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ABSTRACT Location-based services find a number of applications in vehicular environments such as
navigation, parking, infortainment etc. However, the disclosure of vehicles’ location information raises
multiple privacy issues. To balance the tradeoff between privacy and utility, this paper proposes a framework
to preserve users’ location privacy while delivering the desired quality of experience (QoE). The proposed
framework allows users to quantify the data utility while accessing location-based services under different
privacy levels through the QoE metric. The privacy analysis of the proposed framework is provided under two
adversary models. Finally, the effectiveness of the proposed framework is demonstrate using the real-world
“Dianping” review dataset.

INDEX TERMS Differential privacy, location-based services, location privacy, quality of experience.

I. INTRODUCTION
Location-based services (LBS) are gaining increasing popu-
larity in vehicular environments. Typical LBS in vehicular
scenarios include mapping and navigation, parking services,
weather forecast, nearby Points of Interest (POI), infotain-
ment, and location-based social networking. LBS bring con-
venience to drivers and passengers, but also cause serious
privacy concerns. If an untrusted application service provider
is able to access a user’s location information continuously,
more sensitive or private information can be extracted, such
as the user’s home address, occupation, relationships and even
health conditions [1].

With the privacy concerns associated with LBS [2], users
may be unwilling to disclose their true whereabouts to other
entities. To address these privacy issues, various location
privacy preservation mechanisms (LPPM) have been pro-
posed. Commonly used approaches for privacy preservation
include anonymization [3], obfuscation [4], position dum-
mies [5], encryption [6], and mix-zones [7]. In addition,

differential privacy [8] is a mathematical construct to provide
provable privacy to any individual whose data is in a statistical
database.

The implementation of the various approaches for privacy
preservation mentioned above results in a loss of utility then
the data is used by various applications and location based
services. As a result, while implementing mechanisms for
privacy, it is also important to ensure data utility or application
service quality. Therefore, a tradeoff between location privacy
and data utility should be provided by any location privacy
preserving framework. However, in previous works, no rig-
orous utility functions have been considered while evaluating
such a tradeoff. Some researchers have introduced a general
or empirical utility function to express the data utility cost [9],
[10]. To comprehensively address this problem, we propose
two performance metrics, Quality of Service (QoS) and Qual-
ity of Experience (QoE), to quantify the data utility with either
objective or subjective measures. QoS is a common metric
and has been used for quantification of service performance
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in areas such as communications and software engineering.
In contrast, QoE measures the overall experience or the
satisfaction by end-users, which is both subjective and objec-
tive [11]. With such metrics, the gap between location privacy
and application service quality can be filled. We also compare
the performance of QoE and QoS to determine which is the
more representative metric to quantify the data utility in our
defined scenario. Additionally, we evaluate the performance
of our framework under two adversarial scenarios, benign and
malicious, each with different objectives and capabilities.

In this paper, we propose a location privacy preserving
framework based on differential privacy, and propose a frame-
work for assessing the tradeoff between privacy and data
utility. The main contributions of this paper can be summa-
rized as follows.

1) We present a LBS system solution to preserve location
privacy with differential privacy and characterize the
tradeoff between location privacy and data utility.

2) We introduce two metrics, QoS and QoE, to quantify
the data utility. To the best of our knowledge, this is
the first analytical framework that establishes a QoE
model mathematically and logically for a LBS system
and analyzes the tradeoff between location privacy and
QoE.

3) In addition to vehicular environments, the proposed
LPPM can be implemented in any localization system
to preserve users’ location privacy.

4) The performance of the proposed LPPM is evaluated
under two adversarial models. The first one is a honest-
but-curious adversary such as a LBS provider with
unlimited access to a user’s data while the second one
only has access to the user’s interaction with the LBS
server over the network and uses a Hidden Markov
Model (HMM) to infer the users’ real locations as the
hidden states with given observable pseudo-locations.

The rest of the paper is organized as follows. The related
works on LPPMs and QoE are introduced in Section II.
Section III presents a new definition for differential privacy
aimed at location based services that is used in our framework.
The system model, performance metrics, and the design of
the proposed LPPM are described in Section IV. We establish
a QoE model based on a real-life dataset and quantify the
tradeoff between location privacy and QoE in Section V-A.
Two adversary models with different capabilities are proposed
in Section VI. The results related to evaluation of proposed
framework are presented in Section VII. Section VIII con-
cludes this paper.

II. RELATED WORK
Location privacy preservation has been a very active research
topic. Shokri et al. [12] formalized the problem as a Bayesian
Stackelberg game and proposed a game-theoretic framework
for protecting users’ location privacy. They also proposed
metrics to quantify location privacy and considered the ad-
versary’s prior knowledge to obtain the optimal user-centric

LPPM, which can anticipate the inference attack and con-
currently satisfy the service quality requirement [13]. Andrés
et al. proposed the notion of ‘Geo-Indistinguishability’ to
guarantee no leakage of the user’s exact location by releasing
approximate location information [14]. Their mechanism can
protect the user’s location privacy within a radius correspond-
ing to a privacy level. In particular, geo-indistinguishability
is a modified and generalized version of differential privacy.
Differential privacy is a well-known concept providing a con-
straint on mechanisms to preserve an individual’s privacy [8].
Moreover, both Shokri et al. and Andrés et al. used lin-
ear programming techniques to achieve optimal privacy and
minimize the loss of service quality. Bordenabe et al. pro-
posed an approach that uses a spanning graph to approximate
distances between locations to reduce the total number of con-
straints in the linear program from cubic to quadratic since the
linear optimization is time-consuming and computationally
demanding [15].

