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ABSTRACT Intelligent vehicular networks (IVNs) have drawn substantial interests in recent years due to
its great potential in enabling diverse applications in the fifth-generation (5G) and beyond communication
systems. In IVNs, vehicles are equipped with multi-functional advanced wireless sensors which are capable
to collect real-time and practical environmental information. In this paper, we first provide an overview of the
existing researches on IVNs for beyond 5G (B5G) communications, while emphasizing the requirements and
technical approaches. To fully unleash the potential of vehicular intelligence, smart vehicles should acquire
the values of some important variables of interest, e.g. traffic volume in the network. Thus, we introduce
a generalized framework which formulates the acquisition of desired variables as a joint estimation and
detection problem. Our framework adopts factor graph to solve problems in IVNs. This is done by collecting
the observations from vehicles at road side units (RSUs) for inferring such variables and sending them
back to vehicles. Nevertheless, this centralized framework critically depends on the functional reliability
of the RSUs. To this end, we propose a distributed estimation framework to improve the scalability and
robustness, in which vehicles can communicate wirelessly with other vehicles within the communication
range. Then, we introduce different consensus operations as a realization of this proposed framework and
briefly compare them in terms of implementation feasibility and convergence behavior. Three approximation
schemes are further considered for reducing the required communication signaling overhead. To shed light
on the proposed distributed estimation framework, we focus on two cases, i.e., target tracking and network
decoding in IVNs. Through simulations, we show that the distributed algorithms can efficiently track the
target and decode the broadcasted messages, while achieving the same performance of the centralized
schemes. Finally, important conclusions are drawn and some challenges and open problems in this research
area are outlined.

INDEX TERMS Beyond 5G, intelligent vehicular networks, distributed estimation, factor graph, consensus,
target tracking, network decoding.

I. INTRODUCTION
After years of research and development, the fifth-generation
(5G) wireless communication systems have finally been glob-
ally standardized and commercialized. One of the three
cores of 5G application scenarios is massive machine-type
communications (mMTC) for the internet-of-things (IoT)
services [1], [2]. In particular, vehicle-to-vehicle (V2V)
communications is one of the most challenging tasks in

mMTC scenarios which require massive connectivity and re-
liable transmissions in a high-mobility environment [3]. Fur-
thermore, car industry has significantly developed over the last
decades and will continue to do so in the near future. It is
expected that in beyond 5G (B5G) wireless communication
systems, V2V communications will play an even more impor-
tant role, as vehicle transportations will be more intertwined
with people’s daily lives. To fulfill the stringent quality of

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

190 VOLUME 1, 2020

https://orcid.org/0000-0002-2158-0046
https://orcid.org/0000-0002-9503-4865
https://orcid.org/0000-0001-8949-3144
https://orcid.org/0000-0001-6400-712X
mailto:shuangyang.li@unsw.edu.au


service (QoS) requirement in B5G, the intelligent vehicular
network (IVN) is considered as one of the prominent enablers
due to its “social” characteristics of sharing information be-
tween vehicles [4].

An IVN is a type of vehicular networks which possibly
connects various vehicles, back-end systems, and infrastruc-
ture components, such as road side units (RSUs), to provide
a variety of benefits including improved traffic management,
road-safety, and the support for partially autonomous vehicles
and infotainment services [5]. The success of IVNs relies on
the exploitation of advanced wireless sensors to acquire the
real world information such that vehicles in the IVNs can
make prompt changes and decisions accordingly by sharing
information ubiquitously over the network. In particular, the
rapid development of car industry enables the massive de-
ployment of sensors installed in vehicles, such as cameras
and radars, which facilitates smart vehicles to obtain a large
amount of information of its surroundings. The collected in-
formation is then communicated through the wireless network
with the support of additional infrastructure components, such
that complex applications, e.g., target tracking, can be made
by the vehicle network in a collectively manner.

In the era of B5G, IVNs can support advanced applications
regarding the road safety and traffic management. In specific,
those applications can be classified into three groups, namely
road safety applications, traffic management applications, and
mobile Internet applications [6]. In the following, we will
discuss these three applications and the related information
to be estimated and detected in IVNs.

Road safety applications aim to reduce the probability of
accidents in traffic, such as vehicle collisions at intersections.
Through information sharing between vehicles and RSUs, the
influence of drivers’ misbehaviors and poor road conditions
can be greatly mitigated. Such information may contain dif-
ferent important messages such as vehicle speeds, vehicle
positions, road conditions and potential hazards, etc. Based
on these messages, the IVN is capable of making appropriate
decisions to enhance the road safety by estimating and detect-
ing vehicles’ state. Some examples of road safety applications
are discussed as follows [6].
� Collision-prevention: In this use case, safety instructions

are sent by vehicles or RSUs, where collision-related
warning messages belong to an important type of in-
formation to ensure the road safety. For example, the
intersection collision warning can be sent by RSUs to
approaching vehicles to reduce the risk of potential col-
lisions; Lane change warning and overtaking vehicle
warning are a type of messages sent from vehicles to
its neighboring vehicles to prevent possible collisions
during the lane changing and overtaking; Hazardous lo-
cation notification and signal violation warning are mes-
sages sent by RSUs to vehicles to indicate poor road
conditions to alert drivers to react accordingly; All above
tasks require accurate estimation of the vehicle location,
and precise detection of the vehicle state.

� Loss-control: In this use case, warnings and instructions
regarding inevitable crashes are broadcasted to minimize
the influence of the crash. For example, pre-crash warn-
ing is a message sent by a vehicle, which is going to
experience an inevitable crash, to RSUs and neighboring
vehicles. This message may contain the predicted crash
location, which can be exploited to reduce the impact of
a crash; Collision risk warning is a message broadcasted
by RSUs towards all neighboring related vehicles in the
case where a crash happens between two or more vehi-
cles that are not able to communicate due to the crash; In
such tasks, the warning message should be detected with
high priority and reliability.

Traffic management applications help the administration of
IVNs in terms of the traffic flow and coordination from a
network perspective. Specifically, traffic management appli-
cations provide user location information and other related
information for efficient traffic control.
� Traffic control and scheduling: In this use case, con-

trol and scheduling messages are broadcasted in the
IVN. It may contain specific information such as speed
management message, traffic condition warning, and
scheduling message. For example, scheduling messages
can be sent to neighboring vehicles in order to free
a lane for emergency vehicles with high-priority, such
as ambulances and police cars. To optimize the traf-
fic control and scheduling, the estimation as well as
the prediction of the traffic volume in the IVN are
demanded.

� Cooperative navigation: In this use case, automatic navi-
gation messages can be generated based on the informa-
tion gathered from other vehicles and RSUs. This type
of application focus on enhancing the traffic efficiency
through cooperation and scheduling.

� Social driving: In this use case, neighboring vehicles
form a mobile social network, in which messages re-
garding social interactions among neighboring vehicles
are broadcasted. Furthermore, social communities can be
built among vehicles with common interests, including
finding available parking spots, or heading to the same
destinations. With the help of the mobile social network,
the vehicles in the social communities frequently share
information and cooperate with each other in order to
improve the traffic efficiency as well as enhance the road
safety. Hence, the detection of social messages is vital
for the network.

Mobile Internet applications support passengers in the ve-
hicles to have fast Internet services while on-the-go, in or-
der to enjoy the journey. This includes instant messaging,
video streaming, online gaming, and infotainment applica-
tions, etc. Specifically, these applications may either be sup-
ported by cooperative local services or global Internet ser-
vices [6], [7]. In these applications, estimation and detection
of the transmitted information with high accuracy are also
required.
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In order to support the aforementioned applications, IVNs
need to meet certain requirements for signal detection and
variable estimation based on the collected information. There-
fore, the communication capability of IVNs is highly de-
manded. In particular, IVNs require reliable transmission with
the support of a large number of individual users [8]–[10]. It
should be noted that moving vehicles in the IVNs impose great
challenges for data transmission and estimation. Firstly, robust
data transmission is required in high-Doppler environments
due to the high relative speed between vehicles. Secondly, the
channel statistics vary rapidly since the locations of vehicles
are different from time to time [11], [12]. Thirdly, establishing
stable communication links between moving vehicles for a
long time is challenging. Therefore, it is preferred to transmit
a large amount of data in a short period of time. To over-
come these challenges, recent developments of communica-
tion technologies become the key enablers. In the following,
we will briefly discuss some possible technologies for realiz-
ing B5G IVNs.

Orthogonal time frequency space (OTFS) modulation is a
recently developed technology, which has attracted substantial
attentions since it was first proposed in 2017 [13]. Different
from the conventional orthogonal frequency-division multi-
plexing (OFDM) modulation [14], [15], OTFS modulation
focuses on a two-dimensional (2D) transformation, which
efficiently converts the information symbols from the delay-
Doppler (DD) domain to the time-frequency (TF) domain.
This specific transformation not only provides a strong re-
silience against the channel imperfection due to the delay
and Doppler, but also enables each information symbol to
experience the full TF diversity [16]. Recent development of
OTFS modulation includes the reduced-complexity detection
method [17], the channel estimation algorithm [18], and pulse
shaping design [19]. Due to its better performance than the
conventional OFDM modulation in high-mobility scenarios,
which can potentially enable vehicles to have reliable and
robust communications, OTFS modulation is a promising can-
didate for IVN applications in B5G.

On the other hand, non-orthogonal multiple access
(NOMA) has been recently recognized as a promising mul-
tiple access scheme [20]–[23]. In contrast to conventional
orthogonal multiple access (OMA) schemes, NOMA allows
multiple users to share the same degrees of freedom via super-
position coding and successive interference cancelation (SIC)
decoding. Therefore, NOMA can be employed in the IVNs to
relieve the problem caused by severe access congestion and to
enable massive connectivity. Besides, NOMA allows multiple
vehicles to communicate with the infrastructure at the same
time via the limited resources, which can effectively reduce
the communication latency in the IVNs. A power-efficient
resource allocation scheme for multi-carrier NOMA systems
has been proposed in [24], where the power allocation, rate
allocation, user scheduling, and SIC decoding order were
jointly designed to minimize the total transmit power. The
performance gain of NOMA over OMA was evaluated in [25],
in which two types of NOMA’s gain were identified and their

performance trend in different communication scenarios are
revealed. For an uplink NOMA system in [20], both the chan-
nel estimation and data detection were considered and a joint
pilot and payload power allocation scheme was proposed to
maximize the minimum effective signal-to-interference-plus-
noise ratio (SINR) of each user [26]. The physical layer se-
curity for NOMA was discussed in [27], which fully exploits
the inter-user interference for security enhancement. Yet, the
introduction of NOMA complicates the problem of signal
detection. In particular, multiplexing the users over limited re-
sources invertibly induce inter-user interference. To this end,
the multi-user detection problem for NOMA technology was
investigated in the literature using different kinds of advanced
signal processing algorithms, see [28], [29] and reference
therein. An initial work on the employment of NOMA in
vehicular networks was introduced in [30], which shows the
potential of using NOMA for the IVNs in B5G.

