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ABSTRACT Vehicle-to-everything (V2X) technology is pivotal for enhancing road safety, traffic efficiency,
and energy conservation through the communication of vehicles with their surrounding entities such as other
vehicles, pedestrians, roadside infrastructure, and networks. Among these, traffic signal control (TSC) plays a
significant role in roadside infrastructure for V2X. However, most existing works on TSC design assume that
real-time traffic flow information is accessible, which does not hold in real-world deployment. This study
proposes a two-stage framework to address this issue. In the first stage, a scene prediction module and a
scene context encoder are utilized to process historical and current traffic data to generate preliminary traffic
signal actions. In the second stage, an action refinement module, informed by human-defined traffic rules
and real-time traffic metrics, adjusts the preliminary actions to account for the latency in observations. This
modular design allows device deployment with varying computational resources while facilitating system
customization, ensuring both adaptability and scalability, particularly in edge-computing environments.
Through extensive simulations on the SUMO platform, the proposed framework demonstrates robustness
and superior performance in diverse traffic scenarios under varying communication delays. The related code
is available at https://github.com/Traffic-Alpha/TSC-DelayLight.

INDEX TERMS Traffic signal control, scalable framework, historical-future data fusion, reinforcement
learning.

I. INTRODUCTION
Vehicle-to-everything (V2X) communication is poised to rev-
olutionize the transportation landscape by enabling vehicles to
interact with each other and with road infrastructure, thereby
orchestrating a more coordinated and efficient traffic flow [1].
At the heart of this transformation lies intelligent Traffic Sig-
nal Control (TSC) systems, which are critical for the practical
deployment of V2X technologies and the realization of smart
road networks [2]. Intelligent TSC systems are instrumen-
tal in mitigating one of the primary sources of urban traffic
congestion: inefficient traffic signal timing at intersections.
Traditional TSC methods, such as the Webster method [3],
focus on optimizing traffic light cycles based on fixed

traffic volumes, while adaptive systems like SCATS (Sydney
Coordinated Adaptive Traffic System) [4] dynamically ad-
just signals in response to sensor data. These conventional
systems, while foundational, struggle to accommodate the
inherently dynamic and stochastic nature of traffic flow, often
leading to inefficient traffic light timing and more conges-
tion. Moreover, the parameterization of these systems involves
extensive expertise, rendering them less adaptable to the un-
predictable patterns of real-world traffic conditions [5].

Recent advancements in reinforcement learning (RL) have
been directed towards harnessing real-time traffic data to en-
hance traffic light control, signaling a paradigm shift from
static to dynamic TSC systems without expert knowledge [6],
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FIGURE 1. Schematic representation of the delay incurred from data
acquisition at an intersection to the agent’s control action, illustrating the
stages of information transmission and processing time.

[7], [8], [9]. The RL-based methodologies diverge in their ac-
tion space designs, with strategies ranging from setting phase
splits [6], determining the duration of the current phase [9],
deciding on phase continuation [7], to the more adaptable ap-
proach of selecting the subsequent phase [8]. The latter, which
is employed in our research for its flexibility in phase selection
and duration setting, represents a major improvement from
the conventional rigid cycle-based signaling schemes. How-
ever, existing RL-based approaches are handicapped by their
presumption of instantaneous access to accurate traffic data,
disregarding the inevitable transmission and processing delays
as depicted in Fig. 1. This oversight can lead to suboptimal
control decisions, thereby necessitating a framework capable
of accounting for such delays to ensure the reliability and
efficiency of TSC systems in real-world scenarios. In this
research, the transmission delay is defined as the time for
transmitting packets from the traffic lights to the Road-Side
Unit (RSU), and vice versa. The processing time is defined as
the time for performing the task at the mobile edge computing
(MEC) servers [10]. Clearly, the performance of such TSC
systems derived from an idealistic assumption is under doubt
in practical deployment.

To address these challenges, our study introduces an in-
novative RL-based framework designed to maintain efficacy
amidst such delays, which can be detrimental to traffic man-
agement systems. The proposed framework is structured in
two stages: The first stage leverages a dynamic model to
predict near-term traffic states, incorporating a scene context
encoder that processes historical and delayed current traffic
data, thus generating preliminary traffic signal actions. Sub-
sequently, the second stage refines the preliminary actions
through an action refinement module, which integrates expert-
defined traffic rules and real-time data such as lane occupancy
and phase duration, to mitigate the adverse effects of observa-
tion latency.

Our approach is characterized by its modular design, which
not only facilitates deployment on roadside terminal devices
with varying computational capacities but also allows for the

substitution of individual components to tailor to specific re-
quirements. Such design ensures adaptability and scalability,
particularly in edge computing scenarios where resources are
limited. The contributions of this work are:
� We present a novel scalable RL-based framework that is

inherently designed to address the challenges posed by
observation delay in TSC systems.

� The framework is distinguished by its two-stage process,
involving sophisticated data fusion for action genera-
tion, followed by a rule-informed action refinement to
enhance decision accuracy.

� Through rigorous testing on the Simulation of Ur-
ban MObility (SUMO) platform, we demonstrate the
framework’s robustness and superior performance across
various road network configurations, validating its po-
tential for real-world applications.

The rest of the paper is organized as follows. Section II
provides a review of the relevant literature. In Section III,
we define the traffic terminology pertinent to our discus-
sion. The core of our proposed methodology, including the
historical-future data fusion module and the action refinement
module, is detailed in Section IV. Section V describes the
experimental framework, outlines the benchmark methods,
and evaluates the performance of our proposed framework
against these benchmarks with a focus on the average waiting
time of vehicles. Finally, Section VI concludes our findings
and offers insights into potential avenues for future research
in this domain.

