
Received 20 September 2023; accepted 18 November 2023. Date of publication 22 November 2023;
date of current version 13 December 2023. The review of this article was coordinated by Editor Youngwook Ko.

Digital Object Identifier 10.1109/OJVT.2023.3335358

Source Separation in Joint Communication
and Radar Systems Based on Unsupervised

Variational Autoencoder
KHALED A. ALAGHBARI 1, HENG SIONG LIM 1 (Senior Member, IEEE), BENZHOU JIN 2 (Member, IEEE),

AND YUTONG SHEN2

1Faculty of Engineering and Technology, Multimedia University, Melaka 75450, Malaysia
2College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

CORRESPONDING AUTHOR: HENG SIONG LIM (e-mail: hslim@mmu.edu.my)

This work was supported by Multimedia University (MMU), Malaysia.

ABSTRACT Source separation of a mixed signal in the time-frequency domain is critical for joint commu-
nication and radar (JCR) systems to achieve the required performance, especially at a low signal-to-noise
ratio (SNR). In this paper, we propose the use of a generative model, such as the unsupervised variational
autoencoder (VAE), to separate sensing and data communication signals. We first analyse the VAE system
using different mask techniques; then, the best technique is selected for comparison with popular blind source
separation (BSS) algorithms. We verify the performance of the proposed VAE by adopting different metrics
such as the signal-to-distortion ratio (SDR), source-to-interference ratio (SIR), and sources-to-artifacts ratio
(SAR). Simulation results show that the proposed VAE outperforms the BSS techniques at low SNR for the
case of a mixed signal in the time-frequency domain and at low and high SNR for a mixed signal in the time
domain. It enables the JCR system in the challenging first scenario to obtain SDR gains of 11.1 dB and 6
dB at 0 dB SNR for recovering the sensing and data communication signals respectively. Finally, we analyse
the robustness of the JCR system in detecting an interference signal operating in the same frequency band,
where the simulation result indicates an accuracy of 91% based on the proposed steps.

INDEX TERMS Joint communication and radar sensing (JCR), RadCom, linear frequency modulated
(LFM), variational autoencoder (VAE), β-VAE, generative models, deep learning, blind source separation
(BSS), FastICA, vehicular communications.

I. INTRODUCTION
Recently, there has been a lot of research and commercial
interest in the integration of communication and radar systems
(data communication and sensing signals) into a technology
called joint communication and radar (JCR) or joint radar-
communication (RadCom) system [1], [2]. The applications
of JCR can be found in vehicular technology [3], security and
military systems, unmanned aerial vehicle (UAV) communi-
cation and sensing [4], and future wireless networks [2]. Much
attention has been paid to the efficient utilisation of spectral
resources and the sharing of frequency bands in JCR systems
[1]. The JCR system requires the sensing signal and data com-
munication signal to operate simultaneously and effectively in
the same frequency band without causing harmful interference

to each other. In this situation, the signals from both sys-
tems are often mixed in the time and frequency domains.
Hence, the main challenges are to mitigate the mutual interfer-
ence and efficiently recover the sensing and communication
signals.

Blind source separation (BSS) that relies on independent
component analysis (ICA) is one approach to solve the is-
sue mentioned previously. There are many popular BSS
techniques, such as FastICA [5], FastICA’s extension to non-
circular complex sources (ExComplexFastICA) [6], complex
ICA [7], [8], second-order blind identification (SOBI) [9], and
joint approximate diagonalization of eigen-matrices (JADE)
[10]. BSS has a wide range of applications for source sepa-
ration in various fields, such as audio/speech signals, medical
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signal processing, and wireless communication signals [11],
[12]. In [13], BSS based on modified FastICA was proposed
for a coexistence JCR system for the first time in order to
blindly separate the sensing signal from the data communi-
cation signal at the receiver. However, BSS is very sensitive
to signals with rapidly varying amplitude and is not sufficient
in situations with complex overlapping subsignals in a highly
noisy environment [3].

Autoencoder (AE) is a neural network architecture that
aims to reconstruct the input data by learning a compressed
representation of it. AE consists of an encoder network that
maps the input to a lower-dimensional latent space and a de-
coder network that maps the latent space back to the original
input space. It is commonly used for dimensionality reduction,
image denoising, and anomaly detection [14]. Variational au-
toencoder (VAE) is a type of AE that learns a probabilistic
distribution over the latent space using variational Bayesian
inference, which enables it to generate new data points by
sampling from the learned distribution. β-VAE is a powerful
generative model of VAE that uses a hyper-parameter called
beta to control the trade-off between reconstruction accuracy
and disentanglement of the learned latent representation. By
modifying beta, the model learns to disentangle factors of
variation in the input data [15], [16].

