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ABSTRACT Index Modulation (IM) is a flexible transmission scheme capable of striking a flexible per-
formance, throughput, diversity and complexity trade-off. The concept of Multi-dimensional IM (MIM)
has been developed to combine the benefits of IM in multiple dimensions, such as space and frequency.
Furthermore, Compressed Sensing (CS) can be beneficially combined with IM in order to increase its
throughput. However, having accurate Channel State Information (CSI) is essential for reliable MIM, which
requires high pilot overhead. Hence, Joint Channel Estimation and Detection (JCED) is harnessed to reduce
the pilot overhead and improve the detection performance at a modestly increased estimation complexity.
We then circumvent this by proposing Deep Learning (DL) based JCED for CS aided MIM (CS-MIM)
of significantly reducing the complexity, despite reducing the pilot overhead needed for Channel Estimation
(CE). Furthermore, we conceive training-aided Soft-Decision (SD) detection. We first analyze the complexity
of the conventional joint CE and SD detection followed by proposing our reduced-complexity learning-aided
joint CE and SD detection. Our simulation results confirm a Deep Neural Network (DNN) is capable of
near-capacity JCED of CS-MIM at a reduced pilot overhead and reduced complexity both for Hard-Decision
(HD) and SD detection.

INDEX TERMS Index Modulation, Compressed Sensing-Aided Multi-Dimensional Index Modulation (CS-
MIM), joint channel estimation and detection, Soft Detection, Machine learning, Neural Network.

NOMENCLATURE
IM Index Modulation.
TA transmit antenna.
SM Spatial Modulation.
CSI Channel State Information.
OFDM Orthogonal Frequency Division Multi-

plexing.
FD Frequency Domain.
SIM-OFDM Subcarrier-Index Modulated OFDM.
SIM Subcarrier-Index Modulation.
OFDM-IM OFDM with Index Modulation.
FD Frequency Domain.

MIMO Multiple-In and Multiple-Out.
STSK Space-Time Shift Keying.
TD Time Domain.
SpD Spatial Domain.
BER Bit-Error Ratio.
MIM Multi-dimensional Index Modulation.
RF Radio Frequency.
CS-SIM-OFDM Compressed Sensing-aided Sparse Index

Modulation-Orthogonal Frequency Di-
vision Multiplexing.

CS Compressed Sensing.
FD Frequency Domain.
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ML Maximum Likelihood.
CS-MIM CS-aided MIM.
CE Channel Estimation.
JCED Joint Channel Estimation and data De-

tection.
DL Deep Learning.
DNN Deep Neural Network.
SD Soft-Decision.
HD Hard-Decision.
RA receiver antenna.
IFFT Inverse Fast Fourier Transform.
CP Cyclic Prefix.
LSCE Least squared CE.
MSE Mean Square Error.
MMSE Minimum Mean Square Error.
RSC Recursive Systematic Convolutional.
Approx-Log-MAP Approximate Logarithm MAP.
LLR Log-Likelihood Ratio.
FC Fully-Connected.
LSTM Long Short-Term Memory.
Relu Rectified linear unit.
DCMC Discrete-Input Continuous-Output

Memoryless Channel.
Nr number of RAs.
Nt number of TAs.
Nc number of subcarrier for each frame.
G number of group.
Nf number of subcarrier in FD.
Nv number of subcarriers in VD.
bg,1 bits for SM at g-th group subcarriers of

CS-MIM.
bg,2 bits for frequency index modulation at g-

th group subcarriers of CS-MIM.
bg,3 bits for STSK mapping at g-th group sub-

carriers of CS-MIM.
M number of TAs for STSK dispersion ma-

trices
N number of RAs for STSK dispersion ma-

trices
T number of time slots for STSK disper-

sion matrices
K number of activated index in each sub-

carrier group in VD.
Q number of dispersion matrices for STSK

mapping.
L number of constellation realizations for

STSK mapping.
X STSK codeword.
S Space-time symbol block of each subcar-

rier group in VD.
s Space-time symbol sequence of each

subcarrier group in VD.
A CS measurement matrix.
sFD Space-time symbol sequence after CS of

each subcarrier in FD.
Y Received signal.

Hα channel model in FD.
IAC selection pattern of active TAs for each

subcarrier group.
S̄ modulated CS-MIM symbol at transmit-

ter.
hα channel model in TD.
W Additive White Gaussian noise.
SFD Space-time symbol block after CS of

each subcarrier in FD.
ISI subcarrier index selection pattern for

each subcarrier group.
Y p Received pilot symbol.
Ĥα estimated CSI in the FD.
S̄p pilot modulated CS-MIM symbol.
RH the channel’s correlation matrix of chan-

nel H
Le output extrinsic LLR after soft demodu-

lation.
La de-interleaved LLR sequence of Le

b̂r detected data bits.
Ĉ detected coded data bits.
W n weights of n-th neuron.
θn bias of n-th neuron.
B sample size of current iteration of DNN

training phase.

I. INTRODUCTION
Index Modulation (IM) constitutes a cost- and energy-efficient
technique in the face of escalating throughput require-
ments [1], [2], [3]. The concept of IM has evolved from
the idea of space-shift keying proposed by Chau et al. [4]
in 2001, which maps the information to the indices of the
activated Transmit Antennas (TAs). Then, Spatial Modulation
(SM) was proposed, which transmits the classic amplitude-
phase modulated symbols over the activated TA [5], [6]. To
eliminate the influence of Channel State Information (CSI),
differential SM is proposed by Bian et al. [7]. As a further
advance, the concept of IM has been devised by harnessing
the philosophy of SM in several single dimensions, which
was finally further developed to activating multiple of these
dimensions [3], [8].

To elaborate further, the SM is first applied to Orthogonal
Frequency Division Multiplexing (OFDM) transmission to
avoid inter-channel interference [9]. As Subcarrier-IM com-
bined with OFDM (SIM-OFDM) exploits the IM concept in
the Frequency Domain (FD) [10], where extra information can
be delivered by the index of the activated subcarriers. Then
Wen et al. [11] also investigate the IM-aided OFDM (OFDM-
IM), which split the whole available OFDM spectrum into
groups and Iqbal et al. [12] extend OFDM-IM in Multiple-In-
Multiple-Out (MIMO) scheme. Although Tsonev et al. [13]
and Basar et al. [14] investigated enhanced OFDM-IM for
increasing the spectral efficiency, the presence of inactive sub-
carriers resulted in throughput reduction compared to classical
OFDM. Hence, Zhang et al. proposed a novel Compressed
Sensing (CS) [15] aided SIM-OFDM [16] for exploiting the
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sparsity of subcarriers to improve the performance, despite
also reducing the detection complexity [17].

As a further evolved arrangement, Space-Time Shift Key-
ing (STSK) is a multi-functional MIMO technique in the IM
family that utilizes both the Time Domain (TD) and Spatial
Domain (SpD) to strike a flexible diversity vs multiplex-
ing trade-off [18]. The information bits in STSK are used
for selecting one or several dispersion matrices from a set
of Q dispersion matrices, which spread the signal over T
time slots and M TA elements in the SpD. By the careful
design of dispersion matrices, an improved Bit Error Ratio
(BER), throughput and complexity design trade-off can be
struck [19].

Multi-dimensional Index Modulation (MIM) was con-
ceived by Shamasundar et al. [20]. This scheme enhances
the degrees of freedom in IM designs by exploiting its
advantages across multiple domains without requiring addi-
tional hardware resources, such as extra Radio Frequency
(RF) chains or increased transmission power. As a further
development, Zhang et al. [16] proposed the concept of Com-
pressed Sensing-aided Sparse Index Modulation-Orthogonal
Frequency Division Multiplexing (CS-SIM-OFDM). Briefly,
this scheme employs Compressed Sensing (CS) [15] to cap-
italize on the inherent sparsity of symbols in the Frequency
Domain (FD), thereby improving the system’s through-
put [17]. Furthermore, Lu et al. [21] proposed a method that
combines CS techniques with STSK and OFDM-IM. This
integrated approach seeks to garner the collective benefits of
both STSK and OFDM-IM. Further refinements incorporating
SM were discussed in their subsequent treatise [2]. Addition-
ally, Hemadeh et al. introduced a multi-functional layered SM
paradigm in [3]. This concept aims for maximizing the flex-
ibility in dimension combinations, optimizing the trade-offs
among performance, hardware costs, and power consumption.

