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ABSTRACT This paper provides a comprehensive overview of the evolution of Machine Learning (ML),
from traditional to advanced, in its application and integration into unmanned aerial vehicle (UAV) com-
munication frameworks and practical applications. The manuscript starts with an overview of the existing
research on UAV communication and introduces the most traditional ML techniques. It then discusses UAVs
as versatile actors in mobile networks, assuming different roles from airborne user equipment (UE) to
base stations (BS). UAV have demonstrated considerable potential in addressing the evolving challenges
of next-generation mobile networks, such as enhancing coverage and facilitating temporary hotspots but
pose new hurdles including optimal positioning, trajectory optimization, and energy efficiency. We therefore
conduct a comprehensive review of advanced ML strategies, ranging from federated learning, transfer
and meta-learning to explainable AI, to address those challenges. Finally, the use of state-of-the-art ML
algorithms in these capabilities is explored and their potential extension to cloud and/or edge computing
based network architectures is highlighted.

INDEX TERMS Unmanned aerial vehicle, 6G, federated learning, transfer learning, meta learning, and
explainable AI.

I. INTRODUCTION
UAV are aircraft that operate without a pilot and have been
recognised as a promising solution in a wide range of ap-
plications and scenarios due to their mobility, flexibility, and
adaptive altitude [1]. The recent evolution of communica-
tion technology, exemplified by the advent of cutting-edge
wireless networks, has ushered in a new era of capabilities
for Unmanned Aerial Vehicle (UAV) systems. These ad-
vancements, exemplified in the survey conducted by Bithas
et al. [2], bring higher reliability, reduced latency, and en-
hanced network throughput to UAVs. Consequently, UAVs

now possess greater degrees of freedom, empowering them
to undertake increasingly complex tasks.

One of the features of UAVs is their ability to operate
effectively at low altitudes. In this role, UAVs can function
as a cellular-connected User Equipments (UEs), enabling a
wide variety of applications, including the deployment of
probe sensors, facilitating short-distance air deliveries, real-
time video streaming, and conducting surveillance operations,
among others. Simultaneously, they can serve as Base Station
(BS) to provide on-demand wireless communications for the
specified ranges. Compared with traditional BS, UAV BSs
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can adjust their altitude, avoid obstacles, and establish Line
of Sight (LoS) communication links with ground users [3].
In addition, UAVs can be rapidly deployed in a variety of
real-world scenarios, including specific areas during tempo-
rary events and disaster situations. However, the integration
of UAVs into communication networks is not without its chal-
lenges. Dynamic path planning, optimization of UAV spacing
and hovering altitudes for maximum coverage, and addressing
constraints related to size, weight, and power (SWAP), as
outlined in Moza et al.’s survey [4], are among the hurdles that
must be surmounted during implementation. In response to
these challenges, an integrated framework of Machine Learn-
ing (ML) and Artificial Intelligent (AI) can provide suitable
solutions for many UAV related problems, especially on UAV
navigation, control, and autonomy [5].

This survey explores the relationship and applications be-
tween UAVs and ML techniques in communication, focusing
on the integration of recently developed and cutting-edge ML
and AI, offering insights into how these technologies can
provide solutions to the challenges faced by UAVs in commu-
nication networks, with a particular focus on UAV navigation,
control, and autonomy. Additionally, the survey highlights
the pivotal role of UAVs in modern communication systems,
addressing the opportunities and challenges presented by their
rapid deployment and adaptability.

A. UAV CLASSIFICATION
With the rapid advancement of UAV technology and enhanced
hardware capabilities, various types of UAVs have emerged
to cater to diverse requirements. These classifications are
typically based on their wireless system-carrying capabili-
ties, range, altitude, flying mechanism, and size [6]. Within
the realm of UAV communication, altitude and wing type
serve as common categorization criteria. Based on altitudes,
UAVs can be categorized into High Altitude Platform (HAP)
and Low Altitude Platform (LAP). Regarding low-altitude
UAV designs, they can be broadly categorized into fixed-
wing and rotor-wing designs. The former emulates airplane
designs, utilizing wings for lift generation, while the latter em-
ploys multiple rotors and propellers for thrust generation [7].
Both designs offer unique advantages and drawbacks. Fixed-
wing designs are efficient due to reduced thrust requirements,
resulting in prolonged flight time. However, they necessi-
tate continuous forward movement, preventing them from
hovering above specific locations. Additionally, fixed-wing
UAVs require sizable open spaces for takeoff and landing,
posing challenges in urban environments [8]. In contrast,
rotor-wing UAVs are better suited for urban settings due
to their hovering capabilities, but they grapple with battery
life and resource limitations [9]. In addressing these issues,
the level of intelligence and the type of ML applied be-
come increasingly crucial. This underscores the need for
advancing the intelligence of rotor-wing UAVs to overcome
challenges related to their limited resources and operational
duration.

In addition to traditional low-altitude and high-altitude
UAVs, Tethered, as a special aircraft, has also begun to re-
ceive more and more attention, and found that it has its own
unique advantages. To a certain extent, Tethered alleviates the
problems of limited UAVs load, insufficient battery energy,
and short air time, although part of the flexibility as a UAVis
sacrificed. Tethered UAVs are a combination of UAVs and
tethered integrated cables that transmit power and signals via
cables that can remain in the air for longer time and complete
their tasks. This significantly enhances the payload capacity
and mission market for UAVs. Tethered carriers can be in
different forms, mainly including Tethered Helikite and Teth-
ered UAV. The tethered helikite is a new type of aircraft that
combines a helium balloon and a kite. It maintains altitude
through buoyancy and is controlled by connecting cables. The
tethered UAV is a low-altitude UAV linked by cables. Tethered
Helikite also remains stable in strong winds and is more capa-
ble of flying through the air than traditional balloons. At the
same time, it can also reach a higher altitude to complete the
task, but there is no UAV-level position adjustment ability or
flexibility [6]. The tethered UAV can also achieve a larger size
LAP with the support of the cable, which has a longer standby
time. At the same time, in addition to cables, other pipes can
also be embedded in the link, such as water pipes to serve as
fire extinguishing UAV. This method significantly enhances
the aircraft’s payload capacity and utility. However, these two
types of Tethered require vehicles or vessels to transport them,
and they cannot stray too far from the carrier. Nevertheless,
tethered aircraft are still greatly improved in many scenarios.

B. MOTIVATION
As the use of UAVs became more prevalent, it could be ob-
served that they are increasingly desired in a growing variety
of industries, particularly for enabling communication. As a
flexible embedded flight platform, UAVs are able to combined
with different kinds of devices to realize different complex
functions. This has significant benefits for Internet of Things
(IoT) and smart city related applications and enhances the
overall potential of UAV systems.

During the implementation of these applications, several
limitations that cannot be disregarded have been found. First,
the UAV needs better quality communication circumstances in
order to achieve their requirements, such as the chance of LoS
between the controller and the UAVs. This necessitates good
position awareness, stability, and comprehensive trajectory
planning. However, as a small mass aircraft, the performance
of UAVs will be significantly impacted by the weather and
environment. It is challenging for UAVs to maintain steady
performance under extreme weather conditions or complex
environments. In addition, UAVs are restricted by the amount
of weight they can carry, which will have an impact on the
endurance time and processing power. Most commercially
available low-altitude UAVs have a flight duration of less than
three hours [2]. This significantly increases the dependence of
UAV performance on good resource management, for which
AI provides many suitable solutions for management and
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planning. In the beginning, UAVs were initially meant to be
manually controlled by people, but with the advancement of
UAV hardware and software technology, UAVs now need to
operate in more complicated situations with faster speed and
longer range. It is difficult to always maintain UAVs within
people’s sight, and manual control makes the UAV’s flight in
complicated terrain more reliant on the controller’s knowledge
and technology. In this instance, AI may utilise the data ac-
quired by UAV sensors to do various tasks and make more
sensible judgements on its own. The role of AI is becoming
more and more important for UAVs, and at the same time,
UAVs have higher and higher requirements for the intelligence
and adaptability of AI.

Many current studies and markets have also proved that
the combination of AI and UAV has greatly improved the
performance of UAVs and their ability to deal with different
scenarios, making UAVs an expected mainstream solution in
many aspects in the future. ML is the most important technol-
ogy and tool to realize the intelligence of UAVs. ML allows
the integration of AI algorithms, which are able to enhance
the overall system level of intelligence and effectively reduce
the limitations of the constrained battery and low computa-
tional capabilities of UAVs. At the same time, ML-related
technologies are updated and iterated fast enough that they
can better adapt to the rapid upgrade of UAV hardware and
the improved requirements of automation. UAVs benefit from
these and have a chance to perform different functions in a
wider variety of roles.

The driving impetus behind this paper is to outline the
various types of ML methodologies and elucidate the integral
role they play in the domain of UAV communication. To attain
this objective, an exhaustive survey and classification of the
associated ML technologies and their corresponding applica-
tions was completed, with an emphasis on the advancements
made in recent years. The evolution of ML employed as a road
map to compare the strengths of these emerging paradigms
of conventional methodologies when applied to UAVs. Of
special note is our focus on the groundbreaking applications of
these nascent ML methodologies as they integrate with UAVs
within the ambit of the forthcoming Sixth Generation (6G)
communication networks [10]. In an endeavor to provide a
comprehensive understanding, this paper presents a detailed
exposition of the principles governing these novel ML tech-
niques as well as delineates potential trajectories for their
future application. This focus on the cutting edge and new
types of ML underscores commitment to stay at the forefront
of technological evolution and its implications for UAV com-
munications.

C. EXISTING SURVEYS ON UAV COMMUNICATIONS
UAV communication has garnered the interest of a great num-
ber of people due to its status as an emerging technology
that is integrated deeper and deeper with the Fifth Genera-
tion (5G) and 6G. As a result, a lot of recent research has
been conducted in related areas. [11] surveys all the issues in
UAV communication, identifies which problems merit more

FIGURE 1. Researches on the applications of UAVs in different practical
scenarios and regions.

urgent attention and resolution, and then provides a summary
of effective solutions. Then the tutorial in [18] provides an
overview of Artificial Neural Networks (ANNs) in wireless
communications, which started the discussion on the impor-
tance of ML in UAV-related problems.

In the context of UAV communication, [4], [19] provide
an overview of the applications and challenges of UAV com-
munication with a focus on cellular networks. The authors
of [20] present a tutorial on wireless communication with
UAVs, taking into account a wide range of potential appli-
cations, and have discussed in more detail the role of UAVs
in communications. Then [12] provides an exhaustive review
of various 5G techniques based on UAV platforms, which are
categorized by different domains, including the physical layer,
network layer, caching, and so on. [13] presents a compre-
hensive survey of the literature on the location optimization
of UAV-BSs in Next Generation (6G and beyond) Wireless
Networks. [7] focuses on the complementary activities from
academia, industry, and standardization on the important issue
of integrating UAVs into cellular systems. [14] surveys the
UAV communication challenges and state of the art from
the millimeter Wave (mmWave) point of view. In addition
to ML technology, Fig. 1 shows the specific application of
UAVs in different situations in actual scenarios. There are also
many works summarizing these relevant UAV communication
applications based on the types and characteristics of UAVs
and then combining them with the specific requirements for
communication, such as [21] and [8]. In particular, the authors
of [8] have summarized the ML required for UAVs in the
process of accomplishing their tasks. This paper builds on
these articles by updating emerging ML techniques and the
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TABLE 1. List of Related Works and Contribution of This Survey

broader application areas of UAVs while investigating the role
of different MLs in more detail from the perspective of the role
that UAVs play in communications.

In addition, the real-life applications of ML in UAVs com-
munication and networking have been expanded at a rapid
rate [22] [23] [24][25], and more ML types, such as TL
and meta learning, suitable for UAV-related applications have
emerged. Existing aforementioned surveys do not fully cover
these emerging ML-related approaches and their use cases in
UAV communications. Table 1 shows a comparison of related
surveys and the contributions of this survey, which also shows
the ML areas covered.

D. METHODOLOGIES
This survey employs a meticulous methodology to explore
the role of cutting-edge ML technologies in enhancing UAV
communications, focusing on ML solutions that address key
challenges in localization, trajectory optimization, and energy
efficiency. Special attention is given to their application within
emerging 6G networks and their contributions to the develop-
ment of smart UAV functionalities. The approach for selecting
articles is rooted in relevance, novelty, and recency (with a

preference for studies published in the last decade), employing
strategic keyword searches and citation tracking to pinpoint
foundational and innovative research from esteemed sources
such as IEEE Xplore and ACM Digital Library. Keywords
such as “Unmanned Aerial Vehicles,” “Machine Learning,”
“UAV communication systems,” “localization,” “trajectory
optimization,” “energy management,” and “6G networks”
were strategically chosen to aid this search. Through critical
analysis and synthesis, the survey highlights current trends,
advancements, and gaps in ML-driven UAV communications,
underscoring the key roles of ML technologies in advancing
this field. The examination focuses on the relationship and
applications between UAV operations and ML innovations,
offering a comprehensive overview of the state-of-the-art de-
velopments and guiding future research directions in this
rapidly evolving area.