Another promising technology is the faster-than-Nyquist
(FTN) signaling [31], which is an efficient signaling method
to enhance the spectral efficiency. In particular, FTN signal-
ing intentionally introduces controlled intersymbol interfer-
ence (ISI) by transmitting information symbols faster than
the Nyquist rate [32]. It has been proved in [33] that such
a signaling method can enjoy a higher channel capacity
than that of conventional Nyquist signaling over the additive
white Gaussian noise (AWGN) channels. To combat the se-
vere ISI induced by the FTN signaling, various approaches
with a reduced-complexity [34], [35] have been proposed in
the literature. In [34], two reduced-search algorithms based
on the Ungerboeck Bahl-Cocke-Jelinek-Raviv (BCJR) algo-
rithm [36] were proposed. By performing Turbo equalization
together with the channel decoder, FTN signaling with the
proposed algorithms can achieve up to 163% of spectral ef-
ficiency gain with almost the same error performance. A com-
prehensive comparison between time-domain and frequency-
domain equalization methods for FTN signaling was con-
ducted in [37], which shows that the frequency-domain equal-
izations usually requires a lower complexity than that of the
time-domain equalizations. However, the error performance
of frequency-domain equalizations can be substantially worse
than that of the time-domain counterpart. More importantly,
FTN signaling has shown great potential in doubly-selective
channels [38], [39] and in NOMA transmissions [40], [41],
which aligns perfectly with the requirements of the IVNs.

Thanks to the recent development of communication tech-
nology, advanced communication capability allows informa-
tion to be passed and received reliably and efficiently in
IVNs. With the help of reliable communication, IVNs can
support various applications by performing estimation and
detection based on the received information. Several topics
related to detection and estimation in vehicular networks have
been studied in the literature. The estimation of road traffic
density was studied in [42] and [43], where the analyses were
conducted in terms of the accuracy of the estimation. Besides,
the vehicular speed estimation was considered in [44] by
measuring the received signal strength from nearby mobile
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FIGURE 1. The common protocol for realizing centralized processing. The
arrows denote the information flow directions.

phones. In [45], a traffic accident detection algorithm was de-
veloped for reporting traffic accidents at intersections. In [46]
and [47], the network agent localization as well as synchro-
nization problems were investigated. To detect the misbehav-
ior of vehicles in IVNs, several works were conducted from
different viewpoints, which were reviewed in [48]. It is worth
mentioning that the aforementioned detection and estimation
problems in wireless networks, e.g. [43]–[48] assumed that a
fusion centre is available for centralized information sharing
and traffic control. For example, the vehicles produce the mea-
surements related to the variables of interest after processing
the raw data and send the measurements to RSUs via uplink
transmission, as shown in Fig. 1. After collecting the obser-
vations from the vehicles, the RSUs can perform estimation
and detection based on some advanced algorithms. Then the
inferred variables of interest (referred to as the “global esti-
mate”) are sent back to the vehicles supported by the RSUs
through down link transmission. Finally, the vehicles can take
actions according to the estimates of variables to implement
various applications in IVNs.

In B5G IVNs, it is expected that the number of wireless
connected vehicles will be huge. In such a large-scale net-
work, performing signal processing at a central unit is not
preferred as it is not energy-efficient and economic-friendly.
In the model illustrated in Fig. 1, if a vehicle locates far
from the current home RSU, a high transmit power from the
vehicle is required to achieve reliable reception at the RSU.
In practice, reducing the required power is essential to save
energy [49]–[52]. An alternative protocol for collecting the
observations is depicted in Fig. 2, where distant vehicles com-
municate with the RSU relying on a routing scheme [53], [54].
In this case, some vehicles serve as relays under sophisticated
network scheduling. The relay-based protocol can overcome
the problem that a vehicle is not in the area of coverage
of any RSU which reduces its energy consumption in the
transmission. However, existing multi-relay protocols lead to
a remarkable increase of signaling overheads and introduce
excessive communication latency [55]–[57]. Besides, the as-
signment of serving as relays has to be updated frequently due
to the dynamic property of networks. Moreover, when some of
the RSUs are not working as intended, the whole network fails

FIGURE 2. A relay-based protocol for realizing centralized processing. The
arrows denote the information flow directions.

and causes severe performance loss or even jeopardizes the
safety. To solve this problem, it is straightforward to perform
estimation individually at vehicles based on their observed
measurements. Apparently, the accuracy of the estimation re-
sults can not be guaranteed due to erroneous observations.
This motivates us to establish a framework for IVNs that is
scalable and robust to malfunctions of the RSUs as well as
possible faulty measurements.

Recently, distributed estimation in wireless networks has
drawn much attentions. Compared to the centralized method,
the benefits of distributed estimation are two-fold: 1) it only
depends on single-hop neighbor-to-neighbor communications
and local computations,1 thus is desirable for satisfying com-
munication and energy constraints; 2) it provides the estimates
of variables at each vehicle and enhances the fault tolerance of
the wireless networks. Moreover, with careful design, adopt-
ing the distributed estimation method allows all vehicles to
obtain the estimates of latent variables with almost the same
performance as the centralized method. The direct decentral-
ized solution is to share the measurements among the vehicles
in the IVN then the vehicles are able to perform estimation.
Strictly speaking, this is not a distributed scheme since each
vehicle functions as a fusion centre. The concept of distributed
estimation was firstly proposed in the pioneering works [58],
[59], which focused on the control problem in large scale sys-
tems. Later on, more distributed estimation researches were
conducted on the topics of hypothesis testing [60], nonlinear
control systems [61], and mapping [62]. Most of the early
works in this area depend on a hierarchical information fu-
sion architecture which reconstructs the global estimate by
fusing the local estimates. Under this architecture, the joint
distribution of vehicles’ measurements should be known and
the local estimates are sent from the vehicles to a hierarchical
processing unit, which are unrealistic due to the associated
high communication cost. As a remedy, several works design
distributed estimation algorithms under the constraint of lim-
ited transmission rate. For example, in [63], the transmitted
signal from the network node is digitalized into several binary

1Two vehicle are said to be neighboring of each other if they are within the
communication range.
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bits. The authors of [64], [65] designed a class of sub-optimal
estimators while the observations are quantized to one bit. To
minimize the estimation error for a given transmission rate,
the authors of [66] studied a distributed estimation mechanism
by selecting appropriate quantizers in different scenarios. In
addition to the rate-constraint problem, another issue for dis-
tributed estimation is the double counting of data, which will
be discussed in the following.

The double counting of data is caused by the repeated use
of the identical information [67]. Consider an example with
two vehicles. The first vehicle updates its local estimate of a
variable of interest based on its observations and broadcasts
this information to the second vehicle. After receiving the
broadcast, this estimate of variable is available to the second
vehicle which is to be combined with the local observation of
the second vehicle to update its estimation of variable. Simi-
larly, this estimate is contained in the information broadcast
and is received at the first vehicle. As the first vehicle has
no knowledge that its local estimate was already embedded
in the received information, it will update the local estimate
based on the received information. Note that the local obser-
vations of the first vehicle in this process are adopted twice,
which is known as data double-counting. In fact, in an IVN
with multiple vehicles, some observations may be reused for
several times, leading to a biased estimation results. To tackle
this problem, some methods in [68], [69] were proposed to
decorrelate the local estimates from vehicles in order to fuse
only new information. For general wireless networks, by em-
ploying an information graph to exploit the topology of the
network [70]–[72], the method of average consensus [73] was
proposed to avoid the double counting.

The idea of average consensus, which originated from the
field of automata theory and distributed computing [74], has
attracted numerous interests for its applications in multi-
agent/multi-vehicle networks [75], which can efficiently avoid
the double counting of data and can facilitate the averaging
of the vehicles’ initial estimates. This is achieved by sharing
their information between vehicles and iteratively update their
local estimates. For instance, the work in [73] addressed the
linear consensus problem in some new applications with fixed
network topology. The authors of [76] then extended the fixed
network to a time-varying one and developed a switch-based
system model. For some practical applications, the conver-
gence to an average of the local estimates is an essential
requirement. To this end, researches on the development on
convergence behavior has become another focus [77]–[79].
From the theorem of algebraic graph [80], in particular the
graph Laplacian [81], the algebraic connectivity has shown
to be efficient for analyzing the convergence of consensus
algorithms. In [82], distributed consensus problems were ad-
dressed under a variety of assumptions on the network topol-
ogy and the convergence analysis was also provided. It was
shown that a properly chosen update weight guarantees the
convergence after running a sufficiently large number of iter-
ations if the associated algebraic graph is connected [82]. The
Laplacian matrix of graph was also used for dynamic graphs

by numerous researchers [83]–[85]. Note that the aforemen-
tioned works used a constant weight for all vehicles to update
their local estimates. As the update weight is closely related
to the convergence speed of distributed consensus, it is also
very important to construct specific weights to accelerate the
convergence. As a result, the metropolis weight was intro-
duced in [86], which is capable of reaching consensus on the
average of all local estimates from vehicles in a few consensus
iterations.