Recently, β-VAE has been used for the disentanglement
(separation) of mixed audio signals. In [17], the VAE frame-
work was proposed for monaural audio source separation.
Compared to baseline methods, the suggested framework re-
sulted in reasonable improvements; however, the framework
required prior knowledge of the sources in the mixture. The
β-VAE with a weak class supervision method was proposed
for audio source separation in [18]. The VAE was trained on a
dataset of mixed audio signals and corresponding class labels
to learn how to separate individual sources. The weak class
supervision was used to encourage the VAE to learn meaning-
ful representations of the audio sources, which can improve
separation performance. The suggested method outperformed
the baseline AE model in terms of the signal-to-distortion
ratio (SDR), source-to-interference ratio (SIR), and sources-
to-artifacts ratio (SAR). In [19], a hybrid method combining
VAE and a bandpass filter was proposed, in which the bot-
tleneck feature was filtered to capture only the frequency
range of human speech. In [20], Neri et al. proposed a
method for unsupervised BSS using β-VAE, which can learn
to disentangle the underlying sources of a mixture signal
without requiring any prior information about the sources.
The β-VAE method was evaluated on handwritten digits and
mixed audio spectrograms datasets and was shown to outper-
form existing state-of-the-art unsupervised source separation
methods.

The implementation of VAE for source separation of mixed
signals is limited to a few studies, as discussed previously.
To the best of our knowledge, the usage of VAE in the JCR
domain has not been considered yet. Our contributions in this
paper can be summarized as follow:

FIGURE 1. Illustration of JCR system with source separation base station.

� We propose the utilization of β-VAE for unsupervised
separation of mixed signal consisting of radar sensing
and data communication signals.

� An evaluation of two established and three novel masks
is conducted, leading to the identification of the best
techniques for recovering the sensing and data commu-
nication signals.

� The trained VAE model is further employed to detect in-
terference signals coexisting within the same frequency
band, relying on the VAE decoders’ output and the de-
signed mask.

� Extensive comparisons with prevalent BSS techniques
are performed across two distinct scenarios. The first
scenario involves signals mixed in both the time and
frequency domains, while the second scenario pertains
to signals mixed solely in the time domain but separa-
ble in the frequency domain. A range of performance
metrics including mean square error (MSE), SDR, SIR,
SAR [21], and scale-invariant signal-to-distortion ratio
(Si-SDR) [21] are employed for system evaluation.

The structure of this article is organised as follows. Sec-
tion II describes the methodology adopted in this paper.
Specifically, it starts by presenting the source separation prob-
lem and proceeds with a discussion on the generation of radar
and data communication signals. The theoretical background
of VAE is then explained, followed by the mask techniques
that can be implemented with the proposed VAE model. Sim-
ulation and results discussion are provided in Section III for
three different scenarios, and a conclusion is provided in
Section IV.

II. METHODOLOGY
Fig. 1 illustrates an example of a joint communication and
radar (JCR) system with a source separation base station for
two possible application scenarios. In the first scenario, the
JCR station can receive both the communication signal from
the vehicle, and the sensing signal (echoes) reflected from the
detected target, as shown on the right side of Fig. 1. In the
second scenario, the base station has the capability to transmit
and receive the sensing signal while simultaneously receiving
the communication signal from a vehicle, as depicted on the
left side of Fig. 1.
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FIGURE 2. Structure of the variational autoencoder (VAE) used for the disentanglement of two signals.

A. SOURCE SEPARATION PROBLEM
We consider source separation of LFM and 4-ASK signals,
where the received signal is given by:

x (t ) =
K∑

k=1

sk (t ) + n (t ) (1)

where K is number of subsignals, and sk (t ) is the kth sub-
signal. n(t ) is the additive white Gaussian noise (AWGN)
with zero mean and variance σ 2. The channel fading effect
is assumed to be estimated perfectly. The spectrogram of
the mixed signals can be computed using short-time Fourier
transform (STFT) such that:

X (t, f ) = ST FT (x (t )) (2)

B. SIGNALS GENERATION
The linear frequency modulated (LFM) waveform is given by:

s1 (t ) = A1 exp
(

j
(
π μ (t − to)2 + 2π fc1t

))
(3)

where A1 is a constant representing the amplitude of LFM, μ

is the frequency modulation slope, j is the imaginary unit, Tp

is the time duration window, to is a constant, and fc1 represents
the carrier frequency.

The 4-ASK waveform is given by:

s2 (t ) = a2 (t ) exp
(

j2π fc2t
)

(4)

where a2(t ) = A2aASK (t )rect(t/Tp), A2 is a constant, aASK (t )
is the amplitude which contains four different levels, i.e.,
{−0.5, −1, 0.5, 1.5}, and fc2 represents the carrier fre-
quency of the 4-ASK waveform.