Since the MIM conveys information in several dimensions,
Maximum Likelihood (ML) detection is theoretically capable
of detecting the multi-dimensional signal jointly, albeit at an
escalating complexity upon increasing the degrees of freedom
or dimensions [22]. In [2], CS-aided MIM (CS-MIM) was
proposed, where multiple detection stages were harnessed for
recovering data from the CS, STSK and OFDM-IM domains,
again, at an extremely high complexity.

On the other hand, coherent detection requires the knowl-
edge of CSI, which is estimated by transmitting pilots to the
receiver [23]. Although SM exhibits energy savings by only
employing a single RF chain, the pilot based Channel Esti-
mator can only obtain the active TAs’ CSI, hence it requires
more time to estimate the whole MIMO channel. In [24], Faiz
et al. proposed recursive least-squares-based adaptive chan-
nel estimator for SM under the assumption that the MIMO
channel experienced block fading. Then, Wu et al. [25] inves-
tigated a novel Channel Estimation (CE) scheme by exploiting
the channel correlation, which significantly reduced the pilot
overhead. Acar et al. [26] employed a systematical pilot in-
sertion method to estimate the SM-MIMO channel. However,
the pilot overhead reduces the payload at a given bandwidth

efficiency and the CE complexity increases with the number
of antennas [27].

Historically speaking, Abuthinien et al. [28] proposed a
semi-blind ML-based Joint Channel Estimation and data De-
tection (JCED) scheme for MIMO systems at a minimum
pilot overhead. Furthermore, Chen et al. [29] designed an
iterative JCED for STSK systems, which imposes reduced
complexity, while maintaining a high throughput and attaining
near-optimal BER performance. Similarly, Sugiura et al. [30]
applied JCED in a SM scheme, while Acar et al. [31] proposed
a similar iterative JCED for coded SM-OFDM.

The complexity of ML sequence detection in Gaussian
channels may be deemed practical for one-dimensional IM,
but the complexity of MIM detection increases significantly.
It is therefore of interest to explore sub-optimal receivers that
can approach the performance of the ML detector at a reduced
complexity, such as the Expectation-Maximization algorithm
investigated by Cozzo et al. [32], while employing a reduced
number of pilot symbols.

Deep Learning (DL) has been attracting increasing atten-
tion in wireless communications [38], [39]. For instance, a
Deep Neural Network (DNN) was used for detecting MIMO
signals in [40], [41]. In [42], a DNN was employed for es-
timating the channel of OFDM systems and data detection.
Recently, Qing et al. [43] proposed an effective CE and detec-
tion scheme relying on a sophisticated neural network models
for achieving a similar or possible even better detection per-
formance than the conventional Minimum Mean Square Error
(MMSE) arrangement. In [35], Satyanarayana et al. proposed
a DNN-aided semi-blind detector for drastically reducing the
pilot overhead needed for CE of a multi-set STSK scheme,
which was also extended to Soft-Decisions (SD) in [36]. Ad-
ditionally, both CE and detection have been performed using
neural network in [37], where Xiang et al. proposed a DNN-
based iterative JCED for SM systems.

However, the JCED techniques presented in the literature
have been designed for single-dimensional IM systems, Fur-
thermore, there is a paucity of research exploiting DL-based
SD detection. Hence, in order to narrow the knowledge gap,
we design a DNN-based JCED for CS-MIM systems, which
can harness both Hard-Decision (HD) as well as SD detection.

Table 1 boldly contrasts the novelty of this paper to the
literature. Against the above background, the detailed contri-
butions of this paper are summarized as follows:
� We propose a reduced complexity JCED for HD CS-

MIM, employing a data driven DNN. The proposed
learning aided JCED method is capable of attaining near-
ML performance at a low pilot overhead and complexity.

� We then further extend this DNN-aided JCED CS-MIM
scheme for producing soft information, where we com-
bine our system with channel coding in order to attain an
improved BER performance.

� Our simulation results demonstrate that the proposed
MMSE-based JCED DNN model is capable of out-
performing the conventional MMSE-CE and detection
scheme in different channel environments at a reduced
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TABLE 1. Boldly and Explicitly Contrasting Our Contributions to the Literature

FIGURE 1. CS-MIM system transmitter block diagram.

pilot overhead, while also approaching the performance
of conventional JCED, despite its reduced complexity
and pilot overhead.

The rest of the paper is organized as follows. In
Section II, the system model of CS-MIM is presented. In Sec-
tion III, we design JCED techniques for our CS-MIM system
relying on our proposed learning-aided detector along with its
complexity analysis. Finally, in Sections IV and V, we analyze
the results and conclude, respectively.

II. SYSTEM MODEL
In this section, we introduce the transceiver model of the
CS-MIM system employing Nt TAs and Nr Receiver Anten-
nas (RAs). Fig. 1 shows the block diagram of the CS-MIM
system considered, where an OFDM symbol has Nc subcar-
riers, which are then equally divided into G groups. Each
group has Nf = Nc/G subcarriers in the FD1, while Nv sub-
carriers of each group are applied for the CS-MIM system
in the Virtual Domain (VD).2 The FD signal is attained by

1FD is the OFDM symbol domain after CS processing, as shown in Fig. 1.
2VD is the actual domain, where subcarrier index modulation is applied

before the CS process as shown in Fig. 1. This concept was firstly introduced
in [16] to illustrate the CS techniques in IM system to improve the spectral
efficiency.

compressing the VD signal using CS as detailed in [2], where
Nf is set lower than Nv to increase the throughput. The
CS-aided OFDM symbols will then be transmitted from the
activated TAs decided by the antenna selector of Fig. 1. Then,
after transmission over the wireless channel, the receiver esti-
mates the channel and detects the signal. In the following, we
present the details of the processing stages at the transmitter
and the receiver.

A. TRANSMITTER
As shown in Fig. 1, b bits are split into G groups, where bg

bits, (g= 1, 2, 3. . .G) of each group are split into three parts
by the block splitter: bg,1 bits for SM, bg,2 bits for frequency
index modulation, bg,3 bits for STSK to form the space-time
symbols. In the following we detail the different blocks of the
CS-MIM transmitter in Fig. 1.

1) SUBCARRIER INDEX SELECTION
The bit sequence bg,2 is applied in the subcarrier index se-
lector to activate a subcarrier in each group, as shown in
Fig. 1. Only K subcarriers are activated out of the Nv available
subcarriers and the other subcarriers remain unused. In the
following we consider an example to illustrate the subcarrier
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TABLE 2. Example of Subcarrier Selection for a CS-MIM System Having
K = 2, Nv = 4

selection procedure, where we consider the example of K = 2
active subcarrier out of the Nv = 4 available subcarriers in
each group. This results in 4 possible subcarrier index com-
binations in total. Table 2 shows an example of the subcarrier
selection, where K1, K2 represents the active subcarriers and 0
represents the inactive subcarriers. Explicitly, when the input
bits sequence is bg,2 = [00], the first and second subcarriers
are activated, as shown in Table 2. Then the selected active
subcarrier combination is populated by K space-time sym-
bols, where the STSK codewords are fenerated by the STSK
scheme for each group.

