
Received 28 February 2024; accepted 15 April 2024. Date of publication 18 April 2024;
date of current version 10 May 2024. The review of this article was coordinated by Editor Koichi Adachi.

Digital Object Identifier 10.1109/OJVT.2024.3390833

A Novel Three-Dimensional
Direction-of-Arrival Estimation Approach

Using a Deep Convolutional Neural Network
CONSTANTINOS M. MYLONAKIS AND ZAHARIAS D. ZAHARIS (Senior Member, IEEE)

School of Electrical, Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

CORRESPONDING AUTHOR: CONSTANTINOS M. MYLONAKIS (e-mail: mylonakis@ece.auth.gr)

This work was supported by the European Union through the Horizon 2020 Marie Skłodowska-Curie Research and Innovation Staff Exchange “Research
Collaboration and Mobility for Beyond 5G Future Wireless Networks (RECOMBINE)” under Grant 872857.

ABSTRACT This article aims to constitute a noteworthy contribution to the domain of direction-of-arrival
(DoA) estimation through the application of deep learning algorithms. We approach the DoA estimation
challenge as a binary classification task, employing a novel grid in the output layer and a deep convolutional
neural network (DCNN) as the classifier. The input of the DCNN is the correlation matrix of signals received
by a 4× 4 uniformly spaced patch antenna array. The proposed model’s performance is evaluated based
on its capacity to predict angles of arrival from any direction in a three-dimensional space, encompassing
azimuth angles within the interval [0◦, 360◦) and polar angles within [0◦, 60◦]. We aim to optimize the
utilization of spatial information and create a robust, precise, and efficient DoA estimator. To address this,
we conduct comprehensive testing in diverse scenarios, encompassing the simultaneous reception of multiple
signals across a wide range of signal-to-noise ratio values. Both mean absolute error and root mean squared
error are calculated to assess the performance of the DCNN. Rigorous comparison with conventional and
state-of-the-art endeavors emphasizes the proposed model’s efficacy.

INDEX TERMS Direction-of-arrival (DoA) estimation, convolutional neural network (CNN), deep learning
(DL), binary classification, antenna array analysis and synthesis, spatial signal processing.

I. INTRODUCTION
Direction-of-arrival (DoA) estimation has been one of the
most important problems in array signal processing for
the past few decades [1], [2], [3]. In the pursuit of en-
hanced wireless communication, multiple-input multiple-
output (MIMO) [4], [5], [6] antennas have proven to be a
transformative technological breakthrough. MIMO systems
utilize multiple antennas for both transmission and recep-
tion, exploiting spatial diversity to improve data rates and
overall system performance. The development of “smart an-
tennas” [7], [8], [9], [10], [11] has complemented MIMO
technology, as these antennas can dynamically adjust their
radiation patterns based on the estimated DoAs of incoming
signals. By accurately estimating DoAs, smart antennas can
optimize their main lobes towards the desired users and nullify
interference from other directions, thus enhancing signal re-
ception and reducing signal degradation caused by multipath

propagation and fading. Researchers are actively developing
advanced techniques to further bolster signal enhancement,
e.g., electromagnetic skins, which are novel structures that
can be integrated into antenna systems to manipulate radiation
and scattering parameters [12], [13], [14], [15], [16], [17],
[18]. Precise DoA estimation is crucial for smart antennas
in MIMO systems, playing a pivotal role in achieving spa-
tial signal processing, beamforming, and link reliability. As a
consequence, applications reliant on precise DoA estimation,
e.g., vehicular communications [19], [20], can experience sig-
nificant improvements and thrive in performance through the
advancement of research in this domain.

There are many conventional high resolution DoA es-
timation algorithms, such as multiple signal classification
(MUSIC) [21], estimation of signal parameters via rotational
invariance techniques (ESPRIT) [22] and Capon [23]. In
ideal scenarios, these spatial spectrum estimation algorithms
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demonstrate strong performance in acquiring the signal and
noise subspaces through eigendecomposition of the signal’s
covariance matrix. However, these methods have certain lim-
itations, particularly in non-uniform and low signal-to-noise
ratio (SNR) environments. In such conditions, the accuracy
and reliability of DoA estimation may be compromised.
Another major disadvantage of conventional methods stems
from their computationally intensive nature. These methods
necessitate real-time complex calculations, placing a signifi-
cant demand on computational resources and, consequently,
requiring substantial hardware capabilities. The processing
time for predicting DoAs is considerably prolonged, which
can be impractical or prohibitive in certain time-sensitive
applications. The complexity of these algorithms can lead
to increased power consumption, limiting their applicability
in resource-constrained environments. The slow prediction
speed can adversely affect the overall system performance in
dynamic environments, where DoAs of signals may rapidly
change.

To overcome these challenges, various alternative ap-
proaches have been explored, with machine learning (ML)
standing out as a particularly promising option. ML algo-
rithms have the ability to learn and adapt from data, making
them highly versatile and capable of handling complex and
dynamic environments. Unlike conventional methods that rely
on predefined mathematical models, they can discover pat-
terns in the data, hence enabling more accurate and robust
predictions. ML algorithms contribute to the advancement of
research aimed at optimizing DoA estimation time by pro-
viding quicker and more efficient solutions. Neural networks
(NNs) not only reduce computational complexity, but also
enable swift predictions once the initial training phase is com-
pleted, thus eliminating the requirement for intricate real-time
computations. Moreover, the ML approach enables the handle
of a wide range of input data formats, allowing for seamless
integration with different types of sensors and signal sources.
Convolutional neural networks (CNNs) particularly demon-
strate their effectiveness when challenged to learn and adapt
to data for tasks such as object detection, image recognition,
and semantic segmentation [24], [25], [26]. It is reasonable
to expect that CNNs can also excel in DoA estimation when
appropriately applied for this purpose.

By leveraging deep learning (DL) techniques and fine-
tuning CNNs, this research aims to enhance the current state
of DoA estimators and bridge the existing gap in the literature
concerning three-dimensional (3D) space research. We are
pursuing binary classification to achieve DoA estimation. To
accomplish this, we employ a grid in the fully connected (FC)
output layer (classification layer) of the proposed DCNN,
which consists of 2N subgrids, where N is the total number of
incoming signals, meaning that each subgrid corresponds to a
specific angle of arrival (AoA) of each signal. This approach
enables the network to discriminate between different angles.
To address the limited research on planar arrays and 3D space,
we harness the power of DL techniques to achieve DoA

estimation for a patch antenna array consisting of 4× 4 uni-
formly spaced elements. The key contributions of this paper
are listed below:

1) We introduce a novel approach in the output layer, em-
ploying a grid for binary classification. The proposed
grid systematically divides the 3D spatial domain, facil-
itating structured classification of angles. This approach
demonstrates superiority in DoA estimation accuracy.