On the other hand, belief consensus (BC), also known as
likelihood consensus was developed for probabilistic model
based problems [87], [88]. Instead of averaging the local es-
timates of all vehicles, the BC approach aims for obtaining
the joint posterior or joint likelihood function concerning the
variables of interest across the network via consensus op-
erations. This is done by iteratively updating vehicles’ lo-
cal likelihood functions using the information broadcasted
from their neighboring fvehicles. Compared to the conven-
tional average consensus, BC is more suitable for statisti-
cal inference problems [89]. In [90], the authors proposed
a BC algorithm for computing the joint likelihood function
at each node. Relying on particle filtering (PF), a BC-based
distributed algorithm was proposed in [91], which updates
the weights of particles using the local likelihood functions
(LLFs). A survey of distributed implementation of PF based
on BC was provided in [92]. The authors of [93] studied the
selection of update weights used in consensus operations for
BC. Based on BC, several distributed detection and estimation
problems in wireless sensor networks (WSN) were consid-
ered recently. In [94], distributed demodulation of space-time
transmissions of a common message over a broadcast chan-
nel in WSN was dealt. The authors of [95], [96] considered
the passive localization problem and proposed an expectation
maximization-based distributed localization algorithm. A fur-
ther work [97] considering the presence of outliers in WSN
and developed a distributed passive localization scheme. To
validate the performance of the distributed localization algo-
rithms, the Cramér-Rao bound (CRB) of agent location was
devised in [98], which shows that the distributed method can
attain the CRB. In [99], the joint estimation of variable of
interest and agent control framework was introduced, which
demonstrates the intelligent behavior of the agents. The sensor
registration problem was solved in [100] in a fully distributed
manner. The authors of [101] investigated the events detection
of cyber-physical systems based on BC by means of com-
pressed sensing for applications such as attack detection, in-
dustrial process monitoring, etc. Also, a distributed Bernoulli
filter was proposed in [102] which provides approximations of
the Bayes-optimal estimates of the target presence probability
to each sensor. Given the advantages of distributed processing,
we can foresee the great potential in estimating the variables
of interest in a distributed manner in B5G communications.
This will enable the development of several promising ap-
plications in IVNs, as discussed above. To fully realize the
advantages of exploiting distributed processing in solving the
estimation and detection problems in B5G IVNs as discussed
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above, we aim for designing a generalized framework in this
paper. The generalized framework is required to have suf-
ficient flexibility and can be simply modified to fit various
applications.

This paper provides a generalized estimation framework
for the emerging IVNs in B5G. By constructing the state
transition model and the measurement model, we formulate
the generalized estimation and detection problem following
the Bayes theorem. This centralized setup serves as a build-
ing block for the development of distributed approach. In
particular, we apply the factor graph as a powerful tool to
describe the relationship between the variables and the ob-
servations from different vehicles such that message passing
algorithm can be implemented on the factor graph to deter-
mine the posterior distributions of the variables. Then, we
switch our focus to a more robust and scalable distributed
estimation framework for B5G. In an IVN without a fusion
centre, all vehicles would cooperate and only share informa-
tion with their neighbors such that the global estimate can be
obtained at each vehicle locally.2 The proposed framework
exploits the BC algorithm that was originally proposed to
fuse the local posteriors (beliefs) based on vehicles’ indi-
vidual observations. We mathematically prove that the the
consensus can be accomplished by exchanging specific local
metrics amongst the IVN. Then four different BC algorithms,
namely, original consensus, metropolis consensus, gossip, and
broadcast gossip algorithms are introduced and compared in
terms of feasibility and performance. Considering the possibly
high communication cost in terms of information exchange
between vehicles, when performing V2V communications,
we propose three approximate methods to simplify the local
metric representation by only using a few parameters. Thus,
only the parameters have to be exchanged and involved in
the consensus operations. Moreover, we study two different
cases, i.e., external target tracking and network decoding to
illustrate the effectiveness of the proposed frameworks for
IVNs. Besides, we have provided some discussions on how
to modify the framework for addressing complex problems
in the B5G IVNs. To sum up, our main contributions are as
follows:
� We develop a generalized framework for estimating the

variables of interests in IVNs of B5G.
� We introduce different consensus algorithms for obtain-

ing the global estimate at each vehicles relying on single-
hop V2V communications and local processing.

� To reduce the communication signaling overhead, we
propose three approaches to approximate the local met-
rics. The tradeoff between approximation accuracy and
communication overhead can be achieved.

� Two different problems in IVNs are studied and solved
using the proposed distributed estimation framework.
A sum product algorithm (SPA)-based consensus algo-
rithm is further developed for network decoding.

2The global estimate denotes the estimation result based on all observations
from the vehicles.

In the simulation results, we evaluate the target tracking
performance and decoding performance based on the pro-
posed estimation framework in terms of several indicators.
Our results show that the performance of both target tracking
and network decoding based on distributed estimation can
approach that of the centralized method. We also show that the
cooperation between vehicles can enhance the performance
and improve the robustness to the presence of vehicle and
RSU failures.

For ease of exposition, we summarize the list of acronyms
and the list of notations in Tables 1 and 2, respectively. The
remainder of this paper is organized as follows. We introduces
the system model and some basic assumptions in Section II.
In Section III, the generalized framework based on central-
ized and distributed processing is proposed. Two cases are
then studied in Section IV to validate the proposed frame-
work. Then the simulations results are shown and discussed in
Section V. Finally, Section VI draws our conclusions.

II. SYSTEM MODEL
We consider a generic vehicular network, as shown in Fig. 3.
The network consists of several road side units (RSUs) spaced
at certain distances, serving multiple vehicles in its cover-
age. There are L vehicles in the network, labeled by L =
{1, 2, . . ., L}. To establish communication links between the
RSUs and the vehicles, both the RSUs and the vehicles are
equipped with uniform linear arrays (ULA). For simplicity,
we adopt the following basic assumptions:

Basic Assumptions:
1) The vehicles cruise straight along the road, i.e., they will

not turn around.
2) The RSUs are connected with each other though optical

fibres, enjoying unlimited fronthaul capacities to share
information. In other words, all RSUs collaborate with
each other to form a fusion center.

3) The communication channels between the RSUs and
the vehicles are dominated by pure line-of-sight (LoS)
propagation.

To support various applications in 5G and beyond,
IVNs have to determine some variables of interest xn =
[xn,1, . . ., xn,J ]T at time instant n based on the observations at
the vehicles.3 Variable xn, j , ∀n ∈ {1, . . ., N}, ∀ j ∈ {1, . . ., J},
has a variety of meanings in IVN, such as the location of a
specific target, the anomalous behavior in the networks, the
message broadcasted in the network at time instant n. To
construct the state model as well as the observation model,
we make further assumptions as commonly adopted in the
literature [103]:

A1) The states of vehicles and the variables of in-
terest evolve according to a first-order Markov
process [104].

3For the ease of expositions, all parameters and variables are assumed to be
real numbers. The extension to complex space will be considered our future
work.
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TABLE 1 List of Acronyms

A2) The states of different vehicles and variables xn evolve
independently, as described by their individual transi-
tion functions.

A3) At a single time instant, a vehicle can originate only
one measurement and conversely, a measurement can-
not originate from more than one vehicle.

A4) At time n, the measurements of different vehicles are
conditionally independent with each other.

TABLE 2 List of Notations

A5) Given the state of a vehicle l ∈ L and variables xn at
time n, the measurement obtained at vehicle l is con-
ditionally independent from all its past measurements.

A. STATE EVOLUTION MODEL
As vehicles travel all the time, we denote the state of vehicle
l ∈ L by vector u(l )

n ∈ RD, which may contain the position,
the speed, and some other functional modes of vehicle l . By
defining the state transition functions f (l )

n (·) ∈ RD → RD for
the vehicles and gn(·) ∈ RJ → RJ for variables of interest, we
have the state evolution model based on assumptions (A1) and
(A2):

u(l )
n = f (l )

n (u(l )
n−1), (1)

xn = gn(xn−1) + wn, (2)

where wn ∈ RJ represent the noise in the Markov model,
which is usually modeled as a multivariate Gaussian dis-
tributed random variable [46]. Remark that state u(l )

n is per-
fectly known to vehicle l , whose transition is noise free. For
brevity, we set wn = w ∈ RJ , ∀n, with zero mean and positive
semi-definite covariance matrix Vw ∈ RJ×J .
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FIGURE 3. A vehicular network model which the area of coverage of the RSU is shaded in grey color.

B. OBSERVATION MODEL
After acquiring the data concerning the variables of interest,
the observations are produced by detectors at the vehicles,
following by some pre-processing algorithms of the raw data.
Specifically, for vehicle l ∈ L, its observation r(l )

n ∈ RN con-
cerning variables xn at the nth time instant can be modeled
as

r(l )
n = h(l )

n (xn, u(l )
n ) + z(l )

n , (3)

where h(l )
n (·) ∈ RJ × RD →RN denotes the observation func-

tion and z(l )
n represents the observation noise for vehicle l at

time n. Similar to the state evolution model, we model z(l )
n as

a multivariate Gaussian variable with zero mean and positive
semi-definite covariance matrix Vz(l )

n
∈ RN×N .

In the next section, we establish a general framework for
IVNs based on the above state model and observation model.
Then the estimation of variables of interest via centralized
and distributed approaches will be introduced. As discussed in
Section I, the centralized method has the advantages of simple
implementation but not robust to the malfunctions of RSUs.
The distributed method can tackle this problem by exchanging
packets containing local information among the vehicles.

III. CENTRALIZED VS. DISTRIBUTION PROCESSING
A. GENERAL FRAMEWORK
Let rn = [r(1)

n , . . ., r(L)
n ]T denote the observation of all L ve-

hicles at time instant n and r1:n � [rT
1 , . . ., rT

n ]T be the stack
of vectors of the observations of all vehicles up to time n. The
estimates of the variables of interest at time n can therefore
be obtained using the minimum mean square error (MMSE)
estimator or the maximum a posteriori estimator [105]:

MMSE: x̂n = E{xn|r1:n} =
∫

xn p(xn|r1:n)dxn, (4)

MAP: x̂n = arg max
xn

p(xn|r1:n), (5)

where p(xn|r1:n) denotes the a posteriori distribution. Ac-
cording to the Bayes theorem [106], the current posterior
p(xn|y1:n) can be rewritten as

p(xn|r1:n) = p(xn|r1:n−1)p(rn|xn, r1:n−1)

p(rn|r1:n−1)
, (6)

where p(xn|r1:n−1), p(rn|xn, r1:n−1), and p(yn|r1:n−1) denotes
the a priori distribution, the likelihood function and the nor-
malization factor at time n, respectively. Following the as-
sumptions in (A1) and (A5), p(xn|r1:n), p(rn|xn, r1:n−1), and
p(rn|r1:n−1) can be simplified as

p(xn|r1:n−1) = p(xn), (7)

p(rn|xn, r1:n−1) = p(rn|xn), and (8)

p(rn|r1:n−1) = p(rn), (9)

respectively. Therefore, the posterior p(xn|r1:n) = p(xn|rn).
The likelihood function p(rn|xn) can be further factorized
into a product of several “local” likelihood functions (LLF)
according to (A4), i.e.,

p(rn|xn) =
L∏

l=1

p(r(l )
n |xn). (10)

Having the expression of observation model (3), the LLF
p(r(L)

n |xn) is expressed as

p(r(l )
n |xn) ∝ exp

(
−1

2

(
r(l )

n − h(l )
n (xn, u(l )

n )
)T

× V−1
z(l )

n

(
r(l )

n − h(l )
n (xn, u(l )

n )
))

. (11)

The current prior p(xn) is obtained from the previous posterior
and the state transition probability density function (pdf) in a
sequential fashion as

p(xn) = p(xn|r1:n−1)

=
∫

p(xn|xn−1)p(xn−1|r1:n−1)dxn−1. (12)
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FIGURE 4. A factor graph representing the factorization in (14). The
shorthand notations gn and r (l )

n are adopted to define the transition pdf
p(xn|xn−1) and the likelihood function p(r(l )

n |xn ), respectively.