2) STSK ENCODING
The bit sequences bg,3 of size K log2(QL) are fed into the
STSK encoder of Fig. 1 to output K STSK codewords
{X i, . . . , X i, . . . , XK }, where the dispersion matrix spreads
the information both over M TAs and over T time slots in
each subcarrier and each space-time codeword X [i] ∈ C

M×T

is generated by spreading a conventional L-ary constella-
tion symbol by a specific dispersion matrix selected from
Q available dispersion matrices. The STSK encoder is char-
acterized by the parameters (M, N, T, Q, L), where M, N, T
represent the number of TAs, RAs and time slots, while Q, L
are the number of dispersion matrices and of L-ary constella-
tion symbols. Then, the space-time symbol S is generated by
mapping the K generated STSK codewords to the K selected
active subcarriers decided by the subcarrier index selector,
while other subcarriers remain inactive and are set to zero.
Considering bg,2 = [00] in the example shown in Table 2,
in this case, we assume STSK(M, N, T, Q, L) = (2, 2, 2, 2),
which have codewords {X1, . . . , X2, X3, X4}. Then, given
the assumption that bg,3 = [0 0 0 1], the space-time symbols
become S = [X1, X2, 0, 0], where we assume that X1 and X2
are the STSK codewords generated based on the bit sequence
bg,3.

3) SPACE-TIME SYMBOL FORMATION AND APPLICATION OF
COMPRESSED SENSING
The G groups of space-time symbols S are assembled by the
block creator of Fig. 1 to form a long space-time frame, which
is processed by the space-time mapper to output a symbol for
transmission over multiple TAs and time-slots, as shown in
Fig. 1. Equivalently, the space-time symbols S of each subcar-
rier group are mapped to M TAs during T time slots, which
have MT symbol sequences {s1,1, . . ., sM,T } for spreading the
M TA’s signals during T time slots.

TABLE 3. Look up Table Example of Antenna Selection in the CS-MIM
System Having M = 2, Nt = 4

These symbol sequences {s1,1, . . ., sM,T } are then com-
pressed by a CS measurement matrix A ∈ C

Nf×Nv se-
lected from the Nv-dimensional sm,t (m = 1, 2, . . ., M )(t =
1, 2, 3, . . . , T ) in the VD into the Nf -dimensional form in the
signal sm,t

FD. The FD vector sFD
m after CS is then mapped to

the OFDM subcarriers, which can be written as: sFD
m,t = Asm,t .

Similar to conventional OFDM, the FD symbol per time slot
will be transformed into TD symbols to be transmitted by
their corresponding TAs and then a Cyclic Prefix (CP) will
be added.

4) ANTENNA SELECTION
After Inverse Fast Fourier Transform (IFFT) and CP addition,
the TD symbols are transmitted by the activated TAs specified
by the antenna selector of Fig. 1. Explicitly, bg,1 bits are
conveyed by the antenna selector of Fig. 1, which selects M
antennas from the Nt available TAs, where we have NAC an-
tenna combinations in total. To avoid the correlation caused by
sharing the same TA elements among different antenna com-
binations, the Distinct Antenna Combination scheme of [44]
is used to decide upon the index NAC , with b1 = [log2(NAC )].
To elaborate further, let us consider an example using M =
2, Nt = 4 and NAC = 2. As shown in Table 3, when the input
bit is b1 = [0], then the first and second TAs will be activated
to transmit the modulated symbols in a specific subcarrier
block, while the other two TAs remain inactive. Similarly,
if the incoming bit sequence is b1 = [1], then the third and
fourth TAs will be selected to transmit the symbols. More
specifically, for bg,2 = [0 0] and bg,3 = [0 0] along with STSK
(2, 2, 2, 2, 2) we can have the space-time block formulated as
S = [X1, 0, 0, 0] and after CS the FD SFD may be expressed
as

SFD =
[

sFD
1,1 sFD

2,1

sFD
1,2 sFD

2,2

]
(1)

Then, we assume 4 TAs for transmission and bg,1 = [1]. As
shown in Table 3, we can have the CS-MIM modulated sym-
bol S̄ formulated as

S̄ =

⎡
⎢⎢⎢⎣

sFD
1,1 sFD

2,1

sFD
1,2 sFD

2,2

0 0

0 0

⎤
⎥⎥⎥⎦ (2)

B. RECEIVER STRUCTURE
We consider a receiver employing NR RAs. The signal arriv-
ing from the transmitter is assumed to be transmitted over a
frequency-selective Rayleigh fading channel and the CSI is
acquired by CE, as discussed in Section III-C.
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FIGURE 2. CS-MIM system receiver block diagram.

The CP is removed and then the received signal is trans-
formed to the FD signals by using the Fast Fourier Transform
(FFT), as shown in Fig. 2. The space-time demapper col-
lects the FD symbols received from Nr RAs over T time
slots to recover the space-time symbols, which are then split
into G groups by the Block Splitter of Fig. 2. Afterwards,
the symbols received by each subcarrier group are repre-
sented as Y = {Y [1]T , . . . ,Y [α]T , . . . ,Y [Nf ]T }T with Y ∈
C

NrNf×T and Y [α] ∈ C
Nr×T characterizing the ST structure

per group and the space-time symbol received at the α-th
subcarrier of each subcarrier group, respectively.

Let the FD channel matrix be represented as Hα ∈ C
Nr×Nt

for α = 1, . . . , Nf . Then the signal Y [α] ∈ C
Nr×T (α =

1, . . . , Nf ) received during T time slots for each subcarrier
group can be expressed as [2]

Y [α] = HαS̄[α]+W [α] = HαIACSFD[α]+W [α], (3)

where S̄ represents the modulated signal after SM at trans-
mitter and SFD[α] ∈ C

M×T denotes the space-time symbols
at α subcarriers transmitted from M TAs over T time slots
and W [α] ∈ C

Nr×T represents the Additive white Gaussian
noise (AWGN) obeying the distribution of CN(0, σ 2

N ), and σ 2
N

is the noise variance. Furthermore, IAC ∈ C
Nt×M denotes the

(Nt ×M )-element sub-matrix, which describes the selection
pattern of active TAs for each subcarrier group at the transmit-
ter. For high-integrity detection, accurate channel information
is required, which is attained by employing CE techniques
relying on known pilots in practical model-based solutions.
In the next section, we will discuss CE techniques suitable for
CS-MIM and characterize the JCED method.

III. CHANNEL ESTIMATION AND DETECTION FOR CS-MIM
Given the received signal Y of (3), the receiver infers the in-
formation bits of the STSK codewords, the bits embedded into
the activated the subcarrier indices and the bits mapped to the
active TAs. This detection process requires the channel state
information, which can be acquired by channel estimation. In
the following, we consider both separate channel estimation
and detection and JCED, where we propose a deep learning
aided JCED technique capable of reducing both the complex-
ity as well as the pilot overhead without substantially eroding
the performance.

The signal received at the α-th subcarrier during a time slot,
can be represented as

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Y α
1
...

Y α
r
...

Y α
Nr

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

hα
1,1 hα

1,2 · · · hα
1,Nt

hα
2,1 hα

2,2 · · · hα
2,Nt

...
...

. . .
...

...
...

. . .
...

hα
Nr ,1

hα
Nr ,2

· · · hα
Nr ,Nt

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

IACSα(FD) +W α,

(4)

where hα
r,t is the CSI between the r-th RA and the t-th TA

for the α-th subcarrier for subcarrier group g. Additionally,
S[α]FD can be extended as {S1

α, . . . , SM
α } for a single time slot.

Then, the channel matrix H corresponding to Nf ST signals of
each subcarrier group can be expressed in a diagonal structure
of size (NrNf × Nt Nf ) as

H = diag{H1, H2, . . . , HNf }, (5)

where Hα (α = 1, 2. . ., Nf ) represents the corresponding CSI
at the α-th subcarrier.