2) We conduct hyperparameter tuning for hidden layers,
strategically minimizing the model’s complexity. We
fine-tune and optimize the proposed architecture of the
hidden layers specifically for three incoming signals.
Subsequently, we establish that this optimized configu-
ration maintains its effectiveness across a range of 1-10
signals by making appropriate adjustments to the input
and output layers.

3) We analyze model complexity and benchmark it against
state-of-the-art NNs and conventional algorithms, fo-
cusing on the time required for prediction.

4) We validate the model’s accuracy across various scenar-
ios, including different SNR environments and varying
numbers of simultaneously incoming signals. Our re-
sults conclusively demonstrate the establishment of
a noise-independent, low-complexity, and precision-
focused DoA estimator.

The remaining sections of this paper are organized as fol-
lows: In Section II, we survey prior work, thus offering a
succinct overview of existing literature. In Section III, we
lay the groundwork by introducing the basic DoA estimation
system and its underlying principles as well as the signal
model. In Section IV, we delve into the data model, elucidat-
ing the signal representations and preprocessing techniques
essential for training and evaluating the DCNN. Section V
is dedicated to describing the DCNN architecture, where we
carefully discuss the design choices for the parameters and
hyperparameters of the model. In Section VI, we analyze
the training process of the DCNN and present the obtained
results. In Section VII, we concentrate on validating the per-
formance of the DCNN. We highlight the model’s capability
to sustain performance regardless of the presence of noise and
its proficiency in managing simultaneously received signals.
Moreover, we emphasize its computational efficiency, partic-
ularly in terms of the time required for estimation. Finally, in
Section VIII, we conclude the paper by summarizing our key
findings and presenting the implications of our results.

II. PRIOR WORK
Several academic endeavors have been instrumental in guid-
ing the course of DoA estimation research. A pioneering
work is presented in [27], where a neural network-based
smart antenna designed for multiple source tracking is in-
troduced. This work serves as a foundational contribution,
paving the way for subsequent advancements in smart an-
tenna technology through the integration of NNs. The efficacy
of convolutional recurrent neural networks (CRNNs) within
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challenging acoustic environments is illuminated in [28],
while scholarly undertakings exemplified by [29] and [30]
direct attention to the robustness, noise-resistance and appli-
cability of CNNs in the domains of broadband DoA estimation
and source counting. Huang et al.’s research [31] delves into
the domain of high resolution channel estimation and DoA es-
timation within massive MIMO systems, offering insights into
the applications of DL for enhanced system performance. [32]
contributes to the field by addressing the challenges posed
by array imperfections, with a focus on developing a DoA
estimation method based on deep neural networks (DNNs)
with inherent robustness to imperfections in antenna arrays.
Wu et al.’s study [33] introduces a DCNN that demonstrates
the potential of DL in leveraging sparse knowledge for ac-
curate estimations. Moreover, Massa et al.’s comprehensive
review [34] surveys the broader landscape of applying DNNs
to electromagnetics and antennas, offering a panoramic un-
derstanding of the evolving field. Lastly, [35] presents a ML
approach to DoA estimation in noisy environments, address-
ing a critical challenge in real-world applications. Various
endeavors [36], [37], [38], [39] have, also, focused on mini-
mizing computational overhead and processing time of DoA
estimation.

We should note that while most existing bibliography fo-
cuses on the case of linear antenna arrays, only a few delve
into deeper configurations of antenna arrays, such as cir-
cular or planar arrays, in an effort to approach the DoA
estimation challenge in the three-dimensional space. Zaharis
et al. [40] make a notable contribution to the field by sug-
gesting a modification to conventional beamforming methods.
This modification is specifically designed for realistic lin-
ear antenna arrays, placing a strong emphasis on practical
applicability and spatial signal processing. [41] introduces a
discretization-free sparse and parametric approach for linear
array signal processing, establishing its statistical reliability
in the number of snapshots under uncorrelated sources. The
application and evolving significance of CNNs for DoA es-
timation in linear antenna arrays is further explored in [42].
Lota et al. [43] present an exploration of 5G uniform linear
arrays, employing beamforming and spatial multiplexing for
outdoor urban communication at various GHz frequencies,
showcasing a robust two-level approach. Researchers in [44],
[45] leverage deep networks for DoA estimation in low SNR
scenarios, demonstrating the adaptability of DL techniques in
antenna arrays, whereas in [46] there is a focus on near-field
DoA estimation in MIMO systems by a complex ResNet
framework.

In terms of implementations within 3D space, [47] proposes
a joint DoA estimation and phase calibration approach for
uniform rectangular arrays, offering a comprehensive solu-
tion for improved array processing precision. Wei et al. [48]
contribute insights into optimizing planar array configurations
for direction of arrival estimation, while Wang et al. [49]
showcase advancements in positioning technologies by intro-
ducing a multitarget active backscattering positioning system

with superresolution time series post-processing. A multi-
port interferometer-enabled 3D DoA estimation system is
introduced in [50], which enhances the accuracy of existing
estimators. Finally, Xu et al. [51] present an application-
oriented study on DoA-based positioning, employing uniform
circular arrays, thus providing insights into the practical uti-
lization of circular array configurations for positioning in
communication technologies.

Distinguished from most previous works, our research un-
derscores a strategic focus on enriching the representation
of three-dimensional space, encompassing a diverse range
of angles, which is crucial in the landscape of 5G and be-
yond 5G (B5G) networks. This inclusivity spans the elevation
and azimuth planes, ensuring a comprehensive and adapt-
able framework for modern communication systems. Integral
to our methodology is the deployment of a 16-element pla-
nar antenna array, a pivotal enabler for our advanced signal
processing procedures. With an emphasis on precision, our
estimator is meticulously crafted to exhibit notable noise in-
dependence, which becomes a critical attribute in dynamic
and often noisy environments. Our approach operates under
the assumption that the precise number of incoming signals
is known, as we do not engage in its calculation. Although
the completeness of the receiver block requires extensive ex-
ploration in various areas, our emphasis lies in refining the
estimation process. The proposed model’s proficiency extends
to scenarios characterized by the simultaneous reception of
signals, an inherent trait in real-world applications. For ex-
ample, in the context of vehicular communications, where
signal interference and simultaneous reception are common-
place, our research stands out as particularly pertinent. These
distinctive capabilities position our research as a valuable
asset for addressing the evolving demands of contemporary
communication systems.