The Barker code (BC) waveform is given by:

s3 (t ) = a3 (t ) exp
(

j2π fc3t
)

(5)

where a3(t ) = A3aBC (t )rect(t/Tp), A3 is a constant, aBC (t )
is the Barker code with a length of 13 generated according
to Tp, i.e., {+1, +1, +1, +1, +1, −1, −1, +1, +1, −1,

+1, −1, +1}, and fc3 represents the carrier frequency of the
BC waveform. The BC waveform will be later employed as
interference signal in the analysis section.

In the simulation, the time window Tp and sampling rate
fs are set to 75 μs and 30 MHz for all signals. For the LFM
signal, t0 = Tp/2, μ = BW/Tp and bandwidth BW = 10 MHz
are used. The spectrum of the 4-ASK signal aASK (t ) is limited
by a raised cosine filter with roll-off factor of 0.5, symbol span
of 32 and upsampling factor of 15, while the BC signal aBC (t )
is first filtered by a low-pass filter with a bandwidth of 2MHz.

C. VARIATIONAL AUTOENCODER (VAE)
AE is a type of artificial neural network that consists of three
parts, namely encoder, latent space (bottleneck layer), and
decoder; it is trained to learn the mapping of input data x to
latent space Z and reproduce the input as output x̂ [16]. VAE
is a probabilistic generative model and an extended version of
AE, as shown in Fig. 2. VAE projects the data to a lower latent
space and reformulates the input data’s likelihood estimation
as a variational inference problem [23]. The likelihood of data
x given Z can be formulated based on the zero-mean Laplace
distribution as [20]:

pθ (x|Z) =
Dx∏
i=1

Lap (xi|x̂i, b)

=
Dx∏
i=1

1

2b
exp

(
−|xi − x̂i|

b

)
(6)

where b = √
0.5 is the scaling factor for unit variance, Z =

[zk]K
k=1 is the concatenation of the latent variables for sources

(k = 1, 2, . . . , K ) with the dimension of DZ = DzK , and
Dz � Dx. Dx represents the dimensions (or the number of
features) for the input data x, and θ represents the parameters
of the decoder (bias and weights) that are optimized during
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the training stage. It is typical for VAEs to assume a Gaussian
likelihood (�2 loss), but small deviations around the mean and
yields are allowed for blurry reconstructions. Meanwhile, the
steep peak of the Laplace likelihood (�1 loss) enables better
reconstructions by equally penalising deviations around the
mean, as suggested in [20].

The estimation of the mixed data is given by the sum of the
output of the decoders as:

x̂ =
K∑

k=1

ŝk =
K∑

k=1

gθ (zk ) (7)

Over each source’s latent variable, isotropic Gaussian priors
are defined:

p (Z) =
K∏

k=1

p (zk ) =
K∏

k=1

N (zk|0, I) (8)

This prior assumes that each element varies independently
and helps in the separation of variables in the data. Using
estimates of latent sources zk obtained by inferring Z from
data x, we can produce the source signal ŝk = gθ (zk ) and thus
achieve source separation.

In VAE, we cannot compute the true posterior distribution
pθ (Z|x) = pθ (x|Z)pθ (Z)/pθ (x) directly because it is usually
intractable or too complex to compute. Instead, we use the
encoder network to learn the approximate posterior distribu-
tion qφ (Z|x) that is as close as possible to the true posterior
distribution pθ (Z|x) with the help of the objective function.
We can utilise variational inference to approximate the pos-
terior distribution across the latent variables from the given
data x. The mean-field factorization of the approximate pos-
terior qφ ensures that the elements of Z are independent and
Gaussian distributed:

qφ (Z|x) = N (Z|μφ (x) , σ 2
φ (x) I) (9)

where the mean μ = μφ (x) and variance σ2 = σ 2
φ (x) are the

outputs from the encoding neural network with parameters φ.
Variational inference transforms the approximate inference

into an optimisation problem with the goal of maximising the
variational lower bound (also known as the evidence lower
bound (ELBO) function) given by [16], [20]:

L (θ, φ; X) =
N∑

n=1

L (θ, φ; x(n)) (10)

L (θ, φ; x(n)) = 〈
Inpθ

(
x(n)|Z)〉qφ (Z|x(n) )

− DKL
(
qφ

(
Z|x(n)) ||p (Z)

)
(11)

where dataset X = {x(n)}N
n=1 consists of N samples. The first

term on the right side of (11) is the expected log-likelihood
under the approximate posterior that attempts to minimize the
reconstruction error based on �1, as given in (6). The second
term is the negative Kullback–Leibler divergence (KLD) be-
tween the approximate posterior and the prior that minimises
the difference between the two distributions to ensure that the

approximate posterior distribution qφ (Z|x) is close to the true
posterior distribution pθ (Z|x) in terms of KLD. KLD provides
regularisation; coupled with the stochastic sampling of the
latent space, it is critical in promoting disentanglement (sep-
aration). β-VAE is a modification of the VAE structure that
introduces an adjustable parameter (β ) to the KLD of the stan-
dard VAE in (11). This architecture is introduced to discover
disentangled latent factors without supervision, usually with
β > 1; however, a higher β may create a trade-off between
the reconstruction quality and the extent of disentanglement.
When β = 1, the β-VAE is equivalent to the standard VAE,
and when β = 0, it becomes equivalent to the basic AE [15],
[16]. It is typical for VAE to assume a Gaussian approximate
posterior since it allows for a simple Monte Carlo simulation
of the expected log-likelihood using the reparametrization
trick:

Z(n) ∼ qφ

(
Z|x(n)) , Z(n) = μ(n) + σ (n) � ε (12)

where ε ∼ N (0, I) and � represent the element-wise prod-
ucts.