E. CONTRIBUTIONS AND THE STRUCTURE OF THE PAPER
This survey makes contributions to the field of UAV com-
munication by focusing on the integration of ML techniques,
especially modern and cutting-edge ones, and addressing the
challenges and opportunities that arise in this domain. It
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provide a detailed survey and classification of various ML
methodologies which go beyond traditional ML approaches
and delve into the realm of cutting-Edge ML techniques, in-
cluding meta learning, Explainable AI (XAI), FL, and more.
this survey reviews the different roles of UAVs within the
network architecture and explores the practical use cases of
UAVs in various domains, highlighting the requirements and
challenges they may encounter. To address these challenges,
the proposed techniques are critically reviewed based on the
unique characteristics of different use cases. By showcasing
practical use cases, the versatility and wide-ranging appli-
cability of UAV communication solutions are demonstrated.
Additionally, the survey incorporates the latest advancements
in 6G technology to anticipate future research directions. The
potential application of UAVs in cloud radio access network
(C-RA) and Open Radio Access Network (O-RA) architec-
tures is examined, revealing UAVs’ potential as mobile Radio
Units (RUs). Moreover, this survey highlights the applications
and advantages of UAVs as wireless infrastructure UE. By
identifying the strengths and challenges associated with this
role, the potential of UAVs to bridge connectivity gaps and
expand the scope of communication applications is unveiled.

The rest of this paper is organised as follows: In Section II,
a comprehensive overview of ML is provided, encompassing
both traditional ML technologies and emerging ones, along
with an analysis of their characteristics, differences, and appli-
cation scopes. Following this, in Section III, the multifaceted
roles that UAVs play in the field of communication are ex-
amined. This exploration is conducted within the context of
application scenarios, focusing specifically on the roles of
UAVs as BS and UE. In Section IV, The various challenges
and problems that UAVs encounter are addressed. These is-
sues have been categorized and addressed individually to
provide a comprehensive understanding of the barriers faced
in the deployment and use of UAV. Finally, the challenges
and opportunities that emerge from integrating UAVs with
6G, the forthcoming era of communication technology, are
explored. This leads to forecasting potential directions for
future research, offering insights into the evolving landscape
of UAV and ML interactions in the communication domain.

II. MACHINE LEARNING FOR UAV COMMUNICATION
ML is a subset of AI that consists of methods for teaching
machines how to learn on their own, which can enhance sys-
tem performance and make predictions based on past data or
experiences. ML techniques are becoming popular in a myriad
of domains, including transportation, finance, manufacturing,
wireless communications, and so on. In general, ML is built
on a framework for pattern recognition, and its primary goal is
to automatically adapt to environmental changes by exploiting
correlations between a collection of data and prior excellent
action sequences [26] ML presents a number of opportunities
for issue solving and performance enhancement within the
realm of UAV communication. Specifically, in the context
of wireless networks, ML delivers powerful predictive and
intelligent data analytic functions for UAVs, which improve

overall network operations, such as the prediction of envi-
ronmental features. At the same time, ML is also an ideal
tool for resource management of communication with UAVs,
especially in the fields of frequency allocation, spectrum man-
agement, and intelligent beam-forming [27].

In particular, UAVs need to face complex and unstable
environments most of the time, and traditional methods will
be subject to many restrictions. On the other hand, ML has
the ability to better integrate multiple sensors of UAVs and
enhance the potential of their cooperative ability. All in all,
the performance improvement of UAV communication by ML
is multifaceted and significant. ML is a highly diversified
method that involves various sorts of ML for different types of
applications and problems. This section briefly introduces the
main types of ML can be applied in the field of UAV commu-
nication and describes their advantages and limitations. The
categories of ML include supervised learning, unsupervised
learning, and RL. In addition, this survey also includes several
emerging ML methods in recent years: TL, FL, Meta learning
and Explainable AI. Because of their unique characteristics,
each of them is suited for usage in a variety of contexts;
nevertheless, in most cases, it is more typical for them to be
combined in a variety of ways according to specific require-
ments in order to resolve a variety of issues. Fig. 2 shows the
classification and relationship between different kinds of ML
that can be used in the field of UAV.

A. SUPERVISED LEARNING
Supervised learning, a fundamental ML approach, involves
training models with labeled data (Fig. 3). In this process, the
model learns from a dataset that includes both the features
(input) and the corresponding labels (desired output). This
training aims to teach the model to achieve a specific goal by
understanding the relationship between the input and output.
Typically, datasets are divided into a training set, used to teach
the model, and a test set, used to evaluate the model’s accu-
racy by checking its predictions against known outcomes. For
instance, supervised learning can classify UAV types, such as
distinguishing between fixed-wing and rotary-wing UAVs, by
training on data labeled with these categories. The process
works with datasets where both the characteristics of UAVs
(input) and their types (output) are clearly defined, making it
suitable for tasks with ample historical data where the desired
outcomes are known.

Most of the time, the supervised issues are separated into
two categories: regression problems and classification prob-
lems. The example of classifying UAVs just mentioned is a
classic classification problem. In classification problems, it is
possible to anticipate the result of discrete outputs. In other
words, input variables are capable of being translated into
discrete categories. In regression problems, the model tries to
predict the outcome as a continuous output by mapping the
input variables to a continuous function.

In addition to these two most common usages, it can also
be combined with neural networks to generate more flexi-
ble algorithms [28], such as Convolutions Neural Networks
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FIGURE 2. The classification and summary of major types of machine learning with their example.

FIGURE 3. Supervised learning.

(CNNs), Recurrent Neural Networks (RNNs), and Multi-layer
Perceptrons (MLP). The combination of supervised learning
and deep learning has allowed for the development of these
sophisticated applications. It finds extensive use in a variety of
domains, including language processing, environment identi-
fication, and others. These, along with their many uses, will
be discussed in further depth in the following paragraphs.

B. UNSUPERVISED LEARNING
Often referred to alongside Supervised learning is Unsuper-
vised learning, but it does not use labeled data. Unsupervised
learning (Fig. 4) allows us to approach problems with little
or no knowledge of the intended solution. Even if effect of
a variable is known, structure in the data still can not be
found. Unsupervised learning is the method of grouping data
variables according to the relationship between variables in
the data to find some underlying structures or hidden patterns
in the data. Once these have been discovered, they can be used
to make decisions and provide outcomes. For instance, unsu-
pervised learning can be used to discriminate UAV attributes
in order to pick the UAV that is best suited for various settings,

FIGURE 4. Unsupervised learning.

or UAVs can be trained to behave correctly in a variety of
different sorts of environments according to the features of
the environment.

This can be used to solve problems related to cluster-
ing the data, reducing data dimensions, and data generation.
There are several applications that are used more frequently in
the field of UAV communication. These applications include
Hard clustering, in which each data-point belongs to only one
group, such as K-means; Soft clustering, in which data-points
can also belong to another group, such as Gaussian mixture
models (GMMs) [29], and methods that are based on den-
sity, such as density-based spatial clustering of applications
with noise (DBSCAN). Utilizing K-means as an example, the
K-Means Clustering method is perhaps the most well-known
example of the partitioning clustering technique. The data set
is partitioned into a set of k groups when using this method,
where K is used to specify the total number of groups that
have been pre-defined. The center of the cluster is determined
in such a manner that the distance between the data points of
one cluster is as little as possible in comparison to the center of
another cluster. In the same way that supervised learning will
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FIGURE 5. Reinforcement learning: Actions that maximize rewards are
obtained by interacting with information from the environment.

be integrated with Deep Learning in the application process,
unsupervised learning will also be mixed with Deep Learning
in order to cater to a variety of requirements and intelligence
levels.

C. REINFORCEMENT LEARNING
RL is a ML method that consists of an agent interacting with
the environment iteratively. An agent refers to an object that
has the actual capacity of behaving or taking actions. RL
is an agent-based view of ML. The agent can be taught to
reach its goal of completing a task as successfully as possible.
Each attempt at the task is referred to as an episode. The task
involves a series of actions, observations, and rewards.

In RL, the learning process can be succinctly described
as follows: At any given time t , the agent observes the cur-
rent state of its environment. Based on these observations, it
selects an action and receives an immediate reward as feed-
back on the action’s effectiveness. Observations are defined
as the information received about the environment, effec-
tively delineating the state of the agent. The reward serves
as feedback from the environment, indicating the success or
failure of the implemented action. Decision-making in RL
regarding the action to take at time t is informed by both the
current observation of the environment and a history of past
observations. Therefore, the state s at time t encompasses all
relevant information about the environment at that moment,
critical data from previous moments, and details about the
agent’s internal structure. This iterative process of observa-
tion, action selection, and reward collection is depicted in
Fig. 5. Mathematically, it can be described with the 4-tuple
< S,A,P,R >, where S is the state space, A is the action
space, P is the state transition probability, and R the imme-
diate reward received by the agent. The central concept of RL
revolves around learning by reward, as previously mentioned,
where the agent aims to maximize its rewards through inter-
actions with the environment.

RL can also include a consideration of the underlying
model, leading to a distinction between two main types of

RL problems: model-based and model-free. Model-based RL
relies on a model to simulate the environment’s response to
the agent’s actions. Here, the goal is to predict the future
state and action based on the current state and action, exem-
plified by Hidden Markov Models [30]. However, in many
cases, supervised learning might offer a better approach to
these issues [15], making model-free RL increasingly popu-
lar. In model-free RL, even without predicting future states,
the agent can still identify the optimal action by evaluating
and selecting the best rewards, as previously discussed. A
classic model-free RL method is Q-learning, where the agent
calculates and follows the action with the highest Q-value,
reflecting the best expected reward [31].

D. DEEP REINFORCEMENT LEARNING
As mentioned in previous section, traditional ML methods
face many limitations in solving complex problems, especially
when using large action and state spaces. As a result, the Q-
learning algorithm may not be able to find the optimal policy.
In this case, the help of deep learning cannot be ignored. Thus,
the Deep Q Learning (DQL) method has been developed to
compensate for this problem. Intuitively, the DQL method
uses a Deep Q-Network (DQN), which is a type of Deep
Neural Network, in place of the Q-table in order to get an
estimated value for Q [32]. This is what enables the agent to
cope effectively even with unforeseen situations, contrary to
the standard RL method. The combination of Deep Learning
(DL) and Q table does provide solutions to many problems,
but sometimes it is difficult to achieve the expected perfor-
mance due to certain factors. Therefore, on the basis of DQN,
there are many upgrade algorithms with specific solutions. For
example, it is possible that the Q-learning algorithm has poor
performance as a result of the significant overestimation of
action values. In order to solve the issue of the Q learning
algorithm producing too many estimates, the second Q-value
function can be considered and used to simultaneously select
and evaluate action values through the loss function. This
algorithm is called double deep Q network (DDQN) [32].

In addition, there are many other improved algorithms, such
as dueling DQN, distributional DQN and Deep Deterministic
Policy Gradient (DDPG). The DDPG algorithm is yet another
one that should be highlighted separately due to the fact that
it DQN is incapable of handling continuous space action and
cannot use stochastic policies. The Actor-Critic algorithm
is the foundation of the DDPG, which is a model-free and
off-policy technique. DDPG is able to help the agent find an
optimal strategy by maximizing the reward return signal. The
main advantage of such deep algorithms is that they perform
well on high-dimensional or infinite continuous action spaces,
which greatly improves the potential and application range of
RL.

[33] explores the use of autonomous UAV in wireless sen-
sor networks for tasks like smart farming in remote areas. It
addresses the challenge of data loss due to drone maneuvers
causing buffer overflows at ground sensors. A new maneuver
control scheme, based on deep deterministic policy gradients
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(DDPG-MC), is proposed to minimize data packet loss by op-
timizing drone movements and sensor selection. This method
significantly reduces packet loss, outperforms other control
and scheduling policies, and demonstrates the potential for
efficient aerial data collection in sensor networks.

