can be
considered as an objective for an EMS problem. Drivability
refers to the driver’s comfort in terms of smooth gear shift-
ing, low driveline vibrations and, reasonable engine on/off
switches [2]. Safety focuses on tolerating possible faults that
can occur in the vehicle components [3]. Carbon monoxide
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(CO), hydrocarbons (HC), and nitrogen oxide (NO) are re-
garded as tailpipe emissions [4].

There are many publications for EMSs with applications
mostly in HEVs. These methods are generally categorized into
rule-based and optimization-based methods. In rule-based
methods, rules are achieved through engineers’ knowledge,
in addition to trial and error. Since the rules are driven with-
out any prior knowledge of drive cycles, rule-based meth-
ods failed to address the optimal EMS [5]. In contrast,
optimization-based methods derive optimal control inputs
for powertrain components with the goal of mostly improv-
ing fuel economy. Optimization-based methods are gener-
ally classified into global optimization-based and real-time
methods [6]. The global optimization-based method considers
the energy management problem for a complete and single
driving cycle. Regarding their high computational time, they
cannot be implemented in real-time directly. Real-time meth-
ods implement instantaneous optimization problems that only
consider the current state of the system. Even though real-time
EMSs yield online capable approaches, they are sensitive to
different driving cycles.

Developing an approach with a tradeoff between simplicity
of rule-based methods, optimality of global optimization ap-
proaches, and real-time capability of real-time EMSs has been
a concern for researchers. A vehicle compatible EMS with
the ability to adapt to its environment and low computational
resources would be considered as an intelligent energy man-
agement strategy (iEMS). Optimization-based approaches can
be modified by combining with state of the art algorithms
to satisfy iEMS requirements. With emerging data mining
techniques and machine learning tools, EMSs are being driven
towards data-based methods with the capability of adapting
to real world driving situations. Computational burden, ex-
perimental implementation, and optimal performance are the
remaining challenges that should be investigated. The detailed
requirements, classification, and challenges of iEMSs are fur-
ther addressed in this paper.

There is a large volume of published reviews which study
EMSs [7]–[11]. Authors in [3] have attempted to focus on
EMSs which are implemented in HEVs based on bibliomet-
rics, by considering both qualitative and quantitative analyses.
Authors in [12] have categorized EMSs into online and offline
strategies, along with describing different vehicle modeling
techniques. Authors in [13] have formed a new classification
of EMSs in terms of a hardware implementation for HEVs.
The existing reviews have been mostly restricted to conven-
tional EMSs and have not dealt with the control architecture
with in-depth description of real-time optimization. The cur-
rent study will address new trends in EMSs and suggest a
novel categorization for iEMSs in electrified vehicles.

The remainder of the paper is organized as follows:
Section II discusses different powertrain architecture followed
by a brief introduction of energy sources. Electrical and elec-
tronic (E/E) architectures of electrified vehicles are explained
in Section II. Section III categories iEMSs into three main cat-
egories. Each category is established, and the main challenges

are addressed. Future trends and developing approaches are
given in Section IV. Existing technology for implementing
iEMSs is presented in Section V. Finally, Conclusions are
summarized in Section VI.

II. CURRENT ELECTRIFIED VEHICLE ARCHITECTURE
The architecture that the EMS needs to control must be de-
fined. Without a specified architecture, the EMS cannot be
optimized or realized. In this section, electrified powertrain
architectures, including its energy sources, propulsion devices
and interfacing components are discussed. The two most pop-
ular E/E architectures are presented to provide the readers
with a proper background on why, where, and how the EMSs
are introduced for the appropriate vehicle architectures. The
future of mobility not only depends on the electrified, au-
tomated and connected vehicles but also the devices in the
vehicles [14].

A. ELECTRIFIED POWERTRAIN ARCHITECTURES
The electrification of the powertrain domain has garnered a
lot of interest in the last couple of years due to the advance-
ments made in electrical technology for energy sources, power
conversion components, and different types of loads. Until
recently, ICE has been the main propulsion component of the
powertrain in conventional vehicles, which is supplied directly
by petroleum sources [15]. Other means of energy sources
have been introduced and researched, to ensure the automotive
industry does not impact the environment negatively. As a
way of introducing electrical energy sources, HEVs have been
introduced in such a way that another energy source is used
in conjunction with the ICE. The HEV has been a practical
way of introducing sustainable and renewable energy sources
into vehicles without disturbing the current infrastructure and
causing too many risks in terms of safety and environmental
impact.

Following the HEV, there are two other main electrified
vehicle powertrain architectures that were studied, which are
mentioned below and are illustrated in Fig. 1 [16]–[18]:
� Pure Electric Vehicle
� Hybrid Electric Vehicle
� Fuel Cell Hybrid Electric Vehicle
Each one of the above mentioned powertrain architectures

is designated with different, but similar types of energy de-
vices. Each architecture integrates the energy sources differ-
ently, but with similar technologies. Battery, supercapacitor
(SC), UC, and thermal or mechanical energy sources can be
used as energy sources in the architectures.

Batteries have been widely used in all types of vehicle
architectures, including the conventional ICE vehicle for the
low voltage electronics [20]. Battery maturity has reached a
certain level where its use in both household and commer-
cial industries has been widely accepted [21]. Batteries also
offer the ability to be recharged during regenerative braking
periods of the vehicle, which can be very advantageous, since
batteries’ energy density is smaller compared to nonrenewable
fuels. Three of the main types of battery cell technologies
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FIGURE 1. Main electrified powertrain architectures [16], [17], [19].
(a) Series Plug-in hybrid electric vehicle (b) Parallel Plug-in Hybrid vehicle
(c) Pure electric vehicle (d) Fuel cell electric vehicle.

widely used today in xEVs have been the Lead-acid, Nickel-
based, and Lithium-ion based batteries. Lead-acid batteries
are common in household and commercial applications since
they tend to be one of the cheaper solutions in battery cell
technologies [22]. They also tend to have good enough ef-
ficiency and fast response to be incorporated in electrified
vehicles. However, there are certain drawbacks associated
with lead-acid batteries such as their negative impact on the
environment, low specific energy, and their need to be re-
placed quite frequently. Nickel-based batteries have been used
in HEVs for 14 years and manufactured mostly by Panasonic
and Primearth EV Energy (PEVE) [22]. The power and energy
density of the nickel-based battery, are significantly different
from its counterpart of lead-acid. However, nickel-based suf-
fer from a high self-discharge rate that would not benefit PEV
with such technology since its range would be significantly af-
fected. According to the detailed analysis of different battery
chemistry in [20], lithium-ion batteries have unprecedented
performance over the other technologies due to their higher
energy density, no memory effect which increases its lifetime,
and less environmental impact.