Similar to (11), the state transition pdf is determined based on
the state evolution model (2), given by

p(xn|xn−1) ∝ exp

(
−1

2
(xn − gn(xn−1))T

× V−1
w (xn − gn (xn−1))

)
. (13)

In the next section, we will propose a centralized frame-
work based factor graph and message passing algorithm to
estimate the variables xn. Note that the performance of the
following centralized approach serves as a benchmark for any
distributed design. Besides, the structure of the centralized
approach seems as a building bock for the development of the
distributed approach.

B. CENTRALIZED APPROACH
In the centralized approach, the RSUs work as a fusion center
for vehicular networks. After acquiring the observations, all
vehicles send them back to the current home RSUs via uplink
channels. Having collected all observations y1:n, the fusion
center can factorize the posterior (6) which yields

p(xn|rn) ∝ p(xn)p(rn|xn)

∝
∫

p(xn|xn−1)p(xn−1|r1:n−1)dxn−1

L∏
l=1

p(r(l )
n |xn)

∝
∫

p(xn|xn−1)p(xn−1)p(rn−1|xn−1)dxn−1

L∏
l=1

p(r(l )
n |xn)

∝
∫

p(xn|xn−1) · · ·
∫

p(x1|x0)p(x0)dx0

· · · p(rn−1|xn−1)dxn−1

L∏
l=1

p(r(l )
n |xn), (14)

where p(x0) is the initial information available to the RSUs.
In particular, the factorization in (14) can be represented by
a factor graph, as shown in Fig. 4, where each variable node
(denoted by a circle) represents a unique variable and each
factor node (denoted by a square) represents a function.

On this factor graph, belief propagation (BP), also known as
the sum-product algorithm (SPA), can be applied to compute
the approximations of the posterior pdfs of the latent variables,

i.e., b(xn) ≈ p(xn|r1:n). As a popular solution, BP defines two
kind of messages on a factor graph, i.e., the message from
factor node f to variable node x,

μ f →x(x) =
∫

f (x)
∏

x′∈S f \x

μx′→ f (x′)dx,′ (15)

and the message from variable node x to factor node f ,

μx→ f (x) =
∏

f ′∈Sx\ f

μ f ′→x (x), (16)

where Sx and S f denote the sets of all functions containing
variable x and all variables in function f , respectively. The
approximate posterior pdf is determined by the product of
messages coming from all connected factor nodes, which can
be expressed as

b(x) =
∏
f ∈Sx

μ f →x (x). (17)

After running BP on the factor graph, the MMSE estimates of
xn is given by x̂n = Eb(xn )[xn]. Since the observations of all
vehicles are only available at the fusion centre, all messages
are calculated at the RSUs, resulting a centralized estimation
approach. Although the centralized method can achieve the
best performance in terms of estimation results and most
computations are performed at the fusion center, it does not
suit for the emerging IVNs for B5G communication systems.
In the next section, we will propose a distributed estimation
framework for IVNs.

C. DISTRIBUTED APPROACH
We commence from a vehicular network that RSUs are not
working well in the considered network and hence there is no
fusion centre available to collect all the global observations.
In B5G IVNs, it is expected that vehicles should have the
capability of sensing the environments to avoid possible col-
lisions and satisfy other autonomous vehicle features [107].
Without a fusion centre, vehicle l can only obtain the posterior
p(xn|r(l )

n ) based on its local observations, leading to some
ambiguities in the estimation results of xn. To this end, we
propose a distributed estimation framework, through which all
vehicles can accurately estimate the variables of interest as if
all observations have been collected.

To facilitate distributed estimation in B5G network, effi-
cient communication between vehicles are of utmost impor-
tance. The network topology at time instant n can be described
by graph Gn as shown in Fig. 5, where each vertex represents
a vehicle. Relying on appropriate communication technolo-
gies, a vehicle can communicate with other vehicles within its
range of communication. In the figure, two vehicles are con-
nected by an edge if and only if they can communicate with
each other. The set of all neighboring vertices connected to
vertex l is defined as S (l )

n . We say that graph Gn is connected if
any set S (l )

n , ∀l ∈ L, has at least one element. The node degree
(the number of neighboring vehicles) of vehicle l at time n is
defined by |S (l )

n |. The connectivity of a graph Gn is captured by
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FIGURE 5. A network topology of the IVN. A solid line between two
vehicle nodes denote the communication link between them. For vehicle l
marked with blue color, the set S (l )

n consists of the three connected vehicle
marked with red color.

a binary adjacent matrix A, where its element Alm = Aml = 1
if vehicle l and vehicle m can communicate with each other.
For simplicity, the communication links between the vehicles
are assumed to be noise free in what follows.

At time instant n, vehicle l formulates its LLF p(r(l )
n |xn)

and local posterior p(xn|r(l )
n ) based on its observations. Then,

the distributed process can be defined by reaching consensus
on the (joint) a posteriori distribution over the IVN [82], i.e,

BC{p(xn|r(1)
n ), . . ., p(xn|r(L)

n )} = p(xn|rn). (18)

Remark that the prior at time n is known and is identical to all
vehicles, thus the above problem can be simplified as

BC{p(r(1)
n |xn), . . ., p(r(L)

n |xn)} =
L∏

l=1

p(r(l )
n |xn) = p(rn|xn).

(19)

Applying the expression of the LLF (11), the joint likelihood
function p(rn|xn) can be written as4

p(rn|xn)

∝ exp

(
−1

2

L∑
l=1

(
r(l )

n − h(l )
n (xn)

)T
V−1

z(l )
n

(
r(l )

n − h(l )
n (xn)

))

∝ exp

(
1

2

[
L∑

l=1

[
r(l )

n

]T
V−1

z(l )
n

h(l )
n (xn) +

[
h(l )

n (xn)
]T

V−1
z(l )

n

×
(

r(l )
n − h(l )

n (xn)
)])

∝ exp

( L∑
l=1

[
h(l )

n (xn)
]T

V−1
z(l )

n

(
r(l )

n − 1

2
h(l )

n (xn)

)
︸ ︷︷ ︸

L(r(l )
n ,xn )

)
, (20)

4For brevity, we omit the known vehicle states u(l )
n in equation (20).

where L(r(l )
n , xn) defines a local statistic metric. We further

define the global metric L(rn, xn) as

L(rn, xn) =
L∑

l=1

L(r(l )
n , xn). (21)

Since L(rn, xn) can fully describe the joint likelihood func-
tion, the vehicles need to have the knowledge of the global
metric L(rn, xn) to address the target tracking problem in
IVN. This is enabled by establishing communication links
between the neighboring vehicles and local computations.
Next, we will introduce the implementation of four consensus
algorithms to obtain the global metric at all vehicles in a
distributed manner. The pros and cons for different consensus
algorithms will also be stated.

1) ORIGINAL CONSENSUS
The consensus operations are simultaneously performed at all
vehicles and each vehicle will update its local metric itera-
tively based on the received information from its neighboring
vehicles. At the very beginning, the local metrics for vehicle
l ∈ L are initialized as L(l )

n (0) = L(r(l )
n , xn). Then at the t th it-

eration of the consensus algorithm, the local metric is updated
as [108]

L(l )
n (t ) = L(l )

n (t − 1) + ξ
∑

l ′∈S (l )
n

(
L(l ′ )

n (t − 1) − L(l )
n (t − 1)

)

=
(

1 − ξ |S (l )
n |
)

L(l )
n (t − 1) + ξ

∑
l ′∈S (l )

n

L(l ′ )
n (t − 1),

(22)

where L(l )
n (t − 1) is the local metric of vehicle l obtained

from the previous iteration and ξ denotes the update weight.
The consensus operation (22) can be regarded as a process
of merging information from the vehicle itself and from its
neighboring vehicles. A general choice of the rate ξ is 1/γn,
where γn = maxl |S (l )

n | indicates the maximum node degrees
of graph Gn. If graph Gn is connected, the local metrics of all
vehicles are guaranteed to converge when the number of con-
sensus iterations approaches infinity, i.e., limt→+∞ L(l )

n (t ) =
L(rn,xn )

L [87]. In practice, running a few iterations Niter is able
to provide a sufficiently accurate approximation of the actual
one. Then the global metric L(rn, xn) as well as the joint
likelihood function p(rn|xn) can be easily found.

L(l )
n (t )

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 − ξ |S (l )

n |
)

L(l )
n (t − 1) + ξ

∑
l ′∈S (l )

n
L(l ′ )

n (t − 1),
(

1 − ξ |S (l )
n |
)

L(l )
n (t − 1) if link failure

+ ξ
(∑

l ′∈S (l )
n \m

L(l ′ )
n (t − 1) + L(l ′ )

n (t − 2)
)

(23)

Remark 1: The link failures between connected vehicles
can be addressed by using the following scheme.
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As the vehicles in the IVN are dynamic, link failure may
happen to two vehicles even if they are within the communi-
cation range, due to unexpected obstacles or signal detection
failures. In this circumstance, vehicle l can use an auxiliary
metric L(l,m)

n to store the local metric from neighboring vehi-
cle m ∈ S (l )

n obtained in the previous iteration. For instance, at
the t − 1th consensus iteration, vehicle l records the local met-
ric L(m)

n (t − 2) as L(l,m)
n . Then if the link between vehicles l

and m fails in the t th iteration, vehicle l can adopt the auxiliary
metric to update L(l )

n (t ). Based on this protocol, the consensus
operations are modified as (23) at the bottom of this page.
The second line on the right hand side of (23) can be seen as
an approximation of the first line by using the stored metric
L(l ′ )

n (t − 2) to replace the actual one L(l ′ )
n (t − 1) that is not

available. On the other hand, by adopting the above protocol,
the vehicles can update their local metrics without waiting
for all information from their neighbors to arrive. Therefore,
employing (23) can relax the synchronization requirement for
distributed estimation in IVNs.