Similarly, the antenna selection pattern matrix associated
with Nf subcarriers of each group ĪAC ∈ C

Nt Nf×MNf has the
structure of

ĪAC = diag{IAC, IAC, . . . , IAC}. (6)

The received signal Y contains Nf space-time symbols at Nf

subcarriers in the FD of each subcarrier group. Given the
received signal model Y [α] ∈ C

Nr×T , α = 1, . . . , Nf , we can
write Y as

Y = HĪACSFD +W . (7)

The FD space-time signal can be represented as

SFD = ĀS = ĀISIX , (8)

where Ā ∈ C
MNf×MNv is the equivalent measurement matrix

A used for compressing the VD vector and S ∈ C
MNv×T de-

notes the VD space-time symbol. Then, S can be expanded as
S = ISIX , where X ∈ C

MK×T represents K STSK codewords
and ISI ∈ C

MNv×MK is the subcarrier index selection pattern.
Hence, (7) can be rewritten as:

Y = HĪACĀISI X +W . (9)

In the following, we first present the conventional CE and
HD detection for the CS-MIM system considered, followed
by the conventional JCED. Then, we introduce both the con-
ventional SD detection and the SD-JCED scheme of the
CS-MIM system. Afterwards, we present our proposed NN
aided HD-JCED, where the neural network replaces the ex-
haustive search with a learned classification model in order to
significantly reduce the computational complexity, followed
by the neural network aided SD-JCED.
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FIGURE 3. Conventional CE flow chart.

A. CONVENTIONAL CHANNEL ESTIMATION AND
DETECTION
In this section we present the conventional channel estimation
and detection designed for the MIM system, followed by the
JCED to output both HD as well as SD values.

1) CHANNEL ESTIMATION
As shown in Fig. 2, we use the CE scheme for acquiring
the CSI used for detection. Conventional pilot based CE,
which inserts pilots in each symbol may become inefficient
in this context due to randomly activating both the subcarriers
and TAs [26]. We circumvent this problem by constructing a
dedicated pilot frame for estimating the CSI by the channel
estimator for our CS-MIM receiver, as shown in Fig. 2. This
mitigates the challenge of randomness caused by the TA index
selection. The pilot frame has the same size as the information
frame, where only a single TA is activated for each subcarrier
group. In this case, the number of subcarrier groups G is
higher than or equal to that of the TAs Nt . Furthermore, each
of the Nt TAs can be activated more than once in each frame.
Then the CSI of every single TA and subcarrier group can be
estimated by the channel estimator. Afterwards, we can obtain
the estimated CSI matrix Ĥ of the equivalent subcarrier group
by linear interpolation techniques [23].

Fig. 3 shows the flow chart of the conventional CE and
detection. Firstly, the pilot symbol Y p is input to the channel
estimator. Then, with the aid of the appropriate CE method,
the estimated CSI Ĥ may be acquired by the detector and
then used for recovering the information bits. Let us model
the received space-time pilot symbol based on (7) as

Y p = HS̄p +W , (10)

where the space-time pilot symbol is S̄p = diag{ ¯Sp,1,
¯Sp,2, . . . , ¯Sp,M}.
Then the Least Squared CE (LSCE) is given by

ĤLS = Y pS̄H
p (S̄pS̄H

p )−1. (11)

In this case, we can calculate the complexity of LSCE, as
shown in (11). To elaborate, the complexity of LSCE is domi-
nated by the CSI matrix inversion and multiplication. Then we

can characterize the complexity of LSCE by the complexity
order of OLSCE [NrNt MT N2

f ].
To minimize the estimation Mean Square Error (MSE) of

H , the popular MMSE-CE formulated as

ĤMMSE = Y p(S̄H
p RH S̄p + N0Nf I)−1S̄H

p RH , (12)

where RH represents the channel’s correlation matrix [30].
The MMSE-CE requires the calculation of RH and CSI ma-
trix inversion. Then, we can characterize the computational
complexity as OMMSE−CE [NrNt T (MN2

f + N3
f )].

To track the channel, piecewise linear interpolation is used
for acquiring the CSI, which can be formulated as:

Hn = Ĥnp + (Ĥnp+1 − Ĥnp )

(
n− np

D

)
, f or np ≤ n ≤ np+1,

(13)
where Ĥnp and Hn are the estimated CSI matrix at the pilot
symbol position and D denotes the pilot insertion spacing.

2) MAXIMUM LIKELIHOOD DETECTION
The ML detector makes a joint decision on the TA index of
the STSK codewords and of the subcarrier using an exhaustive
search, which can be formulated as

〈γ̂ , β̂, ϕ̂〉 = arg min
γ ,β,ϕ
‖Y −HĪAC (γ )ĀĪSI (β )Xq,l (ϕ)‖2,

(14)
where γ̂ , β̂ and ϕ̂ represent the estimates of the activated TAs
index, the activated subcarrier index and the index of K STSK
codewords in each subcarrier group, respectively [2]. At the
receiver, the ML detector carriers out a full search for evalu-
ating all possible candidates, which has a complexity order of
O[NACNSI (QL)K ] per subcarrier group. Then, the total com-
putational complexity of the ML detector relying on perfect
CSI can be expressed as OML[(NrNt MN3

f + NrM2N2
f Nv +

NrNf M2NvK + NrNf MKT )NACNSI (QL)K ]. With the aid of
the LSCE/MMSE-CE relying on ML, we can have the total
complexity order of CE-aided ML detection formulated as
OLSCE/MMSE−CE +OML.

3) JOINT CHANNEL ESTIMATION AND DETECTION
To further improve the detection performance, data detection
based iterative JCED is considered. Fig. 4 shows the flow
chart of the JCED, which starts using the same procedure as
the conventional CE, where the estimated CSI is acquired by
the channel estimator with the aid of pilot symbols. After-
wards, we recover the bits from the received signal and the
estimated CSI. Then, the remodulated symbols created from
the recovered bits are used for updating the CSI.’ This process
is then repeated for several iterations to improve the estimated
CSI accuracy. By exploiting the remodulated symbols, the
JCED can increase the CE accuracy and hence increase the
detection performance without increasing the pilot overhead.
Based on [29] and [30], the JCED of CS-MIM is described by
Algorithm 1.

As illustrated in Algorithm 1, there are two thresholds,
which are used for terminate the update loop. First, we set
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FIGURE 4. JCED flow chart.

Algorithm 1: LS/MMSE-CE Based HD-JCED of CS-
MIM.

a maximum number of iterations, Imax, which progressively
enhances the CE and detection performance. This allows for
an adjustable algorithmic complexity based on the number
of iterations. The second approach introduces a termina-
tion constant, β, which controls the accuracy of the CE.
Based on the theoretical results of the MMSE-CE-aided and
ML-based detection, we can determine the MSE gap be-
tween conventional CE-based detection and ML detection,
assuming perfect CSI. Consequently, the constant β can be

FIGURE 5. Transceiver architecture of channel-coded CS-MIM.

selected within this gap and should be sufficiently low. In
this scenario, the algorithm’s complexity solely hinges on
the CSI condition, which can be unpredictable. In general, a
suitable termination threshold is chosen to strike an appropri-
ate performance vs. complexity trade-off. Alternatively, both
threshold may be harnessed for maximizing the algorithm’s
efficiency. In this case, we can represent the complexity or-
der of the HD-JCED as OHD−JCED = OLSCE/MMSE−CE +
log(β )(OLSCE/MMSE−CE +OML ), if the number of iterations
is smaller than Imax. In a nutshell, the total complexity
oder can be expressed as OHD−JCED = OLSCE/MMSE−CE +
Imax(OLSCE/MMSE−CE +OML ).

