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ABSTRACT In contrast to the long-held belief that wireless systems can only work in half-duplex mode, full-
duplex (FD) systems are able to concurrently transmit and receive information over the same frequency bands
to theoretically enable a twofold increase in spectral efficiency. Despite their significant potential, FD systems
suffer from an inherent self-interference (SI) due to a coupling of the transmit signal to its own FD receive
chain. Self-interference cancellation (SIC) techniques are the key enablers for realizing the FD operation, and
they could be implemented in the propagation, analog, and/or digital domains. Particularly, digital domain
cancellation is typically performed using model-driven approaches, which have proven to be insufficient to
seize the growing complexity of forthcoming communication systems. For the time being, machine learning
(ML) data-driven approaches have been introduced for digital SIC to overcome the complexity hurdles of
traditional methods. This article reviews and summarizes the recent advances in applying ML to SIC in FD
systems. Further, it analyzes the performance of various ML approaches using different performance metrics,
such as the achieved SIC, training overhead, memory storage, and computational complexity. Finally, this
article discusses the challenges of applying ML-based techniques to SIC, highlights their potential solutions,
and provides a guide for future research directions.

INDEX TERMS Artificial intelligence, deep learning (DL), full-duplex (FD), machine learning (ML), neural
networks (NNs), self-interference cancellation (SIC), sixth-generation (6G) wireless, support vector regres-
sors (SVRs).

NOMENCLATURE

1T1R One transmit and one receive.
2HLNN Two-hidden layers neural network.
6G Sixth-generation.
ADC Analog-to-digital converter.
APSM Adaptive projected subgradient method.
BPF Band-pass filter.

BS Batch size.
CHRNN Channel robust neural network.
CReLU Complex rectified linear unit.
CSID Canonical system identification.
CV-TDNN Complex-valued time delay neural network.
DAC Digital-to-analog converter.
DL Deep learning.
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DN-2HLNN Dual-neurons two-hidden layers neural net-
work.

DR Dynamic regression.
DU Deep unfolding.
EM Expectation-maximization.
FD Full-duplex.
FDD Full division duplex.
FFNN Feed-forward neural network.
FLOPs Floating-point operations.
FTRL Follow the regularized leader.
GMMs Gaussian mixture models.
HCRDNN Hybrid-convolutional recurrent dense neural

network.
HCRNN Hybrid-convolutional recurrent neural net-

work.
IBFD In-band full-duplex.
IMD2 Second-order intermodulation distortion.
IQ In-phase and quadrature-phase.
LL Lazy learning.
LMS Least mean squares.
LNA Low-noise amplifier.
LO Local oscillator.
LPF Low-pass filter.
LR Learning rate.
LS Least-squares.
LWGS Ladder-wise grid structure.
MIMO Multiple-input multiple-output.
ML Machine learning.
MWGS Moving-window grid structure.
NN Neural network.
NTDSVR Nested time-delay support vector regressor.
OF-TDSVR Output-feedback time-delay support vector re-

gressor.
OFDM Orthogonal frequency division multiplexing.
PA Power amplifier.
PC Personal computer.
PSD Power spectral density.
QPSK Quadrature phase-shift keying.
RBF Radial basis function.
RF Radio frequency.
RFFs Random Fourier features.
RMSprop Root mean square propagation.
RNN Recurrent neural network.
RTDSVR Residual time-delay support vector regressor.
RV-TDNN Real-valued time delay neural network.
Rx Receiver.
SDR Software defined radio.
SGD Stochastic gradient descent.
SI Self-interference.
SIC Self-interference cancellation.
SISO Single-input single-output.
SoI Signal-of-interest.
SVR Support vector regressor.
TC Tensor completion.
TDSVR Time-delay support vector regressor.
TRP Transmit and receive point.

Tx Transmitter.
VGA Variable gain amplifier.
I. INTRODUCTION
The sixth-generation (6G) wireless networks are anticipated to
connect “intelligence” rather than “things” while maintaining
the quality-of-service requirements of low latency, massive
connectivity, and stringent energy efficiency [1], [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20]. Through several technologies, 6G vi-
sionaries expect an unprecedented provision of services to 6G
users by allowing 10 times lower latency, 100 times higher
connectivity, and 1000 times higher data rates compared to
the fifth-generation wireless system’ users [1], [2], [3], [4].

To meet the high data rate requirements of 6G networks,
the in-band full-duplex (IBFD) systems have emerged as one
of the potential technologies owing to their ability to serve a
large number of devices concurrently on the same frequency
bands [21], [22], [23], [24], [25], [26], [27], [28], [29], [30],
[31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41],
[42], [43]. Given this potential, the IBFD devices can theoret-
ically provide a twofold increase in spectral efficiency, making
them promising candidates for 6G networks. Doubling the
spectral efficiency, however, comes at the cost of having an
inevitable self-interference (SI) at the receiver (Rx) chain of
an FD node from its own transmitter (Tx) chain. To break
through such a bottleneck, SI cancellation (SIC) has been
verified as the panacea that can enable the essence of IBFD
communications [21], [25], [26], [30], [34].