D. VAE MASKS
Masking involves the manipulation of components within
the mixture spectrogram to isolate individual sources. This
process allows for precise control over the emphasis or sup-
pression of specific parts of the mixture, thereby effectively
disentangling the signals. The selection of specific masking
techniques is guided by several factors, including the tech-
nique’s robustness to noise, particularly valuable in handling
noisy environments; its aptitude for managing sources that
overlap in either time-frequency or time domain, a common
occurrence in real-time JCR signals; and its computational
complexity, as certain methods may require more resources
and processing time. The significance of masking lies in its
ability to not only enhance separation performance, but also
to mitigate background noise, ultimately elevating the overall
quality of the separated signals.

After training the VAE, an inferred source ŝk can be trans-
formed into a mask-based source signal estimate

	

sk that
captures the fine features from the data signal. We test two
existing masks [18], [20] and propose three new masks.

Mask 1: Based on [20], the estimated source signal is given
by:

	

sk (t ) = ST FT −1

(
Dk (t, f )∑K

k=1 Dk (t, f )
� |X (t, f )|N � ei


)
(13)

where Dk (t, f ) is the kth decoder spectrogram output, 
 is
the phase of the mixture spectrogram, � is the element-wise
multiplication operator, and | · |N is the normalized modulus.

Mask 2: Based on [18], the separated sources in the time
domain can be estimated using the soft time-frequency mask
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(Wiener filter) and mixture phase as:

	

sk (t ) = ST FT −1

(
D2

k (t, f )∑K
k=1 D2

k (t, f )
� |X (t, f )|N � ei


)
(14)

Mask 3: We can multiply masks 1 and 2 with the threshold
matrix Mk to improve the performance at low SNR, where Mk

is a matrix obtained by equalizing the corresponding Dk (t, f )
to zeros and ones using a threshold value; here, we propose to
use it for mask 3, which is given as:

	

sk (t )

= ST FT −1

(
Mk � D4

k (t, f )∑K
k=1 D4

k (t, f )
� |X (t, f )|N � ei


)

(15)

The difference between this mask and previous masks is the
power of 4 used for the output of the decoders.

Mask 4: Using the original complex-valued mixture
spectrogram X (t, f ), we can use the following equations:

	

sk (t ) = ST FT −1 (Gk � X (t, f )) ,

Gk = Dk (t, f )∑K
k=1 Dk (t, f )

� |X (t, f )|N (16)

where Gk is a matrix obtained based on Mask 1 by equalizing
the result to zeros and ones using a threshold value. The
threshold can be used to remove unwanted noise, which will
be discussed later. This mask works well if the two signals are
only mixed in the time domain and not mixed in the frequency
domain.

Mask 5: Using the decoder output as the magnitude for the
reconstructed signal and the phase taken from the original
mixture spectrogram, we can obtain the following equation:

	

sk (t ) = ST FT −1 (Dk (t, f ) � ei
) (17)

This technique is introduced to check VAE’s capability to
reconstruct the signals without masking. It does not perform
well with data communication signals, but it performs well
and outperforms some of the other masks with sensing sig-
nals. This technique has a lower computational complexity
compared to previous masks.

III. RESULTS AND DISCUSSION
A. VAE ARCHITECTURE
In the simulation of the proposed VAE, we used Python
with Keras and Tensorflow libraries. The encoder has an
input layer with a dimension of Dx and five hidden layers
with 700, 600, 500, 400, and 300 fully-connected neurons,
respectively. Each linear layer is followed by BatchNor-
malization and Relu activation function layers. Then, two
fully-connected layers with linear activation functions for the
mean and log-variance were created, as depicted in Fig. 2.
Finally, the DZ–dimensional approximate posterior mean and

log-variance of Z were the outputs from the sampling layer
that performed the reparametrization trick as given in (12). In
the simulation, we set DZ = 40, where Dz = 20 and K = 2.
The sampling layer was then separated into two and given to
each decoder. The decoders have a reverse structure of the
encoder, with each decoder starting with a dimension of Dz
for the sampled latent source zk and progressing in the reverse
order. After the final hidden layer, a dense layer with Sig-
moid (or Softplus) activation functionto output Dx-dimension
source signal ŝk for each decoder, the outputs of the decoders
were finally added to form the expected mixture signal x̂. The
Adam optimizer with a learning rate of 0.001 was used to op-
timize the neural networks’ parameters. The ELBO objective
function discussed earlier in (11) was used, and the β value of
VAE was set to 10, which linearly increased over the first ten
epochs to avoid early posterior collapse in training.