B. SOFT DECISION DETECTION
SD detection is employed for attaining near-capacity perfor-
mance when combined with channel coding by exchanging
soft values between the MIMO detector and the channel de-
coder. However, the complexity of the optimal maximum a
posteriori probability MIMO detector rapidly becomes pro-
hibitive upon increasing the modulation order and the number
of TAs [45]. In the following, we will present the conventional
SD detector of CS-MIM, followed by our LS/MMSE-CE
based SD-JCED aided CS-MIM system.

1) CONVENTIONAL SOFT DECISION DETECTION
A channel coded CS-MIM scheme is shown in Fig. 5, which
was proposed in [2] for achieving near-capacity performance.
The information bit sequence b is encoded by a Recursive
Systematic Convolutional (RSC) encoder. Then, the coded bit
sequence c is interleaved to generate the interleaved stream u,
which is entered into the CS-MIM modulator of Fig. 1.

At the receiver side of Fig. 5, the pilot data is processed
first for estimating the channel, where the estimated chan-
nel H̄ is entered into the soft CS-MIM receiver that outputs
Log-Likelihood Ratio (LLRs). The LLRs output from the
demodulator are then passed to the de-inteleaver and the RSC
decoder performs soft decoding. In Fig. 5, L(·) represents the
LLRs of the bit sequences, where Le(u) is the extrinsic LLR
output after soft demodulation and La(c) is the de-interleaved
LLR sequence of Le(u), which constitutes the a priori infor-
mation for the RSC decoder.

The LLR of a bit is defined as the ratio of probabilities as-
sociated with the logical bits ‘1’ and ‘0’, which can be written
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as L(b) = log p(b=1)
p(b=0) . The conditional probability p(Y |Xγ ,β,ϕ )

of receiving the signal Y of a subcarrier group defined in (3)
is given by [46]

p(Y |Xγ ,β,ϕ )

= 1

(πN0)NT
exp

(
−||Y −HĪAC (γ )ĀISI (β )Xq,l (ϕ)||2

N0

)
,

(15)

where Xγ ,β,ϕ represents the STSK codewords at the β-th real-
ization of active subcarriers, which are transmitted through the
φ-th realization of an active TA. Furthermore, N0 is the noise
power, where we have σ 2

n = N0/2 with N0/2 representing the
double-sided noise power spectral density.

Hence, we can formulate the LLR of bit ui as

Le(ui ) = ln
p(y|ui = 1)

p(y|ui = 0)

= ln

∑
X

γ ,β,ϕ∈Xl
1

p(Y |Xγ ,β,ϕ )∑
X

γ ,β,ϕ∈Xl
0

p(Y |Xγ ,β,ϕ )
, (16)

where X l
1 and X l

0 represent a subset of the legitimate equiva-
lent signal X corresponding to bit ul , when ul = 1 and ul = 0,
respectively, yielding X l

1 ≡ {Xγ ,β,ϕ ∈ X : ui = 1} and X l
0 ≡

{Xγ ,β,ϕ ∈ X : ui = 0}.
Upon using (15) and (16) we obtain the LLR L(bi ) of

the bit sequence conveyed by the received signal Y. To
simplify the LLR calculation, the Approximate Log-MAP
(Approx-Log-MAP) algorithm based on the Jacobian Maxi-
mum operation [47] is used [48], which is given by

Le(ul ) = jacXγ ,β,ϕ∈X l
1
(λγ ,β,ϕ )− jacXγ ,β,ϕ∈X l

0
(λγ ,β,ϕ ), (17)

where jac(.) denotes the Jacobian maximum operation and the
intrinsic metric of λγ ,β,ϕ is

λγ ,β,ϕ = −||Y −HĪAC (γ )ĀISI (β )Xq,l (ϕ)||2/N0. (18)

At the receiver, the soft demodulator evaluates the
probability of each bit being logical ‘1’ and ‘0’. Then
it applies the approx-log-MAP algorithm for obtaining
the extrinsic LLRs of the coded bits, which has a
complexity order of O[2(cg)(NACNSI (QL)K )], where cg rep-
resents the numbers of coded bits after the RSC en-
coder and interleaver. Then, we can have total complex-
ity of OMAP[cg(NrNt MN3

f + NrM2N2
f Nv + NrNf M2NvK +

NrNf MKT )NACNSI (QL)K + cg2cgNACNSI (QL)K ].

2) SOFT DECISION JOINT CHANNEL ESTIMATION AND
DETECTION
Then we can also apply the same JCED algorithm for
SD CS-MIM and the resultant procedure is described in
Algorithm 2. Similarly, we can represent the complexity of the
SD-JCED as OHD−JCED = OLSCE/MMSE−CE + log(β )
(OLSCE/MMSE−CE +OML ) or OHD−JCED =
OLSCE/MMSE−CE + Imax(OLSCE/MMSE−CE +OML ).

Algorithm 2: LS/MMSE-CE Based SD-JCED of CS-
MIM.

However, both HD and SD JCED impose excessive com-
plexity upon updating the CSI of each symbol. In the follow-
ing, we propose DNN-based MIM detectors for reducing the
complexity.

C. PROPOSED LEARNING BASED CHANNEL ESTIMATION
AND DETECTION
In this section, we first introduce the DNN-aided HD detection
of CS-MIM. Then, we propose an iteratively updated DNN
model for JCED of CS-MIM. Afterwards, we extend the pro-
posed DNN-based JCED model to SD CS-MIM systems.

1) CONVENTIONAL DNN-AIDED CE AND HD DETECTION
The DNN architecture of Fig. 6 can be harnessed for replac-
ing the conventional HD data detector of Section III-A2).
As shown in Fig. 6, the pilot symbols Y p and the received
symbols Y constitute the inputs of the L-layer fully-connected
network. The channel Ĥ is estimated from the pilot symbols
Y p by the DNN model during the training phase. Then the
output bits û can be obtained using the estimated channel and
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FIGURE 6. Fully-connected DNN model for CS-MIM channel estimation
and data detection.

the received signal, yielding the output of

û = fsigmoid (W n. . . fRelu{W 2( fRelu1 [W 1 fLST M (Y )+ θ1])

+ θ2} + · · · + θn), (19)

where W n and θn, n = 1, . . . , L represent the weights and
biases, respectively. A Long Short-Term Memory (LSTM)
layer is employed as the initial layer to capture the nonlinear
relationships between the transmitted signals and the CSI. The
LSTM layer can be mathematically represented as

{Ck, zk} = LSTM(Ck−1, zk−1, xk;φk−1), (20)

where Ck is commonly referred to as the cell state [49], which
represents the information flow over time. Additionally, xk and
zk denote the input and output at the k-th symbol instant, re-
spectively. The term zk−1 represents the output at the k − 1-st
instant, and φk−1 denotes the LSTM layer’s parameters. These
parameters are stored in the cell state for subsequent iterations
and are shared across them. Then in (19), the Rectified linear
unit (Relu) function of fRelu(s) = max(0, s) is employed for
activating the DNN during the training phase, and the sigmoid
function of fsigmoid (s) = 1

1+e−s is used to obtain the detected
bits û.