2) METROPOLIS CONSENSUS
Existing researches show that sharing the same update weight
ξ for all vehicles may lead to performance loss [86]. To
tackle this problem, we introduce the metropolis weight de-
fined in [86], which provides a better convergence behavior.
With the same initializations, the local metric in metropolis
consensus is given by

L(l )
n (t ) = ξ (l,l )L(l )

n (t − 1) +
∑

l ′∈S (l )
n

ξ (l,l ′ )L(l ′ )
n (t − 1), (24)

with the weight ξ (l,l ′ ) expressed as

ξ (l,l ′ ) = ξ (l,′l ) =
⎧⎨
⎩

1/ max
[∣∣∣S (l )

n

∣∣∣ ,
∣∣∣S (l ′ )

n

∣∣∣
]
, for l 	= l,′

1 −∑
m∈S (l )

n
ξ (m,l ), for l = l ′.

(25)

Note that in the original consensus algorithm (22), all vehicles
need to know the maximum degrees of graph Gn to determine
the weight ξ . While in the metropolis consensus algorithm, the
vehicles only require the degree information of their neigh-
bors. Therefore, implementing metropolis consensus is more
attractive for the realization of distributed estimation in IVN.

3) GOSSIP
In contrast to the consensus algorithms using constant and
metropolis weights, gossip-based algorithms [109] can also be
used for distributed estimation without the prior knowledge of
the node degrees of the graph. At the t-th consensus iteration,
vehicle l exchanges its local metric with a randomly chosen
neighboring vehicle l ′ ∈ S (l )

n and update their local metrics as
follows:

L(l )
n (t ) = L(l ′ )

n (t ) = 1

2

(
L(l )

n (t − 1) + L(l ′ )
n (t − 1)

)
, (26)

while all other vehicles does not perform update at this it-
eration. Since only two local metrics are updated in each
iteration, the total required number of consensus iterations
for updating all vehicles is NiterL

2 , which introduces excessive
latency for large-scale IVNs compared to the that of the con-
sensus algorithm.

4) BROADCAST GOSSIP
Naturally, the exceedingly high latency is not preferred due
to the dynamic nature of the IVNs. As a result, the so-
called broadcast gossip algorithm is proposed to tackle this
issue [110], following which the local metrics are updated as

L(l ′ )
n (t ) =

⎧⎨
⎩

ηL(l ′ )
n (t − 1) + (1 − η)L(l )

n (t − 1), l ′ ∈ S (l )
n

L(l ′ )
n (t − 1), otherwise,

(27)

where 0 < η < 1 is the update rate. The optimal value of η

has been discussed in [110], which is related to the algebraic
connectivity of graph Gn. Since it is usually very difficult to
obtain algebraic connectivity without a fusion centre, param-
eter η is chosen based on some empirical studies. Note that in
the gossip-based consensus algorithms, the updating of local
metrics follows a random manner. However, it was proved
in [110] that this kind of random updating cannot guarantee
the convergence to the global metric in general. In Table 3,
we compare the four consensus algorithms in terms of several
features. In the following, we will discuss some practical
issues in the implementation of the above algorithms.

Approximation for the Local Metrics: Employing the con-
sensus algorithms above allow all vehicles to obtain the es-
timates of xn distributively. However, the observation func-
tion h(l )

n (xn) is in general not a linear function, so are the
local metrics L(r(l )

n , xn). As the vehicles are not able to trans-
mit the continuous functions L(r(l )

n , xn) through the network,
sampling-based methods are used to approximate the local
metrics. A direct but inefficient solution is to represent L(l )

n (t )
on a grid in the state space of xn. Another way to handle
the nonlinearity of the observation function is via particle
filtering, which adopts a set of randomly generated particles
{x[p]

n }P
p=1 and corresponding weights {ω[p],(l )

n }P
p=1 to approx-

imate the nonlinear function, where P denotes the number
of particles [111]. As a result, the local metric is therefore
represented by

L(r(l )
n , xn) ≈

P∑
p=1

ω[p],(l )
n δ(x[p]

n − xn). (28)

At each time instant, the same particles are randomly drawn
for all vehicles and the weights are calculated individually
based on the local metrics. Then the consensus operations
are executed to reach the agreement on the local weights of
connected vehicles. After Niter consensus iterations, all lo-
cal weights ω

[p],(l )
n , ∀l ∈ L, converge to the global weights
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TABLE 3 Comparison of Different Consensus Algorithms

ω
[p],(l )
n (Niter ) ≈ ω

[p]
n such that

L(rn, xn) ≈
P∑

p=1

ω[p],(l )
n (Niter )δ(x[p]

n − xn). (29)

The accuracy of PF based approximation depends on the num-
ber of particles employed. To achieve good estimation result,
we have to choose a large value of P, requiring a communica-
tion overhead of O(P).

For the purpose of reducing communication overhead, we
can employ appropriate approximations for the nonlinear
function h(l )

n (xn), such that the local metric can be represented
by a fewer number of parameters. For example, provided a
series of orthonormal basis functions {φn,q(xn)}Q

q=1 for an

inner product space, the projection of the local metric h(l )
n (xn)

onto {φn,q(xn)}Q
q=1 can be represented as L(l )

n (t )

h(l )
n (xn) =

Q∑
q=1

ω(l )
n,qφn,q(xn), (30)

where Q is the dimension of the basis functions. The coeffi-
cient ω

(l )
n,q is determined by

ω(l )
n,q =

∫
h(l )

n (xn)φn,q(xn)dxn. (31)

Note that for different vehicles, we can adopt the same basis
functions. Therefore the consensus of vehicles can be reached
by sharing and updating the coefficient ω

(l )
n,q, having a com-

munication overhead of O(Q).
Alternatively, we can further reduce the communication

overhead by leveraging the powerful Taylor series expansion
of h(l )

n (xn), i.e.,

h(l )
n (xn) = h(l )

n (a) +
J∑

j=1

∂h(l )
n (a)

∂xn, j

(
xn, j − a j

)

+ 1

2!

J∑
i, j=1

∂2h(l )
n (a)

∂xn, j∂xn,i

(
xn, j − a j

) (
xn,i − ai

)
. . . + 	p,

(32)

where a = [a1, . . ., aJ ]T is the reference point for expansion
that h(l )

n (xn) is differentiable at xn = a and 	p is the Peano
form of the remainder [112]. The reference point a can be
chosen according to the prior p(xn) obtained from the state
evolution model. Using the first order Taylor series expan-
sion for h(l )

n (xn) = Axn + b, the local metric L(r(l )
n , xn) is

expressed as

L(r(l )
n , xn) = −1

2
xT

n ATV−1
z(l )

n
Axn +

[
r(l )

n

]T
V−1

z(l )
n

Axn, (33)

which is in a quadratic form with respect to xn. Consequently,
the LLF is Gaussian distributed whose mean and variance
are broadcasted for consensus operations, resulting in a com-
munication overhead of O(2). Although applying Taylor ex-
pansion to simplify the observation functions leads to a very
low communication cost, the choice of the reference points
has a significant impact on the estimation performance [46].
Obviously, the communication cost of the distributed method
is dominated by the number of parameters to represent the
local metrics. The above three approximations have varying
communication overheads and performance. In practical sce-
narios, we may combine different approximate methods to
achieve a good tradeoff between the communication cost and
estimation performance.

In the above, we have shown a general distributed esti-
mation framework for B5G IVNs. In the following section,
we will study two different cases in IVNs to evaluate the
efficiency of the proposed framework.

IV. CASE STUDY
In this section, two cases based on the proposed distributed es-
timation framework in IVNs will be considered. Specifically,
we will study the target tracking problem and the cooperative
network decoding problem, respectively.

A. CASE I: TARGET TRACKING
The location awareness of targets plays an important role
for IVNs in B5G to support applications such as emergence
rescue and traffic safety [113]. In the target tracking scenario,
we aim for obtaining real time locations of some external
targets. For simplicity, we assume that the vehicles are capable
of separating the signals from different targets based on data
association methods, e.g., [103]. Therefore, we can focus on
one target, i.e., the variable of interest xn = [xn, yn]T, where
xn and yn denotes the coordinates of the target on x-axis and
y-axis. The problem becomes the estimation of target coordi-
nates at time instant n, i.e.,

{x̂n, ŷn} =
∫ ∫

xnyn p(xn, yn|r1:n)dxndyn. (34)

In this case, we consider at time instant n, vehicle l can
acquire the time-of-arrival (ToA) measurement τ

(l )
n from the

signal delay and the angle-of-arrival (AoA) measurement θ
(l )
n
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from the directional beam of the ULA.5 The state variable
u(l )

n = [u(l )
x,n, u(l )

y,n]T denotes the location of vehicle l at time

n. Thus, the observation r(l )
n can be written as

r(l )
n =

[
r(l )

x,n

r(l )
y,n

]
=
[

cτ (l )
n cos θ

(l )
n

cτ (l )
n sin θ

(l )
n

]
+ z(l )

n

=
[

xn − u(l )
x,n

yn − u(l )
y,n

]
+
[

z(l )
x,n

z(l )
y,n

]
, (35)

where r(l )
x,n and r(l )

y,n are the relative distances on x-axis and
y-axis of vehicle l at time n, respectively, with the signal prop-
agation speed c. Without loss of generality, the observation
noise on x-axis and y-axis obeys the same Gaussian distri-
bution with zero mean and variance v

z(l )
n

. According to the
log-distance path loss model [114], the observation variance
is related to the distance from the target to the vehicle. Under
the assumption of unit signal energy and a free space path loss
exponent of 2, the noise power v

z(l )
n

is given by

v
z(l )
n

= v0 ·
(

cτ (l )
n

d0

)2

, (36)

where d0 = 10 m is the reference distance from the target and
v0 denotes the observation noise power at d0.