B. TRAINING STAGE
The training dataset consists of spectrograms that result from
mixing the LFM signal with the 4-ASK signal at different
frequencies, with an SNR of 25 dB. For instance, LFM signals
(with frequencies of 0, 6, and 10 MHz) and 4-ASK signals
(with frequencies of 2, 8, and 12 MHz) were generated to form
nine different mixed signals. We first scaled the power of the
LFM and 4-ASK signals and then used STFT to transform the
mixed time-domain signal to the time-frequency domain. The
mixed spectrograms were transformed to magnitude and nor-
malized to the range between 0 and 1. The dataset consists of
1080 balanced samples. Each sample contains 8576 features
formed by reshaping 128 frequency bins and 67 time frames.

C. TESTING STAGE
To verify the capability of the proposed VAE to separate
sources, three different cases were considered. The trained
VAE model was used to test the three cases. To evaluate the
performance of VAE, we used different performance metrics
such as MSE, SDR, SIR, SAR [21], and Si-SDR [22]. The
MSE measure is sensitive to the amplitude and proper scaling
is required for fair comparison. SDR measures the degree
of distortion between the separated sources. SIR shows how
effectively the sources are separated based on the residual
interference between the sources. SAR identifies the artefacts
caused by the separation technique. SDR is usually considered
as an overall performance measure for any source separation
approach [24]. We also compared the performance of the pro-
posed VAE with popular blind source separation techniques
such as ExComplexFastICA [6], ACMNsym [7], CQAMsym
[8], SOBI [9], and JADE [10].

Case 1: Two signals are mixed in time and frequency do-
mains. The time-domain waveform, frequency-domain wave-
form, and spectrogram of the mixed signal at an SNR of 10 dB
are illustrated in Fig. 3. The bandwidth and centre frequency
of the LFM signal are 10 MHz and 0 MHz, respectively. The
centre frequency of the 4-ASK signal is 2 MHz.

Fig. 4 shows the normalized outputs of Decoder 1, Decoder
2, and VAE for the example shown in Fig. 3 at an SNR of
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FIGURE 3. Received mixed signal for case 1: (a) time-domain waveform, (b) spectrum, and (c) corresponding spectrogram by STFT at an SNR of 10 dB.

FIGURE 4. (a) Decoder 1 output, (b) decoder 2 output, and (c) VAE (decoder 1+decoder 2) output for the mixture input with 10 dB SNR for case 1.

10 dB. We can observe that the trained VAE model man-
aged to separate the two signals and clean the noise effect.
In other words, the VAE works well as a source separation
and denoising model. The spectrogram of the 4-ASK signal
shows deformation on the left side, though it should be on
the right side. This error happened because the unsupervised
VAE identified the magnitude spectrogram of another sample
that was used during the training stage, such as the LFM and
4-ASK signals that had centre frequencies of 6 and 2 MHz,
respectively. This issue can be solved by applying the mask
technique as seen in Fig. 5. However, mask techniques may
enhance the noise effects; thus, formulating a proper mask
technique is important. The spectrogram of the LFM signal
output by Decoder 2 shows a clean and smoothly separated
source. VAE managed to separate the LFM signal more ef-
ficiently since it had a higher power, which is evident when
combining the two spectrograms, as illustrated in Fig. 4(c).

Fig. 5 demonstrates the spectrograms of the recovered sig-
nal after applying Masks 1-5 for Decoder 1 (4-ASK signal)
and Masks 2 and 5 for Decoder 2 (LFM signal). Table 1 shows
the corresponding performance metrics. Masks 1-4 have cor-
rectly solved the issue at the output of Decoder 1 (deformation
on the left side); however, the deformation on the right side

TABLE 1 Performance Metrics for One Sample at an SNR of 10 dB in
Figs. 3–5 (Case 1)

has appeared, and all the masks have different performance
metrics. By comparing all results, we can observe that Masks
1, 2, and 3 with no thresholds (Fig. 5(a)–(c)) are affected by
noise; however, adding a threshold can significantly improve
the spectrograms and the performance metrics, as revealed in
Table 1. The best performance is achieved by the proposed
Mask 3 with a threshold of 0.1, where it attained a 1 dB
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FIGURE 5. Spectrograms of the recovered signals after applying different masks, (a-i) 4-ASK signal, (j) (k) LFM signal.

improvement over Mask 1 (0.1) and about 0.3 dB over Mask
2 (0.1) in almost all metrics. Mask 4 and 5 do not seem to
suit the data communication signal. Mask 4 is significantly
affected by the overlapping in the frequency domain, and
it introduced some energy leakage from the LFM source as
highlighted in the circles for Fig. 5(g) and (h). Mask 5 used the
direct output of Decoder 1 as the magnitude (in other words,

no masking was applied). However, Mask 5 performs very
well with the LFM sensing signal as it outperforms Mask 2
and provides ∼3 dB improvement in terms of SDR and SAR.