III. SIGNAL MODEL
The incoming signals are described by respective angle pairs
denoted as (θi, φi ). Let’s consider an antenna array that
receives N monochromatic signals, denoted as si(t ) (i =
1, . . . , N). Alternatively, we can represent these signals in a
sample form, where si(k) corresponds to a signal sample of
order k. For each sample si(k), a corresponding modulation
function gi(k) exists. These modulation functions encompass
all the information transferred by the incoming signals and
vary depending on the multiplexing technique employed for
broadband transmission (e.g., OFDMA). The incoming sig-
nals originate from specific AoAs and can be represented in
the spherical coordinate system by a radial unit vector (see
Fig. 1)

vi = cos φi sin θix0 + sin φi cos θiy0 + cos θiz0, (1)

where x0, y0, z0 are the respective unit vectors of x, y and
z-axes. Apart from the modulation function, each signal is
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FIGURE 1. Three-dimensional plot of a Mx × My antenna array, and an
incoming signal described by a radial unit vector that corresponds to angle
pair (θi, φi ).

associated with a “steering vector”

αn =

⎡
⎢⎢⎢⎢⎣

exp( jβr1vi )

exp( jβr2vi )
...

exp( jβrMvi )

⎤
⎥⎥⎥⎥⎦ , (2)

where β is the propagation constant and

rm = (mx − 1)dxx0 + (my − 1)dyy0,

mx = 1, . . . , Mx and my = 1, . . . , My, (3)

is the position vector of the mth array element, with m =
1, . . . , M and M = MxMy denoting the total number of the
array elements [52], [53], [54]. Based on the steering vectors
of all incoming signals, an M × N “steering matrix” is defined
as

A =

⎡
⎢⎢⎣

exp( jβr1v1) · · · exp( jβr1vN )
...

. . .
...

exp( jβrMv1) · · · exp( jβrMvN )

⎤
⎥⎥⎦

=
[
α1 α2 · · · αN

]
. (4)

According to the above equations, we can define signals
xm (m = 1, . . . , M ) induced at the inputs of the antenna array
elements in a vector form as

x(k) =
[
x1(k) x2(k) · · · xM (k)

]T
, (5)

where T indicates the transpose operation. This vector can be
calculated according to the following expression:

x(k) = Ag(k)+ n(k) = xs(k)+ n(k), (6)

where xs(k) represents the component of the input vector
solely attributed to incoming signals,

g(k) =
[
g1(k) g2(k) · · · gN (k)

]T
(7)

is the modulating vector containing the modulation functions
of all incoming signals, and

n(k) =
[
n1(k) n2(k) · · · nM (k)

]T
(8)

is the vector of noise samples entering the inputs of the an-
tenna array elements. According to the process followed by
several DoA estimation algorithms, each input signal xm is
multiplied by the complex conjugate value of a weight wm.
Consequently, the resulting output signal is given by the equa-
tion

y(k) =
M∑

m=1

wmxm(k), (9)

which can also be expressed as

y(k) = wH x(k), (10)

where

w =
[
w1 w2 · · · wM

]T
(11)

is the vector of complex weights and index H indicates the
conjugate transpose operation. Equation (10) demonstrates
that the output is expressed as the inner product of vectors
w and x(k). Then, the mean output power is expressed as

P̂y = wH Rxxw, (12)

where

Rxx = E [x(k)xH (k)] (13)

is an M ×M hermitian matrix known as the correlation matrix
of the antenna array input signals and E [.] represents the ex-
pected value. Assuming the source signals sn are uncorrelated
with each other and with the noise signals, (13) simplifies to

Rxx = ARggAH + Rnn = Rss + Rnn, (14)

where Rss is the correlation matrix of the components of the
input signals attributed solely to the incoming signals,

Rgg = E [g(k)gH (k)] (15)

is the correlation matrix of the modulation functions of the
incoming signals, and

Rnn = E [n(k)nH (k)] (16)

is the correlation matrix of the noise signals. Now, assuming
the noise signals have zero mean value and variance σ 2, (16)
becomes

Rnn = σ 2IM×M , (17)

where IM×M is the M ×M identity matrix.

IV. DATA MODEL
The fundamental step for formulating the problem is to create
a dataset that includes the necessary information and serves as
the basis of our simulation. This dataset is used as the input
of the DCNN and comprises multiple sets of incoming sig-
nals, each corresponding to various noise levels ranging from
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−10 to 10 dB. The intentional incorporation of varied noise
levels was implemented to authentically replicate real-world
conditions. For each set of incoming signals we record the Rxx

matrix which is created. Alongside this matrix, we maintain an
additional S × N matrix, where S represents the total number
of distinct angle sets, and N signifies the total number of sig-
nals per set. This S × N matrix contains the angles of arrival
(AoAs) of the signals, denoted as (θi, φi), i = 1, . . . , N , and
assumes a pivotal role in performance validation, facilitating
a comparison between the actual AoAs and those predicted by
the DCNN.

Assuming a 4× 4 planar antenna array as the receiver of
the signals, Rxx becomes a 16× 16 matrix, with elements
representing complex numbers. Neural networks are generally
not well-suited to directly process complex numbers, so we
need to split the matrix into real and imaginary parts [55]. This
splitting operation produces two sub-matrices; one containing
the real values and the other containing the imaginary val-
ues. Moreover, we incorporate an additional 16× 16 matrix
to preserve the essential phase information inherent in the
complex values of each element within the original matrix.
This process allows us to effectively handle complex data
while leveraging the benefits of the DCNN. As a result of this
data manipulation, the final dimensions of the dataset become
S × 16× 16× 3.

A sufficiently large set of angle pairs is required to ensure
diversity and variations from record to record. Our analysis
involves the examination of 1 to 10 simultaneously incom-
ing signals. The dataset will encompass 104 records for each
possible number of incoming signals, resulting in a total of
105 records (S = 105). In our analysis, each azimuth angle
lies within the range [0◦, 360◦), whereas each polar angle
belongs to the range [0◦, 60◦]. As we mentioned in Section II.,
these angle ranges reflect realistic conditions of incoming sig-
nals received by antenna arrays in 5G and B5G applications.
The AoAs within the dataset undergo a precision adjustment,
where they are rounded to the nearest tenth decimal digit. This
ensures a standardized level of granularity in the representa-
tion of spatial information. Assuming, for example, a total of
number of three incoming signals (N = 3), a possible set of
angles (θi, φi ), i = 1, 2, 3, would be:

[
(30.6◦, 128.2◦) (9.3◦, 89.1◦) (58.5◦, 12.8◦)

]
.