There are also many other location privacy preserving
methods, such as k-anonymity [16], obfuscation, encryp-
tion, position dummies, mix-zones, and their combination.
The Privacy-Preserving Paradigm-driven framework for in-
door Localization (P3-Loc) [17] employed k-anonymity and
differential privacy approaches to guarantee both the user’s
and the location server’s privacy. P3-Loc took the advan-
tage of the fact that the localization process of most IPSs
consist of two phases: the online phase for estimating loca-
tion and the offline phase for measuring information. P3-Loc
perturbed and cloaked the transmitted data in both phases.
Position dummies [18] protect a user’s true location by gen-
erating and sending diversified fake positions to the location
server together with the real location. Shankar et al. [19]
proposed the ‘SybilQuery’ scheme to generate Sybil queries
based on decentralized and autonomous k-anonymity to en-
sure dummies cannot be discriminated from the user’s true
location. ‘PShare’ is a cryptography-based approach proposed
by Wernke et al. [20] to solve the problem in non-trusted
systems. They utilized the concept of multi-secret sharing
by splitting up the user’s location information into shares
and distributing them to multiple non-trusted location servers.
Beresford et al. [21] proposed a mix-zone-based approach
to protect identities in defined areas named mix zones.
Within a mix zone, all the users must hide their identities
and cannot send any location updates. Furthermore, all the
users’ identities need to be mixed by exchanging or chang-
ing pseudonyms so that an adversary cannot track users
continuously.

Most of the above-mentioned approaches neglected data
utility quantification metrics or adversary’s possible counter-
activities while designing LPPMs. These two parts cannot be
disregarded since data utility is a crucial and necessary metric
in a location privacy preserving framework and the robustness
of LPPMs needs to be evaluated with appropriate adversary
models [22]. To address this open problem, in this paper, we
propose two metrics to quantify data utility and a solution
to find the tradeoff between location privacy and application
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service quality. In addition, we design two adversary models
and validate the effectiveness and efficiency of our proposed
framework with under these models.

QoE is a measurement of the perception or satisfaction of
a customer’s experience with a service [23], which can be ap-
plied to diverse service areas [24], [25]. Compared with QoS,
QoE is more subjective and takes more factors of influence
into consideration. Moreover, current studies combine differ-
ent factors to quantify the QoE, such as linear regression [26],
exponential [27], decision tree [28], etc. In [29], several exist-
ing QoE functions are employed together to evaluate a mobile
video streaming algorithm’s performance. QoE has also been
applied in some location-related scenarios. For example, [30]
proposed and created a quantitative link between localization
accuracy and QoE in museums and exhibitions. In this pa-
per, we first introduce QoE into a location privacy preserving
framework and then use QoE to evaluate the application ser-
vice performance of the proposed LPPM by conducting a case
study with real-word data.

III. LBS CENTRIC DIFFERENTIAL PRIVACY
In this section, we present a new definition for differential
privacy that takes the data utility into consideration. Next, the
justification for the choice of the mechanism for achieving
differential privacy is presented.

A. DEFINITIONS
The core concept of differential privacy is that for two adja-
cent datasets with only one different record, the probability
of obtaining the same results by querying these two databases
should be quite close [33].

Definition 1 (Differential Privacy): A randomized al-
gorithm M gives (ε, δ)-differential privacy if for all
S ⊆ Range(M) and for all datasets D1,D2 such that
‖D1 − D2‖1 ≤ 1,

Pr{M(D1) ∈ S} ≤ exp(ε) × Pr{M(D2) ∈ S} + δ (1)

where ‖D1 − D2‖1 is the distance between D1 and D2 to mea-
sure how many records differ in the two datasets. If δ = 0, the
randomized mechanism M provides ε-differential privacy,
which is the strictest definition.

The differential privacy level ε represents how much pertur-
bation is needed for a specific privacy level. More specifically,
if a user wants to achieve a higher degree of privacy protec-
tion, the differential privacy level ε should be set smaller or
close to 0. In addition, it is the �1 sensitivity [34] since only
one important parameter determines the degree of privacy
level.

Following the principle above, we can derive a generalized
notion of differential privacy for localization.

Definition 2 (ε-Differential Privacy for Localization):
A location privacy preserving mechanism M satisfies ε-
differential privacy, if for any input true location li and any

output pseudo location l ′i , the following holds

Pr{M(li ) = l ′i }
Pr{M(l j ) = l ′i }

≤ eε,∀ j �= i, (2)

where l j is any location on the map other than the input true
location li.

Definition 2 implies that a constraint related to differen-
tial privacy level ε should restrict the probabilities of the
same pseudo location given different real locations. Then, the
user’s real locations cannot be distinguished from the received
pseudo locations.

While preserving location privacy in a LBS system, some
practical considerations need to be taken into account, and it is
unreasonable to obfuscate the user’s real position to anywhere
on the map, e.g., an unrealistic remote position. Thus, we
need location service quality thresholds for ensuring the data
utility of the generated pseudo locations. With the location
service quality threshold, we modify the traditional definition
of differential privacy with a constraint.