The recovered signals based on Mask 2, Mask 3 (0.1 thresh-
old), and ExComplexFastICA are depicted in Fig. 6. It is
observed that the signals recovered by VAE are affected in
amplitude at the time duration between 45–60 microseconds
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FIGURE 6. True LFM and 4-ASK signals (in blue colour) and recovered signals (in red colour) based on (a) mask 2, (b) mask 3 (0.1), and (c)
ExComplexFastICA.

due to the signals overlapping in the time-frequency domain;
these overlapping causes significant impacts on the perfor-
mance metrics, as indicated in Table 1. The recovered signals
by Mask 2 have slight noise effect, while Mask 3 (0.1) man-
aged to clean the noise, as evidenced by the clarity of the
LFM signal’s midsection in both Mask 2 and Mask 3 (0.1)
plots shown in Fig. 6. On the other hand, BSS recovered the
LFM and 4-ASK signals but with a high noise effect that
will slightly affect the performance metrics. The SDR, SIR,
and SAR obtained by the ExComplexFastICA algorithm are
9.8512, 17.2250, and 10.8109 dB for the LFM signal and
11.2354, 21.7094, and 11.6731 dB for the 4-ASK signal, re-
spectively. Comparing the performance of the two techniques,
VAE achieves excellent performance for the LFM signal with
a 6 dB gain in SDR, while ExComplexFastICA provides
slightly better performance with a 1.6 dB gain in SDR for the
4-ASK signal.

Table 2 shows the averaged performance metrics of 100
samples for all discussed masks in recovering the LFM and
4-ASK signals. The results confirm that the proposed Mask 3
(0.1) outperforms the other masks for both 4-ASK and LFM
signals. For the LFM signal, Mask 5’s performance is also
very close to Mask 3 (0.1) while requiring less computation
complexity. Hence, Mask 3 (0.1) can be selected for a data
communication signal and Mask 5 for a sensing signal.

We also evaluated the performance of the VAE with differ-
ent masks at higher SNR, such as 25 dB; the results are given
in Table 3. From Table 3, we can observe that Mask 3 (without

TABLE 2 Performance Metrics Averaged Over 100 Test Samples at
SNR = 10 dB for Case 1

threshold), followed by Mask 3 (with a threshold of 0.1) and
Mask 5, outperform the other masks for the LFM signal, with
only a slight difference between them. For the 4-ASK signal,
Mask 3 (0.1), followed by Masks 3 and 2 outperform the other
masks, where the difference between them is just fractions of
dBs. The superiority of Mask 3 with a threshold is clearly
observable at low SNR.

In Fig. 7, we compared the performance of the proposed
VAE model to BSS techniques. Fig. 7(a) shows that the source
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FIGURE 7. Performance metrics averaged over 100 test samples based on case 1 for the (a) LFM signal and (b) 4-ASK signal.

TABLE 3 Performance Metrics Averaged Over 100 Test Samples at
SNR = 25 dB for Case 1

separation of the LFM signal based on the proposed VAE out-
performs the BSS techniques in the noise-limited situation. At
low SNR (<15 dB), the proposed VAE outperforms the BSS
techniques; for instance, at SNR = 0 dB, the SDR and SAR
achieved by VAE are 13.5 and 15 dB, which are significantly
higher than the SDR and SAR of 2.4 and 3dB obtained by
the SOBI method. This result represents a difference of 11.1
and 12 dB in SDR and SAR between the two methods. How-
ever, at higher SNR, the VAE’s performance became saturated
while the BSS techniques performed better. The reason for

this saturation is because at high SNR, the interaction of the
two signals increased, and the overlapping in the frequency
domain became critical due to the received mixed signal con-
taining both strong and weak signals, consequently causing
power leakage. Fig. 7(b) demonstrates the source separation
of the 4-ASK signal. We can observe that the source separa-
tion based on VAE outperforms the BSS techniques in terms
of SDR and SAR only at an SNR of less than 10 dB; however,
for a higher SNR, the BSS techniques perform much better. It
is worth noting that VAE can extract the signal component at
an acceptable quality even when the SNR is low. For instance,
at SNR = 0 dB, the SDR and SAR for VAE are 6.5 and 8.4 dB
compared to 0.4 and 1.9 dB for the SOBI method, indicating
that VAE outperforms the SOBI method in this scenario by a
gain of more than 6 dB.