Furthermore, the complexity of the Neural Network (NN)
is governed by the operations involved in forward and
backward propagation between each neuron. Generally,
the complexity order of an NN can be expressed as
O[nin1]+ LO[nl nl−1]+O[nLno] [36], where ni and
no represent the sizes of the input and output layers,
respectively, and nl (l = 1, 2, . . . , L) denotes the numbers
of the hidden layers between them. The equation of the
sigmoid layer is formulated as fsigmoid (s) = 1

1+e−s , which
has the evaluation complexity order of O[1] and the LSTM
has the complexity order of O[nl (nd + nl )], where nd is
the neural dimension of the input layer of the LSTM.
Then we have the total computational complexity of
Fig. 6 characterized as O[4nl (Nf + 2+ nl )+∑L−1

l (2nl+1nl − nl )+ 2nL−1].
The raw input data represented in the complex-valued

matrix form obtained from the received signal Y has to be vec-
torized first. We rearrange the complex values by separately

FIGURE 7. Separate fully-connected DNN model in CE of CS-MIM systems.

extracting the real as well as imaginary parts and then merg-
ing them into a real-valued vector. In the training phase, we
employ randomly generated data, which are transmitted over
a frequency selective Rayleigh fading channel using MIM.
Then, both the received pilot and data symbols are employed
as the input data of the DNN. In this case, we use a high pilot
overhead for simulating a high-performance CE scenario. To
maximize the performance of the trained learning-based CE
and detection, different pilot overheads are applied for con-
sidering sufficiently diverse scenarios. The number of training
samples required is selected based on experimentation by
gradually increasing the training size until acceptable MSE
values are achieved. In this case, the MSE loss function of the
DNN used for the training is

L(u, û;W n, θn) = 1

B

B∑
i=1

‖u− û‖2, (21)

where B is the sample size of the current iteration. A stopping
criterion can be defined either by the number of iterations or
by an MSE threshold. Then, the parameter sets {W n, θn} can
be updated in each training iteration based on our learning
algorithm using gradient descent, which is formulated as

{W n, θn} ← {W n, θn} − α∇L({W n, θn}),
where α > 0 is the learning rate and ∇L({W n, θn}) represents
the gradient of L({W n, θn}). In our proposed NN aided detec-
tion, we use α = 0.001.

After the training phase, the DNN model learns the map-
ping from the received signal and stores both the weight as
well as the bias information, which will be used for producing
the desired outputs based on the input data in the testing
phase. The statistical properties of the input/output data have
to remain the same as those used in training.

2) SEPARATE DNN-AIDED CE AND DETECTION
To further reduce the effect of CE error, we propose the two-
part DNN models of Figs. 7 and 8 for CE and detection, re-
spectively. Firstly, the fully connected NN of Fig. 7 is used for
estimating the channel using the current received symbol Yτ−1
and next received a symbol Yτ as input and then it outputs the
estimated CSI Ĥτ , where Ĥτ = {H1

τ , . . . , Hs
τ , . . . , HNt

τ }.
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FIGURE 8. Separate fully-connected DNN model for detection in CS-MIM
systems.

In this case, the first received symbol is Hτ−1 = H p, where
H p is the pilot symbol and the fully connected layer is used
as output layer to learn the CSI. A variety of different pilot
overheads are considered in the training phase to enhance CE
performance of the trained model in diverse channel condi-
tions. Then we can obtain the output of the DNN-aided CE as

Ĥ s
τ =W N1 . . . fRelu{W 2( fRelu1 [W1(Y τ )+ b1])

+ b2} + · · · + bN1 ). (22)

In this case, we can have the complexity of CE NN as
OCE−NN [

∑L
l−1(2nl nl−1 − nl )+ 2nL−1].

The training process optimizes the network weights θ by
minimizing the loss function based on the MSE between the

estimated CSI Ĥ
S
τ of antenna S and current real CSI HS

τ . In
this case, the MSE loss function used for the training is

L(Hs
τ , Ĥs

τ ;W n, θn) = 1

B

B∑
i=1

‖Ĥs
τ −Hs

τ‖2, (23)

where B is the sample size of the current iteration.
Fig. 8 shows the DNN employed for detection, which is

performed after completing the CSI estimation using the DNN
of Fig. 7. The output of the first DNN model of Fig. 7, which
is the CSI Hs

τ of a specific activated TA s, and the received
symbol Yτ are used as input for the NN of harnessed for signal
detection. The output of the DNN of Fig. 8 corresponds to the
output bits û, which is formulated as:

û = fsigmoid (W n. . . fRelu{W 2( fRelu1 [W 1 fLST M (Y )+ θ1])

+ θ2} + · · · + θn). (24)

Afterwards, the total complexity of two NN is OCE +
Odetect ion, where Odetect ion have the same form with the con-
ventional NN.

In this case, the MSE loss function used for the training is

L(u, û;W n, θn) = 1

B

B∑
i=1

‖u− û‖2, (25)

where B is the sample size of the current iteration.

FIGURE 9. Fully-connected DNN model for CS-MIM JCED system.

3) PROPOSED DNN-AIDED JCED
Then, in the following we propose a NN model for performing
the entire JCED process, as opposed to harnessing thr pair of
NNs presented in Figs. 7 and 8. The proposed DNN archi-
tecture is shown in Fig. 9. In this case, we have the received
signal Y τ and we represent the estimated CSI of each symbol
as O[{Ĥ0, Ĥ1, Ĥ2, . . . , Ĥτ }, which is estimated using the
pilot symbols Y p.

As shown in Fig. 9, the input of the DNN model is the
estimated CSI of the previous symbol Y τ−1 and the current
received signal Y τ . Then, the target output is the detected bit
string of the symbol û and the updated CSI of the current time
slot Ĥ

s
τ , where s represents the activated TA for the current

transmitted symbols.
More specifically, both the estimated CSI obtained by the

DNN model of the previous symbol and the current received
data are entered into the model, which requires an input layer
having [2Nt NrNf + 2NrNf ]-nodes. As shown in Fig. 9, the
proposed DNN model can be split into two subgroups. The
first subgroup utilizes the information of the received data and
the estimated CSI to update the estimated CSI of the next sym-
bol, while the second subgroup detects the transmitted bits of
the current symbol. The proposed DNN-JCED procedure is
described in Algorithm 3.

For HD-JCED, we consider the subgroup of the detection
as a multi-label classification problem, where both the pre-
processed symbols and the estimated CSI are input to a NN,
which outputs the corresponding classification based candi-
dates of each bits. For the upper subgroup of Fig. 9, the DNN
will update the CSI using the trained weights of each layer.

Then, sigmoid activation is used for the output layer of the
proposed subgroup DNN to generate dependent probabilities
at the output layer of our classification problem. Hence, the
output of the DNN model can be expressed as

Ĥ =W 1
N1

. . . fRelu{W 1
2 ( fRelu1 [W 1

1 (Hτ−1)+ b1
1])

+ b1
2} + · · · + b1

N1
), (26)

û = fsigmoid (W 2
N2

. . . fRelu{W 2
2( fRelu1 [W 2

1(Y τ )+ b2
1])
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Algorithm 3: DNN Model for JCED of CS-MIM.

+ b2
2} + · · · + b2

N2
), (27)

where W 1
n1

and b1
n1

, n1 = 1, . . . , N1, represent the weights
and biases of the subgroup layers used for updating
the channel estimate, while W 2

n2
and the bias b2

n2
, n2 =

1, . . . , N2, are the weights and biases of the layers em-
ployed for detecting the information bits. Then, we have
the weight sets of θ1 = {W 1

1, b1
1,W 1

2, b1
2, . . . ,W 1

N1
, b1

N1
} and

θ2 = {W 2
1, b2

1,W 2
2, b2

2, . . . ,W 2
N2

, b2
N2
}

As the number of the first layer nodes depends on the input
data size, the appropriate number of nodes should be selected
for the hidden layers which is sufficiently high for attaining an
enhanced BER performance, at reduced detection complexity.
In this case, we designed 3 hidden layers having 64 nodes used
for both subgroups.

In the training phase, we use randomly generated data,
transmitted over the wireless channel using MIM as the input
data and perfect CSI for training the model weights θ1 and θ2.
In this case, the MSE loss function used for the training is

L(u, û;W n, θn) = 1

B

B∑
i=1

‖u− û‖2, (28)

where u represents the target labels, û denotes the detected bits
and B is the sample size of the current iteration. Using (19) and
(27), we can obtain the loss function of this DNN model as

L(θ1, θ2) = 1

BT

B∑
i=1

T∑
t=1

‖Ĥs
τ −Hs

τ‖22

+ 1

BT

B∑
i=1

T∑
t=1

‖ûτ − uτ‖22. (29)

We can define a stopping criterion, which can be either the
number of iterations or an MSE threshold. Then, the param-
eter sets {W n, θn} can be updated in each training iteration
based on the learning algorithm using gradient descent, which
is formulated as

{W n, θn} ← {W n, θn} − α∇L({W n, θn}),
where α > 0 is the learning rate and ∇L({W n, θn}) represents
the gradient of L({W n, θn}). In our proposed NN aided detec-
tion, we use α = 0.001.