Definition 3 (Loc-correlated privacy): A randomized algo-
rithm M gives ε loc-correlated privacy if for any two input
true locations li, l j and any output pseudo location l ′i , all j �= i
and l ′i ∈ Range(M(li )) ∩ Range(M(l j )),

Pr{M(li ) = l ′i } ≤ exp(ε) × Pr{M(l j ) = l ′i } (3)

where the distributions of generated pseudo locations of li and
l j have overlapping areas.

These three definitions are the theoretical foundations of
the proposed framework. Definition 1 represents the original
definition of differential privacy. Definition 2 is the general-
ized notion of differential privacy in the localization scenario.
Definition 3 involves a practical constraint to be applied in a
LBS system. In particular, our framework follows Definition 3
to protect the user’s location privacy.

B. MECHANISMS FOR ACHIEVING DIFFERENTIAL PRIVACY
Typical methods to realize differential privacy are adding
a random noise, such as Laplacian noise and Gaussian
noise [31], and randomized response [32].

Definition 4 (Laplace Mechanism): Given any function f :
D → R, the Laplace mechanism ML is defined as

ML (D) = f (D) + Lap

(
� f

ε

)
. (4)

The Laplace mechanism achieves ε-differential privacy.
Alternatively, the Gaussian mechanism can achieve (ε, δ)-
differential privacy, which scales to �2-sensitivity [34].

Definition 5 (Gaussian Mechanism): For any δ ∈ (0, 1),
given any function f : D → R, the Gaussian mechanism MG

is defined as

MG(D) = f (D) + (Y1, . . . ,Yk ) (5)

where Yi are i.i.d. random variables drawn from the Gaussian

distribution N (0, σ 2) and σ ≥ �2 f
√

2 ln ( 1.25
δ )

ε
.
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C. MECHANISM SELECTION BY ENTROPY
The principle of selecting the better mechanism for location
privacy preservation is to determine which mechanism is more
challenging for the adversary to infer a user’s real position.
Therefore, we use the concept of entropy [35] to quantify the
uncertainty.

Definition 6 (Entropy): Given a random variable X , Shan-
non entropy H (X ) is defined as

H (X ) = E[I (X )] = E[− log(Pr(X ))] (6)

where E is the expected value operator, and I is the informa-
tion content of X .

Then, we can compute the entropy of Laplace mechanism
HL as

HL = ln

(
2� f

ε

)
+ 1. (7)

The entropy of Gaussian mechanism HG can be computed as

HG = ln
(
σ
√

2π
)

+ 1

2
≥ ln

(
2�2 f

ε

√
π ln

(
1.25

δ

))
+ 1

2
.

(8)
The entropy difference �H between the Laplace and Gaus-
sian mechanisms is defined as

�H = HG − HL

= ln

(
2�2 f

ε

√
π ln

(
1.25

δ

))
+ 1

2
− ln

(
2� f

ε

)
− 1

= ln

(
�2 f

� f

√
π ln

(
1.25

δ

))
− 1

2
(9)

where �2 f
� f ≤ 1. If �H < 0, we should select the Laplace

mechanism. To make �H < 0, δ should satisfy the con-
straint δ > 0.526. In addition, the differential privacy with
�2-sensitivity can be represented as

Pr{M(D1) ∈ S} ≤ exp(ε) × Pr{M(D2) ∈ S} + δ, (10)

which implies that the Gaussian mechanism can achieve
(ε, δ)-differential privacy or ε-differential privacy with a pa-
rameter at least 1 − δ. It also shows that the privacy guarantee
of Gaussian noise is weaker than Laplacian noise and the
larger the δ, the weaker the privacy guarantee of the Gaussian
mechanism. Thus, we can conclude that δ should always be
small and cannot be larger than 0.526 to ensure better location
preserving performance of Gaussian mechanism. With this
choice of δ, (9) will always be less than zero, namely

�H = HG − HL < 0. (11)

Based on this inequality, we can conclude that the Gaussian
mechanism provides less uncertainty than the Laplace mech-
anism, which means that the pseudo-locations from different
real locations can be distinguished more accurately with the

FIGURE 1. System model.

Gaussian mechanism. Therefore, for location privacy preser-
vation, implementing the Laplace mechanism is the more
appropriate choice.

IV. PROPOSED FRAMEWORK
A. SYSTEM MODEL
We propose a location privacy preserving framework for sce-
narios where an adversary may compromise a LBS system
to try to access the user’s location information. Taking into
consideration the probable presence of an adversary, there
are four entities in the proposed system model as shown as
Fig. 1. In step 1, a user first selects the privacy level ε in terms
of the specific privacy requirement. Then, the user requests
for the localization service from the location service provider
in step 2 and forwards the received location information to
the application service provider to access LBS in step 5. In
our system model, the location service provider estimates the
user’s location and generates a pseudo location with the built-
in LPPM in step 3. Finally, the application service provider
returns the service results to the user in step 6. With the above
procedure, this system can provide localization service and
LBS for users without disclosing their true locations.