In the past few decades, researchers have drawn attention
to canceling the SI in IBFD systems. Generally, the SIC
can be performed in analog and/or digital domains. Analog
domain cancellation can be performed passively at the radio
frequency (RF), i.e., propagation level, using antenna isolation
[21], beamforming [28], polarized antennas [44], circulators
[45], and/or hybrid junction networks [46]. Instead, analog
domain cancellation can be carried out actively by generating
a pre-processed copy of the SI signal, which is exploited to
cancel the original SI signal at the Rx chain. Analog domain
cancellations are often incapacitated to suppress the SI signal
to the Rx noise floor level. As a consequence, additional focus
has been directed to canceling the SI at the baseband level
using digital domain cancellation [47], [48], [49], [50], [51],
[52], [53], [54], [55], [56]. At low or moderate transmit power
levels, the digital domain cancellation is typically performed
using linear cancelers, which reconstruct an estimated copy
of the SI signal based on techniques such as least-squares
(LS) channel estimation [47], [49], [53]. However, at high
transmit power levels, such cancellation only becomes insuf-
ficient to entirely suppress the SI to the Rx noise floor due
to the stringent non-linear behavior of FD transceiver’s com-
ponents, such as the power and low-noise amplifiers (PA and
LNA) [47], [49], [52]. Thus, non-linear digital cancellation
is applied with the linear cancellation to bring the SI to the
Rx noise floor level. The non-linear SIC is conventionally
performed using model-driven approaches, e.g., polynomial
models, which are shown to fit well in practice; however,
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they need many trainable parameters that, in turn, translate
to higher computational requirements [57].

Artificial intelligence, a wide-ranging area of computer sci-
ence, has currently made a profound technological revolution
in all disciplines of communications [58], [59], [60], [61],
[62], [63], [64], [65], [66], [67], [68], [69], [70], [71], [72],
[73], [74], [75], [76], [77], [78], [79], [80], [81], [82], [83],
[84], [85], [86], [87]. Specifically, machine and deep learning
(ML and DL), aiming to extract hidden features, i.e., in-
sights, from training data, have attained considerable success
in channel coding [64], [65], channel estimation [73], [80],
[85], [86], channel equalization [73], signal identification
[70], [87], signal detection [63], optical fiber’s signal-to-noise
ratio estimation [82], [83], digital pre-distortion [88], and PA
behavioral modeling [89]. In these works, the data-driven ML
approaches have achieved astonishing enhancements in either
performance or complexity when compared to the model-
driven approaches.

Applying ML to IBFD communications has recently been
regarded as one of the promising techniques that supports the
horizon of 6G networks [90], [91], [92], [93], [94], [95], [96],
[97], [98], [99], [100], [101], [102], [103], [104], [105], [106],
[107], [108], [109], [110], [111], [112], [113], [114], [115],
[116], [117], [118], [119], [120], [121], [122], [123], [124],
[125], [126]. To that extent, traditional ML techniques, such as
neural networks (NNs) and support vector regressors (SVRs),
have been introduced for SIC in FD transceivers [90], [91],
[92], [93], [94], [95], [96], [97], [98], [99], [100], [101], [102],
[103], [104], [105], [106], [107], [108]. Further, advanced
ML techniques, such as tensor completion (TC), TensorFlow
graphs, and so forth, have also been investigated for learn-
ing the SI in FD transceivers [109], [110], [112]. Other ML
techniques, such as Gaussian mixture models (GMMs), deep
unfolding (DU), lazy learning (LL), and so forth, have addi-
tionally been explored for FD SIC [119], [120], [122], [125],
[126]. Integrating ML with FD communications has achieved
considerable success in terms of performance and/or com-
plexity when compared to the model-driven approaches. A
comprehensive survey of such integration has thus far been
lacking. Hence, this work addresses the knowledge gap in
integrating data-driven ML approaches with FD communica-
tions, applying digital SIC.

The major contributions of this work are as follows:
� We firstly introduce a general and comprehensive system

model to integrate ML with FD communications.
� We have briefly reviewed the traditional approaches for

SIC in FD transceivers.
� We have surveyed the up-to-date contributions for apply-

ing data-driven ML approaches for SIC in FD systems,
in which the SI can be directly learned from data rather
than relying on traditional model-driven approaches.

� We have investigated the effect of using part of the
output samples as features for training the SVR-based
cancelers.

� We have provided a case study to assess the perfor-
mance of the prominent ML approaches—in terms of
SIC, power spectral density (PSD), training overhead,

memory storage, and computational complexity—using
two different test setups, i.e., two training datasets, and
using various dataset sizes.

� We have devised an efficiency measure to select a suit-
able ML approach for SIC in FD transceivers, depending
on the system requirements.

� We have highlighted the main challenges and potential
research directions for successful adoption of ML ap-
proaches for canceling the SI in FD transceivers.

The rest of this article is organized as follows. Section II
introduces the ML-based FD system model. Section III sum-
marizes the traditional approaches for SIC in FD transceivers.
Section IV reviews the up-to-date contributions that apply
ML approaches for SIC. Simulation results are presented in
Section V, challenges and future directions are summarized
in Section VI, and finally, concluding remarks are drawn in
Section VII. The detailed organization of this article is de-
picted in Fig. 1.

II. ML-BASED FD SYSTEM MODEL
The system model consisting of an FD transceiver with single
transmit and single receive antennas, RF, and digital can-
cellation stages is illustrated in Fig. 2. At the Tx chain,
the digital baseband samples, denoted by x(n)—with n as
the sample index—are firstly distorted by the in-phase and
quadrature-phase (IQ) imbalance of the mixer and then by
the non-linearities of the PA. The digital equivalent of the
baseband transmitted signal at the output of the Tx chain can
be expressed as [99], [100], [101]

xt (n) =
P∑

p=1,
p odd

MPA∑
m=0

hm,p xIQ (n − m)
p+1

2 x∗
IQ

(n − m)
p−1

2 , (1)