E. CUTTING-EDGE MACHINE LEARNING
The above-mentioned traditional ML approaches have shown
their use and played a part in a variety of areas, which are be-
coming one of the top choices for UAV function optimization
and intelligence. Nonetheless, as the complexity of challenges
confronted by UAVs has risen, so has the amount and com-
plexity of data handled by intelligent systems. At the same
time, for the diversified development of UAV functions also
increases the requirements for the diversification of problems
that ML need to solve. This makes many traditional ML un-
able to meet the corresponding requirements and is limited in
many application scenarios. Such as supervised learning, rely
heavily on labeled data for training. While this is effective
for some applications, it can be time-consuming and costly
to label data, and it may not always be feasible to obtain
labeled data for certain tasks. This dependence on labeled
data also limits the scalability of traditional ML algorithms,
as the amount of labeled data required increases with the
complexity of the problem. Although the integration of deep
learning has significantly enhanced the capabilities of these
algorithms, RL in particular, more researchers are beginning
to notice the development and use of new types of ML. Many
of them are based on the deeper use of neural networks and
more reasonable developments such as TLs and FL. These
modern ML are more in line with people’s requirements for
reducing resource usage and improving security. They also
offer significant advantages in terms of adaptability, scalabil-
ity, and the ability to learn from unstructured data. On the
other hand, XAI is another avenue that has garnered interest.
It is anticipated that this would reduce the issue that ML is a
black box that is difficult to explain and estimate risk. In the
following subsections, these ML techniques will be reviewed.

1) FEDERATED LEARNING
FL is a approach to distributed ML allows multiple clients to
train a shared model collaboratively while keeping their data
decentralised and secure (Fig. 6). Google proposed the con-
cept of FL in 2016 [34]; it is built on decentralised execution
of ML algorithms without the requirement to download the
training data to a central node or server. The training process
in FL is typically carried out in several rounds. In each round,
the central server distributes the current version of the model
to participating devices. The devices then train the model on
their local data, producing a set of updated model weights.
These updated weights are then sent back to the central server,
where they are averaged with the other participating devices’
model weights to produce a new version of the model. This
new version of the model is then distributed back to the

FIGURE 6. Federated learning: Distributed ML structural framework.

participating devices, and the process repeats with each round
of training.

The characteristics and structure of FL are very suitable
for UAV communication, which requires a central server and
several clients. To a certain extent, it meets its needs for data
protection and reduced on-board computing, because FL can
be applied to restricted networks that cannot be exhaustively
calculated on-board [35]. It enables the decoupling of model
training and raw data access since UAVs are not obliged to
exchange any data with the server; instead, they simply send
their local update. This means that FL can reduce privacy and
security concerns by minimizing raw data on the network.

In addition, FL also provides a basis for UAVs to work
alternately and cooperate. For FL, even if one of the nodes is
idle, its learning process can continue without being affected
for a short time, and UAVs can resume updates while con-
nected to the network. When one of the UAVs in the UAV
communication system needs to be exchanged for charging,
or an emergency failure occurs, this system can ensure that
the overall function will not be affected [36]. This has great
significance for the work of UAV system. A combined power
allocation and scheduling optimization issue for a UAV swarm
network has been proposed by the authors in [37]. The net-
work under consideration consists of one leading UAV and a
group of following UAV. Each following UAV applies a FL
algorithm on its local data and then transmits the result to the
leader UAV. The leader collects all local model changes to
make a global model update. Several natural factors, including
fading, wind, transmission delay, antenna gain and deviation,
and interference, will influence the wireless communications
between the UAV as they exchange updates. The influence of
various wireless transmission parameters on the performance
of the FL algorithm is evaluated.

Another author in [38] investigate forecasting the air qual-
ity index by integrating vision-based and sensor-based air
quality sensing. The proposed approach involves two sens-
ing components: aerial sensing through a network of UAVs
trained on haze images and ground sensing via a wireless
sensor network. To infer results from both terrestrial and aerial
networks, deep learning models are employed. The research
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FIGURE 7. Transfer learning structure and process of transferring policy.

introduces a visual model based on Dense-Mobile-Net CNN
and a Spatio-temporal inference model, with learning facili-
tated through FL techniques. The accuracy of this framework
is assessed using real-world data and is demonstrated to out-
perform traditional methods.

In conclusion, FL emerges as a crucial and promising tech-
nique for UAV communication. By harnessing FL’s power,
UAVs can efficiently learn from diverse data sources, adapt
to changing environments, and optimize communication per-
formance. The collaborative learning approach fosters collec-
tive intelligence that enhances UAVs’ decision-making and
efficiency. Looking ahead, FL will continue to play a pivotal
role in the advancement of UAV communication systems.
As more UAVs are integrated into communication networks,
FL’s scalability and adaptability will prove indispensable in
achieving reliable, secure, and efficient communication across
diverse UAV applications.

2) TRANSFER LEARNING
An interesting and advantageous characteristic of neural net-
works is their ability to exploit a learned function on a certain
input data to perform another function on the same input data,
which is referred to as TL. TL focuses on the storage and
application of knowledge acquired while solving one problem
to a different but related problem (Fig. 7). Initially, TL was
believed to help animals and humans realise their psychologi-
cal similarities. Then, concepts from TL were applied to ML,
such as regression, classification, medical image analysis, and
similar applications.

The work in [39] demonstrated that layers proximate to
the input tend to grasp generic features, implying they learn
mappings independent of tasks and final neural network out-
puts. On the contrary, as layers proceed deeper into the
network, their features become more task-specific, adapting
to the current task. This observation implies that repurpos-
ing a pre-trained network for a distinct task could offer a
beneficial performance boost while mitigating the computa-
tional complexity linked with training. In addition, leveraging
knowledge from prior tasks to enhance the efficiency of a
RL agent holds promise for practical improvements. This

notion underlines the potential advantage of TL in various
UAV wireless communication scenarios. In recent years, TL
has been applied to UAV techniques. TL allows UAVs to
leverage knowledge from pre-trained models to enhance their
performance in new and diverse tasks. This approach sig-
nificantly reduces the need for large data sets and training
time, making UAVs more adaptable and efficient in various
scenarios. TL plays a crucial role in empowering UAVs to
overcome challenges, optimize communication, and unlock
their full potential in real-world applications.

The work [25] utilizes knowledge distillation to tranfer
knowledge from a teacher policy to a student agent operating
in a different band. In this study, a pre-trained model involves
initially training a DDQN, but targeting different domains that
facilitate the transfer of knowledge across various environ-
ments. In [40], the authors investigate the use of continuous
learning to dynamically transfer knowledge from a pre-trained
environment to different environemts to reduce the overhead
of retraining DRL models, enabling them to adapt to con-
stantly changing environment.

3) META-LEARNING
Another very important type of ML is meta-learning, also
known as “learning to learn”. Meta-learning is a sub-field
of ML that focuses on developing algorithms and techniques
that enable machines to learn how to learn new tasks more
efficiently and effectively. “Meta” typically denotes a more
comprehensive or abstract level; for example, meta data are
data that provide information about other data, whereas meta-
learning refers to learning about learning. It is comparable to
TL in that its objective is to increase the learner’s general-
ization ability in multi tasking. Meta-learning focuses more
on learning from the output of other ML models, as opposed
to the application of trained content to new tasks in transfer
learning. This indicates that meta-learning algorithms neces-
sitate the presence of previously trained models.

Meta-learning has a significant advantage over traditional
ML in that, if the task alters, the model does not need to
be retrained from beginning. Meta-learning models are able
to continuously revise their knowledge and adapt to chang-
ing conditions. By integrating feedback from new tasks or
experiences, the model refines its task-independent represen-
tation and modifies its strategies accordingly. It is particularly
useful when data is limited or when the model must adjust
dynamically to new duties. It can lead to more robust and
adaptable models in real-world applications that are better
adapted to swiftly evolving and diverse tasks. Meta learning
can lead to more powerful and flexible models better suited to
diverse tasks in UAV applications. Augmentation and adap-
tation enable UAV communication systems to progress over
time, refine their performance, and effectively manage varying
network dynamics.

For example, a meta-learning algorithm could be used to
help a UAV learn how to fly through a forest without crashing

VOLUME 5, 2024 833



SUN ET AL.: ADVANCING UAV COMMUNICATIONS: A COMPREHENSIVE SURVEY OF CUTTING-EDGE MACHINE LEARNING TECHNIQUES

by using data from previous flights to inform its decision-
making process. This could be especially useful in situations
where the environment is constantly changing, such as in
search and rescue missions or in monitoring wildlife pop-
ulations. In the context of optimizing the UAV’s trajectory,
meta-learning can be utilized for trajectory design in wireless
UAV networks [41]. Moreover, [42] uses continual meta-RL
as a means to transfer information from previously experi-
enced traffic configurations to new conditions, with the goal
of reducing the time needed to optimize the UAV’s policy.
In addition to improving a UAV’s ability to navigate and
perform tasks, meta-learning can also be used to optimize
its performance in other ways. For example, a meta-learning
algorithm could be used to optimize a UAVs’s energy con-
sumption, allowing it to fly for longer periods of time and
cover greater distances. The author of [43] proposed the struc-
ture of meta twin delayed deep deterministic policy gradient
(Meta-TD3) based on deep reinforcement learning and meta
learning, which is used to quickly track targets in environ-
ments with uncertain target movements.The results show that
the combination of meta learning significantly improves the
convergence performance and convergence speed.

In summary, Meta Learning proves to be of crucial signif-
icance for UAV applications. Meta Learning enables UAVs
to quickly adapt and learn from multiple tasks, leading to
enhanced decision-making, improved efficiency, and effec-
tive problem-solving in dynamic environments. By leveraging
Meta Learning, UAV can efficiently optimize their perfor-
mance, making them valuable and adaptable assets in a wide
range of applications, including communication, surveillance,
and disaster response.

4) EXPLAINABLE AI
During the majority of UAVs related missions, UAVs depend
on advanced AI systems to function autonomously, make
decisions, and communicate with other UAVs and ground
control systems. These AI systems can make errors or act
unexpectedly, which may be dangerous or costly. Typically,
these expenditures are unacceptable. However, for the ma-
jority of AI and ML processes, we do not fully understand
the foundation for their judgments or when they will make
errors. This means that there is no guarantee of trust in
UAVs, and the possible dangers associated with their use
make it difficult to comply with local legal requirements.
XAI enhances AI systems’ ability to produce understand-
able and interpretative explanations for their choices and
behaviours [44]. XAI can assist ensuring UAV choices and
actions are explainable and clear to human operators, espe-
cially in complex and dynamic environments where there may
be multiple factors influencing the decision. This openness
enhances confidence in the system and enables operators to
rapidly discover and address problems [45]. XAI’s impact
on drone navigation and collision avoidance is evident, pro-
viding crucial transparency in autonomous decision-making
processes. The authors in [46] present a neural network-based
reactive controller for small UAVs designed to autonomously

navigate unknown outdoor environments with minimal com-
putational load. It uses deep reinforcement learning to solve a
navigation problem modelled as a Markov Decision Process
(MDP). The research includes model interpretation methods
for understanding flight decisions and global analysis for
network refinement. This leads to a more credible and control-
lable autonomous navigation process for UAVs. [47] created a
novel UAV-assisted communication scheme that tackles over-
looked collision avoidance issues by dividing the problem
into two parts: flight and power management using Dueling
Double DQN, and collision avoidance using Monte Carlo tree
search (MCTS). The integration framework improves decision
transparency and reliability.

In the context of UAV assisted communications, the inte-
gration of XAI within novel communication schemes, such
as those proposed in [48], has demonstrated significant ad-
vancements. The authors present a mixed interference-based
graph neural network (MIGNN) to optimize distributed beam-
forming in UAV assisted IIoT. They address co-channel
interference’s in a heterogeneous network, enhancing the
MIGNN with hypergraph concepts for better scalability and
performance. Numerical simulations show that this method
surpasses traditional deep learning approaches, making it
suitable for advanced B5G and 6G technologies. Another re-
search [49] built on the strengths of XAI in recognition and
identification by presenting a deep learning (DL) framework
for drone recognition using RF signals, enhanced by XAI
tools such as SHAP and LIME. These tools improve accu-
racy and transparency and enable interpretable accounts of
drone detection decisions. The model identifies drone sig-
nals from RF noise with 84.59 per cent accuracy. XAI can
also be used to identify and explain the cause of faults or
failures in UAV communication systems. By analyzing the
data and decision-making processes, XAI can provide insights
into the root cause of the fault, which can be used to im-
prove the performance and reliability of the system. Also,
XAI can be used to optimize the performance of UAV com-
munication systems by providing insights into the factors that
affect the system’s performance. By analyzing the data and
decision-making processes, XAI can provide recommenda-
tions for improving the system’s performance, such as adjust-
ing the transmission power or selecting a different frequency
band.