B. ADVERSARY MODEL
Different adversaries may have various levels of capability
and access to information to launch successful attacks. We
broadly classify the adversaries into two groups: internal and
external. An external adversary can only monitor the inter-
action of the user and the service provider and tries to infer
the user’s true location from these exchanges. An internal
adversary (e.g., the LBS application provider) has access to
all queries, results and the user’s selection from the results,
and is thus more powerful. We defer the full description of the
adversary model to Section VI in order to relate the attack
strategies of the attackers to the specifics of the proposed
LPPM.

C. METRICS
1) LOCATION PRIVACY
In order to protect users’ location privacy, their real location
information should be kept private by using pseudo-locations
instead, and a user-predefined privacy level ε determines the
obfuscation degree of true locations.

Definition 7 (Location Privacy ψ): For user i, let the true
location li be denoted as (xi, yi ) and the pseudo-location l ′i be
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denoted as (x′
i, y′

i ). The location privacy ψi can be derived as
the Euclidean distance between li and l ′i as d (li, l ′i ):

ψi = d (li, l ′i ) =
√

(xi − x′
i )

2 + (yi − y′
i )

2. (12)

This definition of location privacy is only related to the
distance between the true location and the pseudo-location.
In practice, to ensure localization service quality, we need to
introduce two thresholds rmin and rmax to constrain the scope
of pseudo locations and these two radii rmin and rmax are rele-
vant to the location privacy ψ as rmin ≤ ψi = d (li, l ′i ) ≤ rmax.
Within this range, we can compute an average location privacy
over the new transformed Laplacian distribution.

Definition 8 (Average Location Privacy ψ̄): For user i, the
mean of Laplacian noise is rLap and the Laplacian distribution
can be derived as

f (r) = ε · exp(−2ε|r − rLap|). (13)

With the constraint on r, the probability distribution of pseudo
locations changes to a new distribution as

g(r) = f (r)∫ rmax
rmin

f (r)dr
, r ∈ (rmin, rmax). (14)

The average location privacy ψ̄i over the new distribution is

ψ̄i =
∫ rmax

rmin

rg(r)dr =
∫ rmax

rmin

r
f (r)∫ rmax

rmin
f (r)dr

dr. (15)

2) APPLICATION SERVICE QUALITY
Application service quality is an essential metric to evaluate
the performance of pseudo-locations in a location privacy pre-
serving LBS system. The more privacy to protect, the farther
the pseudo-location is, and the user acquires lower application
service quality. We introduce QoS and QoE as two metrics to
quantify the application service quality in this paper.

Definition 9 (QoS): For user i with true location
li:(xi, yi ) and pseudo-location l ′i :(x

′
i, y′

i ), the application ser-
vice provider offers LBS within a radius rLBS from the center
l ′i instead of the center li since the user queries the LBS with
his or her pseudo-location. We define the overlapping region
area of these two circles as Sop and the area of application
service circle as SLBS. Then, the QoS after the obfuscation is
defined as

QoS = Sop

SLBS
. (16)

The detailed computation method is discussed in
Section V-A.

Definition 10 (QoE): QoE is a multi-dimensional metric
with objective factors O and subjective factors S of specific
services for each user, while using a LBS system. A general
QoE function is defined as

QoE = F (O,S), (17)

where O represents objective factors (e.g., screen resolution in
a cinema) and S is a set of subjective factors (e.g., flavor score
for a restaurant).

FIGURE 2. Problem scenario.

D. PROPOSED LPPM
In our scenario, the user requests for pseudo-locations
from the location service provider to access LBS and
pseudo-locations should be generated with specific privacy
level. This scenario can be modeled as a problem as shown
in Fig. 2. The red and blue stars represent the true location
and one possible pseudo location, respectively. The red circle
shows the range of the user’s acceptable localization results,
which we call the location service quality threshold. Similarly,
the purple circle illustrates the user’s expected range of the
service results, which we call the application service quality
requirement. In addition, the blue circle’s radius shows the
Laplacian noise added to the true location and the orange
overlapping region is the remaining useful application service
area, which is defined as the application service quality.

In our proposed framework, we follow the principle of
Loc-correlated privacy to preserve users’ location privacy.
The detailed procedure of our LPPM model is introduced as
follows. For any given true location (xi, yi ) and any privacy
level ε, we can compute the Laplacian noise rLap added to the
true location [14] within the location service quality threshold
(rmin, rmax) by

rLap =
∣∣∣∣−1

ε

(
W−1

(
p − 1

e

)
+ 1

)∣∣∣∣ , rmin ≤ rLap ≤ rmax

(18)
where p = rand (1) is uniformly distributed in the interval
[0,1] and W−1 is the LambertW function. Since p ∈ [0, 1],
rLap has its own range (0, 1

ε
) and (rmin, rmax) should be within

this range. The relationship among these parameters can be
summarized as 0 ≤ rmin ≤ rLap ≤ rmax ≤ 1

ε
.

The next step is to choose the direction by setting a random
angle θ = rand (1) · 2π . Finally, we can determine the pseudo
location as {

x′
i = xi + rLap · cos(θ )

y′
i = yi + rLap · sin(θ ).