Case 2: The two subsignals are mixed in the time domain
but are separable in the frequency domain. The time-domain
waveform, frequency-domain waveform, and spectrogram of
the mixed signal at an SNR of 10 dB are illustrated in Fig. 8.
The bandwidth and centre frequency of the LFM signal are
10MHz and 0MHz, respectively. The centre frequency of the
4-ASK signal is 12 MHz.

The output of Decoder 1 when the input to VAE was the
mixed signal provided in Fig. 8(c) is shown in Fig. 9(a). It can
be observed from the output of Decoder 1 that it is able to
separate and denoise the 4-ASK signal. Examples of the spec-
trograms obtained after applying Mask 3 without a threshold
and with a threshold of 0.1 are shown in Fig. 9(b)–(c).
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FIGURE 8. Received mixed signal for case 2: (a) time-domain waveform, (b) spectrum, and (c) corresponding spectrogram by STFT at an SNR of 10 dB.

FIGURE 9. Spectrograms for (a) decoder 1 output and the recovered signals after applying, (b) mask 3, and (c) mask 3 (0.1).

TABLE 4 Performance Metrics Averaged Over 100 Test Samples at
SNR = 10 dB for Case 2

Mask 3 without a threshold enhances the noise effect, while
Mask 3 with a threshold managed to remove the noise effect
efficiently.

Table 4 presents the averaged performance metrics of 100
samples for different masks at an SNR of 10 dB. It can be
seen that the performance in this scenario is much better than
the results obtained for Case 1, which is presented earlier in

Table 2, especially for the LFM signal. Masks 1, 2, and 3 did
not achieve a good improvement for the 4-ASK signal com-
pared to the results obtained in Table 2. However, the proposed
Mask 5 and Mask 3 (0.1) outperforms the other masks for
the LFM and 4-ASK signals, respectively. Moreover, Mask
4 (0.4) achieves good performance metrics compared to the
results obtained in Case 1 (Table 2).

Fig. 10 displays the plots comparing the average perfor-
mance metrics between the proposed VAE and BSS algo-
rithms. The performance metrics for the LFM signal are better
than the 4-ASK signal because the instantaneous amplitude of
the 4-ASK signal varied rapidly. The results reveal significant
improvement in the performance of the proposed VAE com-
pared to the BSS techniques in the scenario where the two
signals were only mixed in the time domain. For instance, at
SNR of 0 and 10 dB, the VAE provides SDR gains of 13.6
and 12.6 dB, respectively, over the SOBI method for the LFM
signal and gains of 6.4 and 7.3 dB, respectively, for the 4-ASK
signal.

Examples of recovered waveforms based on Mask 3 (0.1)
and ExComplexFastICA at an SNR of 10 dB are depicted in
Fig. 11. The two algorithms successfully reconstructed the
input signals; however, the VAE with Mask 3 (0.1) shows
excellent performance compared to the BSS technique due to
its capability to remove the noise effects and produce a smooth
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FIGURE 10. Performance metrics averaged over 100 test samples based on case 2 for the (a) LFM signal and (b) 4-ASK signal.

FIGURE 11. The true LFM and 4-ASK signals (in blue colour) and recovered signals (in red colour) based on (a) mask 3 (0.1) and (b) ExComplexFastICA.

signal, as illustrated in Fig. 11(a). The SDRs for the recovered
LFM and 4-ASK signals are 24.6 dB and 16.7 dB, respec-
tively, based on the proposed VAE (Mask 3 (0.1)) and 10.5 dB
and 11.6 dB, respectively, based on the ExComplexFastICA
technique. In other words, in this scenario, the proposed VAE
achieved gains of 14 dB and 5 dB in recovering the sensing
and data communication signals, respectively.

Case 3: The two subsignals are mixed in both time and fre-
quency domains, in addition to the presence of an interference

signal represented by the Barker code (BC) waveform operat-
ing in the same frequency band. The time-domain waveform,
frequency-domain waveform, and spectrogram of the mixed
signal at an SNR of 10 dB are illustrated in Fig. 12. The
bandwidth and centre frequency of the LFM signal are 10
MHz and 0 MHz, respectively. The centre frequency of the
4-ASK and BC signals are 2 MHz and 12 MHz, respectively.

To estimate the interference signal, the following steps are
proposed:
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FIGURE 12. Received mixed signal for case 3: (a) time-domain waveform, (b) spectrum, and (c) corresponding spectrogram by STFT at an SNR of
10 dB.

FIGURE 13. Steps used to estimate the interference signal: (a) decoder 1 output based on mask 3 (0.1), (b) decoder 2 output based on Mask 3 (0.1), (c)
the normalized VAE output (decoder 1 + decoder 2 outputs), (d) the created mask, and (e) the estimated spectrogram of the interference signal.

Step 1: Use the trained VAE model to separate the 4-ASK and
LFM signals (as shown in Fig. 13(a), (b)).