At the end, XAI can be used to enhance the security and
privacy of UAV communication systems by providing insights
into the system’s vulnerabilities and risks. By analyzing the
data and decision-making processes, XAI can identify poten-
tial security threats and recommend countermeasures to miti-
gate the risks. In summary, XAI can provide insights into the
data and decision-making processes, which can be used to op-
timize the performance, manage the network, and enhance the
security and privacy of the system. With the understanding of
the importance of ML in UAV applications, next section will
explore the pivotal roles that UAVs play in communications.
These roles highlight the impact of UAVs in various sectors,
from disaster response and surveillance to providing reliable
wireless connectivity and optimizing network architecture.
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TABLE 2. Roles of UAV in Communications

FIGURE 8. Reflect the position of each role of the UAV in the
communication scene as a whole. UAV-BS is responsible for providing
communication, UAV-Relay can extend the link, and UAV-UE provides
services.

III. ROLES OF UAV IN COMMUNICATIONS
A. UAV AS FLYING INFRASTRUCTURE ARCHITECTURE
UAVs are becoming an indispensable element of both civil-
ian and military missions. As a result, the usage of UAVs is
spreading to include almost all sectors of life, including med-
ical, commercial, entertainment, communications, and con-
struction applications. Simultaneously, it plays an essential
role in the area of communication and is a highly antici-
pated rising field. UAV can provide reliable and cost-effective
wireless communication solutions for various real-world sce-
narios. In situations such as natural disasters or heavy traffic,
UAVs could be deployed to supplement communications in-
frastructure or to augment existing communications systems
to enhance performance. Table 2 presents the various roles
of UAVs in communications for advanced applications. First,
UAVs can be used as aerial BS that can provide reliable,
economical, and on-demand wireless communications to de-
sired areas. The rapid deployment, mobility, higher chance

of propagation path clearing, and flexibility characteristics
of UAV-BS bring many advantages, especially in terms of
enhanced communication quality and greater freedom of ar-
rangement.

UAVs can also be used as wireless relays to improve the
connectivity and coverage of ground-based wireless devices.
In regions or countries where building a full cellular infras-
tructure is expensive, deploying UAV becomes very beneficial
as it eliminates the need for expensive tower and infrastructure
deployments. Especially when the location is uncertain at sea
or in the mountains, UAV wireless relay is the most efficient
and economical solution. Finally, UAV can also co-exist with
ground users as aerial UE, known as cellular-connected UAV.
This application strategy significantly expands the UAV appli-
cation range and versatility. This section will provide a quick
overview of the three roles UAVs play in wireless communi-
cation networks. Fig. 8 is an example of a low-altitude UAV
accessing the nearest local base station in an urban area to
assist local communication. It simply shows the positioning
of the three applications.

1) UAV AERIAL BS
Due to the ongoing decrease in the cost of UAV produc-
tion and the shrinking of communication equipment devices,
UAV have evolved into a new generation of more reliable
flying platforms, which has also aroused strong interest in
using UAV to provide reliable and cost-effective solutions
for wireless communication in many real-world scenarios. In
particular, by placing small base station or repeaters on a
UAV, it can be rapidly deployed 3D space as a flying BS.
This benefits from the light weight of commercially available
LTE base stations that can currently be installed on mod-
erately loaded UAVs. The authors in [63] showed the role
of UAV as BS in the IoT and propose a model to optimize
location. This kind of UAV base station can provide tempo-
rary reliable on-the-fly air-to-ground (A2G) communication
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FIGURE 9. UAV base station improves communication quality by adjusting
position to increase LoS.

links for designated areas, and can also be used as an em-
bedded module to enhance wireless capacity and coverage of
local communication. This can help meet the high demands
of 5G and beyond cellular communications. UAV-assisted
communications have the following principal benefits over
traditional terrestrial communications with generally static BS
installed in fixed locations. Initially, owing to the controlled
high mobility of UAVs, Its position and height can be adjusted
dynamically. This means UAV-BSs have an extra degree of
freedom (DoF) for communication performance improvement
(Fig. 9), by dynamically altering their 3D positions to have
a higher chance of LoS connectivity with ground nodes [55]
shows the advantages of UAVs after optimized 3D position de-
ployment, and tries to reduce the number of UAVs to improve
efficiency.

Besides, BS placed on low altitude, UAVs may be rapidly
deployed on demand. This is particularly advantageous for
situations involving temporary or unforeseen occurrences,
emergency response, search and rescue, etc. At the same time,
its mountable feature also allows it to better adapt to differ-
ent situations and respond more quickly. In many real-life
situations, the need for communication enhancement or local
area coverage is short-term, or the location is not fixed. Under
these circumstances, UAV base stations will have significant
advantages such as low consumption and fast deployment
compared with traditional ground base stations. Such as real-
time live broadcast, disaster detection, etc.

The authors [52] also indicate that UAV base stations as-
sist in distributing resources in localised locations, since the
development of terrestrial wireless networks is often designed
based on long-term traffic behaviour, resulting in a significant
number of idle and unavailable resources at specific places. To
accommodate shifting demand. UAV base stations are antici-
pated to assist shift extra network capacity to where demand
exists, hence optimising network resource use and consider-
ably enhancing Quality of Service (QoS).

As mentioned above, the rapid popularization of high-
performance mobile devices such as smartphones, UAVs, and

embedded devices, while the demand for high-speed wire-
less access has been growing, it has also promoted the rapid
development of the Internet of Things. New communication
technologies such as device-to-device (D2D) communication,
millimeter wave (mmW) and massive Multiple Input Multiple
Output (MIMO) make the use of UAVs more diversified [64].
UAV swarm systems with UAV BS as the core are also
possible, such as Flying ad-hoc network (FANET) realized
through multi-UAV cooperation and self-organizing swarm
behavior [50].

Or assist other local wireless networks including Internet
of Things (IoT), Internet of Vehicles, Wireless Sensor Net-
works (WSN) and so on through the mobility and line-of-sight
communication of UAV base stations. UAVs can improve the
reliability of wireless links in these local terrestrial network
communications while exploiting transmit diversity.

2) WIRELESS RELAY COMMUNICATIONS
UAVs are able to used as relays in a communication system
between ground-based terminals and a network base sta-
tion. [65] And UAVs are well suited for this relay job since
they can fast arrive at the mission area without relying on
roads or existing infrastructure and can easily adjust their
locations to respond to fluctuating communication settings.
The deployment of the majority of relays in terrestrial systems
at fixed locations is referred to static relaying. The initial
phase corresponds to UAV information reception, where it
continues to receive and decode data sent from the source.
The UAV first flies at maximum speed toward the source, then
transmits the data in its buffer to the destination, hovers above
the nearest location to the destination if time permits, and then
returns to its initial position at the end of the cycle [66]. To
successfully design the UAV relay trajectory that enhances the
communication performance of ground nodes, it is necessary
to anticipate the air-to-ground communication channel quality
between any arbitrary UAV location and ground nodes. At
the same time, UAV relay is also an important part of the
FANET mentioned above. In addition to the need for UAVs
with relay functions in the self-organizing flight network to
extend the range, FANET itself can be used as a relay sys-
tem to ensure reliable communication links in environments
with large areas such as deserts, agriculture, and moun-
tains with obstacles. Moreover, considering the challenges
posed by signal blockages in maritime environments due to
mountains and high-rise buildings, Zhang’s work introduces
an aerial re-configurable intelligent surface (ARIS)-assisted
maritime wireless communications system to overcome such
obstacles. By employing ARIS, the system aims to en-
hance the capacity of maritime wireless systems, particu-
larly for maritime users in blocked offshore areas, through
optimized reflection elements that maximize achievable
rates [67]

In addition to the traditional UAV communication relay,
the author of [59] proposed another integrated intelligent
reflecting surface (IRS)-UAV communication scheme. The
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author said that the IRS is installed on the UAV as a Mo-
bile relay between base station (BS) and terrestrial users.
IRS is a type of planer surface that is made up of several
different reflecting components and has the ability to intel-
ligently adjust the amplitude and phase shift of the incoming
signal. It then maximizes the spectral efficiency of the sys-
tem by optimizing the beam-forming and UAV trajectory
and energy efficiency. These different relay methods provide
important conditions for a more complete UAV integrated
communication.

3) RU/DU IN C-RAN/O-RAN ARCHITECTURE
In C-RAN and O-RAN architectures, the RU is responsible
for transmitting and receiving radio frequency signals, while
theDistributed Unit (DU) carries out base-band processing
tasks, such as error correction and signal decoding. These
components are typically connected through a high-speed,
low-latency interface, often referred to as fronthaul. UAVs
can be integrated into this system in several ways. One of
the most significant roles of a UAVs in a C-RAN or O-RAN
architecture could be to function as a mobile RU. In this role, a
UAV could be equipped with radio equipment to transmit and
receive signals, effectively serving as an aerial base station.
UAVs can also be deployed to optimize the positioning and
connectivity of RU and DU. Through the use of ML algo-
rithms, UAVs can help to determine the best locations and
configurations for these units to maximize coverage and min-
imize interference. This could be especially beneficial in dy-
namic environments where network conditions are constantly
changing. Furthermore, UAVs can be used for the monitor-
ing and maintenance of C-RAN or O-RAN networks. UAVs
equipped with cameras and sensors can provide aerial inspec-
tions of RUs and DUs, helping to identify and resolve issues
more quickly and efficiently than traditional methods. Overall,
UAVs can significantly enhance the flexibility, adaptability,
and efficiency of C-RAN and O-RAN architectures, playing
a vital role in the future development and operation of these
networks.

B. CELLULAR-CONNECTED UAV AS UE
UAV can also act as user equipment of the wireless infras-
tructure, and this type of application is currently the most
convenient and widespread use of UAVs. Because of the high
adaptability of UAVs to different scenarios, it has the abil-
ity to combine with more emerging technologies to achieve
cutting-edge applications, such as delivery, surveillance, re-
mote sensing, virtual reality applications and so on. When
UAVs are used as UE There are various benefits to utilising
it: First, UAVs can eliminate the majority of distance and
location limitations. Cellular-connected UAVs allows ground
pilots to remotely command and control UAVs with an almost
infinite operational range, as well as execute completely au-
tonomous or semi-automatic control with the aid of artificial
intelligence. Second, its mobility and adaptability enable it to
undertake cooperative duties with other user equipment. As

an expanded sensor in the network for autonomous driving,
a temporary mobile traffic command centre, etc. This form
of UAV usage has contributed significantly to the growth of
the Internet of Things and smart cities.In the work of [54],
author customized the recently emerging Cognitive Internet of
Things framework for amateur UAV surveillance. He brought
up one of the roles of UAVs in smart city systems. As a
result of the adaptability of UAVs, there is likely to be closer
collaboration with intelligent systems and the development of
new sensors. Last but not least, UAVs may take over numerous
risky or difficult jobs formerly performed by people. UAVs
provide benefits that cannot be matched in fields like disaster
aid and the identification of potentially hazardous regions.
UAVs have more promising prospects in long-distance de-
tection and emergency rescue now that the sensor system is
more complete, especially when other UAVs are used as base
stations to provide temporary remote communication connec-
tions.

Another notable usage of UAV user equipment is to let the
UAV act as a mobile caching-enabled device to link with other
user equipment/UAV user equipment [61]. Caching-enabled
UAVs are a promising solution for users with high demand
for location mobility, as the requested content needs to be
stored in a new base station when the user moves to a new
area. UAVs can serve the mobile location of users in real
time and reduce the content requests of frequent updates of
mobile users to reduce the complexity of caching. The ap-
plication of UAV UE also faces many challenges, because
unlike other UE-to-UE, UAV UE usually experiences dif-
ferent channel states when linking, which makes it difficult
to meet the requirements for reliable and low-latency com-
munication. And due to the energy limitation of UAVs, it
is necessary to consider whether the mission can be com-
pleted in a short time or whether new UAVs can be replaced
in time.

C. LESSONS LEARNED
The role of UAVs in communication has witnessed sig-
nificant growth across various sectors, including medical,
commercial, entertainment, and disaster response. UAVs offer
reliable and cost-effective wireless communication solutions,
making them indispensable in real-world scenarios, such as
natural disasters or congested traffic areas, where they can
supplement existing infrastructure and enhance performance.
UAV BS, as aerial Base Stations, provide several advan-
tages, including rapid deployment, mobility, higher chance
of LoS connectivity, and flexibility in network arrangement.
These attributes lead to improved communication quality and
increased freedom in arranging network nodes. The advan-
tages of UAV BS also extend to being cost-effective, as they
eliminate the need for expensive tower and infrastructure de-
ployments. They are faster and easier to deploy compared to
traditional ground-based stations, making them suitable for
temporary or emergency communication needs. These advan-
tages make UAV BS a valuable tool in achieving efficient and
adaptable wireless communication.
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Moreover, UAV serve as wireless relays, offering connec-
tivity and coverage enhancements in regions where building
full cellular infrastructure is costly or challenging, such as
areas with uncertain locations or geographical obstacles. Ad-
ditionally, other UAV that function as cellular-connected UE
can link with UAV relay, which presents numerous benefits
such as overcoming distance limitations, providing extended
operational ranges, and enabling cooperative missions with
other user equipment. As a part of the Internet of Things and
smart city systems, UAVs contribute to closer collaborations
with intelligent systems and the development of new sensors.