Then, during the training phase, the model learns the map-
ping from the received signal and stores both the weight and
bias information, followed by outputting the predicted results
that are expected to approximate the desired input data having
similar statistical properties to those of the training.

In this model, the pair of inputs exhibit independent input
connection complexity, which is characterized by O[ni1n1 +
ni2n1]. The complexity of the hidden layers and of the out-
put layer is identical to that of the conventional NN. More
specifically, we can have the computational complexity of
O[2ni1n1 + 2ni2n1 +

∑L−1
l (2nl+1nl − nl )+ 2nL−1].

For our SD-JCED system, we also consider a similar DNN
architecture to that of [36], but we have a different output for
the model. Since the conventional SD detector will obtain the
LLRs of received signal after the CS-MIM soft demodulator,
we replace the detected bits û by the extrinsic LLR Le at
the output. Then the output of the SD DNN model can be
expressed as

Ĥ =W 1
N1

. . . fRelu{W 1
2 ( fRelu1 [W 1

1 (Hτ−1)+ b1
1])

+ b1
2} + · · · + b1

N1
), (30)

L̂e =W 2
N2

. . . fRelu{W 2
2( fRelu1 [W 2

1(Y τ )+ b2
1])

+ b2
2 + · · · + b2

N2
), (31)

and the corresponding loss function is

L(θ1, θ2) = 1

BT

B∑
i=1

T∑
t=1

‖Ĥs
τ −Hs

τ‖22

+ 1

BT

B∑
i=1

T∑
t=1

‖L̂e(τ )− Le(τ )‖22. (32)

IV. SIMULATION RESULTS AND ANALYSIS
In this section, we characterize the learning-aided CS-MIM
system proposed in Section III relying on both HD and SD.
The performance of the conventional detector will also be
presented for comparison with the proposed methods. We
also consider systems having Nt = 4, 8 with 2 RF chains.
More specifically, only the bits for antenna selection bg,3 is
changeable. Furthermore, we also investigate the performance
of the proposed methods in different channel conditions. To
characterize the channel conditions, we adjust the normalized
maximum Doppler frequency fm in order to emulate both
slow- and fast-fading channels. We assume that the system’s
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TABLE 4. CS-MIM System Simulation Parameters

TABLE 5. Training Configuration for Conventional DNN Detection With
CSI-Aided

TABLE 6. Training Configuration for Our Learning-Aided JCED Methods

signalling rate is 100MBaud and the maximum Doppler fre-
quency is 100 Hz, which corresponds to a normalised Doppler
frequency fm of 10−6. The resultant BER performance is
evaluated by Monte-Carlo simulations. Using the parameters
summarized in Table 4 and the parameters used by the learn-
ing model of Scheme 2 and Scheme 4 outlined in Table 5
and 6, we investigate a set of five schemes for Nt = 4, 8,
respectively, which are summarised as follows:

1) Scheme 1: HD-ML-based Detection of CS-MIM sys-
tem with TAs and RAs Nt = Nr = 4, 8.

a) perfect CSI at receiver.
b) MMSE CE and ML detection.
c) MMSE-aided-JCED.

2) Scheme 2: HD DNN-aided CE and detection of CS-
MIM system with TAs and RAs Nt = Nr = 4, 8.

a) Conventional DNN-aided CE and Detection.
b) DNN-aided JCED with Imax = 3 iteration.

FIGURE 10. BER performance comparison of HD detector of Schemes 1,2
with Nt = 8 under fm = 10−6. Our simulation parameter are shown in
Tables 4–6.

FIGURE 11. BER performance comparison of HD detector of Schemes 1,2
with Nt = 8 under fm = 10−6. Our simulation parameter are shown in
Tables 4–6.

3) Scheme 3: SD Detection of convolutional coded CS-
MIM system with TAs and RAs Nt = Nr = 4, 8.

a) perfect CSI at receiver.
b) MMSE-aided-JCED.

4) Scheme 4: SD DNN-aided JCED of convolutional
coded CS-MIM system with TAs and RAs Nt = Nr =
4, 8.

a) SD conventional DNN-aided CE and Detection.
b) SD DNN-aided JCED with 3 iteration.

In the following, we present various schemes considered
for comparative analysis in our simulations. Initially, we
demonstrate the performance of JCED and conventional CE
as displayed in Scheme 1 with Nt = 8 and Nt = 4. Then we
also show the benefit of the DNN-based CE and detection as
well as proposed JCED-DNN as listed in Scheme 2. Given the
system parameters of Table 4, the achievable rate is bG

Nc+LCP
=

1.333 bits/sec/Hz for Nt = 8 and Rt = 1.222 bits/sec/Hz for
Nt = 4. Fig. 11 shows the BER of the Scheme 1 and Scheme
2. Besides, Fig. 11 characterizes the theoretical maximum rate
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FIGURE 12. BER performance comparison of HD detector of Schemes 1,2
with Nt = 4 under fm = 10−6. Our simulation parameter are shown in
Tables 4–6.

of CS-MIM in Discrete-Input Continuous-Output Memory-
less Channels (DCMC) for both the neural network model
and conventional CE methods. For CS-MIM system with 8
TAs, both at transmitter and receiver, the Scheme 1a) achieves
about 1.95 dB at the BER of 10−4 under the assumption
of perfect CSI knowledge at the receiver. In this case, we
can achieve highest throughput as shown in Fig. 10 which is
Rt = 1.333 bits/sec/Hz. However, in more realistic situation,
pilot required to deploy CE techniques and cause pilot over-
head. Generally, in the simulation, pilot symbols are designed
and applied. Then, 1% pilot overhead indicates that every
100 symbols require 1 pilot symbol. As shown in Figs. 10
and 11, Scheme 1b) is capable of achieving an improved
performance, but at an increased pilot overhead. Scheme 1b)
associated with 10% pilot overhead is capable of achieving
similar results to those of Scheme 1c). Furthermore, Scheme
1b) associated with 2% overhead and 5% overhead exhibit a
4 dB and 1.7 dB discrepance with respect to the ideal Scheme
1c) at a BER of 10−4, respectively. When Scheme 1c) of
JCED is applied at the receiver, it can significantly reduce
the pilot overhead and yet obtain a near-ML performance.
More specifically, we consider the JCED under 3 iteration
updating and achieve BER of 10−4 only 0.1 dB SNR worse
than Scheme 1a) of ML detector with very few pilot.

We also analysis the detection performance of the system
with 4 TAs. Fig. 12 also shows the DCMC of Scheme 1
and Scheme 2. With less antennas, firstly, the performance
of CS-MIM is reduced due to reduction of space sparsity.
Scheme 1a) having Nt = 4 TAs achieves a BER of 10−4

at 4.3 dB SNR, as shown in Fig. 13. Similarly, along with
NT = 8 TAs Scheme 1b) also requires a higher pilot over-
head for achieving a high performance. In conjunction with
a 2% pilot overhead Scheme 1b) is about 5 dB worse than
Scheme 1a) and their gap is reduced to 1.6 dB for 5% pilot
overhead. However, Scheme 1c) still succeeds in achieving
near-capacity performance, as shown in Fig. 13.

As we discussed in Section III, the ML detector ap-
plies an exhaustive search having complexity order of

FIGURE 13. BER performance comparison of HD detector of Schemes 1,2
with Nt = 4 under fm = 10−6. Our simulation parameter are shown in
Tables 4–6.