II. RELATED WORKS
Urban areas frequently face the challenge of traffic conges-
tion [11], and by strategically placing and designing traffic
signal systems, controlled traffic flow can be facilitated and
achieved by granting the right-of-way to conflicting traffic
streams [12]. To alleviate traffic congestion, some studies
advocate replacing traditional signaling control methods with
intelligent and adaptive systems [3], [13], [14]. The Webster
algorithm [3] calculates the green time for each phase us-
ing parameters such as traffic flow rate and cycle length to
achieve optimal traffic flow. While the Webster algorithm is
suitable for small intersections, its performance may be sub-
optimal in handling complex traffic situations. Additionally,
Self-Organizing Traffic Light Control (SOTL) [15], [16] is
designed based on perception and rules. Specifically, when
vehicles on the red light side request a green light and the
current green light side exceeds the set threshold time, the
green light will switch to the next phase. Conversely, if a
vehicle on the green light side requests a green light, it will
maintain the current green light.

Despite the significant improvements demonstrated by
these methods compared to fixed-time schemes, the emer-
gence of reinforcement learning (RL) signal control algo-
rithms in recent years has shown outstanding performance in
alleviating traffic congestion [17], [18], [19], [20], [21]. [22]
conducted a comprehensive comparison of the Proximal Pol-
icy Optimization (PPO) algorithm with other advanced RL
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algorithms in terms of traffic efficiency, concluding that PPO
exhibits stronger portability and robustness. However, in the
high-dimensional traffic state space, traditional RL algorithms
face limitations in efficiently computing value functions or
policy functions for all states [23]. In this context, the use
of deep learning to extract significant features has become
a viable solution. This involves training deep neural net-
works to extract features from complex state spaces, with
Convolutional Neural Networks (CNN) and Recurrent Neu-
ral Networks (RNN) being prominent choices for feature
extraction in high-dimensional traffic state spaces [24]. Nev-
ertheless, most existing studies did not consider the various
delays in the real-life transmission of information, which may
raise concerns in practical applications.

In practice, delayed environment observation is a common
problem hindering the RL deployment in many real-world
applications beyond TSC [25], [26], [27]. Various solutions
have been devised in the literature. For instance, in the field of
robotic control, an improved temporal difference (TD) learn-
ing algorithm is used to solve problems caused by feedback
delays [28]. Furthermore, it has been proposed for energy
management in commercial buildings to cope with the feed-
back delay by expanding the state space to a larger but
partially observed space [29]. Generally speaking, these meth-
ods were designed to predict the current state information and
subsequently compensate for the delay.

In the field of TSC, there are some efforts to enhance the
performance of RL agents through the prediction of future
traffic flows [30], [31], [32]. Notably, [32] proposed a traf-
fic delay-aware feature transformation module, enabling the
model to explicitly model the time delay in the propagation of
spatial information. However, such prediction models usually
require pre-training, incurring high computational complex-
ity. In [33], a rule-based prediction model was introduced to
discover and exploit the causal structure in the environment.
While this reduces the complexity of pre-training models,
relying solely on rule-based predictions may struggle to adapt
to the complex and variable traffic trends at intersections.
Thus, it is challenging to cope with long unknown delays by
prediction alone. Our prior work [34] addressed delay-related
challenges through the development of feature extraction
modules that utilize multiple historical observations. Despite
its many advantages, the approach demonstrated limitations in
handling prolonged delays. In the current study, we refine this
approach by integrating a scene context encoder with a novel
scene prediction module that extracts features from sequential
observations. We further introduce a rule-informed action re-
finement process to improve decision-making accuracy. This
enhanced framework presents a more robust solution for man-
aging the observation delays commonly encountered in TSC
applications, paving the way for more resilient traffic manage-
ment systems.

III. PRELIMINARIES
This section presents the TSC-related terminology pertinent
to our study.

FIGURE 2. Illustration of a standard 4-way intersection, showcasing 8
traffic movements and the corresponding 4 signal phases.

Traffic Movements: In a four-legged road intersection, there
are four entrances named East (E ), West (W ), North (N)
and South (S). A traffic movement refers to vehicles moving
from an incoming approach to an outgoing approach. Each
entrance has two movements to exit, which are going left
(l) and going straight (s). Note that this work ignores going
right, assuming that going right is always allowed in countries
following left-hand traffic laws. As shown in Fig. 2, eight
traffic movements in the intersection can be defined using
their entrance and direction attributes, namely mE

l , mE
s , mW

l ,
mW

s , mN
l , mN

s , mS
l and mS

s . For notational convenience, they
are referred by aliases: m1, m2, m3, m4, m5, m6, m7 and m8,
respectively in the sequel.

Movement Signals: The movement signal is defined by a
traffic movement with the green and red signals indicating
that the corresponding movement is allowed and forbidden,
respectively. The yellow signal is ignored as a fixed-duration
yellow signal is assumed to follow each green signal. Accord-
ingly, eight movement signals are considered in this work.

Phases: A phase is a combination of movement signals
that occur simultaneously. Clearly, movements allowed in the
same phase should not conflict with each other. Since only
green and red signals are considered, a phase can be consid-
ered as a set of allowed traffic movements while the others
are prohibited. Fig. 2 shows four phases constituted by the
eight aforementioned movements, namely P1 = {m2, m4},
P2 = {m1, m3}, P3 = {m6, m8} and P4 = {m5, m7}. We de-
note by P = {P1,P2,P3,P4} the feasible phase set. The
green lines and red lines represent the allowed traffic move-
ments and the prohibited ones in a phase, respectively.