As research continues and UAV technology advances, the
role of UAVs in communication is poised for significant
expansion, offering a multitude of advantages and diverse
applications in the future. The integration of UAVs in C-
RAN and O-RAN architectures enables them to function
as mobile base stations, optimizing network flexibility and
efficiency. Moreover, the inclusion of Intelligent Reflecting
Surfaces (IRS) on UAVs introduces intelligent signal opti-
mization, enhancing spectral efficiency. UAVs’ adaptability to
support various hardware and sensors fosters their use as UE
in wireless infrastructure, opening up possibilities in delivery,
surveillance, and smart city systems. Addressing challenges
related to link reliability, low-latency requirements, and en-
ergy limitations will be crucial for realizing UAVs’ full
potential in communication networks and driving innovation
across sectors.

Despite their advantages, UAV applications still face chal-
lenges, for example, UAV performance related to different
channel states during linking and energy limitations, neces-
sitating consideration of mission completion time and the
replacement of UAV. Efficient trajectory design and channel
optimization techniques are essential to improve UAV perfor-
mance, especially in dynamic environments. In the forthcom-
ing section, the intricacies of UAV-related applications will
be explored, highlighting the unique challenges and obstacles
encountered. To effectively address these issues, an analysis
will be conducted to identify the most suitable types of ML
methodologies for enhancing the performance and efficiency
of UAV applications. By comprehensively understanding the
specific needs and constraints of UAVs, innovative ML so-
lutions can be devised, paving the way for more robust and
reliable UAV communication and usage across a variety of
scenarios and industries.

IV. SIMULATION AND VALIDATION METHODOLOGIES
The progression from theoretical models to practical applica-
tions in UAV technology heavily relies on a comprehensive
validation process. This process employs various tools and
methodologies, each with its unique advantages and applica-
tions. The main pillars of this validation process include sim-
ulators, emulators, and real-world deployments [68]. These
methodologies not only affirm the viability of UAV technolo-
gies but also ensure their efficiency, safety, and reliability in
operational environments. In this section, the diverse tools

and methodologies employed for validating proposals aimed
at advancing UAV communications will be reviewed.

A. SIMULATORS
Simulation platforms play a pivotal role in the early stages of
UAV development, particularly for AI and ML applications.
These platforms provide a risk-free environment to test al-
gorithms, flight dynamics, and control strategies without the
physical constraints and risks associated with real-world test-
ing. Some researchers turn to Software In The Loop (SITL)
simulations to mitigate these costs [69], [70]. SITL enables
the testing of Plane, Copter, or Rover functionalities with-
out requiring physical hardware by executing the autopilot
code, typically written in C++, directly on a computer. This
self-contained simulation is especially valuable for identify-
ing potential in-flight issues, thereby preventing dangerous
situations and protecting valuable equipment from damage.
Gazebo is another powerful simulator, integrated with ROS
(Robot Operating System), offer realistic physics and envi-
ronmental conditions, enabling researchers to fine-tune UAV
behaviors in various simulated scenarios [71]. Additionally,
FlightGear and Microsoft AirSim, leveraging the Unreal
Engine, are instrumental in propelling UAV technologies for-
ward, especially in areas like AI-enhanced navigation, obsta-
cle evasion, and strategic mission planning. FlightGear [72],
recognized for its open-source flexibility, delivers a simulation
landscape that not only supports but enhances the testing of AI
integration under a spectrum of conditions, also facilitating
targeted scenario assessments to gauge AI’s decision-making
prowess [73]. In contrast, AirSim [74] shines with its su-
perior visual and physical simulation quality, pivotal for AI
applications in vision-based navigation, enriched by its com-
prehensive support for AI and machine learning advancements
via its API offerings [75]. The simulation of an extensive
array of sensors by both platforms generates valuable datasets,
crucial for the training and validation of AI models designed
to decipher sensor data for the purpose of autonomous navi-
gation.

Incorporating these insights, MATLAB and Python, along-
side Octave, Scilab, Julia, R, and the ROS framework, enrich
the UAV simulation and analysis landscape. MATLAB’s tool-
box and Simulink platform allow for detailed modeling and
simulation of UAV dynamics [76], while Python, with li-
braries like DroneKit, facilitates automation for simulation
control and data processing. These tools extend beyond basic
flight simulations to complex, mission-specific scenario test-
ing, highlighting their indispensable roles in UAV technology
development.

B. GROUND CONTROL STATIONS
Ground Control Stations [77] are crucial for managing UAV
operations, offering real-time control, monitoring, and com-
munication with UAVs across commercial, research, and mil-
itary applications. These systems range from software-based
platforms to hardware setups, designed to cater to various op-
erational needs. Key software-based Ground Control Stations
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(GCS) platforms include Universal Ground Control Software
(UGCS), MAVProxy, and Mission Planner (MP), each provid-
ing unique features. UGCS is renowned for its user-friendly
interface and multi-UAV control capabilities, making it ideal
for complex flight missions. MAVProxy, a command-line-
based GCS, excels in extendability and supports multiple
UAVs, suited for developers and field operations with its
lightweight design. Mission Planner specializes in flight
planning and configuration for ArduPilot users, offering a
graphical interface for easy mission planning and simulation,
enhancing pre-flight preparation and safety. Hardware-GCS
are designed to offer robust and reliable control interfaces for
UAV operations, particularly in mission-critical or demand-
ing environments. An example of a hardware-based GCS
is the DJI Smart Controller, which is tailored for use with
DJI’s range of UAVs. The Smart Controller features a built-in
screen, offering high brightness for clear visibility in outdoor
conditions, integrated controls for UAV piloting, and dedi-
cated software that provides access to flight settings, data, and
live video feeds.

The integration of GCS with simulation tools significantly
benefits training and mission planning, reducing physical
risks. Additionally, the latest GCS platforms are embracing
AI and machine learning to automate tasks like path planning
and obstacle avoidance, simplifying UAV operations.

C. REAL-WORLD DEPLOYMENTS AND TEST
Ultimately, the effectiveness and reliability of UAV tech-
nologies are validated through real-world deployments. These
deployments are crucial for testing UAV systems in opera-
tional environments, offering insights into their performance
under unpredictable conditions, user interactions, and com-
pliance with regulatory standards. Real-world testing helps
in identifying unforeseen challenges, such as environmen-
tal impacts on sensor accuracy, battery performance under
different weather conditions, and the effectiveness of AI-
driven decision-making processes. Case studies, such as the
deployment of UAVs for agricultural monitoring, search and
rescue missions [78], and infrastructure inspection, illustrate
the adaptability and resilience of UAV systems in fulfilling
their intended functions outside controlled environments.

V. ML SOLUTIONS IN UAV-BASED COMMUNICATIONS
As low-latitude UAVs are used, they are typically small un-
manned aircraft that are flown for short periods of time (up to
a few hours). This allows for the rapid deployment of multi-
hop communication backbones in challenging applications
without the need for any human involvement, such as public
safety, search and rescue missions, surveillance inspections,
emergency communications in post-disaster situations or
emergencies, photographic reconnaissance, urban traffic mon-
itoring, precision agriculture, and media. And different types
of UAV applications have different needs and different levels
of intelligence. This is making their demand for technology
more multidimensional. While using UAV-BS, the key design
considerations include performance characterization, optimal

3D deployment of UAVs, wireless and computational re-
source allocation, flight time and trajectory optimization, and
network planning. Meanwhile, in the UAV-UE scenario, han-
dover management, channel modeling, low-latency control,
3D localization, and interference management are among the
main challenges. This part divides the main problems and dif-
ficulties that need to be faced in the application of low-altitude
UAVs in the communication field into four categories, Posi-
tioning and trajectory, Physical Layer management, Resource
Management and Network Planning and Security and Safety
for UAV. Table 3 provides an overview of machine learning
solutions in UAV-based communications, detailing their appli-
cations and various roles in enhancing UAV communication
systems.

A. POSITIONING AND TRAJECTORY
It is good to start with mentioning that initial works used
classical optimisation, some of them even considered a fixed
height for UAVs and solved a 2D positioning [63]. However,
when the problems become more realistic and considered
more parameters the placement problems become to complex
to be addressed by classical optimisation approaches. In order
to achieve optimal or near-optimal performance, one of the
most difficult aspects of building UAV based communication
systems is determining the ideal location and trajectory of the
UAV in relation to other ground or flying objects. Determining
the target position of the UAV is a very high priority task
of the UAV system which increase the probability that the
channel between ground users is mainly a direct link, this
potentially leads to a significant performance improvement
over communication. After the ideal destination position of
the UAV, the trajectory planning to complete the task and the
path planning to reach the destination are also important indi-
cators that affect the performance of the UAV. The trajectory
is not only related to the planning and completion of the task,
but also helps UAV system to manage energy more efficiently.

Simultaneously, the trajectory of the UAV will have a direct
impact on both the safety of the UAV and the effective-
ness of mission accomplishment. Therefore, the intelligence
of a UAV system may be deduced from its location and
trajectory planning. For instance, a reasonable UAV trajec-
tory planning involves task scheduling, energy management,
UAV safety, handover planning, and joint management with
other aircraft, among other factors. During this process, it can
also assist the system in turn, such as establishing a radio
map.

1) POSITIONING FOR UAVS BSS
An essential aspect of the design involves optimizing the
locations of UAVs to achieve optimal communication perfor-
mance. Unlike the conventional 2D cell planning used with
ground-based BSs that usually have predetermined heights,
the altitude of UAV BSs can be dynamically determined.
This gives rise to a novel challenge of 3D BS placement
problems. The authors of [104] study how to minimize the
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TABLE 3. Applications of UAV Communication

power consumption of UAVs to offload ground base stations
to achieve optimal placement. The author uses GMMs in
unsupervised learning to predict congestion in wireless net-
works, and then optimizes the placement of UAVs. In this
case the UAV does not need to constantly change position for
optimal communication. Under the condition that data distri-
bution can be modeled by the Gaussian distribution, the author
uses the K-means algorithm to perform the weighted expecta-
tion maximization algorithm to find the optimal parameters
of the GMMs. The optimal deployment is then derived by
formulating a power minimization problem for UAV base

stations. Besides that, promising utilization of ML techniques
would enable the UAV to learn the environment by intelli-
gently process the data that it can collect. As an example, the
UAV could learn in real time the channel model parameters of
the area it is surveying and create a map to determine inter-
ference or channel gain at a spatial location where a UAV has
not been before. In this way, the author of [102] tried to build
a structured radio map studies the optimal location of UAV
base stations. UAV user links are partitioned into a finite num-
ber of disjoint segments, each of which may have different
propagation environment in terms of the channel modelling
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parameters such as path loss exponent, average channel power
at the reference distance and shadowing variance. Reconstruc-
tion the channel from few data sample collected at different
locations is not trivial and involve the use of unsupervised
learning techniques. Both [102], [113] use a maximum like-
lihood approach for a joint clustering and regression. The
remaining x positions are then used to build the radio map.
First they are classified into one of the K segments based
on the parameter θ learned from the segmented regression
algorithm, then the segmented channel model is applied to
compute the path loss. Since the Received Signal Strength
(RSS) is the result of different effect, path loss and shadow-
ing, the authors utilize a segmentation approach to describe
them. Here, ML techniques help to develop a clustering and
regression algorithm to learn the segmented model from a
few training examples (the system needs a clustering algo-
rithm to partition the training data into K groups according
to group-specific models with unknown channel parameters
to be learned). Finally, a k-nearest neighbors (KNN) classifier
classifies each position into one of the K segments based
on the parameters learned from the segmented regression
algorithm.

[80] considers users’ mobility and processing time in
addition to the above positioning methods. In real-world ap-
plications, the user’s location is likely to change over time,
especially in the case of future access to self-driving cars or
UAV UEs, providing the required QoS is unstable or may take
longer processing time. The authors used a ML approach of
reinforcement learning to cope with users moving with dif-
ferent speeds and having different requirements and optimize
the algorithm and reduce processing time. Compared with the
previous paper, the author [81] considered multiple UAV situ-
ations, optimized the positioning of multiple UAV small cells
(DSCs) in an emergency scenario in order to maximize the
number of covered users in an emergency situation. Q learning
in RL was used to train UAVs to explore the affected area and
find the best possible position which maximize total network
coverage. Another author in [82] investigate the optimal de-
ployment of UAV is to minimize the transmit power needed to
satisfy the communication demand of users in the down-link,
while also minimizing the power needed for UAV mobility,
based on the predicted cellular traffic. ML techniques, here in
the form of GMMs and a weighted expectation maximization
(WEM) predict network congestion using data that describe
the cellular traffic.