Step 2: Combine the outputs of Decoder 1 and Decoder 2,
and normalise them to obtain the spectrogram magnitude
as shown in Fig. 13(c).

Step 3: Create a mask Ik by assigning ones to the spectrogram
magnitude (obtained in step 2) for values that are less than
a certain threshold value (i.e., 0.1) and zeros elsewhere, as
shown in Fig. 13(d).

Step 4: To estimate the interference signal, apply the following
equation:

	
sk (t ) = ST FT −1 (Ik � |X (t, f )|N � X (t, f )

)
Fig. 13 illustrates the spectrograms obtained by following

the proposed steps to detect the interference signal. Fig. 13(e)
displays the spectrogram of the estimated interference signal,
where it is clearly shown that the designed mask in Fig. 13(d)
has removed the desired signals (LFM and 4-ASK signals),
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FIGURE 14. Separated signals in the time domain by VAE: (a) LFM,
(b) 4-ASK, and (c) interference signal (BC).

TABLE 5 Average Performance Metrics for the 100 Samples Given in
Fig. 15 at an SNR of 10 dB for Case 3

leaving only the interference signal represented by the BC
signal.

Fig. 14 depicts the separated signals obtained by the pro-
posed VAE model for Case 3 at an SNR of 10 dB. It is
seen that VAE can successfully separate and reconstruct the
input signals with a sufficiently low noise level. The SDRs
for the LFM, 4-ASK, and BC signals are 18, 13, and 16.8
dB, respectively, indicating the excellent performance of the
proposed VAE in detecting the interference signal at 10 dB
SNR.

Fig. 15 shows the ability of the trained VAE model to
recover the LFM and 4-ASK signals and detect the BC in-
terference signal for 100 test samples. Table 5 outlines the
averaged performance metrics for each signal. The proposed
VAE achieves an accuracy of 99% and ∼91% in recovering
the LFM and 4-ASK signals, respectively, and ∼91% in de-
tecting the interference signal. The 9% drop occurred because
the unsupervised VAE confused between the 4-ASK signal
and the BC signal. This incident happened due to the BC
signal having a centre frequency that was similar to the 4-ASK
signal used during the training of the VAE model.

The signal separation speeds for various methods, averaged
over 100 runs, are outlined in Table 6. Notably, JADE demon-
strates a relatively rapid separation, requiring just 0.0007
seconds, closely followed by SOBI. In contrast, CQAMsym

FIGURE 15. Performance metrics (in dB) of the proposed VAE in
estimating the (a) LFM, (b) 4-ASK, and (c) interference (BC) signals.

TABLE 6 Speed in Separation of the Signals

exhibits a notably longer time of 0.1270 seconds, indicating
a comparatively slower process of signal separation. The pro-
posed VAE method offers a moderate speed, accomplishing
separation in 0.0631 seconds. This recorded time includes
both the prediction time for both decoders and the implemen-
tation time for the masking technique and inverse STFT.

Fig. 16 shows a comparison of computational complex-
ity in terms of the time required for signal separation. To
expand the time duration of the signals, we extended them
to 75, 150, 450, 700 μs. Consequently, this resulted in an
increased number of signal samples and input features for
the proposed VAE, totalling 8576, 17536, 53504, and 89600,
respectively. The figure showcases that the JADE method
exhibits the lowest computational complexity, followed by
SOBI, ExComplexFastICA and ACMNsym. The CQAMsym
method demonstrates the highest computational complexity.
Notably, the proposed VAE attains a lower complexity than
CQAMsym while surpassing the other four BSS methods in
terms of complexity.
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FIGURE 16 Complexity comparison in terms of separation time (log scale).

IV. CONCLUSION
In this article, unsupervised VAE was used for the first time
in the domain of JCR systems to blindly separate radar and
communication signals, as well as to mitigate interference in
a spectral coexistence scenario. Different masking techniques
were evaluated for data communication and sensing signals.
We found that the proposed mask with a power of 4 and
a threshold value was very suitable for the data communi-
cation signal, whereas the simple mask technique with less
computation complexity can be used for recovering the sens-
ing signal. Simulation results demonstrated that our proposed
VAE model could separate and reconstruct the data commu-
nication signal with rapidly varying instantaneous amplitude.
In addition, the proposed model was able to separate com-
plex mixed signals where the subsignals were overlapping in
the time-frequency domain and in the time domain only. To
conclude our findings, the effect of the overlapping in the
time-frequency domain was critical for the VAE at a high
SNR only; at a low SNR, the VAE was superior to the BSS
methods in terms of SDR and SAR. On the other hand, a low
SNR was very critical for the BSS algorithms in both cases
when the subsignals were overlapping in the time-frequency
domain and in the time domain only. Recognizing the respec-
tive strengths of both the VAE and BSS methods, there exists
an opportunity for future work to design a hybrid model that
effectively addresses the challenge of mutual interference in
JCR system.
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