Signal Plans: A signal plan is an ordered set of traffic
light phases, each with an allocated duration, that directs the
sequence of movements at an intersection. We represent a
signal plan over a period from t1 to tT as a series of tuples
{(p1, t1), (p2, t2), . . . , (pT , tT )}, where each phase pn is part
of a predefined phase set P and is activated at the correspond-
ing time tn. The index n ranges from 1 to T , indicating the
progression of phases within the signal plan.

IV. THE SCALABLE RL-BASED TSC FRAMEWORK WITH
DELAY MITIGATION
In this section, we present a two-stage RL framework to tackle
the challenges associated with delayed observations in TSC
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FIGURE 3. Schematic of the two-stage RL-based TSC framework with delay mitigation. Stage 1 illustrates the RL agent proposing an initial traffic signal
action based on the current environment state. In Stage 2, this initial action undergoes a validation process against established traffic rules. If the action
complies, it is executed. Otherwise, it is adjusted in accordance with the predefined rules before execution. The diagram exemplifies a scenario where the
RL agent’s initial suggestion for Phase 3 to set a green light is revised in Stage 2, resulting in Phase 1 being the final green light decision for
implementation.

system. Fig. 3 illustrates the system architecture, which com-
prises an initial action generation stage where the RL agent
formulates traffic signal control actions by integrating histor-
ical trends with projections of future traffic scenarios. This
is followed by an action refinement stage that enhances the
preliminary decisions by incorporating established traffic reg-
ulations and real-time observational data, thereby increasing
the system’s robustness to significant communication delays.
The forthcoming sections will elaborate on the design of the
RL agent and provide a detailed description of the action
generation and refinement stages.

A. RL DESIGN
State: The following seven state variables (SV) are used to
characterize each movement mi for i = 1, 2, . . . , 8.

1) Flow (SV1): Number of cars passing the stop line;
2) Mean Occupancy (SV2): Occupancy is defined as the

ratio between the total length of roads occupied by ve-
hicles and the total length of lanes. This SV is computed
by averaging the occupancy over a single time slot;

3) Maximum Occupancy (SV3): The largest occupancy
over a time slot;

4) Is-Straight (SV4): A binary variable indicating whether
a traffic movement is going straight or not;

5) Number of Lanes (SV5): The number of lanes of the
movement under consideration;

6) Is-Min-Green (SV6): A binary variable indicating if a
green signal mi lasts longer than the user-defined dura-
tion;

7) Is-Green (SV7): A binary variable indicating whether a
movement signal is green or red.

Let mi
t = [SV i

1 (t ), SV i
2 (t ), . . . , SV i

7 (t )] represents the infor-
mation for movement mi at time t , where i ∈ {1, 2, . . . , 8}
corresponds to one of eight traffic movements in the intersec-
tion. The full intersection state Jt ∈ R

8×7 at time t is then
defined as:

Jt = [m1
t , m2

t , . . . , m8
t ]T , (1)

where [·]T stands for the transpose operator. Denote by D the
observation delay, we utilize the past K delayed observations

to form an input state St ∈ R
K×8×7 for feature extraction

where St takes the following form:

St = [
Jt−K−D+1, Jt−K−D+2, . . . , Jt−D

]
. (2)

These extracted features are then used by the agent to deter-
mine appropriate actions given the delayed state information
as illustrated in Fig. 4.

Action: At the end of each time slot, the RL agent takes
an action At to choose a phase for the next time slot based
on input state St . More specifically, At = a, where a ∈
{1, 2, . . . , N} with N representing the number of phases in the
intersection.

Reward: Even though the goal of the proposed RL-based
TSC system is to minimize the total waiting time of all ve-
hicles, it is difficult to obtain the total waiting time from
real-world road traffic sensors. To cope with this problem, we
propose to use the penalty on the total queue length of all lanes
at the intersection as the reward. Denote by qi

�(t ) the queue
length of the �-th lane for movement mi at time t . Thus, the
proposed reward takes the following form:

Rt = −
8∑

i=1

Li∑
�=1

qi
�(t ), (3)

where Li is the number of lanes for movement mi. As the
queue length may grow out of control during traffic conges-
tion, the reward is normalized during training.

B. ACTION GENERATION STAGE: UNOBSERVED
SCENE PREDICTION
In the action generation stage of our proposed RL framework,
showcased in Fig. 4, we introduce the scene prediction module
that forecasts imminent traffic conditions, thereby address-
ing the issues associated with communication delays. This
module employs two distinct methodologies: rule-based pre-
diction, which utilizes predetermined traffic patterns and rules
to estimate future states, and learning-based prediction, which
relies on data-driven techniques to adaptively predict traffic
scenarios. These methods are complemented by the scene con-
text encoder, which combines the predicted future conditions
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FIGURE 4. Illustration of the RL training process within the action generation stage (Stage 1). The agent receives information from the past K states from
the environment with a delay of D. Utilizing the scene prediction module, the system forecasts future traffic scenarios based on these K states. The scene
context encoder then integrates the prediction with historical traffic data, feeding the integrated feature into both the policy network and the value
network to generate preliminary traffic signal control actions.

with historical traffic information to form a comprehensive
traffic state representation. The dual-method approach within
the scene prediction module ensures flexibility and adaptabil-
ity, allowing for customization based on the computational
resources available on the deployment device, which is par-
ticularly beneficial for varying edge computing environments.
This subsection will clarify the detail of the rule-based and
learning-based prediction methods within the scene prediction
module.