2) TRAJECTORY FOR UAVS
Trajectory tracking and planning are also areas of interest
to researchers because of their impact on the overall perfor-
mance of the UAV communication system. Reinforcement
learning has been extensively used for the UAV navigation.
In contrast to supervised ML, reinforcement learning does
not rely on accurate prior knowledge of the environment or
historical labeled data. Instead, in reinforcement learning, the
agents can automatically learn from the environment and their

own past experience through the rewards they obtain in order
to improve their policy. This property makes reinforcement
learning suitable for application in the cellular internet of
UAV, where the UAV faces a dynamic and complex envi-
ronment. Especially, Q-learning, that does not require models
of the sensing and transmission, is suitable for the trajectory
control problem. For applying Q-learning, the flight space can
be abstracted into a finite set of discrete spatial points, and the
trajectory can be considered as a path through these spatial
points. The state of each UAV is its location, and the action is
its trajectory in each cycle.

Following these guidelines, [88] addresses a trajectory
control problem for cellular network of UAVs through the uti-
lization of a Q-learning algorithm. In this approach, the UAVs
are regarded as agents, their positions represent the states,
and each cycle constitutes a time step. The feasible action
set for a given UAV encompasses all potential direct trajec-
tories towards spatial points that satisfy the condition of being
within the maximum flying distance during one cycle. State
transitions involve mapping the current locations and actions
of UAVs to their respective locations at the commencement of
the subsequent cycle. The reward mechanism assigns a value
of 1 when the BS successfully receives valid sensory data
from the UAV, and 0 otherwise.

In the study conducted by Huang [83], a novel approach
based on deep reinforcement learning is introduced for en-
hancing UAV navigation using massive MIMO. The imple-
mentation of MIMO, which involves multiple antennas at
both the transmitter and receiver ends, aims to enhance com-
munication performance by enabling higher data rates. This
advancement proves particularly advantageous for UAVs en-
gaged in tasks such as video streaming and remote sensing,
which demand robust high-bandwidth communication links.
Additionally, MIMO contributes to enhancing communication
reliability by mitigating the impacts of fading and inter-
ference. The research proposes a Learning Mechanism for
Processing the DQN, followed by the utilization of DQN to
optimize UAV navigation through the selection of the most
suitable policy. In this context, the agent’s decision-making
process is informed by received signal strengths, which re-
sults in an improved trajectory planning performance for
the UAV.

The author in [98] proposed a Learning Mechanism for
Processing The DQN, then DQN is used for optimizing the
UAV Navigation by selecting the Optimal Policy. The au-
thor proposes that in reality, it is difficult to find accurate
and tractable end-to-end communication model in practice.
The authors choose to use a dueling double deep Q network
(dueling DDQN) with multi-step learning which the signal
measurement at the UAV is utilized to directly train the nav-
igation policy’s action-value function. At the same time, the
author also improved the use of signal measurement data and
proposed a framework called simultaneous navigation and ra-
dio mapping (SNARM). The system can learn and generate a
radio map of the airspace where the UAVs are operating while
making trajectory planning decisions.
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These radio coverage maps can also be well utilized. For
example, the author of [85] uses aerial coverage maps to
formulate a path planning problem that takes into consid-
eration the coverage holes to find the shortest path given
a connectivity quality constrained. At the same time, the
trade-off between the path length and connectivity quality
of UAVs is also considered in this process. However, this
training method consumes too much time and training times.
In order to solve the related limitations, the authors of [25]
used the cutting-edge TL method to solve the problem of
path planning. The authors successfully alleviate the prob-
lem of slow convergence of RL algorithms by employing a
TL method to facilitate the agent’s path learning in the new
domain using the teacher policy previously trained in the old
domain. It is worth mentioning that the author considers the
situation of 6G and mmWave for simulation, which is more
in line with the expectation of future communication condi-
tions. Among them, the teacher path policy of the old domain
is solved by Lyapunov-based model-free DQN. The results
show that TL can significantly reduce the training time of
mmWave.

Additionally, the UAVs trajectories could be jointly opti-
mized with communication resource allocation for various
performance metrics, such as spectral efficiency, or energy
efficiency, by taking into account the UAVs’s propulsion
energy consumption. [86] formulate the problem of joint tra-
jectory design and power control of UAVs to improve the
users’ throughput while satisfying their rate requirements.
The problem is solved via three different steps: a multi-agent
Q-learning placement algorithm to define the initial deploy-
ment of UAVs, an echo state network prediction algorithm
for predicting the mobility of users, a multi-agent Q-learning-
based trajectory acquisition an power control algorithm. A
continuous learning approach for joint trajectory and coverage
optimisation has been proposed in [114].

B. PHYSICAL LAYER MANAGEMENT
The physical layer in UAV communication is a key compo-
nent of the entire communication system, which can directly
affect the performance and reliability of the communication
system. The task of the physical layer is mainly responsible
for the physical transmission of data between the UAV and
the ground station, and this process determines the range, data
rate and quality of the communication link. The construction
of accurate channel models in urban areas and the reduction
of path loss (PL) by topology prediction are the primary ob-
jectives of wide communication enhancement. Dealing with
intense interference from other UAVs and ground nodes is
a further crucial factor to consider. ML solution play an im-
portant role in these processes. The physical layer must be
meticulously designed and optimised to ensure reliable and
efficient communication in the complex and demanding envi-
ronments encountered by UAVs.

1) CHANNEL MODELING UAVS
In a wireless communication system, channel modelling is the
process of building a model that describes the communica-
tion channel between the transmitter and receiver. Channel
modelling is of utmost importance in the case of UAV com-
munication, since UAVs often operate in conditions where
communication channels are extremely dynamic and suscep-
tible to a variety of interference and signal distortion. A good
signal model is highly useful for performance evaluation, net-
work planning, and optimising UAV trajectory design. During
the process, it is necessary to consider the impact of UAV
motion on the communication channel, including Doppler
frequency shift, antenna direction changes, and other factors
that may affect signal quality, such as the characteristics of
the physical environment, obstacles that may cause signal
reflection, diffraction, and attenuation, and The presence of
topographical features.

Path loss is an important indicator of channel modeling for
UAV communication. [94] uses the basic KNN and Random
Forest algorithms in supervised learning to predict path loss.
The labeled data used for prediction includes propagation dis-
tance, transmitter height, receiver height and elevation angle
etc. Finally, the effects of the two methods are compared.
Embodies the initial application of ML in UAV communi-
cation. The authors of [99] used the Generative Adversarial
Networks (GAN) method in unsupervised learning to simulate
and estimate the air-to-ground channel characteristics of UAV
networks. The communication conditions are set in the case of
using mmWave, so the data of the channel measurement are
distributed data sets and are used for the training of the dis-
tributed conditional GAN architecture. The results show that
the use of conditional GAN allows UAV down-link mmWave
communications to have a larger average data rate.

The authors in Reference [96] note that existing channel
models for UAV communication networks are often based
on physical models that rely on assumptions about the envi-
ronment, such as the location and height of buildings, which
may not accurately reflect the complex and dynamic nature
of the wireless channel. These physical models are also com-
putationally expensive and may not be practical for real-time
applications. To address these limitations, The authors use
a deep learning architecture based on ANN to map input
parameters, such as the UAV’s position, altitude, and orien-
tation, to the output channel parameters. The ANN is trained
using a large data set of channel responses generated us-
ing a ray tracing simulator, which takes into account the
physical characteristics of the environment. In additional de-
tail, a clustering approach is applied to assess the 3-D wireless
channel LoS and Non-Line of Sight (NLoS) channel states
based on measurement by the UAV. In addition, shadowing
characteristics are determined to provide a suitable tempo-
rary 3-D channel model. As an online learning strategy is
implemented, changes to the communication environment are
included into the temporary 3-D channel, therefore enhanc-
ing its precision. The work in reference [97] mentioned that

842 VOLUME 5, 2024



FIGURE 10. Scenario where the UAV is interfered by other BS and UE
during flight.

optimization of UAV measurements is crucial to improving
the performance and efficiency of the system such as received
signal strength (RSS). The authors propose a novel approach
that combines ANNs and the L-SHADE algorithm to opti-
mize UAV measurements for mobile communications. The
L-SHADE algorithm is used to optimize the input parameters
to the ANN, such as the UAV’s altitude, position, and orienta-
tion, to maximize the performance of the system. The authors
demonstrate the effectiveness of their approach by compar-
ing the performance of the proposed method with existing
approaches. At the same time, their approach can be applied
to other areas of UAV communications, such as UAV-based
sensing and surveillance.

2) INTERFERENCE FOR UAVS
One major challenge to ensure the efficient coexistence be-
tween ground and aerial UE lies in the severe aerial-ground
interference (Fig. 10). And that interference management is
crucial to improving the performance and efficiency of the
system. The existing literature on interference management in
cellular-connected UAVs, and note that traditional approaches
such as power control, resource allocation, and interference
coordination are limited in their ability to adapt to the dynamic
and complex nature of the network. ML algorithms can be
used to detect interference in UAV communication by analyz-
ing the received signal and identifying patterns that indicate
the presence of interference. or can be used to implement
adaptive filtering techniques that remove unwanted noise from
the received signal.

The article in [96] examined UAVs’ opportunistic channel
access. Considering the different properties of data traffic
and UAV clustering, this challenge was structured as a non
cooperative interference mitigation game. After putting these
qualities into the utility function, the weight coefficients are
given to each feature, and then the features are added lin-
early. In addition, a distributed log-linear learning technique
is used to reach the Nash equilibrium (NE) of the interfer-
ence mitigation game. The learning algorithm is based on

the fact that a UAV experiencing intra-cluster interference
is chosen at random to update its joint channel-slot selec-
tion based on its experienced interference level, slot interval,
and cluster rewards in each step, and that the channel se-
lection is determined stochastically. Simulations focused on
convergence behavior, selection behavior, and performance
evaluation. This showed how important it is to set the right
weights for the log-linear algorithm’s enhanced interference
control. In this manner, the proposed method quickly con-
verges to the best network utility and the lowest possible
interference level.

The authors in [115] propose a novel approach that uses
Deep Reinforcement Learning (DRL) to optimize interference
management in cellular-connected UAVs. The proposed ap-
proach uses a neural network to model the UAV’s environment
and learns the optimal policy for interference management
through trial-and-error. Their approach is effective in man-
aging interference in cellular-connected UAVs and has the
potential to improve the performance and efficiency of the
system. Another problem in the process of channel modeling
for UAV communication is that channel changes are difficult
to estimate. Many previous channel studies and interference
simulations assume that the channel is block-fading channel
or invariant channel.

C. RESOURCE AND NETWORK MANAGEMENT
Many conflicting requirements, such as low latency, increased
throughput, low overhead, supporting a large number of de-
vices, and dynamic conditions, must be taken into account
when performing resource management, network planning,
content caching, and user association tasks in UAV cellular
networks. In this way, ML frameworks have been imple-
mented to support highly effective resource management. In
this process, judging the current status of the UAV is the first
step, including network status, energy remaining, environ-
mental status and so on. The authors of reference [116] sought
to estimate the success and failure rates of UAV networks
using ML techniques based on linear regression and Support
Vector Machine (SVM). Due to the time-varying nature of the
UAV connection caused by its mobility, the chance of suc-
cessful transmission diminishes with increasing wireless link
distance. In this context, ML techniques may be used to teach
UAVs to identify whether connections to surrounding nodes
are possible. Simulations demonstrate that accurate training
of LR and SVM may be done with the increased precision
and speed offered by SVM. Multi-UAV networks may be
optimally deployed with early training, and correct clustering
can increase wireless transmission reliability. In addition, for
energy management based on the UAV status and link status,
the scheduling of the goals that need to be completed are also
important to improve the performance of UAV systems.

1) ENERGY EFFICIENCY AND POWER CONTROL
Energy efficiency and power control are important consider-
ations in UAV communication, particularly for applications
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that require long flight times and limited battery capacity. En-
ergy efficiency refers to the ability of a UAV communication
system to minimize energy consumption while maintaining
reliable communication performance. This can be achieved
through a variety of techniques, such as adjusting the trans-
mit power of system based on channel conditions, receiver
distance, and interference levels. By using lower transmit
power levels when possible, UAVs can conserve energy
and extend their battery life, while still maintaining reliable
communication performance. Transmission scheduling is an-
other technique used to improve energy efficiency in UAV
communication. By avoiding unnecessary transmissions and
using energy-efficient transmission modes, such as additional
transmission.