with xIQ (n) as the IQ mixer’s output signal and (.)∗ as the
complex conjugate operator, whereas MPA , hm,p, and P are
the memory depth, impulse response, and non-linearity order
of the PA, respectively. In (1), p is an odd number, i.e., the
odd-order non-linearities are only taken into account, e.g.,
p ∈ {3, 5. . ., 9}, as the even-order non-linearities are out-of-
band and they are filtered by the Rx’s analog and digital
filters [100]. The transmitted signal xt is propagated through
an SI channel, forming an inevitable SI at the Rx chain. As a
consequence, the received signal at the output of the Rx chain,
i.e., at the output of the analog-to-digital converter (ADC), can
be written as [127]

y(n) = ySI (n) + ySoI (n) + w(n), (2)

where w(n) ∼ CN (0, σ 2) denotes the thermal noise, which
is complex-valued Gaussian distributed with zero mean and
variance σ 2, ySoI (n) indicates the received signal of interest
(SoI), and ySI (n) represents the SI signal, which can be ex-
pressed as [99], [100], [101]

ySI (n) =
P∑

p=1,
p odd

p∑
q=0

Mi−1∑
m=0

hm,q,p x (n − m)q x∗ (n − m)
p−q

, (3)
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FIGURE 1. Organization of this paper.

with hm,q,p as the impulse response of an overall channel
containing the total effect of all transceiver impairments, e.g.,
PA non-linearities, IQ imbalance, and SI channel, and Mi as
the memory effect introduced by the PA, SI channel delay
spread at the Rx, etc.

To better evaluate the capabilities of the SI cancelers to
suppress the SI signal properly, we assume, for simplicity,
that there is no SoI from any other FD transmit receive points
(TRPs) and no mutual interference from any base station
transmitting at the same frequency [90], [96], [97], [99],
[100], [101]; hence, the received signal at the Rx chain’s
output will end up with the SI signal plus noise. The objective
of the digital SI canceler is thus to suppress the SI to the Rx
noise floor level. To that end, we firstly estimate the linear
SI channel (i.e., causing the linear SI component) using the
traditional LS channel estimation, which is performed for the

case of single transmit and single receive antenna as follows
[99], [100], [101]:

ĥ =
((

Xtr)H Xtr
)−1 (

Xtr)H ytr, (4)

with (.)-1 and (.)H as the inverse and conjugate transpose op-
erators, respectively. The channel estimate ĥ ∈ C

Mi×1 while
Xtr ∈ C

(Ntr−Mi )×Mi , and ytr ∈ C
(Ntr−Mi )×1 are respectively

formed as

Xtr =⎡⎢⎢⎢⎢⎢⎢⎣

x(n) x (n − 1) · · · x (n − Mi + 1)
x (n + 1) x(n) · · · x (n − Mi + 2)

...
. . .

. . .
...

...
. . .

. . .
...

x (n + Ntr − Mi − 1) · · · · · · x (n + Ntr − 2Mi )

⎤⎥⎥⎥⎥⎥⎥⎦ ,

(5)

and ytr = [ y(n) y(n + 1) · · · y(n + Ntr − Mi − 1) ]T,
with Ntr as the number of training samples and (.)T as the
transpose operator. Upon estimating the SI channel ĥ, the
linear SI component can be respectively reconstructed in
the training and testing phases as follows:

ỹtr
SI,lin

= ĥ ⊗ xtr, (6)

ỹts
SI,lin

= ĥ ⊗ xts, (7)

where ⊗ indicates the convolution operator. xtr ∈ C
(Ntr−Mi )×1

is formed from the training samples as xtr = [x(n) x(n+1)
· · · x(n + Ntr − Mi − 1)]T, xts ∈ C

(Nts−Mi )×1 is constructed
similarly to xtr from the testing samples (not from the training
samples), and by replacing Ntr with Nts, where Nts represents
the number of testing samples. Noting that, upon performing
the convolution, the sequences ỹtr

SI,lin
are resized to be aligned

with the dimension of ytr .
The non-linear SI component, employed to train the ML

approaches, e.g., NNs and SVRs, is obtained by subtracting
the linear component from the original SI signal1 as follows:

ỳtr
SI,nl

= ytr − ỹtr
SI,lin

. (8)

Since the ML approaches are typically trained using
real-valued inputs,2 we separate the real and imagi-
nary parts of Xtr and construct the input feature map,
Ztr

nl = [z(n) z(n + 1) · · · z(n + Ntr − Mi − 1)]T, to train the
non-linear canceler, with z(n) = [�{x(n)}. . .�{x(n − Mi +
1)} �{x(n)}. . .�{x(n − Mi + 1)}] for the case of the ML al-
gorithms trained using the input samples only. However, for
those trained with the input and output samples, z(n) will

1We note that training the ML approaches using the residual SI after linear
cancellation, i.e., non-linear component, can enhance the SIC compared to
the case when they are trained using both linear and non-linear components
[97].

2Without loss of generality, we assume that training the ML approaches
in the system model of Fig. 2 is done using real-valued inputs; however,
complex-valued inputs can also be employed, as will be discussed in the
following sections.
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FIGURE 2. ML-based FD system model with linear and non-linear digital cancellation stages.

include a part of the output samples, as will be discussed
later in Section IV. Upon constructing the input feature map,
Ztr

nl , we separate the real and imaginary parts of ỳtr
SI,nl

to serve
as labels for training. Thus, during the training phase of the
non-linear canceler, the input feature map Ztr

nl is utilized with
�{ỳtr

SI,nl
} and �{ỳtr

SI,nl
} to generate the modeling functions,

f �(.) and f �(.), associated with approximating the real and
imaginary parts of the non-linear SI signal, respectively. The
real and imaginary parts can then be respectively predicted in
the testing phase as