(19)

E. PROOF OF LOC-CORRELATED PRIVACY
In this section, we prove that the proposed LPPM satisfies ε
Loc-correlated privacy. The conclusion we need to prove is

Pr{M(li ) = l ′i }
Pr{M(l j ) = l ′i }

≤ eε, (20)
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where j �= i, and i, j should ensure that l ′i is within the lo-
cation service quality thresholds of li and l j . This can be
transformed as

Pr{M(li ) = l ′i }
Pr{M(l j ) = l ′i }

≤ max(Pr{M(li ) = l ′i })

min(Pr{M(l j ) = l ′i })
. (21)

Since 0 ≤ rmin ≤ rLap ≤ rmax ≤ 1
ε
, Pr{M(li ) = l ′i } will be

maximized when rLap = rmax+rmin
2 , and Pr{M(li ) = l ′i } will be

minimized when rLap = rmin. Thus,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max(Pr{M(li ) = l ′i }) = ∫ 1
ε

0 ε · exp(−2ε|r − 1
2ε |)dr

= − 1
2 (e−1 − 1),

min(Pr {M(l j ) = l ′i }) = ∫ 1
ε

0 ε · exp(−2εr)dr

= − 1
2 (e−2 − 1).

(22)

Also,
− 1

2 (e−1−1)

− 1
2 (e−2−1)

= 1 − 1
1+e < 1 ≤ eε . Then, we have

Pr{M(li ) = l ′i }
Pr{M(l j ) = l ′i }

≤ max(Pr{M(li ) = l ′i })

min(Pr{M(l j ) = l ′i })
< 1 ≤ eε . (23)

Thus, our proposed mechanism satisfies the principle of Loc-
correlated privacy.

V. TRADEOFF BETWEEN DATA PRIVACY AND UTILITY
In this section, we evaluate the privacy-utility tradeoff using
the metrics that quantify data utility while protecting location
privacy with the LPPM presented in Section IV-D.

A. QOS
With the pseudo-location (x′

i, y′
i ), two application service

quality threshold circles can be drawn to illustrate the service
quality performance. The area of the service quality threshold
circle can be computed as SLBS = πr2

LBS, and the overlapping
region area can be computed as

Sop = 2(Ssector − Striangle )

=2

⎡
⎣πr2

LBS

⎛
⎝2 arccos

(
rLap

2rLBS

)
2π

⎞
⎠−

(
rLap

2

√
r2

LBS−
( rLap

2

)2
)⎤⎦.
(24)

Using (24), we can compute the ratio of the overlapping re-
gion area over the whole area of the application service quality
threshold circle with only one pseudo-location as

QoSN = Sop

SLBS

=
2

[
πr2

LBS

(
2 arccos

( rLap
2rLBS

)
2π

)
−
(

rLap
2

√
r2

LBS − ( rLap
2

)2)]

πr2
LBS

=
2 arccos

(
rLap

2rLBS

)
π

−
rLap

√
1 −

(
rLap

2rLBS

)2

πrLBS
. (25)

Using the probability distribution functions from (13) and
(14), the average service quality over the whole transformed
probability distribution can be derived as

Avg_QoS =
∫ rmax

rmin

QoSN · g(r)dr

=
∫ rmax

rmin

⎛
⎜⎜⎝2 arccos

(
r

2rLBS

)
π

−
r

√
1 −

(
r

2rLBS

)2

πrLBS

⎞
⎟⎟⎠

· ε · exp(−|r − rLap|2ε∫ rmax
rmin

ε · exp(−|r − rLap|2εdr
dr. (26)

As we have shown in our previous paper [22], an increase in
privacy level will degrade the application service quality.

B. QOE
1) DATASET
In contrast to QoS, QoE is a more subjective score based on
the user’s real personal experience and we need real users’
experience data to train the QoE model. Therefore, we use
the Dianping review dataset [36], which includes user reviews
and detailed business information from a well-known Chinese
review website. The Dianping website collects and records
users’ real ratings and reviews for specific businesses after
visiting and using their services. The Dianping review dataset
contains 3,605,300 reviews of 510,071 users towards 209,132
businesses. We pre-processed the dataset to extract the overall
ratings, flavor scores, environment scores, service scores, and
longitudes and latitudes of the restaurants in Beijing, China.
With this dataset, we can define a QoE model in the scenario
of accessing the LBS of requesting for nearby restaurant rec-
ommendations while preserving location privacy.

2) QOE MODEL
We define a general function, QoE = F (O,S), as the QoE
function, where O is a set of objective factors and S is a set
of subjective factors. Obviously, the set of objective and sub-
jective factors depends on the specified scenario and datasets.
Therefore, we train a specific QoE model with the real Di-
anping dataset. The following process of training a specific
QoE model applies to other scenarios and datasets as well by
adjusting the corresponding objective and subjective factors.

From the Dianping review dataset, we assume that the
user’s overall rating of the restaurant is the user’s QoE value to
mark the experience. Our QoE model is composed of several
factors, such as flavor, environment, service and distance. In
terms of the plots between the QoE rating and other factors
shown in Fig. 3, we can see that QoE approximately follows a
linear relationship with flavor, environment and service. Thus,
we use multiple linear regression to train a QoE function with
these three factors as

QoE = ω0 + ω1 × f + ω2 × e + ω3 × s

= 1.413 + 0.656 × f + 0.051 × e + 0.207 × s (27)
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FIGURE 3. Relationship between rating and factors.

where QoE represents the overall rating, f is the flavor factor,
e is the environment factor, and s is the service factor. The
coefficient of each factor is obtained by using multiple linear
regression for the Dianping review dataset. To evaluate this
QoE function obtained through multiple linear regression, we
compute the R-squared value, which is the coefficient of de-
termination. The R-squared value is between 0 to 1 and the
higher the value, the better the model fits the data [37]. In
general, if R2 > 0.4, the regression model has good imitative
effect. In our QoE function, R2 = 0.8877, so the model fits the
data quite well.