According to [117], the author specifies the scope of use of
the UAV and then provides a communication link for ground
users. Use the DQL of reinforcement learning to determine
what height and position can minimize energy consumption
while ensuring that the UAV can cover a certain range. And
experiment in two situations of planned flight and unplanned
flight respectively. Finally, the results are compared with tradi-
tional schemes that do not use ML. The results show that the
combination of reinforcement learning and deep neural net-
work can greatly improve the performance, including average
coverage, average energy consumption, and time to complete
tasks.

2) SCHEDULING
Beyond energy efficiency and power control for smart UAVs,
one can think about smart event scheduling for a UAV net-
work. It refers to the process of determining the optimal
timing and frequency of data transmissions between the UAV
and the ground station or other nodes in the communication
network. The goal of scheduling is to ensure efficient and
reliable communication while minimizing energy consump-
tion and latency, performance metrics [60]. Good scheduling
optimizes the use of available bandwidth and resources. For
example, by scheduling transmissions at optimal times and
frequencies, UAVs can avoid collisions and interference with
other nodes in the network, while still ensuring timely data
delivery. Scheduling can also help to minimize latency and
delay in UAV communication. By scheduling transmissions in
advance and using techniques such as predictive control and
adaptive modulation, UAVs can reduce the time required to
transmit and receive data, improving overall performance and
response. And these also mean a reduction in overall energy
consumption, which enhances energy management.

Within this context, the study outlined in [118] intro-
duces a spatio-temporal scheduling framework tailored for
self-governing UAVs. This RL solution, as proposed by
the authors, operates on a model-free basis, harnessing the
widely recognized Q-learning algorithm. The algorithm sys-
tematically addresses unforeseen occurrences by iteratively
assessing their presence during each time slot and sub-
sequently adjusting the UAVs schedule. This adjustment

prompts a corresponding update in the UAV trajectory based
on the Q-learning strategy. Notably, the approach consid-
ers a multitude of parameters associated with each event,
encompassing aspects like commencement time, duration,
location, and priority. The study holds several noteworthy
aspects, encompassing its incorporation of diverse factors
like efficient management of unexpected incidents, battery
level considerations, and operation within a collaborative
UAV ecosystem. Nonetheless, optimal selection of certain
parameters remains less elucidated. For instance, the tem-
poral parameter presents a trade-off between computational
complexity and time efficiency. A decision-making process
that maximizes the efficiency of the next event unavoidably
prolongs processing time, potentially detrimentally impacting
UAV coverage rates. Additionally, the research could poten-
tially enhance its realism by considering multiple docking
stations instead of focusing solely on a single station across
the entire network. Such an extension would require the UAVs
to factor in proximity when determining potential station
shifts.

3) HANDOVER FOR UAVS
The support of mobility is a fundamental aspect of wireless
networks. Handover (HO) is one of the key aspect in UAV
mobility management when UAVs are integrated in exist-
ing cellular networks. The high speed and three dimensional
motion of UAVs make HO management more difficult com-
pared to ground UEs. Given the intrinsic characteristics of
the ground to air link, researchers need to develop efficient
HO management algorithms that can provide a robust UAV
mobility support in the sky. UAVs face frequent HOs leading
to undesirable outcomes such as radio link failures, ping pong
HOs, and large signaling overheads. The authors of [119]
explored the RL algorithm to maximize the received signal
quality at a cellular-connected UAV while minimizing the
number of HOs.

D. SECURITY AND SAFETY FOR UAV
It is anticipated that UAVs would play a significant role in
several sectors of 5G and beyond networks, enabling not only
better communication but also safety applications and essen-
tial infrastructures. Both security and safety are essential to
ensure that UAV communication systems operate effectively
and can be trusted to perform their intended functions without
causing harm or damage. In addition, the huge expansion of
the UAV business will result in many heterogeneous air-to-
ground deployments with greater densities of UAV nodes,
requiring their security against cyber-attacks across several
network levels. At the same time, ensuring safety is one of the
important indicators that UAV base station applications can be
used in practice, but the level of safety is difficult to confirm
from simulation or a small number of experiments. XAI can
play an important role in this process, because it enables a
clear understanding of how and why the UAV makes deci-
sions. This means that the level of security can be more clearly
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identified. The author of [48] proposed a way to use XAI.
Use XAI to judge and adjust when the UAV deviates from the
established trajectory. The explainable model is presented on
a visual platform in the form of if-then rules produced from a
fuzzy inference model of the Sugeno type. The model is eval-
uated using data collected from three separate missions. Over
the course of each operation, bad weather, Circumstances, and
target locations are added at random.

In the study by [109], a defensive system was introduced to
counteract malicious UAV activities. This system employed
diverse UAV detection methods, including jamming, GPS
spoofing, transmission of hacking signals, and laser-based in-
terventions. The interaction with malicious UAVs was framed
as a dynamic defense game, wherein the suitable defense
strategy was selected based on the attack mode of the UAV
and the significance of the protected zone. To model this strat-
egy selection, the author employed the MDP framework and
utilized Q-learning to identify the optimal defense approach
without prior knowledge of the ongoing UAV attack mode
in the dynamic game. Simulations revealed that the proposed
RL-based malicious UAV interception approach substantially
reduced the risk in the safeguarded area and enhanced the
utility of the defense system compared to a random defense
policy.

Another consideration is UAV detection, detection in UAV
communication refers to the ability to identify and track UAVs
in the communication network, typically using specialized
sensors and algorithms. The goal of detection is to im-
prove situational awareness and enable efficient and reliable
communication with UAV, while also providing safety and
security to protect against unauthorized or malicious UAVs.
But for the urban environment, the environment is more com-
plex which has more physical obstacles, environmental noise.
Although the use of UAVs can increase the probability of LoS,
traditional methods such as radar, electro-optical sensors, and
computer vision still have a lower-than-expected effect. In this
case, reinforcement learning can better assist the system to
achieve better detection results.

E. ISAC UAV
UAVs are emerging sensing technologies that, thanks to their
flexibility and their possibility of keeping a privileged LoS
point of view, are often adopted for localization and sensing
in time-critical applications [120], [121], [122], [123].

The advantages of using UAVs with Integrated Sensing
and Communication (ISAC) are several, but, at the extreme,
one can find two significant aspects. From one side, the 3D
mobility of UAVs permits Dual Function Radar Communica-
tion (DFRC) tasks in an optimized fashion: apart from setting
the best beam-forming and waveform design, the UAV the
trajectory can further increase the performance of the ISAC
system. On the other side, ISAC is an integrated solution
that supports easy and low-complexity hardware deployment
onboard battery-constraint agents.

For these reasons, the ISAC theoretical framework has been
recently applied to UAVs [124], [125], [126], [127], [128],

[129], [130], [131]. For example, in [127], a rotatory-wing
UAV transmits the ISAC signal during its flying process, to
simultaneously provide downlink communication service to a
ground user and sense a target. The location of the user and
the UAV are a priori known, whereas the location of the target
is unknown. The trajectory design problem is to determine the
next UAV waypoints, its hovering points and flying velocities
to maximize the average communication rate while minimiz-
ing the Cramer-Rao Lower Bound (CRLB) of target location
estimation. In [130], a ground BS is deployed to deliver down-
link wireless services to cellular users. A cellular-connected
UAV equipped with a side-looking synthetic-aperture radar
(SAR) flies and collects the echoes of communication sig-
nals originated from the ground BS, to sense objects and
gain situational awareness. The UAV minimizes the overall
propulsion energy consumption during the considered time
horizon, while maintaining acceptable sensing resolution by
reusing cellular communication signals. Nevertheless, it has
not been accounted for the fact that, due to its high alti-
tude, the UAV might associate to several candidates ground
BSs at different distances. Thus, the UAV-BS association
should be carefully considered when designing the UAV tra-
jectory. The work in [132] applies neural networks (NN)
to derive the best joint UAV-BS and beamforming weights
in a dual function radar-communication THz UAV, outper-
forming the conventional methods based on optimization
techniques.

The authors in [131] consider a UAV equipped with a
Uniform Linear Array (ULA) vertically deployed w.r.t. the
horizontal plane. The UAV is at the same time serving ground
users on the ground and radar sensing towards potential
ground targets. The objective is to maximize the average
weighted sum–rate throughput by jointly optimizing the UAV
trajectory, as well as the transmit information and sensing
beam-forming subject to the sensing requirements and trans-
mit power constraints over different time slots. In [133], the
considered UAV is required to execute multiple sensing tasks
in sequence within the cell coverage. Finally, in [134], the
authors consider a UAV-ISAC system where the objective is
to maximize the achievable rate, subject to the beam-pattern
gain constraint and the maximum transmit power constraint.

Other related papers of interest deal with ISAC design
for mobile networks [135], Reconfigurable Intelligent Surface
(RIS)-aided UAVs [136], physical layer security in UAV en-
abled wireless networks [137], and distributed target tracking
by networks of UAVs [138].

VI. INTELLIGENT UAV WITH 6G AND BEYOND
6G is expected to offer significant improvements in terms
of data rates, latency, and reliability compared to existing
wireless communication systems. This could enable UAVs to
transmit high-quality video and sensor data in real-time, even
in challenging environments such as urban areas or disaster
zones. Also, 6G is expected to support a massive number of
connected devices, including UAV, which could help alleviate
congestion in existing wireless networks. This could enable
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TABLE 4. Intelligent UAV With 6G and Beyond

UAV to operate in areas with high user demand, such as
sports stadiums or large public events. Using 6G in UAV base
stations could also open up new opportunities for applications
and services. For example, UAVs equipped with 6G com-
munication technology could be used for remote inspections
of infrastructure, precision agriculture, or search and rescue
missions. 6G could also enable new applications such as aug-
mented and virtual reality, which require high-bandwidth and
low-latency communication. Table 4 illustrates the integration
of intelligent UAVs with 6G and beyond technologies, show-
casing their advanced capabilities and potential applications.

A. C-RAN AND O-RAN
C-RA and O-RA are eye-catching network architecture that
play important roles in the evolution of 6G networks which
worth looking forward to. C-RA refers to the network archi-
tecture that concentrates the base band processing functions
of multiple base stations into a public data center, which is
also called “cloud”. O-RA is a network architecture that aims
to dis-aggregate and standardize the radio access network
(RAN) components, including the hardware and software, to
enable interoperability and innovation among vendors and
operators [139]. C-RA has obvious advantages in increasing
network capacity, improving network efficiency, improving
energy efficiency, and simplifying network management. And
the goal of O-RA is to promote a more open and flexible
RAN ecosystem, while also reducing costs and improving
performance [140]. The structure of O-RA is based on a set
of functional blocks and interfaces that define how the RAN
components interact with each other, which include Open RU,
Open DU, and Open Central Unit (CU).

The DU performs base-band processing functions, such
as digital signal processing, modulation/demodulation, and
channel coding/decoding. It also handles the scheduling and

coordination of radio resources. The CU provides control and
management functions for the RAN, such as network manage-
ment, traffic management, and service orchestration. It also
performs higher-level functions such as radio resource man-
agement, mobility management, and security management.
And the RU is responsible for the transmission and reception
of radio signals over the air interface. It includes the anten-
nas, radio transceiver, and other hardware components. These
functions and interface structure of these modules are imple-
mented through O-RAN Management and Control (OMC) for
real-time and non-real-time intelligent management. Unlike
traditional RAN systems, the structure of ORAN can be dis-
tributed and flexibly deployed. [141] mentioned that Using
UAV as O-RUs allows to quickly deploy a 5G/6G network to
assist the terrestrial network in a temporary period in which
computing resources can fly closer to users to meet their
stringent constraints. During this process, OMC in O-RAN
can enable optimization and learning solutions for employing
and controlling UAV-BSs to extend not only the coverage area
but also the availability of computing resources. The author
of [62] designed a control loop that defines the flows required
to operate the UAV-BSs and manages the distributed elements
of the O-RAN in order to perform offloading tasks. In order
to resolve the proposed optimisation problem, apply learning
solutions to the flying O-RAN architecture in order to opti-
mise not only the UAV-BS trajectory for gathering sensing
data, but also the distributed resources, such as the O-RAN
RU, O-RAN DU, and ORAN CU, to serve offloading tasks
requested by sensing devices.