Next, we study the state evolution model for xn, which can
be formulated as6

xn = xn−1 + sn · δt + w

=
[

xn−1

yn−1

]
+ δt ·

[
sx,n

sy,n

]
+
[

wx

wy

]
, (37)

where sn = [sx,n, sy,n]T denotes the velocity of the target and
δt is the duration of a time slot. Similar to the observation
noise z, the transition noise wx and wy are modeled by zero
mean Gaussian variables with variance vw. As the external
target is usually non-cooperative, its velocity is not available.
To handle this, we approximate the velocity by

ŝn = x̂n−1 − x̂n−2

δt
, (38)

where x̂n−1 and x̂n−2 are the estimated target location of the
previous two time instants. According to the observation and
the state models, the x and y-coordinates are updated indepen-
dently and the corresponding variable nodes are split into two
subgraphs, as shown in Fig. 6.

For simplicity, we focus on the message passing related to
x-coordinate. The messages concerning y-coordinate can be
obtained in a similar way using the factor graph model and BP
rules. Assuming that the belief xn−1 is available in a Gaussian
form as b(xn−1) = N (xn−1; mxn−1 , vxn−1 ), the message from

5The target can be tracked solely based on ToA or AoA measurements by
solving nonlinear functions. Since our main scope is to design a generalized
framework, a linearized model based on ToA and AoA measurements is
considered here.

6Here, we impose an assumption that the velocity of the target remains
constant in a short time period δt .

FIGURE 6. A modified factor graph for target tracking. The factor nodes
gx,n and gy,n denote the nth state transition function for x and y

coordinates, and r (l )
x,n and r (l )

y,n denote the likelihood function p(rl
x,n|xn ) and

p(rl
y,n|yn ), respectively.

gn to xn can be derived according to (15),

μgn→xn (xn) ∝
∫

exp

(
− (xn − xn−1 − ŝx,nδt )2

2vw

)

· exp

(
− (xn−1 − mxn−1 )2

2vxn−1

)
dxn−1

∝ N (
xn; mgn→xn , vgn→xn

)
, (39)

with the corresponding mean and variance given by

mgn→xn = mxn−1 + ŝx,nδt , and (40)

vgn→xn = vxn−1 + vw, (41)

respectively. The message from r(l )
x,n to xn is identical to the

likelihood function p(r(l )
x,n|xn), given by

μ
r(l )
x,n→xn

(xn) = p(r(l )
x,n|xn)

∝ exp

⎛
⎜⎝−

(
r(l )

x,n − (xn − u(l )
x,n)
)2

2v
z(l )
n

⎞
⎟⎠

∝ N
(

xn; r(l )
x,n + u(l )

x,n, vz(l )
n

)
. (42)

Then the belief of xn can be determined according to (17),
which is still a Gaussian distribution with mean mxn and vari-
ance vxn , given by

mxn = vxn ·
(

mxn−1 + ŝx,nδt

vxn−1 + vw

+
L∑

l=1

r(l )
x,n + u(l )

x,n

v
z(l )
n

)
, (43)

vxn =
(

1

vxn−1 + vw

+
L∑

l=1

1

v
z(l )
n

)−1

, (44)

respectively. It can be seen from (43) and (44) that the esti-
mated mean and variance corresponding to the target at time n
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consist of the prior information derived from the state evolu-
tion model as well as the information obtained from vehicles’
observations. Following a similar process, the belief of yn is
derived with mean myn and variance vxn . Then the location
estimate of the target at time n is given by MMSE estimation,
i.e., x̂n = [mxn , myn ]T.

Next, we consider the distributed calculation of the target
location using our proposed framework in Section III. Based
on the likelihood function p(r(l )

x,n|xn), we can define the local
metric of vehicle l as

L(r(l )
x,n, xn) = − 1

2v
z(l )
n

x2
n + xn ·

(
r(l )

x,n + u(l )
x,n

)

z(l )
n

, (45)

which is parameterized by λ
(l )
n = 1

2v
z(l )
n

and μ
(l )
n

(r(l )
x,n+u(l )

x,n )

z(l )
n

.

With the initialization μ
(l )
n (0) = μ

(l )
n and λ

(l )
n (0) = λ

(l )
n , the

consensus operation with metropolis weight is given by

μ(l )
n (t ) = ξ (l,l )μ(l )

n (t − 1) +
∑

l ′∈S (l )
n

ξ (l,l ′ )μ(l ′ )
n (t − 1), (46)

λ(l )
n (t ) = ξ (l,l )λ(l )

n (t − 1) +
∑

l ′∈S (l )
n

ξ (l,l ′ )λ(l ′ )
n (t − 1). (47)

After running Niter iterations, all vehicles have μ
(l )
n (Niter ) ≈∑

l∈L μ
(l )
n /L and λ

(l )
n (Niter ) ≈∑l∈L λ

(l )
n /L and the global

metric is written by

L(rx,n, xn) = −Lλ(l )
n (Niter ) · x2

n + Lμ(l )
n (Niter ) · xn. (48)

Consequently, the belief of xn is given by

b(xn) ∝ exp

(
− (xn − mgn→xn )2

2vgn→xn

)
exp
(
L(rx,n, xn)

)

∝ N (xn; mxn , vxn ), (49)

with

mxn = vxn

(
mgn→xn

mgn→xn

+ Lμ(l )
n (Niter )

)
, (50)

vxn =
(

1

vgn→xn

+ Lλ(l )
n (Niter )

)−1

. (51)

Note that the calculation of the belief is done locally as the
global metric can be determined based on the local metric
of any vehicle l ∈ L. Based on our discussions concerting
(43) and (44), the distributed estimation of mxn and vxn also
depends on the prior information and the observation-based
information from all vehicles. Since all vehicles have reached
consensus on the global likelihood function, using L times of
the local parameters is equivalent to collecting observations
from all vehicles. The consensus operations are performed for
yn similar to xn, and finally, all vehicles obtain the estimate of
the target location at time n in a distributed fashion, despite
the absent of a centralized fusion centre.

B. CASE II: NETWORK DECODING
In some special scenarios in IVNs for B5G, there exist a
moving access point (AP, such as unmanned aerial vehicle
(UAV) etc. [115]–[117]) which broadcasts an important mes-
sage to the vehicles, i.e., severe traffic accidents, extreme
weather conditions. Due to conceivably low signal-to-noise
ratio (SNR) conditions, each vehicle may be not able to de-
code the broadcasted message reliably relying on the indi-
vidual observation [94]. Assuming that at time instant n, the
AP broadcasts message xn to the IVN. For simplicity, the
transmitted message is a binary vector of length J , i.e., xn, j ∈
{0, 1}, 1 ≤ j ≤ J . We assume that the channels from the AP
to the vehicles are memoryless and independent for different
vehicles. Different from the target tracking problem where
the target location is a continuous random variable, using the
MMSE estimation for discrete random variables is generally
suboptimal. Therefore, we consider the MAP estimator in (5)
that the estimate of the message is given by

x̂n = arg max
xn∈BJ

p(xn|rn). (52)

Note that in each time instant, the broadcasted message is
irrelevant from the the messages in previous time slots. Hence,
xn does not evolve with time and subscript n can be omitted in
the sequel. Since the AP is moving and the signals may be ob-
structed, the vehicles are not able to acquire the full message,
i.e., only part of vector xn is observed. Without loss of gener-
ality, we consider the binary erasure channel (BEC) model for
the lth AP-vehicle link as h(l ) = [h(l )

1 , h(l )
2 , . . ., h(l )

J ]T, with all
entries independent and identically distributed (i.i.d.), obeying
Bernoulli distribution

h(l )
j =

{
0 with probability ε

1 with probability 1 − ε
, (53)

where 0 < ε < 1 denotes the erasure probability. With the
definition of h(l ), the observation model of the lth vehicle is
given by

r(l ) = h(l ) � x + z(l ), (54)

where the Gaussian noise z(l ) has a power spectral density
(PSD) of N0. For the centralized network decoding, the fusion
centre constructs the factor graph after receiving all observa-
tions r(l ),∀l from the vehicles and then determines the belief
of x via message passing, formulated as

b(x) ∝ p(x)
L∏

l=1

μr(l )→x(x). (55)

The message μr(l )→x (x) is identical to the likelihood function
of r(l ) conditioned on x, i.e., p

(
r(l )|x). Under the assumption

that the message x is generated with equal probability of 0 and
1, to maximize b(x) is equivalent to finding the maximum of
the log-likelihood p(r|x). Since the elements in x are indepen-
dent, the estimate of x can be determined with element-wise
operations. For example, the decision of x j = 0 or x j = 1 is

VOLUME 1, 2020 203



YUAN ET AL.: DISTRIBUTED ESTIMATION FRAMEWORK FOR BEYOND 5G INTELLIGENT VEHICULAR NETWORKS

made by comparing its log-likelihood ratio (LLR)

γ j = log
p
(
r j |x j = 1

)
p
(
r j |x j = 0

) (56)

with 0, where r j = [r(1)
j , . . ., r(L)

j ]T denotes the vector con-
taining all observations related to x j . Having (56), the element
x j = 0 if γ j < 0 and vice versa. After decoding, the RSUs
feed back the full message to the vehicles. In the case that an
RSU fails to function as normal, all vehicles in its area of cov-
erage cannot receive the full message, leading to tremendous
challenges for IVNs.

Next, we show how the message is decoded in a distributed
and cooperative way, which is robust to the malfunctions of
the RSUs. According to the framework in Section III, we first
find the local metric L(r(l ), x), given by

L(r(l ), x) = − 1

2N0
xTdiag[h(l )]x + xTdiag[h(l )]r(l )

N0
. (57)

It can be observed that the expression of the local metric
L(r(l ), x) is fully characterized by channel coefficients h(l ).
As the global metric L(r, x) is simply the summation of all
local metrics, the vehicles cooperate with their neighbors,
then exchange and update channel parameters h(l ) follow-
ing the consensus operations in Section III-C. After running
a few iterations, the vehicles reach consensus on the aver-
age of all h(l ). The resultant channel coefficients h̄ are used
for calculating the belief b(x) across all vehicles to decode
the original message broadcasted from the AP. For the BEC
model, exchanging the channel parameters is direct and effi-
cient. However, if the channel model become complex, such
as frequency selective channel, sending channel parameters
becomes resource inefficient. To this end, we propose an alter-
native method by exchanging the LLRs of the message among
the vehicles in IVN.