SCs and UCs employ both electrostatic and electrochem-
ical storage to be able to deliver electric power. Different
than traditional capacitors, UCs have been used to enhance
traditional energy storage systems (ESS) in terms of lifetime
and power delivery [23]. UCs have been traditionally used

whenever immediate spikes of power are demanded by the
load since they have a high power density [24], [25]. This
method has been used to increase the lifetime of lithium-ion
battery or just to ensure the power demand is met within a
small time frame. Another positive aspect of UC is its long
lifetime, which is noticeable in comparison to batteries.

FC energy sources have been widely used in fuel cell hybrid
electric vehicle (FCHEV) in both civilian vehicles as well
as in-city transit buses [26]. FCs are electrochemical energy
sources that produce electrical energy through a chemical
reaction between the oxidant at the cathode and the fuel atoms
at the anode of the device [26]. FCs, in contrast to batteries,
need an unceasing source of fuel in addition to oxygen to
operate [20]. The different types of FCs are categorized based
on the electrolyte substance. Proton exchange membrane fuel
cells (PEMFCs) are dominant in transportation due to high ef-
ficiency, high power density, and low-temperature operation.
However, low performance at high current density, high cost,
and durability are remaining problems of using PEMFCs in
vehicles [27].

Other sources of ESS consists of thermal and mechanical
devices. In mechanical ESS, the flywheel can be used in
conjunction with ICE, or other rotating components since the
flywheel is able to store kinetic energy, and the accumulated
energy is proportional to its rotational velocity [28]. The fly-
wheel tends to be an attractive solution whenever the vehicle
exhibits high or medium power demands [29]. They are favor-
able in terms of their lifetime (>20 years) as they have a large
number of charge/discharge cycles, which is independent of
temperature [30]. A disadvantage of the flywheel is that it
tends to be quite heavy and bulky since the energy storage ca-
pability is proportional to the speed but as well as the inertia of
the flywheel which is determined by its mass and geometry. A
type of thermal ESS is the thermoelectric generators (TEGs).
Using the Seebeck effect, TEGs are solid-state devices that
help to regenerate the energy lost through heat within vehicle
components such as ICE, exhaust systems, power converters,
and other heat-generating components [31].

All of the aforementioned energy sources are used differ-
ently within different architectures of an electrified vehicle.
The architecture of the vehicle highly dictates how the con-
version and transfer of power are performed. Based on the
three main architectures mentioned above, the most popular
option of architectures for the electrified vehicle has been the
HEV [16]. Many different HEV architectures imply many
different possibilities to integrate the ICE with an electric
battery or other energy sources. Some of the different HEV
are listed below:
� Series Hybrid Electric Vehicle (SHEV)
� Parallel Hybrid Electric Vehicle (Parallel HEV)
� Series/Parallel Hybrid Electric Vehicle (SPHEV)
� Plug-In Hybrid Electric Vehicle (PHEV)
In Series Hybrid Electric Vehicle (SHEV), only the electric

motor drives the wheels, and ICE has no direct mechanical
connection with the wheels. This permits the ICE to perform
at its maximum efficiency which is very useful for heavy
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commercial vehicles, military vehicles and as well in
buses [12], [32]. A SHEV with plug-in capability is shown
in Fig. 1(a). For parallel HEV architectures, the use of electric
motors and ICE is in parallel to drive the wheels. The parallel
HEV architecture (with a plug-in) can be seen in Fig. 1(b).
Toyota, Ford and Lexus have been using this configuration
for quite a while [12]. SPHEV architectures have been used in
small automobiles and provide paths for ICE to wheels as well
as electric motors to wheels by using planetary gearsets [12],
[33]. Lastly, for all of these architectures, a plug-in capability
can be introduced which lets the owner of the vehicle charge
the vehicle whenever not in use. This ensures that there is a
maximum amount of electrical energy stored whenever the
vehicle would pursue a journey. This can maximize range and
can be helpful in reducing fuel consumption.

One of the simplest solutions but also very attractive one
to vehicle electrification is the PEV which is shown in
Fig. 1(c) [34]. The PEV has zero emissions due to its en-
ergy being solely powered by an electrical energy source.
The architecture is simple due to its direct energy transfer of
DC voltage to AC voltage and vice versa through three-phase
inverters and rectifier units [35]. The disadvantage with the
PEV is that the most common and produced energy dense
technology is the lithium-ion battery [22]. Due to the battery
technology not being mature enough, energy densities like
that of petrol cannot be attained yet with pure batteries [36].
Hybrid energy storage system (HESS) has been utilized in
PEV to find a solution to the energy density problem. Solar
panels have also been introduced to help extend the range
in [37], [38] but has not been a preferred solution in civilian
vehicles.

The last most popular architecture of an electrified vehicle
is the FCHEV. It may not comprise of many components
as shown in Fig. 1(d), but to integrate them together in a
safe moving vehicle is the challenge [39]. FCHEVs have
number of advantages than conventional ICE vehicles such
as high conversion efficiency with flexible fuels with a high
energy density, a relatively quiet operation compared to ICE,
no emissions, waste heat recovery and durability [20]. Long
driving range and short refueling time are the positive aspects
of FCHEVs in comparison to their purely electric counter-
part. Although having significant advantages over ICE vehi-
cles, FCHEVs require having a large tank, thus requiring a
large volume. Furthermore, FCHEVs exhibit low efficiencies
whenever working with high power demand and also, their
costs have been limiting their applications in civilian vehicles.
Safety is paramount to the application of FCHEV and verifi-
cation effort must be used to ensure the safety of the fuel.

B. ELECTRICAL AND ELECTRONIC ARCHITECTURES
The E/E architecture of such electrified vehicles described in
Section II-A has come to a paradigm shift where the in-vehicle
E/E architecture electronic control units (ECUs) that were
connected in a central “Gateway” or “Plug-in” type of control
architecture is moving towards a more distributed or cen-
tralized control architecture [40]. ECUs consist of embedded

controllers that perform multiple functions in the vehicle to
minimize the driver’s effort of driving the car, ensuring safe
control and monitoring of the vehicle components while also
ensuring the entertainment systems in the vehicle are func-
tioning properly. Most of the ECUs in conventional vehicles
are mainly tasked to do a single vehicle function including but
not limited to:
� Adaptive Cruise Control (ACC)
� Anti-Lock Braking System (ABS)
� Battery Management System (BMS)
� Engine Control Module (ECM)
� Light Switch Module (LSM)
� Park Distance Control (PDC)
In the conventional E/E architecture of a vehicle, there can

be 70 to 100 ECUs with their own functions. The communi-
cation is performed on a dedicated “gateway” bus depending
on the safety level of the ECU. The trend of electrification is
pushing for a redesign of the E/E architecture of an electrified
vehicle. This redesign step is coming from the bottlenecks
found in the migration of xEV technologies where require-
ments such as flexibility, scalability, external communication,
computing power, communication bandwidth and functional
complexity are all increasing [41]. This increase has pushed
the limits of current technology used in conventional vehicles
and different types of communication architecture are needed
along with different types of ECU distribution. Furthermore,
having so many ECUs in the vehicle requires high qualifica-
tion costs that can have a huge impact on the manufacturer
of the vehicle [42]. Requiring many ECUs increases energy
consumption which is non-ideal for xEVs where range is
crucial and limited.