Since we want to define a QoE model related to location
privacy preservation, we incorporate the distance factor into
the QoE function. As the scenario under consideration is the
user requesting for nearby restaurant recommendations, the
larger the distance between the user’s location and the restau-
rant’s location, the lower the QoE that the user obtains. To
ensure that the user’s original and perturbed application ser-
vice threshold circles have an overlapping region, the maximal
distance between the user and restaurant is 3rLBS. The QoE
function with the distance factor is defined as

QoEdis = (1.413 + 0.656 f + 0.051e + 0.207s)

×
(

1 − d

3rLBS

)
(28)

where d represents the distance factor. The coefficients are
obtained by using multiple linear regression for the Dianping
review dataset presented in (27). Since users are requesting
for nearby restaurant recommendations, the QoE should be
inversely proportional to the distance. Also, the distance can
never exceed 3rLBS. Thus, we propose the QoE function with
distance factor as (27) multiplied by (1 − d

3rLBS
).

To compare QoE values based on true locations and pseudo-
locations within the application service quality threshold, we
normalize the QoE as

QoEavg = 1

N

N∑
1

QoEdis (29)

where QoEavg is the average QoE within the LBS requirement.
Fig. 4 illustrates the proposed QoE model. The red and

blue stars represent the true location and one possible pseudo
location, respectively. The purple circles with the center of
the red and blue stars show the application service quality

FIGURE 4. QoE model.

requirement and the radii are the same as rLBS. In addition,
the red, green and blue spots illustrate the points of interest
(POIs) of the user. If the user tries to access the LBS with
his/her true location as the red star, the green and red POIs
will be reported to him/her as the service results. However,
the green and blue POIs will be reported to the user, if he/she
accesses the LBS with the pseudo location, namely the blue
star. Therefore, the green POIs are the overlapping service
results and we can introduce a notion of QoE Loss to show
the application service performance change.

Definition 11 (QoE Loss): For user i with real location li
and pseudo location l ′i , the user’s QoE loss between accessing
the LBS with the true location and the pseudo location can be
defined as

QoELoss = QoEavg_real − QoEavg_pseudo (30)

where QoEavg_real is the average QoE of the POIs when the
LBS is accessed with the real location, namely the average
QoE value of the red and the green POIs to the red star, and
QoEavg_pseudo is the average QoE for the POIs when the LBS
is accessed with the pseudo location, namely the average QoE
value of the blue and the green POIs to the red star.

3) RELATIONSHIP BETWEEN QOE AND LOCATION PRIVACY
Before we try to find the tradeoff between QoE and loca-
tion privacy, we need to characterize the relationship between
QoE and location privacy. Since location privacy in the pro-
posed framework is related to the differential privacy level,
we obtain the mathematical relationship between QoE and
differential privacy level ε instead. It is worth mentioning
that the smaller the differential privacy level, the greater the
location privacy that users can obtain. In our mechanism, we
add Laplacian noise to achieve differential privacy and the
probability density function (PDF) of the Laplace distribution
is

p(x) = 1

2b
exp

(
−|x|

b

)
, b = � f

ε
. (31)

The expected estimation error E(err) of perturbation dis-
tances can be computed as

E(err) =
∑

p(xi )‖x′
i − xi‖1
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=
∫ +∞

−∞
|x| 1

2b
exp

(
−|x|

b

)
dx = b = � f

ε
(32)

where xi is the original value and x′
i is the perturbed value.

Then, we can take the derivative with respect to the differential
privacy level ε as

dE(err)

dε
= −� f

ε2
< 0. (33)

Therefore, the expected estimation error E(err) decreases
when the differential privacy level ε increases. If the appli-
cation service quality threshold rLBS stays the same, QoE
will increase when E(err) decreases. Thus, QoE increases as
the differential privacy level increases. In other words, users
can enjoy the service with better experience quality, but their
location privacy may be less protected. Above all, we proved
the monotonicity between QoE and differential privacy level.

VI. ADVERSARY MODELS
It is critical and necessary for a privacy preserving framework
to evaluate its ability to protect the user’s privacy against
an adversary’s inference. However, different adversaries with
different intentions may have varying prior knowledge to de-
sign and execute their attacks. Therefore, we we consider two
adversary models with different capabilities to evaluate the
robustness of our proposed framework. For both scenarios, we
assume that any entity who wants to obtain or infer the user’s
information without the user’s permission can be considered
as an adversary. The first case considers the LBS service
provider as a honest-but-curious adversary who intends to
infer the user’s true location, e.g., to improve the application
service quality. In the second case, the adversary is an external
entity that tries to extract the user’s location-related sensitive
information for some harmful or commercial reasons.

A. INSIDER ADVERSARY
In this case, we assume that the adversary is the application
service provider attempting to infer an user’s true locations
with the intent to improve service quality. Thus, the adversary
can receive all the user’s pseudo-locations directly and knows
other information such as the user’s POIs that the user browses
among all the suggested service results (such as nearby restau-
rants).