�
{̃

yts
SI,nl

}
= f � (Zts

nl

)
, (9)

�
{̃

yts
SI,nl

}
= f � (Zts

nl

)
, (10)

where Zts
nl is the non-linear canceler’s testing matrix, which is

formed similarly to Ztr
nl , but with replacing Ntr by Nts. Based

on the aforementioned description, the non-linear SI signal is
obtained by summing the real and imaginary parts as

ỹts
SI,nl

= �
{̃

yts
SI,nl

}
+ j�

{̃
yts

SI,nl

}
. (11)

The estimated SI signal, i.e., after applying the linear and non-
linear cancellations, can be expressed as

ỹts
SI

= ỹts
SI,lin

+ ỹts
SI,nl

, (12)

and the residual SI signal can be written as

yts
res

= yts − ỹts
SI

. (13)

The total SIC achieved upon applying the linear and non-
linear cancellations can be quantified in dB as

CdB = 10 log10

( ∑Nts
n=1 |y(n)|2∑Nts

n=1

∣∣yres (n)
∣∣2
)

, (14)

with y(n) and yres (n) as the nth samples of yts and yts
res

,
respectively.

III. TRADITIONAL APPROACHES FOR SIC IN FD
TRANSCEIVERS
Canceling the SI in FD transceivers can be performed using
various techniques that span the propagation, analog, and/or
digital domains [28], [43], as summarized in Fig. 3. The
following subsections briefly review such SIC approaches,
discussing their advantages, disadvantages, and/or challenges.
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FIGURE 3. Traditional approaches for SIC in FD transceivers [43].

A. PROPAGATION DOMAIN SELF-INTERFERENCE
CANCELLATION
Canceling the SI within the propagation domain is typically
performed at the early stage of the FD transceiver, i.e., it
revolves around the Tx and Rx antennas. Propagation domain
cancellation can be accomplished passively using techniques
such as antenna separation, coupling networks, phase con-
trol, cross-polarization, and/or surface treatments [28], [43],
as shown in Fig. 3. Alternatively, it can be done actively
using techniques such as active coupling networks, active
cross-polarization, and/or Tx beamforming [43]. Additionally,
antenna interfaces, such as balanced duplexers and circulators,
can also be employed, as shown in Fig. 3. Applying the SIC
within the propagation domain has the advantage of refraining
the SI signal from saturating the front end of the FD Rx;
however, in some cases, it may lead to the suppression of the
desired signal (i.e., SoI) [28]. Also, it can come at the cost
of adding a hardware circuity to the FD transceiver. Hence,
the focus is directed to additionally canceling the SI in other
signal domains, e.g., analog and digital domains.

B. ANALOG DOMAIN SELF-INTERFERENCE CANCELLATION
Canceling the SI within the analog domain is performed in
the analog circuits between the antennas and digital con-
version stages [28], [43]. Analog domain cancellation ap-
proaches have been classified based on their architecture,
location, and tunability, as depicted in Fig. 3 [43]. One of the
common architectures for analog domain cancellation is to
use digitally-assisted techniques based on auxiliary transmit
chains [43]. Digitally assisted analog domain cancellation has
the advantage of preventing the SI signal from saturating the

ADC, especially in mobility channel environments. However,
it can result in an auxiliary transmit noise floor desensitiza-
tion problem at the Rx. In addition to the Rx desensitization,
the processing in the analog domain can be very costly and
challenging to scale up into a higher number of antennas
(i.e., multiple-input multiple-output (MIMO) scenario) [28].
The focus is thus directed to additionally canceling the SI
in the digital domain, considering that the propagation and
analog domain SIC have sufficient performance to provide the
optimal dynamic range to the Rx’s ADC.

C. DIGITAL DOMAIN SELF-INTERFERENCE CANCELLATION
Canceling the SI in the digital domain is performed after
the ADC using techniques such as channel modeling and/or
Rx beamforming, as shown in Fig. 3. Digital domain ap-
proaches, applying channel modeling techniques, use the fact
that the Rx of any IBFD TRP has knowledge of its transmit-
ted signal in order to model the transceiver’s impairments.
Specifically, in channel modeling-based SIC, linear, widely
linear, and reference-based models are applied to approximate
the SI channel effects. Additionally, non-linear models, such
as Wiener, Hammerstein, Wiener-Hammerstein, and parallel
Hammerstein, are employed to model the transceiver’s non-
linearities, as shown in Fig. 3. Digital domain cancellation has
the advantage that the processing becomes relatively easy to
perform and less hardware-expensive compared to the analog
domain cancellation [28]; however, it can come at the cost of
increasing the computational complexity of the FD transceiver
[57].3

3A detailed description of the traditional SIC approaches can be found in
the survey papers [28] and [43].
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FIGURE 4. ML-based approaches for SIC in FD transceivers.

From the previous discussion, applying the traditional ap-
proaches for SIC in FD transceivers can come with challenges,
such as imposing extra hardware, higher cost, and/or addi-
tional computational complexity. In contrast, applying the ML
approaches for SIC in FD communications can relax such
requirements, as reported in [90], [95], [96], [97], [99], [100],
[101]. Given these potentials, more research efforts have re-
cently been spurred to cancel the SI in FD transceivers using
ML approaches. This article provides an in-depth survey of
using the digital domain SIC based on ML non-linearity mod-
eling techniques to tackle the SIC problem in FD transceivers.