The move to centralized E/E architecture is inevitable but
this has to come gradually as not to disturb the vehicle infras-
tructure. Some requirements for new E/E architectures consist
of acquiring large amounts of environmental data along with
many parallel computations to ensure proper processing of the
vast amount of data [43]. The move from a distributed E/E
architecture to a more centralized one has been adopted by
two similar but different types:
� Domain Controller Architecture (DCA): Domain spe-

cific ECUs with possible domain overlaps through dedi-
cated gateway.

� Zonal Controller Architecture (ZCA): Domain indepen-
dent with a central in-vehicle/external computer with
possible zone ECUs.

The DCA, a more centralized type of control architecture
is taken at the vehicle level. Fig. 2 shows how such a domain
controller architecture can look like based on a combination
of [44]–[46]. Functions of traditional ECUs are merged to-
gether to make one powerful domain controller communicat-
ing through a dedicated inter-domain bus. To ensure proper
domain configuration and functional safety of the vehicle, the
domains must be grouped by subsystems that are classified
in terms of physics and non-physics but also must have a
high amount of synergy [14]. The main criterion is functional
safety in terms of function combination in domains. If a failure
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FIGURE 2. Domain controller E/E architecture example.

occurs in one of the domains, the failure must be dealt with
appropriately and not affect other domains while bringing the
vehicle at a fail-safe state. The DCA can be separated into
three different types of components where there are inter-
domains, or better known as smart sensor/actuators, power
domain controllers that combine multiple ECU functions to-
gether to ensure functional safety and performance and finally
a central gateway to interconnect the domains. Some examples
of the domains of a DCA based on Fig. 2 are listed below:
� Human Machine Interface (HMI)
� Autonomous Driving Assisted Systems (ADAS)
� Connectivity
� Body
� Powertrain
� Chassis
Each domain communicates through a central gateway to

ensure data is transferred properly between inter-domains and
domain controllers. Each inter-domain is comprised of smart
actuators or smart sensors that communicate necessary data.
An inter-domain could comprise electric motors, pumps, on-
board chargers, x-by-wire for example. By using a DCA, each
domain controller could use the same hardware, operating
system, and software with just different software application
layers. This would be extremely beneficial in terms of the
costs of the manufacturers. The DCA has been a preferred
choice for manufacturer’s in today’s volume production and
premium vehicles but not in low price vehicles [14], [44].

As in the DCA, the ZCA must have the same requirements
in terms of fail-safe, secure, upgradeable (software and hard-
ware), connected, and self-aware/learning [47]. In the ZCA,
a more centralized approach is being taken with the same
goal of the DCA to minimize the ECU count in vehicles.
Sensors and actuators communicate individually through their
own dedicated communication bus to a very powerful cen-
tralized supervisory controller taking the decisions for each
actuator/sensor function [48]. Furthermore, this architecture
enables connectivity to external servers along with cloud com-
puting and control of vehicles. This large step is complicated

FIGURE 3. Migration of E/E architecture adoptions for new centralized
cloud computing.

FIGURE 4. A classification of iEMSs into three categories: 1) Data- driven
2) Principle-based and 3) Composite methods.

right now but a gradual step to that mindset is through the
adoption of the ZCA by incorporating the DCA. Gradual
migration of ECU functionalities must be performed to adapt
to the infrastructure [49]. This gradual migration is shown in
Fig. 3.

III. NOVEL CATEGORIZATION OF INTELLIGENT EMSS
Bestowed with the ongoing researches since the last couple of
decades, competencies of EMS for an electrified powertrain
have grown significantly. They seek to obtain methods with
low computational load and compatible with a real-world
situation along with optimal performance. There are rela-
tively few studies describing the requirements of an iEMS and
providing a categorization. Authors in [50] have highlighted
real-time EMSs with an emphasis on the optimality of the
control strategy. In this study, different approaches that can be
integrated into EMSs are examined to enable energy manage-
ment systems for real-time implementation. Authors in [51]
have categorized the existing EMSs by considering data-based
approaches such as machine learning-based EMSs. Overall,
these aforementioned review articles indicate the need for a
separate study that will enumerate the requirements of an
iEMS. This review article intends to provide a comprehen-
sive categorization of the existing iEMSs followed by a brief
list of criteria, which should be satisfied by an EMS before
being called an iEMS. It’s noteworthy to mention that it is
not intended here to furnish a comparison between ordinary
EMSs and iEMSs but to rearrange the existing EMSs as per
the following criteria.

A. REQUIREMENTS OF INTELLIGENT EMSS
A number of criteria are considered when an EMS features
an intelligent controller. Several classical EMSs are excluded
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from being intelligent by introducing these eligibility criteria.
For instance, dynamic programming (DP), which is a well-
known global optimal approach, can not be called an iEMS
since it does not satisfy the real-time capability requirement.
Based on the authors knowledge and experience, the require-
ments for an iEMS are listed below:

1) The iEMS controller should be real-time imple-
mentable.

2) The iEMS controller can learn from its past external
environment scenarios during real-world deployment.

3) The iEMS controller has the ability to analyze quantita-
tive and qualitative data.

4) The iEMS controller is adaptive to new environmental
scenarios or conditions for what the EMS controller has
not been modeled within the simulation stage.

5) The iEMS controller adapted solution needs to con-
verge. Ideally, this is for any EMS controller. No con-
troller will be deployed if it is not converged to the
assumptions of the designer.

6) The iEMS controller should be able to predict the future.
This requirement is considered a possible soft require-
ment. As an example, model predictive control (MPC)
approach has the ability to predict the future over the
prediction horizon.

B. PRINCIPLE-BASED INTELLIGENT EMSS
There are two categories for the principle-based iEMSs which
are rule-based and optimization-based algorithms. Rule-based
approaches are frequently used in commercial vehicles such
as the Toyota Prius and the Honda Insight [8]. Optimization-
based methods include global and instantaneous optimization
algorithms, that are employed for an EMS with the goal of
improving fuel economy in most cases.