O[NACNSI (QL)K ]. On the other hand, the complexity of the
Neural network is determined by the forward and backward
propagation, where we have the NN complexity order of
O[ninhi + nhi nhi+1 + · · · + nhI no].3 In this case, we assume
that the network have I layers and each layer have nerual
size of nhi (i = 1, 2, 3, . . . , I ) and ni, no represents the neural
size of input and output layers. Although the DNN-based
JCED model require at least 3 iteration, which means 3 times
complexity than conventional DNN model, to achieve near-
ML performance, it is several magnitude less of complexity
compared to the conventional JCED either CE-ML detection
method.

We also conducted simulations for two variants of Scheme
2. Leveraging a high pilot overhead based estimated CSI from
Scheme 1b, the model can be efficiently trained to achieve
improved detection performance, even with a reduced pi-
lot overhead in challenging channel conditions. As depicted
in Fig. 10, Scheme 2a exhibits a performance that is ap-
proximately 2 dB inferior to Scheme 1a. By employing the
iteratively updated CE model, Scheme 2b further minimizes
the estimated CE error, resulting in a mere 0.9 dB loss at a
BER of 10−4. Notably, Scheme 2b achieves a nearly 1 dB
improvement over Scheme 2a at a computational complex-
ity of roughly 3× 104. This increase in complexity may be
deemed acceptable, especially when compared to the com-
plexity of Scheme 1b (1.2× 106) and to that of Scheme
1a (8.5× 106) over three iterations. We also investigate the
system associated with Nt = 4 TAs. Then the performance of
Scheme 2 is slightly degraded owing to is eroded diversity
gain. Scheme 2b) attains a BER of 10−4 at SNR of 5.1 dB,
while the conventional CE-aided DNN Scheme 2a) performs
0.8 dB worse than Scheme 2b).

Additionally, we compare the performance for varying
Doppler frequency values. Specifically, we modulate the nor-
malized Doppler frequency fm to emulate channels ranging

3Complexity order of NN only used to compares the ML detection, while
there is no search complexity associated with the NN-aided detection.
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FIGURE 14. BER performance comparison of HD detector of Schemes 1,2
with Nt = 8 under fm = 2 × 10−6. Our simulation parameter are shown in
Tables 4–6.

FIGURE 15. BER performance comparison of HD detector of Schemes 1,2
with Nt = 8 under fm = 10−5. Our simulation parameter are shown in
Tables 4–6.

from slow to fast variations. In Fig. 14 we consider a channel
with normalised Dople frequency of fm = 2× 10−6, while we
used f m = 10−6 in the results in Fig. 11. Scheme 1a main-
tains consistent results as observed in Fig. 10, while Scheme
1b with a 10% overhead incurs a 0.7 dB loss at a BER of 10−4,
compared to the 0.1 dB difference in Fig. 11. In this context,
Scheme 1c with a 5% overhead demonstrates superior CE
accuracy compared to Scheme 1b, necessitating a higher over-
head to achieve near-optimal performance relative to Scheme
1c in Fig. 11. Similarly, despite the increased overhead in
Scheme 2a and Scheme 2b aiming for enhanced CE accuracy
and detection performance, they exhibit losses of 0.3 dB and
1.3 dB, respectively, at a BER of 10−4 when compared to
their counterparts in Fig. 11. This suggests that Scheme 1c
and Scheme 2b offer some resilience against rapidly varying
channels. As illustrated in Fig. 15 with fm = 10−5, Scheme
2a is 2.6 dB inferior to Scheme 1b in Fig. 11, while Scheme
2b lags by 1.2 dB compared to Scheme 1c in Fig. 11.

Let us now consider the performance of SD detection,
where we employ a half-rate RSC encoder as shown in
Table 4. Then we can calculate the maximum achievable rate
is Rt = 0.66667 bits/sec/Hz for system which Nt = 8 and

FIGURE 16. BER performance comparison of HD and SD detector of
Schemes 1–4 with Nt = 8 under fm = 10−6. Our simulation parameter are
shown in Tables 4–6.

FIGURE 17. BER performance comparison of HD and SD detector of
Schemes 1–4 with Nt = 4 under fm = 10−6. Our simulation parameter are
shown in Tables 4–6.

FIGURE 18. BER performance comparison of SD detector with Scheme 3, 4
under fm = 10−6. The simulation parameter are shown in Table 4–6.

Rt = 0.61111 bits/sec/Hz for system which Nt = 4. As shown
in Fig. 18, Scheme 3a) could achieve a BER of 10−4 at−1.83
dB with perfect CSI acquired at receiver. In practical situa-
tion, CE is required with highly pilot overhead. Naturally,the
Scheme 3c) of JCED detection could achieve near-ML
performance which achieve −1.8 dB SNR at 10−4 of BER
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with few pilot and moderate complexity mounting. For Nt =
4, the JECD could achieve less difference with ML detector
which is 0.14 dB worse than the ML detector. For NN-based
CE and detection, the conventional model Scheme 4a) leads
to about 2 dB gap of 10−4 BER compared with Scheme 3b)
and Scheme 3c). With the assist of DNN-based JCED, we can
narrow the gap to 1 dB with 3 iteration updating. For system
with Nt = 4, the performance of DNN-JCED is more effective
with the significant reduce in TA and RA number.

In Figs. 16 and 17, we compare the performance of the HD
and SD. In Fig. 16 the benefit of the SD is clearly visible,
because it provides a sharp BER reduction at an SBR of
about −3 dB, while Scheme 3a) requires -2.2 dB SNR at at
a BER of 10−4. Both Scheme 1b) and Scheme 1c) are capa-
ble of achieving near-optimal results. For learning-based CE
and detection, Scheme 3a) and Scheme 3b) perform slightly
worse than the conventional Scheme 1, while the SD scheme
attains a 3.1 dB and 2.9 dB gain compared to the HD-aided
Scheme 2a) and Scheme 2b). As expected, the performance
improvement of SD is worse for Nt = 4 than for Nt = 8, as
shown in Fig. 17, where the gap between Scheme 1a) and
Scheme 3a) is about 2.4 dB at a BER of 10−4, compared to a
discrepancy of 3.6 dB in Fig. 16.

Fig. 18 also characterizes the learning aided JCED-SD
detection methods applied to our CS-MIM system. The NN
based JCED method is about 0.3 dB worse than ML detector
with the perfect CSI acquired at receiver. With more antenna
for transmitting, the performance is slightly degrading.
However, the complexity of DNN based JCED is far small
than conventional JCED method with Nt = 8 system. For
higher number of iterations update, the NN model will
have an improved performance. However, the proposed
learning method has a complexity order of O[2ni1n1 +
2ni2n1 +

∑L−1
l (2nl+1nl − nl )+ 2nL−1] compared to OMAP

[cg(NrNt MN3
f + NrM2N2

f Nv + NrNf M2NvK + NrNf MKT )

NACNSI (QL)K + cg2cgNACNSI (QL)K ] for the conventional
scheme, where Iit denotes the number of iterations.

V. CONCLUSION
Both conventional and learning-assisted JCED of CS-MIM
was proposed relying on HD and SD. Our analysis shows that
JCED was the potential of reducing the pilot overhead and
yet improve the detection performance compared to the sep-
arate CE and detection. In simulation, we have first used the
conventional HD JCED of CS-MIM systems communicating
over Rayleigh fading channels and the learning-aided JCED
is capable of achieving similar performance while decrease
the complexity of JCED. Then, a DNN model with subgroups
has been designed for SD JCED in CS-MIM systems, which
are capable of approaching the performance of conventional
SD CS-MIM system with reduced computational complexity.
In summary, our studies and simulation results have shown
that the conventional JCED is capable of achieving a sim-
ilar BER performance to the ML detector with idealized
CSI.
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