Matrices Rgg and Rnn are derived from identity matrices
multiplied by a power level, whose value is determined by
the respective SNR. For power levels Pg and Pn = σ 2, respec-
tively, the matrices are given as

Rgg = PgIN×N (18)

and

Rnn = PnIM×M . (19)

Using this information, the correlation matrix is constructed
based on (14), which allows the detection of a number of

signals either equal to or less than the total number of elements
in the antenna array.

V. DCNN ARCHITECTURE
A. LOSS AND ACCURACY FUNCTIONS
Binary cross-entropy serves as the appropriate loss function,
and binary accuracy emerges as the fitting metric when treat-
ing each angle prediction as a binary classification task [56].
Binary cross-entropy, also known as log loss, measures the
difference between the predicted probabilities and the true
labels, assessing the performance of the model’s predictions,
and is given as

Log Loss = −y log ŷ − (1− y) log(1− ŷ), (20)

where y represents the actual label of the binary classification
problem and ŷ denotes the predicted probability of the posi-
tive class. On the other hand, binary accuracy calculates the
accuracy of the model in predicting the correct class for each
angle, considering a threshold of 0.5 to assign the class, and
can be expressed as

Binary Accuracy = Correctly predicted records

Total number of records
. (21)

However, these functions might not fully capture the nu-
ances of a model’s behavior, especially in scenarios with
imbalanced datasets like in our case, where most neurons are
not expressing a DoA of an incoming signal. In such sce-
narios, binary accuracy can be misleading. Let’s assume one
class is predominant. Then, a model that always predicts this
class could achieve high accuracy according to binary accu-
racy metric, even though it fails to correctly classify instances
from the minority class. In these cases, metrics like precision,
recall, and F1-score are more reliable. Precision represents
the proportion of correctly predicted positive instances among
all predicted positives, whereas recall quantifies the propor-
tion of correctly predicted positive instances among all actual
positives. These metrics offer an in-depth evaluation of the
model’s performance across individual classes. Hence, they
effectively address challenges related to class imbalance. F1-
score, which is a combination of precision and recall, offers
a single value that balances the trade-off between these two
metrics by using the harmonic mean of them and is, therefore,
given as

F1-Score = 2 · Precision · Recall

Precision+ Recall
. (22)

B. HYPERPARAMETER TUNING AND ARCHITECTURE
OVERVIEW
In the pursuit of achieving optimal performance for our
DCNN, we carefully consider a range of hyperparameters.
These hyperparameters encompass crucial aspects, such as the
number of layers, the number of filters in each layer, kernel
size, kernel stride, dropout rate, regularizer rate, and learn-
ing rate. The selection of the appropriate activation function
and optimizer is equally important. To determine the most
effective values for these hyperparameters, we employ the
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TABLE 1. F1-Score and Number of Parameters vs Number of Filters, for 2
Convolutional Layers

TABLE 2. F1-Score and Number of Parameters vs Number of Filters, for 3
Convolutional Layers

grid search optimization technique. This meticulous approach
involves systematically exploring various combinations of
hyperparameter values, aiming to pinpoint the specific con-
figuration that not only maximizes accuracy, but also ensures
the robustness of the model. Within the context of the com-
plexity/performance trade-off in NNs, it is crucial to clarify
that a higher level of complexity typically leads to enhanced
performance. This advantage, however, is accompanied by the
trade-off of deploying more resources and accommodating
longer time responses. Conversely, opting for lower complex-
ity might result in quicker responses and the need for fewer
resources, but it could potentially come at the expense of
compromising overall performance. Therefore, through opti-
mization and hyperparameter tuning, our goal is to strike a
balance, achieving the highest precision in our model’s pre-
dictions, while maintaining minimal complexity.

The balance between information and complexity comes
into focus when examining the Rxx matrix, which serves as
the input of our proposed NN. An influx of incoming signals
enhances the informational aspect, though it also amplifies
complexity as the dimensions of the Rxx matrix grow. In ad-
dressing this trade-off, our deliberate focus is on optimizing
performance for a specific scenario involving three incom-
ing signals. Our architectural design undergoes meticulous
fine-tuning and optimization for three incoming signals. It is
crucial to note that the design is intentionally not individu-
ally tailored for each scenario involving different numbers
of incoming signals. This deliberate simplification ensures
consistency across the hyperparameters of the hidden layers,
excluding the input and output layers, regardless of the vary-
ing number of incoming signals. The balance and efficiency
of this approach will be evident in the results presented in
Section VII.

Initially, we focus on meticulously determining the opti-
mal number of layers and filters, given their fundamental
role as the cornerstone of any CNN. The examination of
Tables 1–4 reveals patterns concerning the impact of these

TABLE 3. F1-Score and Number of Parameters vs Number of Filters, for 4
Convolutional Layers

TABLE 4. F1-Score and Number of Parameters vs Number of Filters, for 5
Convolutional Layers

hyperparameters on the feature extraction capacity and ac-
curacy of the model. In instances where the convolutional
layers are inadequate in number, the model’s capacity for
feature extraction becomes constrained. This limitation in
feature extraction capacity is consequential, leading to a sub-
stantial decrease in overall accuracy. On the contrary, an
excess of convolutional layers may give rise to overfitting,
resulting in a reduction of parameters and a subsequent de-
cline in accuracy. After a thorough evaluation, it is evident that
an optimal configuration involves an architecture consisting
of three convolutional layers, each equipped with 256 filters.
This choice is substantiated by the understanding that a lower
quantity, i.e., 128 filters, results in insufficient feature extrac-
tion, and compromises the model’s accuracy.

Conversely, an excessive number of filters, i.e, 512 or 1024
filters, introduces redundancy, and leads to reduced overall
efficiency. The decision to employ three convolutional layers
with 256 filters each, signifies a strategic compromise, striking
a balance between robust feature extraction and computational
efficiency to enhance performance. This becomes more obvi-
ous, through the observation of a decline in F1-Score values
when deviating from the proposed configuration. We should
note that while the F1-Score may consistently register values
higher than 97%, this should not be misleading. It is crucial
to keep in mind the class imbalance, which may result in
the model exhibiting high accuracy in predicting non-DoA
estimations, although it may be comparatively weak in clas-
sifying the actual DoAs – which is the primary objective.
The proposed architecture achieves an impressive F1-Score
of 99.99%, highlighting its noteworthy performance. This
remarkable level indicates the model’s effective handling
and mitigation of issues associated with uneven distribution
among classes.