1) RULE-BASED
Rule-based methods are defined by a set of rules extracted
from engineers’ experience and knowledge. Besides, results
are achieved by global optimization algorithms, that can be
used to extract optimal rules for the specific driving cycle [52].
Rule-based methods offer several attractive features, which
include simplicity, real-time capability, and easy implemen-
tation. Rule-based methods can be categorized into deter-
ministic and fuzzy-based. Thermostat strategy [27], power
follower [53], modified power follower [54], and state ma-
chine [55] are methods used for deterministic rule-based. Low
efficiency regarding the high number of on and off power
sources, and ignoring drivers power demand in defining rules
are the main weaknesses of thermostat strategy [27]. Power
follower provides a solution for drawbacks of thermostat strat-
egy by considering engine as the main power source in the
vehicle along with the battery state of charge (SOC) and
driver’s power demand as constraints [53]. The power fol-
lower method fails to consider fuel emissions and consump-
tion; therefore, a modified power follower is proposed in [56].

Charge depleting-charge sustaining (CDCS) and blended
strategy are two main deterministic rule-based methods that
are used for a plug-in-hybrid electric vehicle (PHEV). In con-
trast to HEVs, PHEVs benefit from high capacity batteries.
Therefore, the battery is in the charge depleting (CD) mode
during most of the trip time. Rule-based methods that are
defined for HEVs can be used for charge sustaining (CS)
mode to avoid the battery depletion. In the CDCS strategy,
the vehicle goes in electric mode until the battery reaches the
specified SOC value (CD mode), and then the control strategy
tries to keep SOC at this level (CS mode) until the end of the
trip [57]. In a blended approach, the control strategy seeks to
reduce the battery discharge rate by assisting the engine in CD
mode.

Fuzzy rule-based is suitable for EMS of HEVs regard-
ing the inherent feature of fuzzy logic, which allows a de-
gree of uncertainty to inputs. One of the main positive as-
pects of fuzzy rule-based approaches is their robustness to
input variations. Fuzzy based methods are divided into three
main categories; conventional, adaptive, and predictive fuzzy
EMSs [58]. Adaptive fuzzy tries to consider driving envi-
ronment factors and make the method more robust to the
environment. Predictive fuzzy, by employing driving history,
can predict the future state and then decide to split the power.
Reference [59] implements a predictive fuzzy-based method
that benefits from a global positioning system (GPS) to inform
of future traffic flow.

Despite the advantages that rule-based methods offer for an
EMS, it does not directly consider fuel consumption or emis-
sion, as well as, it is not robust to imprecise measurements
and component variations. Besides, they are based on engi-
neers’ expertise, and there is not any specific methodology for
extracting rules. On the other hand, fuzzy rule-based methods
fail to guarantee the optimal power split in an EMS. Also,
definition for a set of fuzzy rules can be time-consuming and
might not be ideal for real-world driving cycles.

2) OPTIMIZATION-BASED
Most of the review papers divide optimization-based meth-
ods to global optimization and real-time approaches. Global
optimization methods can not be considered as iEMSs. Since
global methods require the entire driving cycle information
to minimize the cost function, they cannot be implemented
in real-time. DP is a numerical backward global-optimization
method based on Bellman’s principle of optimality [60]. DP
is computationally intensive and depends on the complete
knowledge of the driving cycle. To evaluate iEMSs, DP results
are mostly considered as a benchmark.

Real-time methods convert the global optimization problem
to an instantaneous optimization. These methods minimize
the cost function in the current state of vehicle performance
instead of considering the entire trip. Equivalent consumption
minimization strategy (ECMS) and MPC are the most popular
methods which belong to this category. A brief introduction
for each method is provided below:
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FIGURE 5. The MPC control algorithm.

ECMS: ECMS is established to facilitate the real-time im-
plementation of EMSs [61]. This method considers the objec-
tive function as a summation of engine fuel consumption and
battery equivalent fuel consumption. The additional term ex-
tends the ability of ECMS to consider the energy consumption
of a powertrain rather than only fuel consumption of an ICE.
Equivalence factor (EF) is the key issue in the performance
of ECMS, which scales electric energy to fuel consumption.
EF optimal value depends on the driving cycle. According
to [62], inappropriate EF selection can lead to battery deple-
tion or overcharging. Several methods are established to tune
the EF real-time during vehicle operation. Adaptive ECMS
(A-ECMS) has been developed to mitigate the EF dependency
on driving cycle information. Authors in [62] have classified
the A-ECMS to three methods that utilize different tools to
adjust an EF value online. The tools are:
� Future driving cycle information predictor [63], [64]
� Pattern recognition algorithm [65]
� Battery SOC feedback [66]
In fact, the last method which is battery SOC feedback can

be integrated into other A-ECMSs [66]. Even though ECMS is
a sensitive approach to driving cycle information, a significant
benefit of this approach is real-time implementation. Adaptive
methods can be further investigated to provide an approach
with results close to global optimal solutions by DP.

MPC: MPC strategy has several attractive features which
make MPC effective for nonlinear, and multiple-input and
multiple-outputs (MIMO) systems with constraints such as
electrified vehicle powertrain [67]. Fig. 5 shows MPC algo-
rithm steps. In contrast to DP where the optimization con-
ducts over the whole driving cycle, in MPC, an optimization
algorithm is implemented in a short time horizon in each

time step that enables MPC for real-time implementation.
The optimization part is employed to minimize the error be-
tween the predicted and the desired plant output along with
fuel minimization or battery SOC sustaining goals. DP [68],
quadratic programming (QP) [69], particle swarm optimiza-
tion (PSO) [70], and other optimization algorithms can be
employed for a short time optimization step. Once the control
variables are calculated, the first control input applies to the
electrified powertrain, and the prediction horizon shifts to
the next time step. This process is repeated until the end of
the trip. MPC requires high accuracy prediction information,
which makes it computationally expensive for real-world im-
plementation. Artificial intelligence and markov chain (MC)
predictors are widely implemented for the MPC prediction
part that are explained in detail in Section III-C2 and III-D1.

3) METAHEURISTIC-BASED
In mathematics, especially in optimization, metaheuristics are
a category of decision making procedures, which can reach
to close neighborhood of the global optimal solution (GOS)
with far less computation efforts and with a limited amount
of indispensable information. Metaheuristics may not yield
exact GOS, but the proximity of the solution yielded by
meta-heuristics to GOS is praiseworthy, especially with lim-
ited computational effort and information. That is why meta-
heuristics have attracted major attention from application-
oriented research community and industry because they can
afford to compromise little deviation from GOS at the expense
of convenience in real-time implementation. Metaheuristics
reach the near-GOS with a perfect balance between explo-
ration and exploitation [71], [72]. Metaheuristics reduce the
computational effort of searching near-GOS by avoiding a
significant portion of the futile control space. Authors in [71]
have made a notable contribution by presenting a comprehen-
sive review of the application of different metaheuristics in
solving multitudinous problems associated with PHEV. Such
problems include the articulation of EMS, optimum compo-
nent sizing, smart charging strategies, etc.