1) RULE-BASED PREDICTION OF TRAFFIC STATE
Built upon the model proposed by [35], this study devel-
ops a state inference model to predict unobserved traffic
states, denoted as Ĵt+1 = [ŜV

i
1(t + 1), . . . , ŜV

i
7(t + 1)], uti-

lizing time-series data and established traffic flow principles.
For the i-th traffic movement, state variables are forecasted
according to the following set of rules:

Flow Prediction (ŜV 1): The traffic flow is contingent on the
status of the traffic signal. A red signal implies no flow, while a
green signal indicates flow based on the average rate observed
during previous green intervals within a defined time window
K . The predicted flow is given by:

ŜV
i
1(t + 1) =

{
0, if SV i

7 (t ) = 0,∑t
τ=t−K+1 SV i

1 (τ )·SV i
7 (τ )

Kgreen
, if SV i

7 (t ) = 1,
(4)

where Kgreen takes the following form, representing the count
of time slots within window K during which the signal is
green:

Kgreen =
t∑

τ=t−K+1

SV i
7 (τ ). (5)

Mean Occupancy Prediction (ŜV 2): The occupancy level at
any given time is intricately linked to the signal phase, as
depicted in Fig. 5. When the signal is red, vehicles accu-
mulate at the stop line, leading to an increase in occupancy.
Conversely, a green signal facilitates vehicle departure, re-
sulting in a decrease in occupancy. This dynamic is captured
in Fig. 5(a), which illustrates the intersection’s state at time
t , and Fig. 5(b), which visualizes the predicted state at time
t + 1. For instance, if Phase-2 is green at time t + 1, the
occupancy for the corresponding movement is the current oc-
cupancy minus the proportion of vehicles that have departed,
as shown in Fig. 5(b). For other phases that are red, the occu-
pancy is the sum of the current occupancy and the additional
occupancy due to new arrivals. The predicted mean occupancy
is thus expressed as:

ŜV
i
2(t + 1) = SV i

2 (t ) + �SV i
2 (t ), (6)

where �SV i
2 (t ) is the net change in occupancy. This change is

calculated based on the signal state as follows:

�SV i
2 (t ) =

{
λ · k, if SV i

7 (t ) = 0,

−ŜV
i
1(t + 1) · k, if SV i

7 (t ) = 1,
(7)

with λ denoting the average rate of vehicle arrivals, which is
assumed to follow a Poisson distribution, and k representing
a conversion factor that translates the number of vehicles into
an occupancy metric based on average vehicle length and lane
length.

Maximum Occupancy Prediction (ŜV 3): The maximum
occupancy is hypothesized to remain constant during green
signal phases and to rise during red phases due to incoming
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FIGURE 5. Schematic of the rule-based prediction model within the TSC framework. (a) displays the intersection status at time T , highlighting Phase-1
with a green signal, allowing vehicular flow from west to east, denoted as SV i

1 (t ), while other directions are on hold. The lane occupancy rate is
represented as SV i

2 (t ), and the current green phase is indicated by SV i
7 (t ). (b) illustrates the prediction of intersection status based on historical data,

suggesting a potential shift to Phase-2 due to its high congestion levels. The model anticipates the next action to prioritize Phase-2, and accordingly
projects the traffic flow ̂SV1 and occupancy ̂SV2, considering the traffic movements regulated by the activation of Phase-2.

traffic. The prediction is formalized as:

ŜV
i
3(t +1)=

{
SV i

3 (t ), if SV i
7 (t ) = 1,

max(SV i
3 (t ), SV i

2 (t ) + λ · k), if SV i
7 (t ) = 0.

(8)

Static Features Prediction (ŜV 4, ŜV 5, ŜV 6): These features,
being static, are propagated to the subsequent state without
modification:

ŜV
i
j (t + 1) = SV i

j (t ), for j ∈ {4, 5, 6}. (9)

Signal State Prediction (ŜV 7): The signal state is determined
by a greedy algorithm that favors the traffic phase experienc-
ing the worst congestion:

ŜV
i
7(t + 1) =

{
1, if pi ∈ P∗

0, otherwise,
(10)

where P∗ ∈ P with∑
m j∈P∗

ŜV
j
3(t + 1) ≥

∑
mk∈P�,P� �=P∗

ŜV
k
3(t + 1). (11)

2) LEARNING-BASED PREDICTION
In addition to the rule-based traffic intersection prediction
method previously discussed, we incorporate a Long Short-
Term Memory (LSTM)-based prediction model to forecast
future traffic states. This model leverages sequential historical
data, denoted as St = [Jt−K−D+1, . . . , Jt−D]. The LSTM is
tasked with predicting the subsequent traffic state Ĵt+1, for-
mulated as:

Ĵt+1 = F LSTM(St ;�), (12)

where F LSTM and � represent the LSTM mapping func-
tion and the set of trainable parameters within the model,
respectively.

FIGURE 6. Predict-LSTM training process within the RL framework. The
diagram depicts the storage of interaction tuples (st , at , rt , st+1) in a data
buffer following agent-environment exchanges. The LSTM model
subsequently accesses this buffer to retrieve data for continuous
parameter optimization, enhancing its traffic state prediction accuracy
over iterative training cycles.

The training of the prediction model is integrated with
the RL process, drawing inspiration from the Dyna-Q frame-
work [36] to efficiently utilize the data generated from
agent-environment interactions. As illustrated in Fig. 6, the
interaction tuple (st , at , rt , st+1) is stored in a data buffer. The
LSTM model continuously retrieves interaction data from this
buffer to update its parameters, thereby refining its predictive
capability over time. This approach, referred to as Predict-
LSTM, allows for the concurrent evolution of the RL policy
and the predictive model, ensuring that both components ben-
efit from the most current data and insights gleaned from the
environment.