Regarding the kernel size, we explore different options and
assess their impact on the model’s ability to capture meaning-
ful information from the correlation matrix. Through the grid
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FIGURE 2. Depiction of the DCNN architecture, consisting of the input layer, 3 convolutional layers, and 3 fully connected layers, with the last one serving
as the classification layer.

search optimization, the 3× 3 kernel size for the first convolu-
tional layer and the subsequent 2× 2 kernel size for the next
two layers proves to be effective in capturing local features
and spatial relationships within the input data. To improve
computational efficiency, even further, without compromising
performance, we introduce a kernel stride with a value of 2
for the first convolutional layer. This enables skipping cer-
tain convolution operations, effectively reducing the spatial
dimensions of the feature maps. The subsequent two convo-
lutional layers use a default stride value of 1, hence ensuring a
more detailed analysis of the features. The dropout rate and
the regularization rate of the L2 regularizer are set at 0.2
and 0.001, respectively, aiming to prevent unnecessary net-
work overload and enhance the precision of the model. These
values, have also emerged as the optimal outcomes from the
grid search process. Furthermore, the Adam optimizer has
been identified as the most effective choice for optimizing our
model’s performance. For the learning rate, we utilize the “Re-
duceLROnPlateau” function provided by Keras. Although the
initial value for the learning rate is set at 0.001, this function
monitors the accuracy of the model during the training phase
and adjusts the learning rate when accuracy stabilizes for a
certain number of epochs. After each convolutional layer, a
batch normalization layer is applied to the output. Batch nor-
malization normalizes the activations, stabilizes the training
process, and accelerates convergence. By reducing internal
covariate shift, it enables the use of higher learning rates,
thus leading to faster training processes. It, also, acts as a
regularization technique, improving the model’s generaliza-
tion performance. Since the initial input dimension is smaller
than typical pooling layer applications, pooling layers are not
utilized.

After passing through the last convolutional layer, the re-
sulting output is directed to FC layers, which are preceded
by a flattening operation to convert the output into a vector
format. Three FC layers are employed in the proposed DCNN
architecture. The first two have 2048 and 1024 neurons, re-
spectively. Dropout layers, with a dropout rate of 0.2, are
added after these FC layers, to enhance training speed and
limit the risk of overfitting. As for the activation function,
rectified linear unit (ReLU) is applied in every convolutional

and FC layer apart from the output layer. ReLU introduces
non-linearity to the network, allowing it to learn complex
patterns. It efficiently solves the vanishing gradient problem
that can occur in deep networks, thus ensuring effective propa-
gation of gradients during backpropagation. The last FC layer
serves as the classification layer of our DCNN. The dimen-
sions of this layer depend on the number of AoAs requiring
estimation. Fig. 2 illustrates the proposed DCNN architecture.
In the subsequent section we will delve into the specifics of the
network’s output and the interpretation of the results.

C. CLASSIFICATION LAYER
For the classification process, we establish a mapping of each
unique angle ranging in θ ∈ [0◦, 60◦] and ϕ ∈ [0◦, 360◦) to a
finite number of classes represented as 0 or 1. If a neuron of
the output layer corresponds to an angle that is not predicted as
the desired DoA, it will be classified as 0. On the other hand,
if the neuron represents the DoA of the DCNN’s prediction, it
will be classified as 1. This mapping should be performed for
each neuron of the grid.

The total number of neurons in the NN’s output layer
is another critical trade-off between accuracy and complex-
ity of the DCNN, and it determines the grid resolution,
which divides the continuous angle range into discrete val-
ues. Increasing the number of neurons allows for a finer grid
resolution, which can potentially lead to higher accuracy in
predicting AoAs. However, as the number of neurons in-
creases, so does the total number of parameters in the network.
Each additional neuron introduces more weights and biases
that need to be learned during the training process. This leads
to a more complex model with higher computational costs
and memory requirements. It is crucial to consider that after
a certain point, increasing the grid resolution may not result
in significant improvements in accuracy. In fact, apart from
excessive computational costs, the network may become over-
fit to the training data. Excessively high grid resolution can
introduce noise and small variations in the input data. These
minor fluctuations can cause the model to become sensitive to
irrelevant details, thus leading to reduced robustness and poor
performance on its predictions. We will delve deeper into this
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matter in Section VI, where we define the grid resolution of
the output layer and compare the outcomes of each scenario.

The output layer of the proposed DCNN employs the sig-
moid activation function, which is suitable for the binary
classification implementation. The sigmoid function performs
a transformative role by mapping input values to a confined
range between 0 and 1, a characteristic that aligns seamlessly
with our objective of binary classification, distinguishing
between two classes–specifically, 0 and 1. This activation
function proves invaluable in endowing our DCNN with the
capacity to generate probability scores for each neuron in the
grid, offering a nuanced perspective on the likelihood of a
neuron accurately representing the desired DoA. Values near
0 indicate a low probability and values approaching 1 signal
a high likelihood, the sigmoid function renders the DCNN’s
output interpretable in terms of confidence levels. This inter-
pretability becomes particularly pertinent as it allows us to
establish precise thresholds on the predicted probabilities, fa-
cilitating meticulous binary decisions for every neuron within
the grid. By embracing the sigmoid activation function, our
DCNN not only navigates the complexities of DoA estimation
but also introduces a level of transparency and control over the
classification outputs. The output layer is designed to have this
format: [

(θ1, ϕ1), (θ2, ϕ2), . . . , (θN , ϕN )
]

To enhance clarity, let’s assume a scenario where we use a
resolution step of 1◦ for the grid and we consider the case of 2
incoming signals (N = 2) to comprehend the structure of the
output layer. At this point, we should remind that the angle
ranges are θ ∈ [0◦, 60◦] and ϕ ∈ [0◦, 360◦). This means that
in this scenario, the output layer will consist of 842 neurons.
This occurs because the model predicts the angle pairs (θ1, φ1)
and (θ2, φ2), hence the total grid of 842 neurons is divided
into four subgrids. The first subgrid contains 61 neurons and
predicts θ1, the second contains 360 neurons and predicts φ1,
the third contains 61 neurons and predicts θ2, and the fourth
contains 360 neurons and predicts φ2. The process remains the
same for more incoming signals, with appropriate adjustments
to the output layer dimensions. In general, the output layer
dimensions can be expressed as N (T + F ), where T repre-
sents the total number of neurons for the polar angles and F
represents the total number of neurons for the azimuth angles
(T and F depend on the resolution step).