B. INTELLIGENT EDGE COMPUTING
The concept of Mobile Edge Computing (MEC) finds its roots
in the increasing demand for new applications like VR/AR
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and autonomous driving, which rely heavily on ultra low-
latency communication, computation, and control across a
multitude of wireless devices. Despite the intensive real-time
computational tasks these applications entail, wireless devices
are often constrained by their small size and limited com-
putation and data storage capabilities. Consequently, MEC
has emerged as a pivotal technology, aiming to augment the
computational prowess of these small devices through com-
putation task offloading to proximate MEC servers. However,
for users situated at the cell’s edge, this offloading strategy
could inadvertently result in heightened transmission energy
consumption and/or longer delays compared to local com-
putation. This is due to the restricted communication rate
with the Access Point/Base Station (AP/BS). To navigate
this challenge, the strategic deployment of UAVs, endowed
with substantial controllable mobility, has been proposed as
a solution. These aerial entities, acting as flying cloudlets,
can efficiently offload computations for users by dynamically
approaching them, thereby circumventing the limitations as-
sociated with cell-edge offloading [143].

The research in [157] focuses on an intelligent caching
approach for a heterogeneous aerial-terrestrial network in the
context of 6G. This network comprises diverse base stations,
including both UAV and terrestrial remote radio heads. The
proposed technique leverages FL methods, eliminating the
need for users to explicitly share their content preferences
and reporting. Instead, a Hybrid Caching Predictor heteroge-
neous computing platform (HCP) accurately forecasts content
caching across various base stations based on users’ pref-
erences. In this framework, the HCP serves as the central
server, while network nodes securely share updates with
the global model. A convolutional neural network (CNN)
was employed to enable the HCP to learn the optimal files
for caching in heterogeneous base stations. This FL-based
HCP solution was evaluated using various datasets, demon-
strating its effectiveness in comparison to other baseline
techniques.

[145] presents an aerial Edge Internet of Things (EdgeIoT)
system, where a drone is used as a mobile-edge server for
processing tasks from ground IoT devices. It focuses on op-
timizing UAV cruise control and task offloading allocation,
balancing the device’s computing capabilities and the UAV’s
speed limits. The study introduces a deep-graph-based re-
inforcement learning framework to efficiently manage task
offloading and UAV movement, leading to improved task han-
dling and reduced task missing rates in EdgeIoT systems.

C. SPACE-BASED NETWORKS WITH SATELLITES
The core imperatives of 5G/6G mobile communication en-
compass not solely the establishment of a mobile communi-
cation network merging intelligence, perception, and security
with communication functionalities at its core, but also the
realization of a seamless, people-centric air-space-ground-
sea coverage integrating various networks [148]. Within this
framework, UAVs find application across space-based net-
works, satellite collaborations, terrestrial installations, and

maritime communication users, facilitating multi-dimensional
coverage across intricate scenarios while ensuring contin-
uous, secure connections. The network architecture com-
prises space-based networks, aerial networks, and sea-based
networks, each playing a distinct role in the ecosystem.
Specifically, ground-based networks involve terrestrial com-
munication equipment, encompassing terrestrial internet and
wireless devices. Space-based networks consist of stationary
satellites orbiting Earth, while aerial networks encompass
temporarily deployed UAVs [149], airships, and similar en-
tities. These aerial components serve as relays for sea-based
users both on the ground and at sea, forwarding data to space-
based satellites [150]. Sea-based networks refer to offshore
platforms, ships, fishing vessels, and similar sea-based equip-
ment. Owing to their considerable distance from the mainland,
many offshore platforms lack communication connectivity
within the range of existing ground-based station networks.
The deployment of UAVs, however, enables effective commu-
nication between sea-based installations and terrestrial control
centers.

D. SWARM UAV SYSTEM
Swarm UAV systems have gained significant attention in re-
cent years due to their potential to perform various tasks that
are difficult or impossible for a single UAV to accomplish. A
swarm UAV system typically consists of multiple UAVs that
work together to achieve a common goal. Compared with a
single UAV, the swarm UAV system has many advantages, in-
cluding improved efficiency, scalability, and robustness [152].

Swarm UAV base stations can support different swarm sizes
and configurations, enabling flexibility and scalability in mis-
sion planning and execution. Especially when faced with a
large coverage area, a single UAV cannot meet the demand.
Meanwhile, another advantage of swarm UAV systems is their
ability to perform complex tasks. For example, a swarm of
UAVs can be used for search and rescue missions, where they
can quickly and efficiently search large areas for survivors.
Additionally, a swarm of UAV can be used for monitoring
and surveillance tasks, where they can cover large areas and
provide real-time data to a central hub.

The Swarm UAV system mainly has two common orga-
nizational structures: infrastructure-based swarm architecture
and FANET [154]. Infrastructure-based swarm architecture
utilizes a ground-based infrastructure to enhance the com-
munication and coordination capabilities of the swarm. In
this architecture, the swarm UAVs communicate with each
other and with a ground-based infrastructure to enable effi-
cient coordination. The control-based infrastructure typically
consists of a base station, which serves as the central hub for
controlling and coordinating the UAVs. The base station is
equipped with advanced sensors and processing capabilities to
enable real-time situational awareness and decision-making.
The UAVs communicates with the base station and with each
other through wireless communication links, such as WiFi,
cellular, or satellite communication. One of the main ad-
vantages of the infrastructure-based swarm architecture is its
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ability to provide reliable and robust communication between
the UAVs and the base station. This is particularly important
in scenarios where the UAVs is operating in harsh environ-
ments with viruses or in areas with limited communication
coverage. The ground-based infrastructure can also provide
additional capabilities, such as power and data storage, which
can enhance the endurance and mission capabilities of the
swarm. Another advantage of the infrastructure architecture is
its ability to enable more complex missions and applications.
For example, the ground-based infrastructure can provide ad-
ditional sensors and processing capabilities that can be used
to support advanced applications, such as mapping and recon-
naissance. The ground-based infrastructure can also be used
for autonomous navigation and decision-making, enabling
the UAVs to operate more independently and efficiently. A
FANET is a type of ad-hoc network in which a group of UAVs
communicate with each other to form a network. In a FANET,
UAVs act as nodes in the network, communicating with each
other to exchange data and coordinate their actions. One of the
key advantages of FANET is their flexibility and adaptability.
FANET can be rapidly deployed and reconfigured as needed,
allowing them to respond to changing conditions in real-time.
Another advantage of FANET is their scalability. FANET can
be composed of many UAVs, allowing them to cover large
areas and perform complex tasks. By working together, the
UAVs can perform tasks more efficiently and effectively than
a single UAVs could on its own.

VII. FUTURE RESEARCH DIRECTION
The rapid advancement of communication technologies and
the increasing adoption of UAVs in various applications have
opened up new avenues for future research in the field of UAV
communication. In this section, several promising research di-
rections are outlined that can further enhance the capabilities
and potential of UAVs in communication systems.
� Energy constraints: Addressing the energy constraints

of UAVs is a pivotal area of research that significantly
enhances their prolonged operational capabilities. Key
strategies involve the development and integration of
innovative energy harvesting, storage, and transfer tech-
niques, including wireless or laser-based energy transfer
methods. Such advancements, as noted by [9], are es-
sential for increasing the flight duration and operational
efficiency of UAVs. This progress is vital for expanding
the potential applications of UAVs, making them more
effective for long-duration missions such as surveillance,
environmental monitoring, and other tasks that require
extended operational times. Furthermore, ML plays a
crucial role in optimizing UAV energy management. It
aids in the strategic placement of charging stations and
the efficient scheduling of charging operations, thereby
enhancing overall mission sustainability and reducing
downtime. These developments collectively push the
boundaries of UAV capabilities, enabling more robust
and versatile deployments.

� Thethered UAVs: Exploring a wider range of UAVs,
including tethered UAVs, for specific occasions and
scenarios can unlock new possibilities in UAV com-
munication. Tethered UAVs, connected to the ground
by a cable, can provide continuous power supply and
extended flight duration, making them suitable for pro-
longed, but static, missions [158]. There will be a need
to assess the advantages and challenges of using spe-
cialized UAVs for different applications, such as disaster
response, surveillance, and communication in remote ar-
eas. Additionally, investigating the integration of UAVs
in new 6G architecture such as O-RA systems presents a
promising research direction.

� non-terrestrial networks (NTN)-integration: Addition-
ally, combining UAV networks with satellite systems
to create comprehensive non-terrestrial networks repre-
sents a groundbreaking advancement. Such networks,
supported by both terrestrial and aerial components,
promise to deliver superior communication capabil-
ities, broader coverage, and increased network re-
silience [159]. ML can be instrumental in the ef-
ficient formation and management of these complex
networks, optimizing the coordination and operation of
UAV swarms within this integrated system. This holis-
tic approach could transform communication strategies,
especially in areas where terrestrial infrastructure is lack-
ing or has been compromised.

� Digital Twin: The integration of Digital Twin (DT) tech-
nology with UAVs presents significant opportunities to
advance UAV operations, especially within the context
of emerging 6G networks. DT technology enables real-
time simulation of UAV operations, improving safety
and operational efficiency, while predictive maintenance
capabilities help extend the lifespan of UAVs. Addition-
ally, DTs can provide detailed training environments,
enhance decision-making by integrating with IoT and
Big Data, and ensure regulatory compliance. According
to [10], DT technology is expected to drive 6G research
and development due to its modular capabilities and
the potential for remote intelligence. This technological
synergy between DT and 6G will enable proactive use
of artificial intelligence, enhance network resilience, and
open up new avenues for UAV applications in sectors
like Industry 4.0 and aviation. As detailed in [160],
a novel DT-based framework has been proposed for
UAV swarms that reflects their physical entities with
high fidelity throughout their life cycle. This frame-
work integrates machine learning algorithms to optimize
decision-making and control UAV behaviors effectively,
demonstrating its efficacy in applications like intelligent
network reconstruction. The relationship between DT
and 6G outlines a promising research trajectory that
could transform UAV operations and broader telecom-
munications frameworks.

� Blockchain: Blockchain technology significantly en-
hances UAV operations with its decentralized, secure
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record-keeping and autonomous execution capabili-
ties, as outlined by [161] and further supported by a
comprehensive survey in [162]. This technology en-
hances the security and privacy of UAV communications
through encrypted data stored on an immutable ledger, a
crucial feature as UAVs find broader application in
civilian and commercial fields. By improving traceabil-
ity and accountability, blockchain is vital for ensuring
regulatory compliance and effectively managing dis-
putes. Blockchain enables autonomous UAV operations
through smart contracts that automatically execute trans-
actions, such as payment processing or maintenance
protocols, once predefined conditions are met. It also
significantly improves the coordination of UAV swarms,
enabling efficient and secure communication without
the need for a central authority, ensuring synchronized
operation of the entire swarm. Additionally, blockchain
helps streamline regulatory compliance by maintaining
an immutable record of all UAV operations, streamlin-
ing the reporting process required by regulators. The
research by [162] highlights the versatility of blockchain
in UAV networks, facilitating applications in network
security, decentralized storage, inventory management,
and surveillance. As UAV technology continues to ad-
vance, integrating blockchain can unlock new applica-
tions and business models, particularly in the logistics,
agriculture and emergency response sectors, making op-
erations more robust, safe and able to handle complex
tasks.

These research directions, complemented by real-world de-
ployments and case studies in diverse application domains,
will play a crucial role in shaping the future of UAV communi-
cation and the role of ML in it. They will revolutionize various
industries and enhance communication capabilities across dif-
ferent sectors, paving the way for more robust, efficient, and
adaptable UAV communication solutions.

VIII. CONCLUSION
In summary, a comprehensive study was conducted on the use
of UAV in wireless networks, discussing the various roles that
UAVs play in the field of wireless communication. This survey
has also highlighted the critical role that ML techniques play
in optimizing UAV operations, enhancing network efficiency,
and addressing the challenges inherent to UAVs deployment.
It can be noticed that the emerging cutting-Edge ML has
greatly improved the potential and applicable dimensions of
UAV applications. Deeper integration of UAVs in wireless
communication networks opens up more possibilities for new
network paradigms with higher flexibility and performance.
Through an in-depth examination of existing literature, the po-
tential of UAVs to serve as versatile communication tools has
been elucidated, ranging from acting as aerial BS to enabling
rapid disaster response and environmental monitoring. The
popularization of these technologies and applications can re-
flect the fact that the convergence of UAVs, ML, and advanced

communication technologies holds the promise of more effi-
cient, adaptive, and resilient communication solutions. It is
clear that UAVs are poised to play an increasingly pivotal role
in the communication landscape, and the seamless integration
of these technologies has the potential to redefine the way we
connect, communicate, and respond to the dynamic demands
of the modern world.
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