C. ACTION GENERATION STAGE: SCENE
CONTEXT ENCODER
After the scene prediction module, we obtain the predicted
unobserved state Ĵt−D+1. We then form an augmented state
set that includes the predicted state and the original delayed
observations St :

Ŝt =
{

St , Ĵt−D+1

}
=
{

Jt−K−D+1, . . . , Jt−D, Ĵt−D+1

}
.

(13)
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FIGURE 7. Two different architectures for scene context encoder: (a)
Stacked-based encoder, (b) embedding-based encoder. The structures of
CNN, LSTM, and Transformer are used in the subsequent process to extract
time series features.

This augmented state combines current delayed observations
with the prediction of the unobserved state.

The scene context module is then used to extract spatial-
temporal features C from the intersection scene based on this
augmented state input Ŝt . As illustrated in Fig. 7, two differ-
ent encoder architectures are proposed for the scene context
module: a stacked-based encoder and an embedding-based
encoder. The stacked-based encoder processes the augmented
state sequentially, while the embedding-based encoder pro-
cesses each input in parallel and combines them through
embedding. Both encoders output the scene context feature
C, capturing spatial and temporal information about the inter-
section.

1) STACKED-BASED ENCODER
As illustrated in Fig. 7(a), the stacked-based encoder pro-
cesses the intersection information Ji from the augmented
state inputs Ŝt individually. Specifically, we stack the in-
tersection information J from time steps t − K − D + 1 to
t − D along with the predicted unobserved state Ĵt−D+1 and
input this to a multi-channel CNN module. This method is
referred to as the observation-stacking CNN-based (SCNN).
The SCNN encoder allows the CNN to independently extract
features hi from each input:

hi = φ
(

FSCNN
i (Ji )

)
, ∀Ji ∈ Ŝt , (14)

where φ(·) stands for the ReLU function while FSCNN
i (·) is

the i-th channel of a CNN model.
The extracted features {hi} are then concatenated and

passed through an FC layer to produce the scene context
vector CSCNN as follows:

CSCNN = M ([
ht−K−D+1, . . . , ht−D, ht−D+1

])
, (15)

where M(·) is a multilayer perceptron network. By pro-
cessing each time step’s observation and the predicted state
individually, the SCNN encoder can capture temporal depen-
dencies and extract informative spatial-temporal features.

In the sequel, this observation-stacking CNN-based model
is referred to as SCNN-K. Note that setting K = 1, i.e. only
one delayed observation is employed, will degenerate (15) to
the case considered in [9].

2) EMBEDDING-BASED ENCODER (EBE)
In contrast to the stacked-based encoder, the embedding-based
encoder processes each observation in parallel using a shared
CNN layer before fusing the resulting latent features, as
shown in Fig. 7. Mathematically, the latent feature vector hi

for each observation Ji ∈ Ŝt is extracted by:

hi = φ
(
FEBE(Ji )

)
, ∀Ji ∈ Ŝt (16)

where FEBE(·) is a CNN model applied to each observation
Ji for feature extraction. After obtaining hi, we explore three
different backbone architectures, namely CNN, LSTM, and
Transformer, to fuse the latent features across time steps.

Embedding-based CNN (ECNN): The stacked-based en-
coder passes the resulting sequence of latent feature vectors
hi through a 1D convolutional neural network. The CNN
processes the latent features sequentially, using convolutional
and pooling layers to extract spatial patterns and temporal
relationships from the sequence. This captures informative
features across the time dimension. Mathematically, the re-
sulting CECNN can be given as:

CECNN = FECNN ([ht−K−D+1, . . . , ht−D, ht+1
])

(17)

where FECNN(·) represents a CNN model. In the sequel,
this observation-encoding CNN-based model is referred to as
ECNN-K.

Embedding-based LSTM (ELSTM): We replace CNN with
LSTM to aggregate the latent features, aiming at capturing the
long-term temporal dependencies between the latent features.
Mathematically, the resulting CELSTM takes the following
form:

CELSTM = st−i+1 = LELSTM (ht−i, st−i ) , (18)

where LELSTM(·) stands for an LSTM model and i ∈
{K − D + 1, . . . , D, D + 1}. In the sequel, this observation-
encoding LSTM-based model is referred to as ELSTM-K.

Embedding-based Transformer (ETrans): Finally, the
Transformer model [37] is employed to fuse the sequence of
latent feature vectors. The Transformer is capable of encoding
the entire input sequence simultaneously through the multi-
head self-attention mechanism, allowing it to directly model
interactions between all time steps. This parallel processing
captures both local temporal patterns and global relationships
in the sequence. More specifically, we first inject positional
information into the latent features through fixed sinusoidal
position encodings:

h̃i = hi + PE(i), (19)

where PE(i) represents the position encoding [38] for the i-
th time step and i ∈ {t − K − D + 1, . . . , t − D, t − D + 1}.
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These position-encoded vectors are then fed into the multi-
head self-attention layer to model interactions between all
time steps. For the l-th self-attention layer for l = 1, . . . , L −
1, the corresponding self-attention output Z′

t takes the follow-
ing form:

Z′
l+1 = MultiHeadAttn

(
ZQ

l W Q
l , ZK

l W K
l , ZV

l WV
l

)
, (20)

where W Q
l , W K

l and WV
l denote the learned projections for the

query, key, and value respectively. The self-attention output
Z′

l+1 is then processed by a position-wise feedforward layer
and layer normalization:

Zl+1 = M (
LN(Z′

l+1)
)+ Z′

l+1. (21)

Finally, the context vector CETrans is produced by the output
of the last multi-attention layer as follows:

CETrans = MLP(LN(ZL )). (22)

In the sequel, the feature extractor model based on the en-
coded attention mechanism is referred to as ETrans-K.