IV. ML-BASED APPROACHES FOR SIC IN FD
TRANSCEIVERS
Fig. 4 summarizes the up-to-date contributions for applying
ML-based approaches for SIC in FD transceivers. As can
be seen from the figure, the SIC in FD systems can be per-
formed using traditional ML approaches, such as NNs and
SVRs. Also, advanced ML techniques, such as TC, Tensor-
Flow graphs, and random Fourier features (RFFs), integrated
with online learning, have been investigated for modeling the
SI in FD transceivers. Other ML approaches, such as dynamic
regression (DR), GMMs, DU, LL, and adaptive projected
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subgradient method (APSM), have also been studied for SIC.
Among the different ML approaches applied for SIC, one can
notice that NNs are the most popular due to their proven capa-
bilities in modeling non-linearities with reduced complexity
compared to other ML techniques. In this section, we aim
to review and summarize the up-to-date research progress in
applying ML-based approaches for SIC in FD transceivers.4

A. NEURAL NETWORK (NN)-BASED SIC APPROACHES
Broadly speaking, canceling the SI in FD transceivers using
ML mostly relies on NNs to make use of their potential
compared to other ML approaches. As can be seen from
the right-hand side of Fig. 4, a broad range of NN archi-
tectures, starting from typical NNs reaching to customized
NN architectures, such as grid-based NNs, hybrid-layers NNs,
and adaptive NNs, have been introduced for SIC in FD
transceivers. The following subsections review and summa-
rize the recent advances in applying NNs to SIC in FD
transceivers.

1) TYPICAL STRUCTURES
The first attempt to apply NNs for SIC in FD transceivers is
done in [90], where a shallow feed-forward NN (FFNN) is
utilized to approximate the non-linear SI signal. The FFNN
in [90] is constructed—similarly to the real-valued time de-
lay NN (RV-TDNN) in [128]—from an input layer fed by
real-valued inputs consisting of current and past samples of
the input signal to consider the FD system’s memory effect.5

The current and past samples are then transferred to a hidden
layer to detect the FD system’s non-linearities and finally to
an output layer to estimate the target non-linear SI signal,
as can be observed from Fig. 5(a-i). Simulation results show
that the RV-TDNN could be beneficial from memory storage
and computational complexity perspectives when compared to
the polynomial model—a general form of the widely utilized
parallel Hammerstein model [122]—at a similar SIC perfor-
mance [90].6 The hardware implementation of the NN-based
cancelers is investigated in [95], [96], where the RV-TDNN-
based canceler is proved to be efficient in terms of area and
energy consumption when compared to the polynomial-based
canceler at a similar performance.

In [97], a typical recurrent NN (RNN) is introduced for
canceling the interference in FD transceivers. The RNN [97]
is trained similarly to the RV-TDNN using real-valued inputs
consisting of current and past samples with memory. Con-
trary to the RV-TDNN [90], the RNN employs both forward
and recurrent connections to enhance the learning capabilities
[97], as can be seen from Fig. 5(a-ii). Applying a shallow

4We use the term “advanced” to describe the recent—and not commonly
utilized in other disciplines—ML approaches that are applied for SIC in FD
transceivers. On the other hand, we employ the term “other” to describe the
ML approaches—rather than the NNs and SVRs—that are frequently applied
in other disciplines and subsequently introduced for SIC in FD transceivers.

5Throughout this article, we will use the term RV-TDNN instead of FFNN.
6The RV-TDNN is also investigated for SIC in FD systems in [91], [92],

[93], [94].

RNN—with a single-hidden layer—for canceling the SI in
FD transceivers can be beneficial from memory and computa-
tional complexity perspectives when compared to the typical
RV-TDNN at a similar cancellation performance [97].

In [97], [98], a complex-valued time delay NN (CV-TDNN)
is investigated for canceling the FD system’s SI. As can be ob-
served from Fig. 5(a-iii), the CV-TDNN has a similar network
architecture to that of RV-TDNN [90], while employing only
one neuron instead of two neurons at the output layer. As its
name implies, the CV-TDNN is trained using CV inputs and
labels instead of the real-valued ones utilized in the case of
RV-TDNN and RNN. Simulation results show that a shallow
CV-TDNN-based canceler could be beneficial in terms of
computational complexity when compared to its RV-TDNN
and RNN counterparts at a similar SIC performance [90], [97].

2) GRID-BASED STRUCTURES
In [99], two grid-based NN structures, termed as ladder-wise
grid structure (LWGS) and moving-window grid structure
(MWGS), are introduced for modeling the interference in FD
transceivers. The LWGS and MWGS are trained using CV
data and built by a grid of connections—analog to nodes in the
fully-connected NNs—between the input, hidden, and output
layers’ neurons, as shown in Fig. 5(b). As their names imply,
the LWGS constructs the connections between the layers’
neurons based on a ladder-wise topology, while the MWGS
employs a moving window technique to arrange the connec-
tions, as can be seen from Fig. 5(b-i) and (b-ii), respectively.
Using such a grid topology, the LWGS and MWGS exploit a
fewer number of connections between the input and hidden
layers’ neurons to reduce the number of required parameters
and, as a consequence, relax the computational complexity
compared to the fully-connected NN counterparts. Simulation
results indicate that the LWGS and MWGS [99] could achieve
a comparable performance to that of CV-TDNN [97] while be-
ing beneficial in terms of memory storage and computational
complexity.