There are a lot of metaheuristics available such as PSO,
a few varieties of PSO, genetic algorithm (GA), simulated
annealing (SA), ant colony optimization (ACO), etc. PSO
is a stochastic online optimization technique that employs
different particles to randomly search for the suboptimal or
optimal solution within the whole solution space [73], [74].
PSO reduces the computational time by not sweeping through
all possible solutions, but randomly culminating in the subop-
timal or optimal solution [75]. Quite a handful of literature
implemented PSO offline for finding the optimal threshold
parameters of a rule-based control which can be implemented
in real-time [76]–[78]. Authors in [76] have optimized thresh-
old parameters of a simple CDCS control strategy with PSO.
Whereas, authors in [78] have articulated a rule-based EMS
strategy whose threshold parameters are updated periodically
with the help of PSO. The periodic parameters update pro-
cess is triggered by a fuzzy drive cycle recognition system
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to make the rule-based control apposite for different types of
drive cycles. Apparently, it seems that PSO might not be suit-
able for real-time implementation, but a few literatures [75],
[79]–[81] made the online implementation feasible with re-
duced computational time. As far as the online performance
is concerned, PSO can outperform not only the genetic algo-
rithm, but other evolutionary algorithms [81]. Authors in [81]
have presented an online and real-time PSO implementation
for optimizing two control variables such as power-split ratio
and gear number to assist a rule-based online control for the
EMS. Although the PSO was not solely responsible for the
EMS in this study, the implementation of PSO was at every
time-step of online simulation. Authors in [80] have impro-
vised the search method of the PSO to accelerate the search
process and consequently managed to obtain better perfor-
mance with less computational effort. Compared to traditional
PSO, improved PSO (IPSO) accounts for the position of the
worst particle while updating the velocities of every parti-
cle at each iteration. Authors in [81] implemented dynamic
PSO (DPSO) and proved its superiority over traditional PSO.
Real-time hardware-in-the-loop (HIL) simulation results of
an optimal torque distribution strategy for an EV with three
electric motors corroborate that instantaneous optimization
through PSO can be achieved decent proximity with the global
optimal result obtained by DP [79].

GA is generally not implemented online due to its com-
putational burden and incumbency of prior knowledge of the
drive cycle. However, GA can be appointed as a local opti-
mizer using a sliding backward time window, and the local
optimization can be executed in real-time [82]. Authors have
proposed a GA-based online optimization for the EMS of an
electric vehicle (EV) with a HESS.

Several researchers have marked SA as a remarkable meta-
heuristic to be appointed in the EMS for electrified power-
trains in recent years. Although none of the applications were
iEMS for HEVs, SA has been employed as a real-time im-
plementable local optimizer, to optimally distribute the power
between battery and UC for an EV [83], [84]. SA culminates
to its best performance when the search space is restricted
by certain rules [83], [84]. Similar behavior is also exhibited
by PSO in real-time HIL simulation, when its search space is
dynamically constricted by a set of rules [85]. In [84], SA has
been appointed as a local optimizer, finding instantaneous op-
timal power-sharing between UC and the battery in real-time
at an interval of 10 milliseconds. In a nutshell, metaheuristics
carry great potential in the form of real-time implementation
in elevating the iEMSs to a new level.

C. DATA-DRIVEN INTELLIGENT EMSS
The system dynamics of the powertrain are incumbent on both
analytical and numerical methods. Data-driven approaches
can be used to replace any kind of incumbency of system
dynamics, such as the dynamics of a physical system, pre-
diction system, and classification method. Whenever there is
a difficulty in mathematical modeling of an implicit system
dynamics, data-driven approaches assist as a savior to model

FIGURE 6. A simple concept of nonlinear function approximation.

it. Data-driven approaches primarily focus on mimicking the
system dynamics through the mapping of input to output rela-
tionship.

1) ARTIFICIAL NEURAL NETWORK-BASED
Multi-layer perceptron, widely known as artificial neural net-
work (ANN), is the most abundantly used nonlinear function
approximator in various fields of data science. ANNs are
appropriate for deciphering the dubious input-output system
dynamics, which is highly nonlinear and difficult to model
with an analytical approach.

Bestowed with effective learning algorithms, ANNs are
highly competent in deciphering the inherent input-output
characteristics of any physical system if sufficient data are
available. Training methods can be broadly categorized into
supervised learning and unsupervised learning.

The architecture of a generalized nonlinear approximator
can be expressed with the following relation as given in [86]:

Q̃(s;ψ ) = g(ψ (λ)�d (s)) (1)

where g(.) is a nonlinear function representing the architecture
of the approximator, �d (s) is the vector of feature or basis
functions of the states, and ψ is the parameter vector as shown
in Fig. 6.

For EMS application, ANN can represent the iEMS con-
troller, velocity predictor [87], model of vehicle [88], and
driving trends predictor. Quality of predictive EMSs highly
depends on the accuracy of the predicted variables. Authors
in [89] have implemented three ANNs for predicting road
types, driving trends, battery power, and engine speed. The
performance of iEMS with the implementation of ANNs is
directly governed by the quality of the training data-set. For
the ANN-based iEMSs, DP is generally chosen as the source
of the training data since DP can yield exact global optimal re-
sults in comparison with other global optimization techniques
such as stochastic dynamic programming (SDP), GA, PSO,
and evolutionary algorithm (EA) [90].

Both performance and computation time of DP depend on
the discretization of state and control variables along with the
dimension of state and control space. The computational time
shoots up exponentially as the discretization becomes finer.

Needless to say, that curse of dimensionality will be in-
evitable if either dimension or discretization of state or control
variables increases beyond a certain limit, as depicted by Ta-
ble 1. τice, ωice, and gear mode are typical control variables.
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TABLE 1. Proof of “curse of dimensionality′′ as the Number of Discrete
Variables Increases

Consequently, gathering data for ANNs in an iEMS is a
time-intensive process. In order to expedite the process of data
collection, researchers are focusing on finding new strategies
yielding near-optimal offline control with far less computa-
tional time [91].