D. ACTION REFINEMENT STAGE
In the scalable RL framework proposed for the TSC system,
the action refinement stage constitutes a cornerstone to en-
sure the resilience of the traffic management system against
fluctuation of data transmission delays. This stage is designed
to complement the insights provided by the scene prediction
and scene context encoder modules, thereby addressing the
limitations that arise when these predictions are rendered less
effective due to substantial delays. It serves as a robust back-
stop, invoking a set of pre-defined traffic rules to recalibrate
the initial strategies proposed by the RL agent.

The methodology detailed in this subsection delineates the
operational mechanics of the action refinement stage. It elu-
cidates the process by which the framework reconciles the
initial RL-derived actions with the real-time traffic context,
employing a dual-threshold mechanism. This mechanism in-
tervenes when the green light duration exceeds a specified
threshold θt or when the occupancy rate falls below a prede-
fined level θo, ensuring that traffic signals remain responsive
to current conditions and historical congestion patterns. This
strategic integration of rule-based adjustments is what im-
parts the framework with enhanced robustness, allowing it
to adaptively recalibrate actions in the face of unpredictable
communication delays. Algorithm 1 outlines the algorithmic
structure of the action refinement stage.

E. POLICY AND LEARNING-BASED PREDICTION
MODEL UPDATE
In this study, the PPO algorithm [39] is utilized to train the
TSC agent, employing dual neural networks: a policy network
π� and a value network V�, parameterized by � and � re-
spectively. Post-processing by the scene prediction and scene
context encoder modules yields a context vector C, which
informs the policy network’s action distribution and the value
network’s expected return estimation. The PPO objective is

Algorithm 1: Traffic Light Control Algorithm With Ac-
tion Refinement.

optimized through a clipped surrogate objective LCLIP(�),
enhancing reward acquisition, coupled with a value function
loss LV F (�), which refines state value predictions, thereby
addressing the latency challenges inherent in traffic data ac-
quisition and processing.

J (�,�) = Êt

[
LCLIP(�) − c1 LVF(�)

]
, (23)

where c1 balances the two loss terms, and the PPO clip loss
function LCLIP(�) can be represented as:

LCLIP(�)= Êt
[
min(ρt (�)At , clip (ρt (�), 1−ε, 1+ε)At )

]
,

(24)

where At = rt+1 + γV (Ct+1) − V (Ct ) is used to mean dom-
inance. ρt (θ ) denotes the ratio of the current strategy to the

VOLUME 5, 2024 337



PANG ET AL.: SCALABLE REINFORCEMENT LEARNING FRAMEWORK FOR TRAFFIC SIGNAL CONTROL UNDER COMMUNICATION DELAYS

FIGURE 8. Three SUMO junctions used in this study. (a) T-Junction with three phases; (b) 4-Way Junction with four phases; (c) 4-Way Junction with six
phases.

past strategy, as expressed in (25).

ρt (�) = π� (at |Ct )

π�old (at |Ct )
, (25)

where π� (at |Ct ) denotes the current strategy and π�old (at |Ct )
denotes the past strategy.

The loss of the value function LV F () is typically calcu-
lated as the mean square error between the predicted state
values V(C) and the actual discounted returns:

LV F () = 1

N

∑
C

(
Vφ (C) −

T∑
t=0

γ t rt

)2

, (26)

where N is the number of sampled states, T is the time hori-
zon, γ is the discount factor, and rt is the reward received at
timestep t . Minimizing this loss encourages the value network
Vφ to accurately predict state values, which helps the agent
estimate long-term rewards.

To update the LSTM network � mentioned in (12), we
calculate the mean square loss between the predicted traffic
state and the actual observed state. It can be formulated as
follows:

L(�) = 1

N

N∑
i=1

(
Ŝ

(i)
t+1 − S(i)

t+1

)2
, (27)

where N is the number of samples in the data buffer, Ŝ
(i)
t+1

is the predicted traffic state for the i-th state, and S(i)
t+1 is the

corresponding actual observed traffic state.

V. EXPERIMENTS AND RESULT ANALYSIS
In this section, we introduce the experimental setup, bench-
mark methods, and performance of our two-stage RL-based
TSC framework. A series of comprehensive experiments were
conducted to assess the robustness of our model under vary-
ing levels of communication delay. Comparative analyses
reveal that stage 1 of our framework exhibits enhanced per-
formance in scenarios with minimal delay, while stage 2
demonstrates superior efficacy when confronted with more
substantial delays. These findings underscore the individual
modules’ contributions to the system’s overall adaptability
and effectiveness in delay-prone environments.

A. EXPERIMENT SETTING
Three road network configurations were chosen to evaluate
the proposed RL-based TSC system: a three-phase T-junction
(ENV-1), a four-phase intersection (ENV-2), and a six-phase
intersection (ENV-3), as illustrated in Fig. 8. These setups
capture a range of complexity within traffic management
tasks, facilitating a robust assessment of our framework. Sim-
ulations were conducted on the SUMO platform [40], with the
acknowledgment that this methodology is extendable to other
intersection types and traffic signal phases.