The adversary can derive an user’s true positions by divid-
ing the whole region G into N squares and treating all the
locations in the same grid as the grid center’s coordinate.
For instance, the adversary needs to transfer the received
the pseudo location l ′i : (x′

i, y′
i ) to the corresponding grid gi :

(xgi , ygi ). The probability of received pseudo locations in this
grid p(l ′gi

) and the probability of possible points of interest
for services in this grid p(sgi ) can be calculated since the
adversary has the history of all the pseudo locations. Then,
the conditional probabilities of all the service selections given
l ′i can be computed as

p(sg j |l ′gi
) = p(sg j , l ′gi

)

p(l ′gi
)
,∀ j ∈ N, (34)

FIGURE 5. Possible points of interest for services.

and p(sg j , l ′gi
) can be determined according to the recorded

history.
It is reasonable to assume that users are only interested in

the services satisfying their demands. This implies that users
only browse the advised service results inside the overlapping
region shown in Fig. 5. We also assume that the true location
is distributed as a Laplacian distribution around the center
of POIs lc, as indicated by the purple cross in Fig. 5. The
probability distribution of the possible true locations can be
derived as

p(lk ) = 2ε · exp(−|lk − lc| · 2ε). (35)

In addition, there are some locations where users will never
(or are extremely unlikely to) occur, such as in the middle of a
river. Then, the probability distribution of the possibility and
rationality of users’ occurrence is

p(k) =
{

0, if k ∈ F
1, otherwise

(36)

where F is the set of impossible locations. Finally, the prob-
ability of possible inferred true locations while receiving the
pseudo location l ′i can be computed as

p(lk|l ′i ) = p(lk ) · p(sgk |l ′gi
) · p(k),∀k ∈ N (37)

and the adversary chooses the final inferred location l̂i as

l̂i = arg max
lk

p(lk|l ′i ). (38)

B. EXTERNAL ADVERSARY
In this case, we assume that the adversary is an untrusted
third party who eavesdrops on users’ request packets while
they are accessing the LBS. A request packet includes the
users’ pseudo locations together with the timestamps, user
IDs, and LBS service thresholds, which can be written as
Req(i) = {(x′

i, y′
i ), ti, userIDi, rLBSi}. Therefore, the malicious

adversary has prior knowledge of all the request packets and
the implemented LPPMs in the location service provider. With
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FIGURE 6. Relationship between privacy and data utility.

such assumptions, we use a HMM to characterize the adver-
sary’s actions to infer users’ true locations.

HMM is a statistical Markov model and consists of five
elements: hidden states S, observable states O, initial state
probability matrix π , transition probability matrix A and emis-
sion probability matrix B [38]. In our malicious adversary
model, we divide the whole service-provided area into a
square grid with N regions (or tiles) and each region is a state
in our HMM model. Then, we define the hidden states to be
the users’ true location sequences and the observable states
to be the pseudo-locations. Since the user’s initial position is
unknown, we assume that the initial state probability matrix is
an uniform distribution as

π =

⎡
⎢⎢⎣ 1

N
,

1

N
, . . . ,

1

N︸ ︷︷ ︸
N

⎤
⎥⎥⎦ . (39)

The transition probability between any two hidden states can
be described as ai j = Pr(s j |si ), which denotes the probability
of the next state being s j under the condition that the current
state is si. In our adversary model, we assume that the user’s
next state should be in an adjacent or the same state as the cur-
rent state. Therefore, there are nine possibilities for the user’s
next state (except for boundary conditions) and we set the
transition probability between two hidden states with the same
vertex or same edge as 1

9 . The emission probability bi j repre-
sents the probability that the hidden state si performs as the
observable state o j , which is more complex to compute than
the transition probability. Thus, we use Monte Carlo sampling
to obtain the emission probability matrix. With the above
information, the malicious adversary can infer the user’s true
locations as the hidden states by using the Viterbi algorithm
with given observable state sequences.

VII. PERFORMANCE EVALUATION
In this section, we present the results to evaluate the proposed
LPPM. Fig. 6 is generated based on the Dianping dataset and
shows the relationship between location privacy and data util-
ity. In Fig. 6, two different quantification metrics of data utility

are considered. The value of QoS represents the percentage of
remaining useful application service after the location pertur-
bation. QoEindex represents the ratio of average QoE values
based on true locations and pseudo-locations fulfilling the
requirement of LBS threshold.

The horizontal axis in Fig. 6 shows the differential pri-
vacy level. Intuitively, the higher the differential privacy level
is, the lower the location privacy preservation level the user
obtains. With an increase in the differential privacy level,
QoS and QoEindex decrease. The value of QoEindex is always
higher than QoS for a given differential privacy level. Thus,
if we use QoE to measure the data utility, we do not need
to sacrifice too much privacy to obtain the same service per-
formance. Furthermore, this conclusion can help to find the
tradeoff between location privacy and data utility. As for QoE,
when the differential privacy level changes from 0 to 0.1, the
user’s experience quality increases greatly. However, when the
differential privacy level increases from 0.3 to 1, the user’s
experience quality does not change significantly. There is a
similar pattern for QoS, but its rate of change with ε is slower
as compared to QoE. Therefore, we do not need to sacrifice the
user’s location privacy too much for higher data utility since
the tradeoff level can obtain similar results, which is more
cost-effective.