2) MARKOV DECISION PROBLEM-BASED
It is important to take a look at the literature for finding
different prediction methods adopted and what aspects of
the driving scenario are predicted by those methods. Markov
chain model (MCM) is a popular method to predict different
aspects of future driving scenario. According to MCM, the
probability of getting a certain state in the next time-step only
depends on the state of the current time-step. This probabil-
ity is numerically referred to as transition probability matrix
(TPM) in probability terminology. Authors in [92] have pre-
sented an iEMS framework, which is comprised of an MCM
predicting road grade, speed of vehicle, vehicle stop-start or
acceleration-deceleration, and SDP acting as an optimization
tool over prediction horizon, for a parallel HEV.

TPM is the major characteristic element of overall markov
decision problem (MDP) and hence, governs the overall exe-
cution process of MDP. If enough historical data of the driving
scenario available, a static TPM can be constructed and can
be used for predicting N-step values of future driving sce-
narios in real-time applications [92], [93]. However, enough
historical data is often not available and an updating TPM
can be articulated in such a case [94]. The N-step MDP can
be solved through SDP in offline to obtain optimal control
over N-step future horizon if the static TPM is available. But,
it is convenient to use reinforcement learning (RL) [95] or
adaptive dynamic programming [94] to solve the MDP engen-
dered from an updating TPM. QP has also become a lucrative
option as an optimization strategy for the MDP, associated
with online updating TPM since QP’s feasibility in real-time
implementation [96].

3) REINFORCEMENT LEARNING-BASED
RL is one of the machine learning methods that has gained
a lot of attention nowadays and is applied in many different
fields such as robotic control, traffic management, space ex-
ploration rovers, and autonomous vehicles. RL-based agents
are especially tailored for sequential decision making, where
the long-term return is more prioritized rather than short-term
rewards. The agent and environment are the two cardinal parts

of RL. The agent’s capability of yielding better control deci-
sions improves through reinforcement learning as the agent
accumulates more experience [97].

In RL, the agent interacts with the environment which can
be mathematically modeled through the states (St ) ∈ S , ac-
tions (At ) ∈ A, and reward function (rt ) ∈ R. The sequen-
tial decision making along with the sequence of environment
states is widely known as MDP. The noteworthy characteristic
of MDP is the fact that the agent does not need to look through
the history of the environment’s states in order to make a deci-
sion at the present time-step. The underlying concept behind
such a fact is the property of state variables that probability
of landing upon St+1 depends only on the St and not on any
other states in the past. The dynamics of MDP is defined by
the probability of moving to state S′ at time t + 1 if action
(At ) is applied on St at time t as given in [98]:

PAt
St S′ = Pr(S′|St ,At ) (2)

This probability of transitioning from the current state to the
next state can be stored for all time-steps in a matrix format,
known as TPM. Technically, the RL agent should find an op-
timal policy function (π (S)) which dictates the rule of finding
an optimal action at a given state. The RL agent wields two
types of goodness functions, i.e., state value functions (V (St )),
and action value functions (Q(St ,At )) for finding the optimal
policy function.
PAt

St S′ is the cardinal characteristics governing the model of
any given MDP. If the model of a given MDP is available to
the RL agent for the entire MDP, DP-based algorithms, which
are also known as model-based algorithms, can be employed
to find the global optimal policy for the MDP. However, in
real-world situations, where prior information of the entire
MDP model is not available to the RL agent, model-free algo-
rithms such as temporal difference (TD) learning algorithms
are most appropriate for finding near-optimal policy [97].

Authors in [99] have implemented an iEMS based on RL
algorithm and the TPM of states, which are driver power
demand, vehicle speed, and battery SOC, is calculated offline
by different driving cycles for the proposed strategy. On the
other hand, authors in [100] have proposed an iEMS which
updates the TPM of driver’s power demand in real-time to find
the optimal policy for the RL agent. As far as the real-time
implementation is concerned, only a few papers have pre-
sented the real-time implementation of RL in their literature.
However, there are a handful of papers that have described the
prospect of real-time implementation. The proposed RL algo-
rithm for a hybrid electric tracked vehicle (HETV) in [101] is
implemented through HIL test and it is compared with DP to
validate its optimality and adaptability.

Similar to DP, as mentioned in III-C1, implementation of
RL-based algorithms can be impeded with the curse of dimen-
sionality if they are implemented through the tabular method.
Even if we use a coarse discretization, the number of states
and of feasible actions can be as high as for instance 4000 and
2500, respectively [102].
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FIGURE 7. DRL architecture. Left box in both (a) and (b) shows the
environment comprising vehicle and drive cycle. The right hand side box in
(a) represents a Q-table based RL agent whereas, it is replaced with a
deep-Q-network in DRL as shown in (b).

A balance between exploration and exploitation is another
important factor governing subtle characteristics of the RL
algorithm. A higher value of the exploration-exploitation ratio
is highly recommended at the beginning of the agent training
to encourage exploration throughout the entire action space.
Authors in [103] have given detailed analysis of selecting
random exploration rate value between 1% to 20% and its
impact on vehicle performance and fuel consumption for an
HEV.

Lately, the application of deep reinforcement learning
(DRL) for implementing EMSs has been soaring from last
five years [104]. DRL employs deep neural network (DNN)
in order to express state value function V (St ), action value
function Q(St ,At ), and policy function π (S) with function
approximation instead of tabular approach and hence, eradi-
cates the hindrances posed by large number of quantized state
and action variables. Authors in [105] have employed a DRL-
based approach for Q-learning where the agent leverages both
offline and online learning for better performance. Perfor-
mance of the proposed iEMS is compared to that of rule-based
EMS and it is shown that the iEMS leads to a reduction of
fuel consumption by 10.09% under the urban dynamometer
driving schedule (UDDS). Fig. 7 depicts an overview of DRL.

D. COMPOSITE INTELLIGENT EMSS
Composite iEMS is a growing topic which has been getting
attention recently. Composite methods combine intelligent
control methods and global optimization tools into principle-
based methods to mitigate their imperfections.

1) ARTIFICIAL NEURAL-NETWORK BASED MPC
The predicted output in an MPC algorithm should follow
the reference trajectory, and the MPC performance highly
depends on the prediction accuracy. The prediction task can be
done in different ways. Authors in [106] have classified MPC
approaches based on the method of prediction to frozen-time,
prescient, artificial intelligence, exponential varying, telem-
atic, and stochastic MPC.

There are several publications on ANN- based predictor for
MPC-based iEMS [107]–[109]. A radial basis function (RBF)
ANN velocity predictor is employed in [108], which is trained
with four different driving cycles to cover both highway and
urban city driving conditions. The simulation results show that
the predictive EMS consumes 659.1 g fuel over the same trip
as DP consumes 628.5 g. An MPC based iEMSs is proposed
to increase the battery life of an EV in [109]. ANN-based
short term velocity predictor is applied in combination with
the MPC algorithm that leads to a 17.8% improvement in
battery life in comparison to the three different methods,
which includes a rule-based, instantaneous approach, and an
SC voltage based strategy.