Let us reconsider the LLR (56). Since the observations at
different vehicles are independent, the distribution p(r j |x j )
factorizes as p(r j |x j ) =∏L

l=1(r(l )
j |x j ) and γ j is rewritten as

γ j =
L∑

l=1

log
p(r(l )

j |x j = 1)

p(r(l )
j |x j = 0)

=
L∑

l=1

γ
(l )
j . (58)

Obviously, the global LLR of decoding a bit in the message
x is the summation of all local LLRs. We stack γ j,∀ j, as a
vector γ , which can also be written as γ =∑L

l=1 γ (l ), where
γ (l ) = [γ (l )

1 , . . ., γ
(l )
J ]T. Consequently, distributedly decoding

the full message can be achieved by performing consensus
operations of the local LLRs, i.e., with metropolis update
weight,

γ (l )(t ) = ξ (l,l )γ (l )(t − 1) +
∑

l ′∈S (l )
n

ξ (l,l ′ )γ (l )(t − 1). (59)

FIGURE 7. The SPA-based consensus algorithm.

Let us consider the conventional graph-based decoding al-
gorithm, in which variable nodes send the extrinsic LLRs to
the check nodes to update the corresponding information. This
procedure is similar to the considered networking decoding
problem, in which the check nodes define the equity con-
straints. Motivated by this, we propose an SPA-based consen-
sus method based on an extended factor graph as shown in
Fig. 7. In the graph, all vehicles are generalized as a special
type of constraint node, which acquires observations from the
channel and performs the LLR updating. In particular, the
local LLRs for each vehicle are updated as

γ (l )(t ) = γ (l→l ) +
∑

l ′∈S (l )
n

γ (l ′→l )(t − 1), (60)

where γ (l→l ) is defined as the “intrinsic information” repre-
senting the information obtained by vehicle l solely based on
its observation and γ (l ′→l )(t − 1) is the “extrinsic informa-
tion” passed from vehicle l ′ to vehicle l at the t − 1th iteration.
In particular, we have

γ (l→l ′ )(t ) = γ (l )(t ) − γ (l ′→l )(t − 1). (61)

It should be noted that the intrinsic information is purely the
information based on the local observation, which remains
the same during the iteration. However, the extrinsic informa-
tion is updated in each iteration according to the messages
from neighboring vehicles. The consensus is reached after
few iterations, which is similar to the conventional SPA-based
decoding algorithms.

Finally, the local LLRs of the vehicles converge to the
global LLR and the full message is decoded over the IVN.
Compared to the consensus algorithms introduced in Sec-
tion III-C, the SPA-based consensus method experiences the
same benefit as the standard gossip method, which does not
need the prior knowledge of the node degree. All vehicles
can broadcast their information directly and update their local
LLRs based on the received information. Different from the
standard gossip method, the convergence speed of the SPA-
based approach will not be affected since the local LLRs of
all vehicles are updated in each consensus iteration.
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Remark 2: For the cooperative network decoding problem,
if the vehicles can share the same codebook, we can further
achieve some benefits from applying channel coding.

In particular, there are various methods for improving the
system performance of distributed estimation. Channel coding
has been widely recognized as an efficient method to combat
the influence of channel impairments such as fading and noise,
thus enabling reliable communication. Therefore, it is natural
to expect that channel coding can play an important role in
network decoding [118]. In specific, the message broadcasted
from the moving AP can be channel-coded, in which case
the received message for each vehicle is therefore a part of
the codeword that is corrupted by noises. Assuming that the
codebook is available for all vehicles, each vehicle can de-
code the received message individually. After decoding, the
extrinsic information of each vehicle in the form of LLR
can be exchanged with the neighbouring vehicles in order to
reach a common consensus. Compared to the uncoded case,
the advantages of cooperative network decoding with chan-
nel coding are three-fold: 1) Improved reliability: Since the
broadcasted message is channel-coded, the decoding output
of each vehicle is then confined within a subspace according
to the codebook. A proper designed codebook can eliminate
the error patterns with relatively small Euclidean distances
and overcome the influence of erasure and noise. 2) Enhanced
communication efficiency: Channel coding can help the con-
vergence speed of the graph [119]. In particular, the code can
be designed to maximize the mutual information between the
broadcasted message and the the extrinsic information from
each vehicle in a statistical way according to the channel
model. Therefore, the number of required message iterations
can be reduced. It has been shown in the literature [120] that
a properly designed code over a similar channel model can
not only improve the error performance but also provide a
significant reduction of required message iterations. 3) Im-
proved resource utilization: Channel coding provides a strong
correlation between the symbols in the message. Therefore, it
is not necessary to pass all the extrinsic information after de-
coding to the neighboring vehicles. For instance, it is possible
to only pass the information of the data symbols instead of the
information of the whole codeword for systematic codes. The
neighboring vehicles can simply process the received infor-
mation by assuming the corresponding information of parity
symbols are punctured. Note that, passing partial informa-
tion may lead to more message iterations. However, this may
be potentially valuable in the case of high dynamic vehicle
network, where the the message length between neighboring
vehicles is strictly limited.

V. NUMERICAL RESULTS
This section presents the simulation results to verify the effec-
tiveness of the proposed distributed estimation framework.

A. SIMULATION SETUP
We consider a vehicular network as shown in Fig. 3, where
a dual carriageway of has 4 lanes and each lane has a width

FIGURE 8. A single trail of target tracking (straight line trajectory).

of 3.5 m. Without loss of generality, we set the bottom left
corner of the road as the origin, denoted by coordinate [0, 0]T.
The initial locations of the vehicles are uniformly distributed
on the carriageway. The vehicles move along the road with
speeds randomly generated from a uniformly distributed ran-
dom variable with range [10, 15] m/s. The communication
range for two vehicles are set to 20 m unless otherwise spec-
ified. For the centralized method, the observations from the
vehicles are collected by a fusion centre under the assumption
of perfect vehicle-RSU links. For the distributed approach,
metropolis consensus algorithm is utilized and the maximum
iterations for consensus operation is set to Niter = 10. All re-
sults are averaged from 1000 independent Monte Carlo trails.

B. TARGET TACKING
For the task of external target tracking as in Case I in
Section IV, we assume that the observation noise power at
reference distance d0 = 10 m is v0 = 1m2. The initial guess
of the target location is drawn from a Gaussian distribution
centered at the actual target location with a standard devi-
ation of 10 m on x and y axes, respectively. In Fig, 8, we
illustrate a single trail of the target tracking results with 64
vehicles, where the external target is moving along a straight
line. The estimated trajectories of both the centralized and the
distributed methods are illustrated. We can see that the pro-
posed factor graph method is capable of accurately tracking
the target. It can also be observed the trajectory correspond-
ing to the distributed method almost coincides with that of
the centralized method, which validates the accuracy of the
proposed distributed estimation framework.

In Fig. 9, we depict the root mean square error (RMSE) of
target location based on three consensus algorithms, i.e., the
original consensus, the metropolis consensus, and the broad-
cast gossip algorithms, versus the number of iterations at time
instant 50. The RMSE of the centralized method is included
as the performance bound, which does not require the con-
sensus iterations. It can be seen from Fig. 9 that the original
consensus and the metropolis consensus algorithms converge
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FIGURE 9. The RMSE of the target location versus the number of iterations.

FIGURE 10. The CDF of the target location (straight line trajectory).

to the performance of the centralized one rapidly after a few
iterations, while the broadcast gossip does not converge to the
performance bound due to its asymmetrical communication
protocols [110]. Compared to the original consensus method
and the broadcast gossip one, the metropolis consensus al-
gorithm has the fastest convergence speed due to the use of
adaptive weights for different vehicles. We further compare
the cumulative distribution functions (CDFs) of tracking error
relying on the proposed distributed estimation framework in
terms of different number of vehicles, as shown in Fig. 10.
Obviously, a higher number of vehicles will lead to more
observations of the target and therefore improve the tracking
performance. Tracking the target based only on local obser-
vations (1 vehicle curve) suffers from significant performance
degradation, which shows the benefits of enabling distributed
estimation in IVNs for B5G.

Fig. 11 plots the RMSEs of target location versus time
instant parameterized by different number of vehicles. We can
see that for all cases, the proposed target tracking method
can efficiently track the target over time. It is interesting to
see that the RMSE curve first decreases and then increases
with respect to the time index. This is because when the

FIGURE 11. The RMSE of the target location versus time index (straight
line trajectory).

target is moving away from the vehicles, the observation noise
becomes larger and the positioning results are impacted. From
Fig. 11, it can be seen that 16 vehicles can provide sufficiently
accurate results compared to the case with 64 vehicles case.
This motivates us to divide the vehicles into some subgroups
and only vehicles in the same subgroup exchange their infor-
mation. Consequently, the communication signaling overhead
of the IVNs can be reduced. In the following, we will consider
a more complex circular trajectory to discuss the performance
of the proposed distributed algorithm.

In Fig. 12, we demonstrate the results for target trajectory
tracking. Compared to the straight line trajectory case, to track
the circle trajectory is more challenging since the moving
direction of the target varies with time. Two networks with
16 and 64 vehicles are considered. We can see that an IVN
with 64 vehicles achieves a high accuracy while the result of
using 16 vehicles has localization ambiguity.

Similar to the case of straight line trajectory, we illus-
trate the CDFs of target location error at time n = 50 for
L = 1, 4, 16, 64 vehicles in Fig. 13. Compared to Fig. 10,
we can observe that the performance gap between the plots
corresponding to different L becomes larger. The target track-
ing results relying only on local observations experience a
extremely poor performance with more than 90% location
errors larger than 4 m. This can be explained by the fact that
since the target moving direction varies, the prior information
obtained from the state evolution becomes inaccurate. Hence,
more observations are demanded to refine the estimation of
target location.