The effectiveness of the requirement of LBS threshold in
our framework is shown in Fig. 7. In Fig. 7(a), (b) and (c), the
values of rLBS are set as 500 m, 200 m and 100 m, respectively.
With the same privacy level, higher QoS and QoEindex can
be obtained by using a larger rLBS. We can also observe that
the influence of rLBS on QoS is more obvious than QoEindex,
which implies that QoE may be more subjective and reflective
of the user’s real experience rather than just computing the
overlapping region (as done in QoS). The results above can
provide visually effective suggestions for users to select the
appropriate data utility and the tradeoff levels.

We also compare the proposed LPPM with other existing
location privacy preserving methods to validate our proposed
framework and metrics. We compare the proposed framework
with the geo-indistinguishability framework [14], which pro-
vides a mechanism to protect the user’s location privacy and
enhance the performance of LBSs. Fig. 8 shows the QoE loss
between the geo-indistinguishability framework and our pro-
posed framework, and the QoE performance of our system is
always better than that of the geo-indistinguishability method.
Since the geo-indistinguishability framework uses the notion
of Area of Retrieval (AOR) rather than the Area of Interest
(AOI) to provide LBSs to the user, too many unsatisfied ser-
vices are reported as the service results. Although the AOI can
include more services, the average QoE among all the reported
services may not be good and some of the services may be too
far away from the user, especially when the privacy level is
small.

We evaluate the proposed adversary models and provide
the privacy analysis in Fig. 9. The inference location errors
are defined as the distances between inferred locations and
true locations and the pseudo-location errors are defined as
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FIGURE 7. Relationship between privacy and data utility with different parameters.

FIGURE 8. Comparison with geo-indistinguishability.

FIGURE 9. Adversary model performance.

the distances between pseudo locations and true locations. To
simulate the malicious adversary, we use the random walk
algorithm to generate random sequences of users’ true loca-
tions. Moreover, we test the two adversary models using the
same dataset of true locations and pseudo locations, which are
generated by the proposed LPPM.

Fig. 9 shows that the internal adversary model can, to some
extent infer users’ real locations and reduce the location er-
rors by using the inferred locations instead of using pseudo

FIGURE 10. CDF of adversary model.

FIGURE 11. Average errors of adversary models versus privacy level.

locations. In our experiment, the average pseudo location
error is 3.2571 and the average inference location error for
the internal adversary is 1.1380, which is almost 30% of the
average pseudo location error. As for the external adversary,
the accuracy of the inferred locations is lower than the internal
adversary since the internal adversary has more useful prior
knowledge than the external adversary. The external adversary
can reduce the average location errors from 3.2571 to 2.3862.
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Hence, by implementing our proposed adversary models, an
internal, honest-but-curious adversary may provide better ser-
vices for users than using pseudo locations directly and the
external adversary can infer users’ true locations to a limited
extent. Even if the adversaries attempt to infer the possible
real locations by implementing the adversary models, they
cannot obtain the users’ true locations with high accuracy.
Thus, our proposed framework is robust and can still preserve
users’ location privacy against both the internal and external
adversary models.

To show the performance of the internal and external
adversary models more intuitively, the comparison of the cu-
mulative distribution functions (CDFs) of distance errors of
the proposed LPPM, internal adversary inference, and ex-
ternal adversary inference is shown in Fig. 10. In addition,
Fig. 11 illustrates the average error comparison among the
pseudo locations, the internal adversary inferred locations,
and the external adversary inferred locations as a function
of the privacy level. When the privacy level is small, both
the internal adversary and the external adversary can reduce
the average distance errors to a large extent and make the
inferred location be close to the user’s real locations than the
pseudo locations. However, the internal and external inference
errors will become even larger than the pseudo location errors
when the privacy level increases. Therefore, the internal and
external adversary models have the problem of over-inference
when the user’s location privacy requirement is not high.

VIII. CONCLUSION
This paper proposed a framework for location privacy preser-
vation that consists of four components: localization, location
privacy preservation mechanism, location-based service, and
adversary models. The framework enables users to find the
tradeoff between location privacy and data utility based on
loc-correlated privacy. We bridged the gap between the lo-
cation privacy quantification and the subjective data utility
metrics and used two metrics: QoS and QoE. We also provided
the privacy analysis by introducing two adversary models with
different initial intentions and illustrated how the proposed
LPPM protects users’ location privacy against the adversarial
algorithms. Finally, we evaluated the proposed system with
a real dataset and analyzed the performances under different
settings. The tradeoff analysis demonstrated that the proposed
framework is cost-effective since we do not need to sacrifice
user’s location privacy superfluously for better data utility.
The proposed framework is robust and adequate to protect
user’s location privacy.

In our future work, we will consider the location corre-
lations to effectively preserve users’ trajectory privacy. The
current proposed framework needs a trusted third party to help
realize the location privacy preservation. However, publishing
the trajectory data or the raw sensor data used for estimating
the user’s trajectory to a third party may have privacy issues
while the user is accessing LBS. We plan to follow the LDP
principle and implement the trajectory privacy preservation
mechanism locally.
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