Control intervals for the traffic agents were set at 5 s,
with each green light phase transitioning to red after a
3 s yellow light. Delays were systematically introduced at
D = 0, 5, 10, 15, 20, 40, 60, 80, 100 seconds to determine the
impact on system performance, measured by the vehicles’
average waiting time. The simulation parameters included a
detection range of 100 meters and an average vehicle occu-
pancy length of 7 meters within a lane. Policy updates were
calibrated with parameters c1 = 1, discount factor γ = 0.99,
and mini-batch size M = 256.

B. BENCHMARK METHODS
Our evaluation encompasses two benchmark methods: three
traditional TSC algorithms and one RL-based approach, de-
tailed as follows:

1) Fixed duration control: Fixed duration signal control
algorithm is the most traditional method of traffic sig-
nal control by setting the traffic signal phase sequence,
phase duration, and cycle time in advance;

2) The Webster model [17]: The Webster model is de-
signed to minimize the average waiting time for ve-
hicles. By estimating vehicle delays at traffic intersec-
tions, this model derives a set of timing parameters by
optimizing the calculation of the phase cycle length.

3) The SOTL model [16]: Self-organizing traffic lights
(SOTL) algorithms utilize straightforward rules and
indirect communication to enable traffic lights to au-
tonomously organize and adjust to dynamic traffic
conditions, leading to a reduction in waiting times, a
decrease in the number of stops, and an increase in
average speeds.
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FIGURE 9. Performance comparison of the benchmark model with Fix time = 30 s, Fix time = 40 s, Webster model, SOTL model, and RL model for the
three environments. (a) T-junction. (b) Four phases at the intersection. (c) Six phases at the intersection.

FIGURE 10. Framework experiment results. (a)–(c) Model performance with rule-based prediction model in three environments. (d) and (e) Model
performance with learning-based prediction model in three environments.

4) IntelliLight [7]: This RL-based TSC method incorpo-
rates queue lengths, vehicle counts, and updated waiting
times for each lane into its state representation. To en-
sure comparability, we align the agent’s action space
with that of our proposed framework, allowing selection
from all available signal phases.

C. EXPERIMENTAL RESULTS
1) TSC SYSTEM PERFORMANCE DETERIORATION UNDER
OBSERVATION DELAY
The experimental results of the four baseline algorithms under
observation delay are depicted in Fig. 9. Across all three
environments, the average waiting time grows with increasing
observation delay for the baseline RL approach. At D = 40 s,
the RL model performs worse than traditional models, with
an average waiting time of 66.65 s, which is five times higher

than the average waiting time in the absence of observation
delay. The experiments indicate that, without observation de-
lay, the performance of the reinforcement learning algorithm
is better than fixed-time algorithms and shows an improve-
ment of over 10% compared to the SOTL. However, under
observation delay, the performance of the RL approach de-
grades significantly. In practical applications, the observation
delay in the TSC system can have a substantial impact on
the performance of the RL model, highlighting the need to
address this issue.

2) ROBUST RL-BASED TSC SYSTEM
Fig. 10(a), (b), (c), and (d), (e), (f) respectively illustrate
the performance of four scene context encoder modules
combined with rule-based and learning-based predictions
in three environments. In environments with observation
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TABLE 1. Model Ablation Experiments With Rule-ETrans Model and Action Refinement

delays, the proposed framework generally outperforms the
RL baseline method. At D = 20 s, the proposed framework
has an average improvement in performance of 20.6%. When
D = 100 s, the average performance improvement reaches an
impressive 38.2%.

Compared to learning-based predictions, rule-based predic-
tions exhibit better stability. According to experimental data,
at D = 100 s, the performance of the rule-based prediction
model averages 2% higher than that of the learning-based
prediction model. This may be attributed to two factors: First,
in traffic prediction, rule-based prediction has unique advan-
tages, as it can accurately infer future states based on existing
traffic rules. Second, training in learning-based prediction is
more complex, and here, we only employed the commonly
used LSTM model. Achieving better results may require more
sophisticated models.

Among the four models of scene context encoders
proposed, ETrans demonstrates superior performance. At
D = 100 s, the scene context encoder using the ETrans model
shows a remarkable performance improvement of 38.9%
compared to the baseline model. However, since the models
are trained under unified parameters, and the second stage
also influences the final results, ETrans does not exhibit a
consistently stable performance improvement in the presented
results.

D. ABLATION EXPERIMENT
Conducting ablation experiments allows us to study the ef-
fectiveness of each component in the proposed scalable
RL framework. To effectively carry out these experiments,
based on prior trials, we selected the best-performing mod-
els, namely the rule-based prediction for unobserved scene
prediction and the ETrans model for scene context encoder.
The results are shown in Table 1. The overall performance of
the framework is expected to surpass the individual perfor-
mance of each module. A detailed analysis of each module is
provided below.

Effects of the scene prediction module. As shown in Table 1,
the ETrans model with rule-based prediction demonstrates a
13.8% performance improvement at D = 100 s. Particularly
in ENV-3, there is a 23.2% performance enhancement at
D = 100 s. This indicates that the scene prediction module
can enhance the overall performance of the framework.
However, in individual cases, performance degradation is
observed, possibly due to the lack of specific adjustments
to the prediction module for different environments. This
leads to a decrease in module performance at high delays.

Nevertheless, in the majority of cases, unobserved scene
prediction module contributes to the overall improvement in
framework performance.

Effects of the scene context encoder module. The scene
context encoder module excels in extracting features from
time-series observations, thereby mitigating the impact of ob-
servation delay. As shown in Table 1, our proposed ETrans
model demonstrates a significant enhancement in the per-
formance of the RL-based model. With the incorporation of
ETrans, performance improves by 26.6% compared to the
baseline at D = 20 s. The scene context encoder module con-
tributes to a general performance improvement of over 10%
in the framework.