3) HYBRID-LAYERS STRUCTURES
In [100], two hybrid-layers NN architectures—referred to
as hybrid convolutional recurrent NN (HCRNN) and hybrid
convolutional recurrent dense NN (HCRDNN)—have been
introduced for learning the FD system’s SI. The HCRNN
and HCRDNN are trained using RV inputs and built using a
combination of different NN layers, such as convolutional, re-
current, and dense layers, as shown in Fig. 5(c). The HCRNN
and HCRDNN exploit the advantages of each layer in their
network design to make use of their combined characteristics
to improve the learning capabilities compared to the typical
and grid-based NN architectures [90], [97], [99]. In particular,
the HCRNN relies on a convolutional layer to use the weight-
sharing property to reduce the number of required parameters
and, consequently, relax the computational complexity. Fur-
ther, it depends on a recurrent hidden layer to use its ability to
learn the temporal behavior. On the other hand, the HCRDNN
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FIGURE 5. NN-based approaches for SIC in FD transceivers.
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relies on an additional dense layer—added after the convo-
lutional and recurrent layers—to build a highly predictive
NN model with low computational complexity requirements.
The HCRNN and HCRDNN [100] are shown to be beneficial
from the computational complexity perspective while achiev-
ing a similar SIC performance compared to the typical and
grid-based structures, albeit at the cost of increased memory
requirements [90], [97], [99].

4) OUTPUT FEEDBACK STRUCTURES
In [101], two output feedback (OF)-based NN structures,
namely two-hidden layers NN (2HLNN) and dual-neurons
two-hidden layers NN (DN-2HLNN), have been introduced
for canceling the SI in FD transceivers. As their names im-
ply, the OF-based NN structures exploit a part of the output
samples—fed back through a buffer to the input layer—to be
utilized as features for training. In other words, the OF-based
NN structures are trained using an input feature map that
considers not only the input samples as features for training
but also the output samples, as shown in Fig. 5(d). Feeding
part of the output samples for training helps to consider the
effect of over-the-air SI propagation delay spread, which in
turn enhances the learning capabilities, and as a consequence,
improves the SIC performance compared to the NN structures
only trained by the input samples. In the 2HLNN, a full con-
nection is established between the input features—including
both input and output samples—and the first hidden layer’s
neurons, as shown in Fig. 5(d-i). However, in the DN-2HLNN,
the input features are not fully connected traditionally to the
first hidden layer’s neurons. The features related to the input
samples are connected to one neuron to recognize the input
signal’s memory effect, while those related to the output sam-
ples are connected to another neuron to recognize the output
signal’s memory effect, as shown in Fig. 5(d-ii). Simulation
results [101] reveal that the DN-2HLNN could be beneficial
from memory storage and computational complexity perspec-
tives while achieving a similar SIC performance to that of
the LWGS, MWGS, HCRNN, HCRDNN, and 2HLNN [99],
[100], [101].

5) ADAPTIVE STRUCTURES
In [102], a channel adaptive NN structure, referred to as
channel-robust NN (CHRNN), has been integrated with an
LS-based linear canceler to model the SIC in FD transceivers
over time-varying SI channels. In more detail, in [102], a lin-
ear canceler is trained continuously in each frame to estimate
the channel coefficients, and a pre-trained NN is then utilized
to construct the non-linear SI signal based on either raw or
processed channel coefficients, as shown in Fig. 5(e-i) and
(e-ii), respectively. For the former, the pre-trained NN is fed
directly with the estimated channel coefficients obtained by
the linear canceler, whereas for the latter, the pre-trained NN
is fed by a processed version of the estimated channel coeffi-
cients [102, eq. (7)]. Simulation results indicate that CHRNN
learns well when it is fed by processed channel coefficients

rather than the raw ones. Further, the results reveal that the
CHRNN-based canceler could lead to time reductions in com-
putational complexity while attaining a similar performance
to that of the polynomial-based canceler, adapted to handle
time-varying SI channels [102].

6) DEEP STRUCTURES
The concept of DL has also been introduced for modeling
the interference in FD transceivers. In [97], deep versions of
the typical RV-TDNN, RNN, and CV-TDNN, as shown in
Fig. 5(f), have been introduced to model the SIC with lower
memory and complexity. Using deep rather than shallow NNs
is motivated by the fact that a deep NN with a small number
of neurons in each layer, i.e., lower memory storage and com-
putational complexity, can typically generalize better than a
shallow NN with a large number of neurons in one layer [89].
Simulation results show that a deep CV-TDNN could be ben-
eficial from memory storage and computational complexity
perspectives while achieving a similar performance to that of
a shallow CV-TDNN [97]. However, this is not applicable in
all cases, as using a deep RNN increases the memory storage
and computational complexity compared to the shallow RNN
due to using many recurrent connections. Finally, adapting
deep RV-TDNN for SIC results in decreasing the complexity
while augmenting the memory storage compared to its shal-
low counterpart [97]. The concept of DL has also been studied
for SIC in FD systems in other contexts, such as [103], [104],
[105].

B. SUPPORT VECTOR REGRESSOR (SVR)-BASED SIC
APPROACHES
Despite being extensively used for SIC in FD transceivers, the
NN-based cancelers are prone to some inherent characteristics
of NN models, such as intolerable training complexity and
less generalization when few examples are available for the
training process. To overcome such bottlenecks, the SVRs,
variants of support vector machines, have recently been intro-
duced as alternatives to NNs for modeling the SI. The initial
attempt of applying the SVRs for SIC is presented in [106]
for frequency division duplex (FDD) transceivers—not for FD
transceivers—where an SVR model is employed to generate a
replica of the undesired transmit leakage-based second-order
intermodulation distortion (IMD2) signal. Applying SVRs for
SIC in FD systems came after in a few works in [107], [108].
The following subsections review and summarize the few
attempts to apply SVRs to cancel the SI in FD transceivers.