Finally we look at the tracking performance in terms of the
RMSEs versus time in the circle trajectory case in Fig. 14. As
expected, the gaps between each curves become larger than
that in the line trajectory case. Moreover, due to the frequent
variation of the moving direction of the target, the IVN fails
to efficiently obtain the target location in the first few time
instants when the number of observations are insufficient.
Again, as the target moves towards and away from the ve-
hicles, the RMSEs experience a trend of first decreasing then
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FIGURE 12. A single trail of target tracking (circular trajectory).

fluctuation. To conclude, relying on the proposed distributed
estimation framework, the vehicles in the IVN can accurately
track the noncooperative moving target. In fact, having more
vehicles in network will apparently improve the tracking ac-
curacy, especially when the target adopt a complex moving
pattern.

C. NETWORK DECODING
In this subsection, we study the performance of the proposed
distributed framework for network decoding. Binary phase
shift keying modulation is employed. We consider the infor-
mation vector x having a length of 100 and the number of
vehicles L = 64. The erasure probability is set to ε = 0.5, un-
less otherwise specified. The BER performance are averaged
across all vehicles.

We first evaluate the BER-performance of the distributed
framework for network decoding in B5G scenarios versus
the bit SNR. Again, the BER performance corresponding to
the centralized algorithm is used as a benchmark. Distributed
algorithm with 1 iteration can be regarded as performing de-
coding based on only local observations at vehicles. Under

FIGURE 13. The CDF of the target location (circular trajectory).

FIGURE 14. RMSE of the target location versus time index (circle
trajectory).

this circumstance, the vehicles fail to decode the message
from the AP, leading to unacceptably high BER. However,
after only two consensus iterations, the BER performance of
the distributed framework can attain that of the benchmark
algorithm. To further elaborate the convergence behavior of
the distributed framework, we illustrate the BER performance
versus the number of iterations in Fig. 16, where the number
of vehicles is set to be L = 64 and the erasure probability is
set to be ε = 0.5. Six values of Eb/N0 are considered. We can
observe that for all Eb/N0 values, the proposed distributed
approach can converge after three consensus iterations on
average. Besides, further increasing the number of consensus
iterations can improve the performance but the gain is only
marginal. Therefore in practical B5G IVNs, we can choose a
relatively small number of iterations for decoding while pre-
serving an excellent performance, especially for low SNRs.

In Fig. 17, we compare the BER performance in terms of
different communication ranges. The maximum number of
consensus iterations is set to 3 to reduce the decoding com-
plexity. It can be seen that the increase of the communication
range leads to better decoding performance. The reasons for
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FIGURE 15. BER of the proposed algorithm versus Eb/N0 with different
number of iterations.

FIGURE 16. BER of the proposed algorithm versus the number of
iterations parameterized by different Eb/N0.

FIGURE 17. BER of the proposed algorithm versus Eb/N0 with different
communication range.

the performance loss in the scenarios with 10 m and 15 m
are two-fold. The first one is that when the communication
range is small, the resultant graph G may not be connected.
A vehicle has no neighbors will fail to decode the message
and degrade the average BER performance. Another reason

FIGURE 18. The system BER versus Eb/N0 for various erasure probabilities.

FIGURE 19. Convergence of the proposed distributed network decoding
approach.

is the proposed distributed processing framework depends on
a multi-hop routing scheme. For an isolating vehicle which
has only one neighbor, the connection with other neighbors
requires several hops. Thus, a higher number of iterations is
needed for the network to reach consensus.

In Fig. 18, the impact of the erasure probability is con-
sidered in an IVN with L = 16 vehicles. Three cases with
probabilities of ξ = 0, 0.5, and 0.8 are illustrated for both
centralized and distributed implementations. Specifically, ε =
0 corresponds to AWGN channel. In all three cases, the
BERs of the distributed framework converge to the corre-
sponding centralized performance, verifying the effectiveness
of the distributed framework in handling network decoding
problems.

Let us now characterize the convergence of the proposed
distributed algorithm in Fig. 19, where the SNR is set as
Eb/N0 = 10 dB and the number of vehicles is L = 16. We
observe that the distributed algorithm can converge to the
centralized one after 4 consensus iterations for both ε = 0
and ε = 0.5. The similar convergence trends show that the
convergence behavior of the cooperative network decoding is
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FIGURE 20. Comparison of uncoded and coded systems.

dominated by the network topology instead of the channel pa-
rameters. Moreover, for the case with a larger ε, the BER after
the second iteration is close enough to that of the benchmark,
which validates our aforementioned discussion on the reduced
number of iterations.

We finally show the benefits of employing channel-
decoding by comparing the BER performance of uncoded
and coded systems in Fig. 20. We employ a rate-1/2 feed-
forward (7, 5) convolutional code. It can be observed in this
figure that in the high SNR regimes, the BER performance of
coded systems is better than that of the uncoded systems. In
particular, the BER performance of the coded system with 3
iterations has a 2 dB gain over the uncoded systems with 5
iterations. This indicates that the channel coding not only im-
proves the error performance but also requires less number of
consensus iterations compared to the uncoded systems. On the
other hand, the BER performance of both coded and uncoded
systems converges to the centralized performance with only 3
consensus iterations. This clearly substantiates the proposed
distributed framework.

VI. FUTURE WORKS AND CONCLUSIONS
We have introduced a distributed estimation framework and
emphasized its benefits for B5G IVNs. This section will first
provide some challenges and future works for the develop-
ment of distributed estimation for IVNs. Then we will sum-
marize this paper and draw some conclusions.

A. CHALLENGES AND FUTURE WORKS
1) Security Issues

Although distributed estimation and detection has
shown its potentials in IVNs for different applications, it
also raises the concerns of security and privacy. For in-
stance, vehicles share the information with their neigh-
boring vehicles in each consensus iteration. This proto-
col may inadvertently lead to the leakage of some con-
fidential information to unauthorized users [121]. In a
worse case, the existence of eavesdroppers or malicious

users will result in severe security issues. Therefore,
the physical security issue is of high importance for
distributed estimation in IVNs. A possible solution is to
exploit the techniques from the physical layer security
broadcast artificial noise to contaminate the received
signaling of malicious users [122]–[124]. However, how
to ensure the secrecy of information transmission in
distributed estimation for IVNs is still challenging and
needs to be investigated.

2) Imperfect Vehicle States
Throughout this paper, we assume that the states of
vehicles are perfectly known. However, this information
is not always available, especially in some harsh envi-
ronments where the sensors on vehicles are not work-
ing. It is a crucial requirement to accurately obtain the
vehicle states in order to fulfill the function of sensing
the environments. Thus, simultaneous estimating both
the unknown variables and the vehicle states could be
one of the future topics. Moreover, the uncertainty of
the vehicle states should be taken into account when
performing distributed estimation and detection. Also,
the way to merge the information related to vehicles
and to unknown variables is still not clear. Our dis-
tributed estimation framework is potential to address
this challenge by adding corresponding variable nodes
to factor graph and implementing the message passing
algorithm. Some initial attempts in the literature can be
found in [125], [126].

3) Communication Aspects
Wireless communication is the key enabler for real-
izing the potentials of IVN in the future B5G wire-
less networks. In particular, millimeter wave (mmWave)
communication [127]–[129] has been widely recog-
nized as an enabling technology to meet the needs of
data-intensive applications in future in-vehicle infotain-
ment systems. Besides, the abundant spectrum in the
mmWave frequency band can be exploited for accurate
localization and tracking of vehicle. New distributed
mmWave systems [130] should be developed for cater-
ing the inherent distributed property in signal process-
ing and communications of IVN. Besides, robust and
fast beam alignment should be addressed in the highly
mobile mmWave IVN. In addition, to accommodate the
massive number of vehicles in IVN with limited re-
sources, novel multiple access schemes, such as random
access [131]–[133], need to be proposed for facilitating
spectrally and energy-efficient communications [134],
[135]. How to evaluate the performance gain of NOMA
in IVNs and how to efficiently allocate the system re-
sources are main challenges remained to be tackled.

4) Learning-Assisted Distributed Signal Processing
Recently, deep learning (DL) technology utilizing a
deep neural network (DNN) can intelligently explore
the features from different environments in a data-
driven manner [136]. It has shown its great potentials
in the future wireless communications, to solve the
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problems of signal detection [137], classification [138],
and sensing [139]–[141] while achieving satisfactory
performance. For the distributed signal processing in
IVNs, all vehicles can cooperative to use the same DNN
structure to extract common features. Then the common
DNN structure can be reused by different vehicles by
adjusting the DNN to satisfy their requirements, which
may achieve good performance with a relatively low
overhead. How to share the environment variations and
adjust the DNN across the vehilces are still under in-
vestigation. It is believed that the learning-assisted dis-
tributed signal processing is of great importance in the
future IVNs.

5) Joint Sensing and Communication Designs
As a pair of essential functionalities in the IVNs, com-
munication and sensing are envisioned to be inter-
twined. Having a single-device providing both sens-
ing and communication functionalities is expected to
significantly reduce the hardware complexity associ-
ated with the sensors mounted on vehicles or road in-
frastructures, while improving the overall performance.
To this end, research efforts towards dual-functional
radar-communication (DFRC) systems are well under-
way [142]. While existing schemes have addressed
the DFRC design issues for general cellular transmis-
sion [143]–[146], the specific joint sensing and commu-
nication approach tailored for V2X scenarios remains
widely unexplored. Some initial ideas on this topic can
be found in recent work, e.g., [147].

B. CONCLUSIONS
The awareness of environments at vehicles is one of the key
features in B5G IVNs. Unlike current vehicular networks
relying on feedback-based schemes, the future IVN should
be resilient to possible link failures and malfunctions of the
RSUs. In this paper, we have provided an overview of the
communications and signal processing problems in vehicular
networks. From the viewpoint of detection and estimation, the
parameters of environments are obtained using the collected
observations via appropriate estimation methods. Then, we
established the general framework for estimating the variables
of interest and proposed a factor graph method for inferring
the variables.

By enabling cooperations amongst the vehicles, we pro-
posed the distributed implementations of the aforementioned
factor graph approach. Relying only on local computations
and communications with neighbors, all connected vehicle are
capable of determining the variables without the help of the
RSUs. Compared to the centralized method, the distributed
method has the benefits of high scalability and robustness.
We further introduced three approximations for reducing the
communication overhead of consensus operations. Then we
studied two cases of distributed target tracking and coopera-
tive network decoding to show that the proposed framework is
flexible and can be modified to fit different problems in IVNs.

Simulation results verify the effectiveness of the proposed al-
gorithms, showing the potential of the distributed framework
in solving several practical applications in IVNs for the future
B5G wireless communications.
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