Although unobserved scene prediction module can demon-
strate excellent performance, having only the scene context
encoder module can already lead to a significant improve-
ment. As shown in Table 1, at D = 100 s, having only the
scene context encoder module can enhance the overall per-
formance by 27.8%, with the overall framework performance
improving by 38.6%. Not using the scene prediction mod-
ule can also achieve 72% of the overall performance of the
framework. Having only the scene context encoder in the first
stage can significantly reduce model complexity, as the scene
context encoder can be trained together with the RL agent.

Effects of the action refinement. The action refinement is
used to assess the actions of the RL agent. It can be observed
that at D = 100 s, this module plays a crucial role, as having
the action refinement module further improves the overall
performance by 34.8%. However, action refinement does not
lead to a noticeable performance improvement at lower delays
because when the observation delay is low, the RL Agent’s
performance can remain stable, and most strategies are still
effective. In contrast, when the delay is significant, the obser-
vations obtained by the RL agent deviate significantly from
the actual scenario, making it unable to derive effective strate-
gies. In such cases, the system might collapse, and action
refinement is needed to maintain system stability.

E. PARAMETRIC ANALYSIS
1) OBSERVATION FRAME LENGTH
The length of the observations used by the RL agent sig-
nificantly impacts the model’s performance. It is generally
believed that choosing a longer observation time allows the
model to learn more temporal features, resulting in better
performance. For the observation frame length test, we choose
the ETrans model, which demonstrates superior performance
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FIGURE 11. Parametric analysis results. (a) Model performance of ETrans with different observation frames. (b) Model performance for different values
of θo. (c) Model performance for different values of θt .

FIGURE 12. Impact of observation length on the performance of the scene
context encoder in the absence of observation delay.

in the experiment presented earlier. The experimental results
are illustrated in Fig. 12. With the increase in the number
of observation frames acquired by the RL agent, the model’s
performance gradually improves. Particularly, at D = 0 s, the
performance with K = 16 is enhanced by 14.7% compared
to K = 6, and when compared to the baseline model, there
is an approximately 16.8% performance improvement. This
performance is significantly superior to traditional methods.

However, with the increase in observation delay, ETrans-
16 fails to sustain its optimal performance, as depicted in
Fig. 11(a). Notably, ETrans-8 exhibits the most robust per-
formance, achieving a 6.2% enhancement over K = 12 and a
significant 21.3% improvement over K = 16 at D = 100 s.
The underlying reason resides in the escalating dimension-
ality of the feature data as the number of observed frames
increases. Training the RL model becomes challenging in a
high-dimensional feature space. Although ETrans-16 shows
superior performance without delay time, the agent encoun-
ters numerous unprecedented situations with increasing delay
time, hindering effective command decisions. Therefore, in
the case of observation delays, the model’s performance does
not improve with the increase in observed frames.

2) ACTION REFINEMENT PARAMETER θo

The hyperparameters of action refinement include θt and θo,
where θt represents a time threshold for the longest unselected

phase, and θo denotes the lane occupancy threshold for phase
selection. In this context, an analysis is conducted on θo to as-
sess its impact on the framework’s performance. θo is pivotal
in determining the accuracy of actions; if set too low, it may
hinder the effectiveness of the safety module, while setting it
too high may lead to misjudgments in action generation. The
results are presented in Fig. 11(b).

When there is no observation delay, increasing θo signif-
icantly contributes to an increase in average waiting time.
This is because the decision-making accuracy of the ETrans
model is optimal when there is no delay. However, when θo is
excessively large, it leads to miscalculations, causing the Ac-
tion Refinement model to make misjudgments. For instance,
the model’s performance severely degrades when θo = 0.2
compared to when θo = 0, resulting in an 80% increase in
average waiting time. On the other hand, setting θo = 0 is also
suboptimal. For example, at D = 80 s, θo = 0.05 improves
performance by 1.5% compared to θo = 0.

3) ACTION REFINEMENT PARAMETER θt

θt represents the time threshold for the longest unselected
phase, and its impact on model performance is closely related
to the extent of observation delay. In situations with small
observation delays, the RL agent exhibits effective decision-
making. However, setting θt too small can impact the RL
agent’s strategy and, consequently, its overall performance.
Illustrated in Fig. 11(c), when the observation delay is D =
10 s, configuring θt = 105 s yields a 13% performance im-
provement compared to θt = 45 s. Conversely, in scenarios
with significant delays, the RL agent’s strategy may no longer
align effectively with the intersection state, diminishing its
effectiveness. A smaller θt enhances the overall responsive-
ness of the framework, thereby alleviating the impact of high
delays. For instance, when D = 100 s, configuring θt = 45 s
results in a substantial 46% performance improvement com-
pared to θt = 105 s.

VI. CONCLUSION
In this study, we investigated a scalable RL traffic signal
control framework, with explicit consideration of the impact
of observation delays. More specifically, a novel two-stage
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reinforcement learning control framework has been devel-
oped, consisting of an action generation stage and an action
refinement stage. In the action generation stage, two modules
are designed: a scene predictor and a scene context encoder.
In the action refinement stage, the initial RL decisions are
calibrated based on general traffic rules, effectively avoid-
ing disastrous decision recommended by the RL agent when
facing delayed observations, which is shown to enhance the
overall robustness of the framework. Extensive experiments
on a four-phase intersection environment have confirmed that
the proposed RL-based intelligent traffic light control system
exhibits a significant reduction of 43.03% in average waiting
time as compared to the baseline, with an observation delay
of D = 100 s. Notably, the model performs well even without
explicit knowledge of the observation delay time, which is of
practical significance.
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