1) NESTED-BASED APPROACHES
The first attempt to apply SVRs for SIC in FD transceivers is
made in [107], where a non-linear time-delay SVR (TDSVR)-
based canceler is integrated with a linear canceler—in a nested
scenario—to suppress the SI signal down to the Rx noise floor
level. The nested TDSVR (NTDSVR), shown in Fig. 6(i),
is trained using an input feature map that considers the real
and imaginary parts of the current and past input samples.
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FIGURE 6. SVR-based approaches for SIC in FD transceivers. The NTDSVR is trained using ỹSI,nes , which is generated after estimating the SI channel and
performing the inverse channel filtering. However, the RTDSVR and OF-TDSVR are trained using ỹ

SI,nl
, which is generated after linear SI estimation and

reconstruction [108].

Besides, the odd higher-order terms of the input samples (with
memory) are also considered for training. The output labels
for training the NTDSVR are created by first estimating the
SI channel; thereafter, an inverse filtering is applied to remove
the effect of the linear SI channel [107]. Upon eliminating
the channel effect, the output samples, denoted by ỹSI,nes in
Fig. 6(i), and including the impact of non-linearity only, are
served as labels to train the NTDSVR. After the non-linear
SI component is reconstructed, the linear channel is then
applied for linear component reconstruction. The estimated
SI signal, including the linear and non-linear components,
is then subtracted from the original SI signal to perform the
SIC. Simulation results show that the NTDSVR-based can-
celer is beneficial in terms of SIC performance enhancement
compared to the conventional non-linear polynomial-based
cancelers [107].

2) RESIDUAL-BASED APPROACHES
a) RTDSVR: The second attempt to apply SVRs for SIC in
FD transceivers is investigated in [108], where a residual-
based TDSVR (RTDSVR) is introduced. The input feature
map to train the RTDSVR is constructed similarly to the
nested approach [107]. However, the output labels are created
differently based on the residual output signal after applying
the linear SIC, as can be seen from Fig. 6(ii). Particularly, in
the residual scheme, the linear SI channel is first estimated,
and then the linear SI signal’s component is fully recon-
structed. The estimated linear SI signal is then subtracted
from the original SI signal, and the residual SI signal, de-
noted by ỹSI,nl , and involving the non-linear component only,
is utilized for training the RTDSVR. Upon reconstructing the
non-linear SI, it is combined with the linear one before being
subtracted from the original SI to perform the SIC. Simulation
results reveal a superiority of the RTDSVR to improve the SIC
compared to the NTDSVR, especially for low or moderate
transmit power levels [108].7

7We note that the residual scheme applied for SVRs in [108] follows a
similar mechanism to that of NNs-based cancelers, where the residual output
signal’s samples, after applying the linear SIC, are used as labels for training.

b) OF-TDSVR: Investigating the effect of feeding back part
of the output samples to be exploited as features for training
the SVR-based cancelers has not previously considered in the
literature and is examined for the first time in this article, in
which an SVR model, referred to as output-feedback time-
delay SVR (OF-TDSVR), is integrated with a linear canceler
in a residual scheme to suppress the SI signal. Similar to the
OF-based NN structures, the OF-TDSVR is trained using an
input feature map that considers both input and output samples
as features for training, as shown in Fig. 6(iii). As proved
for NNs, feeding part of output samples for training helps
to consider the effect of over-the-air SI propagation delay
spread, which in turn can enhance the learning capabilities
and, subsequently, improve the SIC performance compared
to the existing SVR-based cancelers—trained only by the
input samples. Also, it may be beneficial for reducing the
training overhead compared to the existing SVR literature
benchmarks.

C. ADVANCED ML-BASED SIC APPROACHES
Advanced ML approaches, such as TC, TensorFlow graphs,
and RFFs, integrated with online learning, have recently been
introduced for SIC in FD transceivers. The details of such
advances are provided in the following subsections.

1) TENSOR COMPLETION (TC)
In [109], a canonical system identification (CSID) approach,
based on a low-rank tensor constraint optimization problem,
is utilized to approximate the non-linear SI signal as in the
case of NNs and residual-based SVRs. In more detail, the
CSID approach formulates the SIC problem as a low-rank
tensor decomposition problem to be solved using an alternat-
ing least squares optimization algorithm. Simulation results
[109] indicate that the CSID-based cancelers could achieve
similar performance to that of the polynomial and NN-based
cancelers [90], [96]. Meanwhile, they can be beneficial from
the computational complexity perspective at the cost of higher
memory storage requirements.
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2) TENSORFLOW GRAPHS
In [110], TensorFlow graphs, recent advances in ML, are
introduced to cancel the SI in a real-time software-defined
radio (SDR). Generally, graphs are exploited in ML to enable
ML researchers/developers to write an abstracted version of
their ML techniques in the form of data-flow graphs, which
can then be utilized and applied to any of the ML algorithms
[111]. Based on such graphs, in [110], the SIC is performed
in real-time SDR based on an NN that employs a Google Ten-
sorFlow graph. Simulation results reveal that the TensorFlow
graph-based approach could achieve a SIC that can reach the
hardware limit and surpass existing digital non-ML-based SIC
approaches in the literature [110].

3) RANDOM FOURIER FEATURES (RFFS)
In [112], the RFFs and the least mean-squares (LMS) algo-
rithm are integrated with online linear regression to perform
the SIC in FD transceivers. Principally, RFFs are utilized to
scale up kernel-based ML techniques by providing a non-
linear transformation of input data to a higher dimensional
feature space. So, non-linearities can be efficiently modeled
using linear-based techniques in the original space, resulting
in scalable, fastly-converged, and computationally efficient
solutions [113], [114]. Based on this, in [112], the input sam-
ples are first transformed using RFFs, then the residual SI
signal, after applying the linear SIC, is used with the trans-
formed input to approximate the non-linear SI signal using an
LMS-based canceler. The estimated signal is then subtracted
from the original SI to obtain the residual SI signal; thereafter,
an estimation vector is updated online based on that residual
and using an RFFs-based observation matrix. Simulation re-
sults show that an online RFFs-LMS-based canceler could be
beneficial from SIC and complexity perspectives compared to
batch learning algorithms involving NTDSVRs [112].8

D. OTHER ML-BASED SIC APPROACHES
Seeking more advantages in other ML approaches investi-
gated in other disciplines, the DR, GMMs, DU, LL, and
APSM have been explored for SIC in FD transceivers. The
details of such approaches are provided in the following sub-
sections.