2) OPTIMIZED RULE-BASED
Rule-based methods can be implemented in real-time and they
are easy to understand. However, they do not offer optimal
performances in EMSs. Rule-based EMS includes different
operation mode, which is switched by threshold parameters
of battery SOC, vehicle speed, and torque capability of en-
ergy sources. Section III-B3 provides some studies which
implement PSO in combination with rule-based methods. In
addition, there are more studies that have attempted to im-
plement an optimization algorithm for optimizing threshold
parameters [110]–[112]. Authors in [113] have employed GA
optimization to optimize different threshold parameters such
as the maximum and minimum value of SOC and electric
launch speed of a rule-based EMS in a parallel HEV.

The integration of optimization methods is not limited to
deterministic rule-based approaches. Authors in [114] have
optimized the rule set and membership functions of a fuzzy
logic method by the PSO algorithm to yield a better fuel econ-
omy. Authors in [114] have also compared the performance
of the fuzzy optimized method with that of a deterministic
rule-based approach. The optimized method with the PSO
algorithm leads to 10.26% reduction in fuel consumption.

3) COMBINED A-ECMS
A-ECMS seeks to update EF to ensure better fuel economy
and charge sustenance of the battery in real-world driving.
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FIGURE 8. One of the promising concepts of the future trend on a periodic
update of EMS control strategy. A set of vehicles with same electrified
powertrain will acquire driving data for a predefined period (step#1), the
acquired data will be uploaded to cloud-computing servers while the
vehicle is externally recharged (step#2), new EMS control will be
generated at the server based on the recent driving pattern of the vehicles
(step#3). The availability of the most updated EMS control will be notified
to each of those vehicles through both smartphone and vehicle
infotainment system (step#4).

Authors in [64] have suggested implementing a velocity pre-
dictor to ensure the adaptation of EF. Authors in [63] have
conducted an A-ECMS which updates EF periodically by
means of an ANN short term velocity predictor. The results
show 3% improvement in comparison to a traditional ECMS.
A convolutional neural network (CNN) is employed in [115]
to address velocity prediction by considering vehicle to vehi-
cle (V2V) and vehicle to infrastructure (V2I) communication
technology. Three different scenarios are considered for city
traffic modeling. A-ECMS block tunes the EF by accessing
to predicted velocity and battery SOC feedback. Predicted
A-ECMS proves 0.2% to 5% fuel economy improvement for
three different scenarios. Driving pattern recognition algo-
rithms such as fuzzy and machine learning methods can be
used to improve an A-ECMS performance. Authors in [116]
have used k nearest neighbor (KNN) to classify different
driving styles. A driving simulator is used for gathering the
driver’s driving style in order to feed the KNN module. The
results confirmed an 8.28% average improvement for different
driving styles over traditional ECMS.

IV. FUTURE TRENDS OF INTELLIGENT EMSS
So far, studies on iEMSs of electrified powertrain vehicles
have been carried out by many different methods. A consid-
erable amount of work will need to be done to validate the
reliability of these methods. A systematic blueprint of experi-
mental validation should be developed for each of the iEMSs,
reviewed here, to corroborate their reliability and feasibility
in actual deployment. This review provides the following in-
sights for future research in the field of iEMS:

1) Additional work is required to ameliorate the existing
demerits of implemented RL algorithms. The agent should be
able to take more dimensions of input state variables in or-
der to discriminate multiple real-world driving scenarios with
subtle differences. Q-table based agents become incompetent
to handle more dimensions of the state variable.

Consequently, DNN-based agents are becoming an enticing
option to researchers. Various dual ANN-based agent struc-
tures such as policy gradient (PG), deep deterministic policy
gradient (DDPG), advanced asynchronous actor-critic (A3C)
should be explored for faster convergence. Such advanced
agent structures should be validated in online or real-time
emulation along with their offline design and simulation. It
would be an exciting and obviously challenging task to design
and develop any of the RL agents, reviewed here, for a cou-
ple of real-world driving missions and, test its performance
in another unfamiliar driving mission. There is ample room
for further progress in DRL to make the results of iEMS
controller adaptive and much closer to the global optimal
solution.

2) Most of the work in the field of EMS is limited to
the simulation level. It is needed to go beyond papers and
implement the suggested methods experimentally to see the
real-world challenges.

3) Multi-objective EMS development should get more fo-
cus in future investigations because only the minimization of
fuel consumption and tailpipe emission will certainly operate
ICE around its best operating points but it might overexploit
electric motors, battery and other cardinal components apart
from ICE. Objectives such as minimization of battery health
degradation, drivability optimization, electric motor longevity
should be included in the overall cost structure.

4) With the rapid advancement of intelligent transporta-
tion systems (ITS), data-driven iEMS are escalating, becom-
ing lucrative options to explore. Accessibility to traffic data,
geographic road map, and road geometry makes the pre-
diction based iEMSs more reliable and adaptive. Therefore,
the future trend would be developing advanced data-driven
iEMSs.

5) Cloud-based EMS is a significant progression that needs
to be more investigated. An example of these kinds of EMSs
can be the determination of the best possible vehicle trip
information with the objective of minimum fuel consumption
through a cloud-interaction system. In fact, cloud computing
would generate the optimal route/velocity trajectory and the
results would go back to the driver through a visual inter-
face [117].
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TABLE 2. Summary of Most Popular Controller Chips on the Market

V. ENABLING TECHNOLOGIES
Intelligent methods introduced in Section III have been widely
researched due to the advancements in technologies. With the
cost and size of high computational platforms decreasing and
the rise of high bandwidth communication increasing due to
the availability of cheap computation platforms, the deploy-
ment of intelligent methods into xEVs is becoming more and
more attractive. The aspect of hardware and software need to
be mixed and both need to have a fail-safe requirement [118].
The primary enabler of technologies for the deployment of in-
telligent methods in commercial vehicles includes embedded
controller chips, communication protocols, and connectivity
functions, which are summarized in this section.

A. CONTROLLER CHIPS
The ECUs are used in conventional vehicle architectures
utilize embedded 8, 16 and 32-bit processors with a clock
frequency of 40 MHz. A 2 MB code is flashed and en-
crypted onto the ECU memory, usually a non-volatile memory
(NVM), by the manufacturer [119]. Compared to personalized
computers, these ECUs have very little computational power.
This is the reason why there are a limited number of vehicle
operations that can be contained inside an ECU. The number
of ECUs have been increasing in vehicles due to the utilization
of the same type of controller chip in the distributed archi-
tecture. Some specific ECUs have been implemented using
a digital signal processor (DSP) for actuating or sensing a
vehicle component signal.