In the case of two incoming signals, Algorithm 1 is intro-
duced to outline the data processing strategy for searching
nodes within the output layer of the proposed neural net-
work. The output layer is divided into four subgrids, and the
algorithm efficiently traverses each subgrid, inspecting
whether individual nodes carry the value of 1, indicative of
classification as an AoA. Noteworthy is the algorithm’s provi-
sion for adjusting return values based on the subgrid, ensuring
accurate mapping to the corresponding θ or φ angle within the
3D space. This refined methodology preserves the algorithm’s
efficacy in pinpointing nodes that fulfill the specified criteria.

Algorithm 1: Post-Processing for Predicting AoAs in the
Case of Two Incoming Signals.
1: Input: Output layer with 842 nodes
2: Output: Nodes with the value of 1
3: Divide the output layer into four subgrids
4: for j ← 1 to 4 do
5: Determine the range of nodes for the jth subgrid
6: if j = 1 then
7: Set start_index to 1 and end_index to 61
8: else if j = 2 then
9: Set start_index to 62 and end_index to 421

10: else if j = 3 then
11: Set start_index to 422 and end_index to 483
12: else
13: Set start_index to 484 and end_index to 842
14: end if
15: for i← start_index to end_index do
16: Check if node i is classified as ‘1’
17: if Condition is met then
18: if j = 1 then
19: Output: Return i − 1
20: else if j = 2 then
21: Output: Return i − 62
22: else if j = 3 then
23: Output: Return i − 422
24: else
25: Output: Return i − 484
26: end if
27: end if
28: end for
29: end for

VI. TRAINING PHASE
A. TRAINING RESULTS
In Figs. 3 and 4, loss and accuracy of the NN are presented
for both training and validation datasets. Prior to this analysis,
the entire dataset was divided, allocating 90% for training
and 10% for validation purposes. After completing the net-
work’s training with 120 epochs, noteworthy observations
can be made, regarding the accuracy and loss metrics for
both datasets. The accuracy for the training dataset reaches
a high value of 0.9995 (99.95%), and the corresponding loss
is 7.25× 10−4. The F1-score also demonstrates results close
to 99.98%, further affirming the performance of the model
and indicating that the network has successfully learned from
the training data and can accurately predict the majority of
records.

The validation dataset exhibits even higher accuracy, with
values close to 99.99%, and loss values of 2.95× 10−4. This
observation is remarkable, as it indicates that the network gen-
eralizes exceptionally well to unknown data. The loss value
of 2.95× 10−4 further supports the notion that the network’s
predictions closely match the true labels for the majority of
validation records. Between 80 and 120 epochs, both loss and
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FIGURE 3. Training and validation loss with respect to the epochs of
training.

FIGURE 4. Training and validation accuracy with respect to the epochs of
training.

accuracy metrics reach a point where they seem to stabilize.
Beyond this point, there are no significant improvements in
the model’s performance. Therefore, in the subsequent anal-
ysis, we train the model only for 80 epochs in order to save
computational resources.

B. EVALUATION METRICS
To evaluate the NN’s performance in estimating AoAs, we
employ two key metrics: the root mean squared error (RMSE)
and the mean absolute error (MAE). Unlike accuracy and loss
functions presented in Section V, which assess the correctness
of binary classification, RMSE and MAE enable the measure-
ment of the error between the predicted and actual AoAs in
degrees.

RMSE is advantageous for its sensitivity to larger errors, as
it exhibits them through squaring. This characteristic becomes
crucial when underscoring the importance of precise predic-
tions, particularly in our endeavor, where the prohibition of

extreme errors in predicted AoAs is a critical requirement.
The squaring operation in RMSE ensures that larger errors
have a more pronounced impact on the overall evaluation,
allowing for a focused assessment of the model’s performance
in handling significant deviations. On the other hand, MAE
treats all errors equally, providing an average absolute devi-
ation without magnifying the impact of outliers. This makes
MAE more robust to extreme values, ensuring that the eval-
uation is not disproportionately influenced by outliers. We
compute both RMSE and MAE, ensuring a comprehensive
assessment of the model’s performance by including all rel-
evant graphs. This approach offers a thorough overview of
how well the model predicts and captures errors across various
scenarios. Here, RMSE is defined as

RMSE=
√

1

2NL

∑L

i=1

∑N

j=1

[(
θi j−θ̂i j

)2+(
φi j−φ̂i j )

)2
]
,

(23)
where N is the total number of incoming signals per scenario,
2N is the total number of predictions made (for polar and
azimuth angles), L is the total number of records (scenar-
ios), θi j and φi j represent the actual AoA values (polar and
azimuth angles, respectively), whereas θ̂i j and φ̂i j represent
the predicted AoA values. In this section, L comprises 2500
training records, whereas in Section VII, it will encompass
2500 validation records. MAE can be calculated as

MAE = 1

2NL

L∑
i=1

N∑
j=1

(∣∣θi j − θ̂i j
∣∣+ ∣∣φi j − φ̂i j )

∣∣). (24)

Our objective is to minimize these metrics, thereby reducing
the disparity between the actual and predicted AoAs.

C. ERROR EVALUATION THROUGHOUT TRAINING
Our analysis is initially performed with output data discretized
at 1◦ intervals. Given the discrete nature of the output grid, it
becomes evident that discretization introduces a baseline error
into the model’s performance. In this context, the calculated
RMSE due to discretization is approximately 0.23◦, and the
corresponding MAE is calculated to be 0.25◦. These values
represent the inherent errors associated with the discretization
process and serve as a foundational reference for assessing the
overall performance of our model.

Figs. 5 and 6 illustrate the overall RMSE and MAE, respec-
tively, taking into account the cases of 2, 3, and 4 simultaneous
signals. MAE starts at around 0.65◦ - 0.8◦ and decreases dra-
matically as the NN continues its training iterations. Notably,
even from the first epoch, MAE is already below 1◦, indicating
promising results. The error of interest is the one after the
NN’s training is completed, which has even lower values.
After the completion of 80 epochs of training, MAE is calcu-
lated to be 0.271◦ for the case of 2 incoming signals, 0.262◦
for 3 incoming signals, and 0.268◦ for 4 incoming signals.
Moreover, RMSE also exhibits promising trends, registering
at less than 2 degrees for each case involving 2, 3, and 4 in-
coming signals. Upon the completion of the training process,
the final RMSE values underscore the efficacy of the model.

VOLUME 5, 2024 651



MYLONAKIS AND ZAHARIS: NOVEL THREE-DIMENSIONAL DIRECTION-OF-ARRIVAL ESTIMATION APPROACH

FIGURE 5. MAE evolution during training, using a grid resolution of 1◦.

FIGURE 6. RMSE evolution during training, using a grid resolution of 1◦.