By utilizing the technological advances in controller chips,
many functions can be combined into a single but pow-
erful ECU which is the trend of the DCA described in
Section II-B. With the DCA and the ability of using intel-
ligent algorithms, much more powerful ECUs need to be
implemented as the domain controller such that a vehicle
fail-safe operation is achieved. Furthermore, instead of hav-
ing complex ECUs actuating or sensing signals from vehi-
cle components, smart actuators/sensors will be used that
can comprise of a simple but fast ECU. With these require-
ments and the writers’ experience, the domain controllers

and smart actuators/sensors ECU could be implemented us-
ing the following technologies that have garnered much at-
tention in aerospace, data centers or servers, and machine
learning or artificial intelligence industries [43]. Multi-core
microprocessor unit (MPU), field programmable gate array
(FPGA), and application specific integrated circuit (ASIC)
can be used as domain controllers. Smart actuators/sensors
include microcontroller unit (MCU), graphical processing
unit (GPU), system-on-chip (SoC), ASIC, and digital signal
processor (DSP).

A summary of the ECU main controller chips mentioned in
this section can be found in Table 2. As described previously,
MCUs, MPUs and mainly DSPs are used in today’s vehicles.
Some exceptions do include using SoCs for local interconnect
network (LIN) communication-based slave nodes or ASICs
for specific types of communication protocols that would al-
leviate the burden of computational resources on ECUs [118].
To move to a future centralized computational platform that
includes all domain functionalities or even all vehicle func-
tionality, safety will be paramount to the integration of these
technologies. The ISO26262-part 5 has been an integral part
of the development and introduction of complex electronic
hardware into these new E/E architectures. The reason for this
is these new electronics must perform safety critical functions
such as steering, accelerating and braking so if a component
fails, it has to do so in a fail-safe manner. Functional safety
must remain a top priority while introducing these new tech-
nologies.

B. IN-VEHICLE COMMUNICATION PROTOCOLS
The requirement of increased bandwidth has put in-vehicle
communication protocols at the front of the new E/E archi-
tecture design to ensure reliability and safety are taken into
consideration when adding new sensors and combining ECU
functions together. This is due to the increasing number of
electrical components that need to communicate with each
other to ensure appropriate functionality [40]. Furthermore,
the complication of including legacy devices and code has
put challenges to the introduction of new E/E architectures
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TABLE 3. Summary of Possible Inter-Domain and Gateway Communication Protocols for Domain Control Oriented E/E Architecture

since many communication protocols are currently included
in conventional distributed architectures.

Up until recent years, the main communication protocol
inside of vehicles has been the controller area network (CAN)
developed by Robert Bosch GmbH in 1986 [120]. The CAN
protocol has been attractive for manufacturers due to its ability
to be flexible, low cost, and scalability. Newer CAN protocols,
such as the CAN flexible data rate (CAN-FD), have tried to
increase the bandwidth from 1 Mb/s all the way up to 10 Mb/s
for some instances [43].

FlexRay has been introduced by the consortium of BMW,
Daimler Chrysler, Philips Semiconductors, Motorola and
Bosch [120]. It is a network communication that has been
introduced to enable the safety critical “X-By-wire” applica-
tions such as steering, throttle, braking and many more [40].
Flexray offers time-triggered communications, synchronized
global time-frame and a real-time data transmission by using
a time division multiple access (TDMA) technique which is a
requirement for safety critical functions such as “X-By-wire”
technologies where no mechanical link is present in case of
failure [121].

Other communication protocols include low voltage dif-
ferential signal (LVDS), LIN and media oriented systems
transport (MOST). LVDS communication has been widely
used in many applications such as industrial, aerospace, tele-
com and as well in Automotive. LVDS comprises of a serial
communication working in complimentary pairs to ensure the
common mode noise is removed from the lines. This makes
this communication robust but complex to implement as the
length of the wires are the bottle neck of this application due
to having a minimum of two wires for differential signals. LIN
was introduced in 1998 to use in applications to supplement
CAN protocol where cost is critical and the bandwidth is
low [122]. It consists of a single wire and a low cost solution
for simple actuation and sensing [120]. LIN is typically used
for vehicle door, seat and temperature control devices. MOST
has been introduced by MOST cooperation in 1998 [120].
MOST works well with any type of media such as video,
audio, radio and more. The communication medium has been
through optical fibers and can support up to 64 nodes in a ring
topology [121].

Automotive Ethernet (AE) is a promising solution for solv-
ing the bandwidth problems related to data and being able

to perform sensor fusion easily. AE has been a promising
solution due to its similarity to normal Ethernet that has been
used as the local area network (LAN) for most computers and
day-to-day lives [43]. The wide acceptance of the Ethernet
protocol has been the main driver in using AE in transporta-
tion vehicles [43]. In terms of fail-safe criteria, the Ethernet
protocol includes many standards up-to-date that ensure the
safe communication between Ethernet nodes. One disadvan-
tage of using AE is that a switch node Ethernet device would
need to be used. With the advancements in controller tech-
nologies described in Section V-A, this would not be a prob-
lem as many functions can be integrated into one ECU along
with an AE input decoder. A summary of the communication
protocols mentioned can be found in Table 3.

C. CONNECTIVITY
The concept and contents of vehicle connectivity have sig-
nificantly expanded and have enabled a whole new world for
the electric car to be designed in. Some of the key applied
technologies involved in the connectivity impact of the E/E
architecture are listed below [123]:
� WiFi
� Cellular Network
� Global Navigation Satellite System (GNSS)
� V2X (Vehicle-to-Vehicle, Vehicle-to-Grid, etc.)
� Dedicated Short-Range Communications (DSRC)
� Over-The-Air (OTA) updates
With these types of technologies, external communication

of the vehicle can be manifested much easier than before.
This brings in added safety with the added “nodes” that can
communicate with the vehicle. Such nodes can be smart traffic
lights, buildings, houses, cellphones, power generation units
that can communicate with each other to ensure all infor-
mation is passed between each vehicle [43]. This will add
additional constraints to the vehicle EMS such that they can
become more efficient in real-life and can adapt to its environ-
ment stimulus.

VI. CONCLUSION
The present literature has aimed to introduce a novel catego-
rization followed by a detailed discussion of iEMSs. The fea-
tures which enable an EMS to be intelligent are listed, which
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is rarely seen in other review papers. Detailed explanations,
advantages, disadvantages, and future research directions are
presented for each method. The analysis of RL-based, ANNs-
based, and markov decision problem-based EMSs are under-
taken here, which leads to more profound insight into iEMSs.
Composite iEMSs are studied as a new category, and they
can be explored more in future research. More broadly, the
review establishes an introduction to enabling technologies of
implementing iEMSs.
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