Specifically, in the scenario of 3 incoming signals, RMSE
reaches 0.256◦, whereas in scenarios of 3 and 4 incoming
signals, RMSE is 0.33◦ and 0.362◦, respectively.

It is evident that the NN exhibits high accuracy in estimat-
ing the arrival directions of signals, regardless of the number
of incoming signals. The error approximates the mean error
introduced by the grid’s discretization, which is particularly
encouraging for our analysis. The minimal increase in error
noticed for the case of 2 and 4 incoming signals, compared
to the one of 3 signals, can be attributed to increased anal-
ysis complexity due to certain hyperparameter optimization
trade-offs. Nevertheless, this increase remains negligible, and
overall, the proposed DCNN demonstrates pleasing perfor-
mance in analyzing incoming data.

D. REDUCED GRID RESOLUTION
Having achieved promising results with a resolution of 1◦,
it is reasonable to explore smaller resolution step values to
minimize the error introduced by discretization and, thereby,
improve the overall accuracy. For this purpose, we discretize

FIGURE 7. MAE evolution during training, using a grid resolution of 0.25◦.

FIGURE 8. RMSE evolution during training, using a grid resolution of 0.25◦.

the grid with a step of 0.25◦ and assess the NN’s performance
under this more detailed resolution. Consequently, the format
of the output data, representing the angles encoded by the
neurons, will be:[

. . . 31 31.25 31.5 31.75 32 . . .

]

and the minimum achievable error, i.e., the error introduced
by the discretization, will be approximately 0.067◦ for MAE
and 0.122◦ for RMSE. Under this finer resolution, RMSE
is reduced in half and MAE in one-fourth of the values ob-
served in the previous analysis of 1◦ resolution. Taking into
consideration this error and calculating the mean MAE and
RMSE of all records for every epoch, as shown in Figs. 7
and 8, we observe that errors in the first epochs of training
are relatively high, but decrease and become approximately
equal to the introduced errors due to discretization after the
training’s completion.

For 3 incoming signals the final MAE value is approx-
imately 0.08◦, whereas the final RMSE is around 0.098◦.
Achieving prediction accuracy less than one tenth of a degree
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FIGURE 9. MAE vs SNR, for a range of 1 to 10 incoming signals.

leaves us highly satisfied in terms of performance. To contrast
with the errors observed in scenarios with a low number of
incoming signals (2-4), we also assess the error in the sce-
nario involving 8 incoming signals. We observe a higher error
value in the early training epochs of the NN, which gradually
decreases and reaches values of 0.228◦ for MAE and 0.29◦
for RMSE, by the end of the training process. Although error
values are higher compared to the scenario of 2 to 4 incoming
signals, they still remain at a low level.

VII. PERFORMANCE VALIDATION
After thorough consideration, we have determined that a grid
resolution of 0.25◦ strikes a balance in the trade-off between
precision and computational efficiency. This choice serves
as our final decision for discretization and will be utilized
in all subsequent analyses of the validation process. Critical
evaluation of the proposed NN’s capabilities is its perfor-
mance with respect to the SNR levels. As illustrated in Fig. 9,
MAE exhibits a decreasing trend as the SNR increases. For
SNR equal to 10 dB a minimum MAE value of 0.098◦ is
achieved. This value is obtained for the case of 3 incoming
signals, which is the number of signals the DCNN architec-
ture has been fine-tuned to handle. As previously stated, we
have meticulously optimized and fine-tuned our architecture,
specifically targeting scenarios with three incoming signals.
While it may initially seem counterintuitive that the error for 3
incoming signals is lower than that for 1 or 2, the explanation
lies in the consistent hyperparameter settings throughout the
hidden layers (we exclude input and output layers). These set-
tings, contributing to the distinctive behavior observed across
scenarios with 1, 2, 3, or 4 incoming signals, also play a
crucial role in sustaining consistently high accuracy and low
error values, even when dealing with up to 10 simultaneous
incoming signals.

However, even when the number of incoming signals is
other than 3, MAE remains low, not exceeding an increase
greater than 0.08◦ compared to the case of 3 incoming signals.
The highest MAE value observed is 0.175◦, which occurs

FIGURE 10. RMSE vs SNR, for a range of 1 to 10 incoming signals.

when 10 incoming signals are received simultaneously. In an
environment with high noise, there is a slight reduction in the
estimation accuracy, although, the DCNN can still estimate
DoAs with precision. We observe that MAE for 1 to 6 incom-
ing signals is significantly better (< 0.5◦) at low SNR values,
in contrast to MAE obtained for 7 to 10 incoming signals,
where it is greater than 0.5◦ but always less than 0.8◦.

Similarly, in the case of RMSE illustrated in Fig. 10, we
observe a diminishing trend with increasing SNR. At an SNR
of 10 dB, RMSE attains a minimum value of 0.126◦ for
the scenario involving 3 incoming signals. Irrespective of the
number of incoming signals, RMSE consistently maintains
a relatively low value, exhibiting an increase not exceeding
0.1◦ compared to the scenario of 3 incoming signals. The
highest observed RMSE value in low-noise environments is
not greater than 0.2◦. In high-noise environments, there is
a marginal decline in estimation accuracy; nevertheless, the
DCNN reliably delivers accurate AoAs, consistently produc-
ing estimations below 0.86◦ error.

In Fig. 11, a thorough examination of performance relative
to SNR underscores the pronounced superiority of the pro-
posed DCNN over existing approaches. In comparison to the
DNN proposed by G.Tang et al. [57], our DCNN showcases
a discernible advantage, manifesting in a notable reduction of
RMSE by several degrees. Likewise, when pitted against the
traditional 2D MUSIC method, the DCNN reveals a signifi-
cant edge, exemplified by a substantial decrease in RMSE.

Moreover, in high SNR scenarios, the proposed DCNN
demonstrates a slight superiority over the long short-term
memory neural network (LSTM NN) presented in [58], out-
performing it by a fractional degree. This marginal lead
becomes more prominent at lower SNR levels, where our
DCNN consistently displays a more substantial enhancement
over the LSTM NN, underscoring its heightened resilience
and accuracy in challenging, noisy conditions.

Next, the DCNN undergoes a validation process aimed at
estimating AoAs for 1 to 10 incoming signals across randomly
assigned SNR values within the range of [−10 dB, 10 dB].
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FIGURE 11. RMSE vs SNR, comparison of the proposed DCNN with
state-of-the-art methods.

FIGURE 12. RMSE vs the number of incoming signals in a random-noise
environment.

This approach was adopted to emulate real-life scenarios,
where SNR exhibits dynamic variations rather than being
constant, and ensure that the network’s performance remains
robust in the presence of noise. The results of this simulation
are shown in Fig. 12. A small, yet noticeable, improvement
of approximately one hundredth of a degree is observed. The
most significant achievement is the stability in performance.
Even when SNR is equal to 10 dB, the error values displayed
in Fig. 10 do not reach the outstanding 0.078◦ for MAE
or the introduced limit of 0.125◦ for RMSE, achieved when
considering a random-noise environment for 3 incoming sig-
nals, as shown in Fig. 12. As far as 1, 2, and more than 3
incoming signals are concerned, we still observe a satisfying
performance by the DCNN, with error values not exceeding
0.223◦, which is only 0.098◦ above the mean error achieved
for the case of 3 signals. It is noteworthy, that for 1 to 5 signals
MAE is less than a tenth of a degree.

FIGURE 13. Comparison of real and predicted DoAs, using a confusion
matrix for the case of 3 incoming signals and 2500 validation records.

FIGURE 14. Time required by the proposed DCNN to estimate DoAs,
compared to conventional and state-of-the-art algorithms.

To further illustrate the functionality of the network we
examine the confusion matrix for the case of 3 incoming
signals. In Fig. 13, we observe that in a validation dataset
which consists of 2500 different sets, thus resulting in a total
of 12,607,500 neurons for classification, the NN makes only
5 wrong predictions (neurons’ classification error probabil-
ity equal to 3.96× 10−5%). This clarifies the reason why
the overall error calculated in our analyses converges and
approaches the mean error introduced by the grid’s discretiza-
tion.

Another equally important factor for evaluating the model
is the processing time required by the DCNN to estimate
AoAs. Beyond accuracy and performance, response time is
a significant criterion for real-time applications, as it affects
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FIGURE 15. Two-dimensional visualization of actual and predicted AoAs
for three records with three incoming signals per case.

the system’s ability to respond promptly to channel changes.
We conducted a simulation to compare the proposed DCNN
approach with two conventional DoA estimation methods:
2D MUSIC and 2D Capon, as well as two state-of-the-art
approaches: DNN [57] and LSTM NN [58].

Prior to examining the outcomes, we delve into a compre-
hensive analysis of the complexity associated with traditional
algorithms versus the CNN approach, and articulate our
expectations concerning prediction times. MUSIC involves
computing Rxx and performing eigenvalue decomposition
(EVD) on this matrix. The computational complexity of EVD,
dominated by matrix multiplication and inversion operations,
is O(N3). Capon shares similarities with MUSIC but intro-
duces a weighted covariance matrix. Both MUSIC and Capon
exhibit cubic complexities (O(N3)) due to matrix operations,
making them computationally demanding, especially for an-
tenna arrays composed of many sensors. The significance
of these complexities is pivotal as they directly impact the
prediction process, rendering the algorithms computationally
intensive and, consequently, sluggish in terms of prediction
times.

In contrast, the complexity of a CNN architecture pre-
dominantly influences the training phase. Once a CNN is
meticulously trained on a diverse and representative dataset,
it gains the ability to swiftly and accurately make predic-
tions. A comprehensive analysis in the CNN’s complexity is
indicative. In our proposed DCNN architecture, there are three
convolutional layers, each employing K filters of dimensions
Fq × Fq, q = 1, 2, 3, with a stride of D, where q denotes each
of the three convolutional layers. Since pooling layers are not
applied, the complexity of each convolutional layer with an
input of size N ×M is equal to O( N×M×K×Fq×Fq

D2 ), where O
denotes big-O notation. Following the convolutional layers,
our network includes three FC layers, where each layer has
Ak neurons. The computational complexity of each FC layer
is O(Ak × Bk ), where Bk is the number of neurons in the previ-
ous layer. Combining the computational complexities arising

from the three convolutional and three fully connected stages
provides a complete perspective on the overall computational
complexity of the proposed DCNN.

To conclude, CNNs exhibit computational complexities
primarily tied to the convolution operations within their archi-
tecture. Unlike traditional DoA estimation algorithms, which
carry cubic complexities, the operations in CNNs are typically
more efficient and closer to squared complexities. The convo-
lutional layers in CNNs are designed to capture hierarchical
spatial features in data, and their time complexity is influenced
by factors like input size, filter dimensions, and the number of
filters. It is, also, essential to note that training an NN is com-
putationally more intensive than inference. This distinction
arises because the training process involves both the forward
propagation of data through the network and the intricate
backpropagation of errors, leading to repeated adjustments of
the network’s weights.

The superiority of ML algorithms can be established
through the results of our analysis, which are depicted in
Fig. 14. For 1 to 5 incoming signals, the DCNN demonstrates
a response time of a few tenths of milliseconds (ms), whereas
for 6 to 10 incoming signals, it takes a few hundred ms.

However, even in the case of 10 incoming signals, the
DCNN’s response time remains below 240 ms. The response
time of the DCNN exhibits a relatively low dependence
on the number of incoming signals, ranging from 1 to 10.
Comparatively, the conventional 2D MUSIC method requires
approximately 5 times longer time for prediction, and the
2D Capon method takes even longer, up to 7 times longer
than the proposed DCNN. Both the DNN and the LSTM NN
demonstrate relatively low response times, closely resembling
those of the proposed DCNN. These results prove that the
machine learning approach exhibits superior performance on
response times. It is worth noting that these results were calcu-
lated using a AMD Ryzen 7 4800H CPU, since the metric of
“seconds” for computational complexity is highly dependent
on the computational resources employed.

Fig. 15 visualizes the results of the DCNN’s performance
by plotting the real and predicted DoA values in a two-
dimensional space for three random cases with three incoming
signals per case.

VIII. CONCLUSION
The presented deep convolutional neural network has shown
exceptional effectiveness in DoA estimation. The proposed
DCNN model achieves an impressive 99.8% accuracy in pre-
dicting DoAs with an error of less than 0.23◦ for 1 to 10
incoming signals in random-noise environments. Our model
exhibits remarkable resilience to high noise levels. Even with
increasing noise levels, the error only experiences a minimal
increase, remaining below 1◦ for up to 5 simultaneously in-
coming signals. Due to the meticulous optimization of both
parameters and hyperparameters, the proposed architecture
showcases exceptionally low time responses. The noise ro-
bustness and the fast processing times of the model are crucial
for real-world applications, as they ensure reliable, accurate,
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and efficient direction finding, even in challenging and noisy
environments. The DCNN’s capabilities pave the way for its
successful integration into diverse practical applications, such
as wireless communication systems, vehicular, radar, sonar,
and many others, where accurate and real-time DoA estima-
tion is crucial for optimal performance.
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