1) DYNAMIC REGRESSION (DR)
In [119], a classical DR model is introduced for canceling
the interference in FD transceivers. Generally, DR models are
exploited in ML problems to identify how related a certain
output is to an input and allow future output forecasting.
Based on this, in [119], a classical DR model is utilized to
represent the memory effect caused by the amplifiers in FD
systems. Upon estimating the DR coefficients, the SI signal
is jointly estimated in time and frequency domains and is

8Although the RFFs are integrated with online regression in [112], they are
utilized with various ML algorithms in other disciplines, such as [115], [116],
[117], [118].

subtracted from the original SI signal to perform the dig-
ital SIC. Simulation results reveal that the DR-based SIC
approach could achieve a high digital SIC performance and
effectively attenuate the SI signal close to the Rx noise floor
level. Besides, the DR-based SIC approach is validated using
a real-time SDR platform and is able to properly provide a
demonstration via video streaming [119].

2) GAUSSIAN MIXTURE MODELS (GMMS)
In [120], an ML approach based on GMMs clustering is
introduced to design an FD transceiver, which can detect
the desired signal (i.e., SoI) directly without using digital-
domain cancellation or even channel estimation. As the name
implies, GMMs clustering uses a mixture, i.e., a superpo-
sition, of Gaussian distributions to fit the training data and
assign the data points to a certain cluster based on their
conditional probabilities [121]. In more detail, in [120], the
received signal is firstly clustered, and a one-to-one map-
ping of the symbols, based on a GMMs clustering and an
expectation-maximization (EM) algorithm, is utilized to per-
form the signal detection in each cluster. Simulation results
reveal that an FD transceiver, utilizing the GMMs clustering,
could achieve a comparable bit error rate with that of FD
transceivers employing maximum likelihood detectors when
perfect channel knowledge is considered and a better one
when the LS/LMS channel estimation is used [120]. How-
ever, this transceiver is limited to operating scenarios when
low-order modulation techniques are employed.

3) DEEP UNFOLDING (DU)
In [122], an ML approach based on DU is introduced for
canceling the interference in FD transceivers. DU involves
converting the model-based methods, requiring iterative op-
timization algorithms for solving, into layer-wise structures
analog to that of NNs [123], [124]. This enables fusing the
iterative optimization methods with NNs’ libraries/tools to
cover a wide range of tasks and applications. The concept
of DU is applied for SIC in [122], where a cascade of non-
linear blocks—involving the impact of PA and IQ mixer
non-linearities—is exploited with the traditional backprop-
agation algorithm to approximate the SI signal. Simulation
results corroborate that the DU-based SIC approach could be
beneficial from memory storage and computational complex-
ity perspectives when compared to the literature benchmarks,
e.g., polynomial- and CV-TDNN-based cancelers, at a similar
cancellation performance [122].

4) LAZY LEARNING (LL)
In [125], an ML approach based on LL is introduced to per-
form the SIC in cellular wireless networks operating with
FD transmission. As their names imply, the LL-based models
postpone the generalization to the training data until a system
query is performed. Based on this concept, in [125], offline
and online stages are exploited to generate the interference
database and transmit the data, respectively. In the offline
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phase, the FD system’s output signal excluding the SoI, is
recorded in a database. However, in the online phase—in
which the system is fully operated with the SoI—a suitable SI
value is looked up in the offline-generated database with the
help of a learning approach to perform the digital SIC. Simu-
lation results show that the LL-based SIC approach could be
effectively utilized for canceling the interference and enabling
the FD transmission in cellular wireless networks [125].

5) ADAPTIVE PROJECTED SUBGRADIENT METHOD (APSM)
In [126], an ML SIC approach based on parallel APSM is
introduced for canceling the interference in FD transceivers.
Specifically, in [126], a hybrid kernel is first constructed
by combining linear and non-linear Gaussian kernels. This
kernel is then adapted to a parallel APSM approach where
a non-linear function—approximating the SIC problem—is
extracted using projection. Simulation results show that the
hybrid kernel-based APSM approach could properly model
the SI compared to a SIC method employing the normalized
LMS filtering [126]. Moreover, it can also be parallelized,
i.e., it can perform parallel processing to reduce the system
latency.

Thus so far, we have surveyed the up-to-date contributions
that apply ML-based approaches for SIC in FD transceivers,
as summarized in Table 1. The adaption of a particular ML-
based approach for SIC depends on the system demands, such
as the achieved SIC, training overhead, memory storage, and
computational complexity. The following section will help to
select a suitable ML-based approach for SIC in FD systems.

V. SIMULATION RESULTS AND DISCUSSIONS
In this section, we provide a case study to compare the
performance of the prominent ML approaches, surveyed in
Section IV, with that of the polynomial canceler for two test
setups (i.e., two training datasets) and using various dataset
sizes. Specifically, we evaluate the prominent ML approaches
in terms of the achieved SIC, PSD performance, training
overhead, memory storage, and computational complexity and
compare them with those of the polynomial-based canceler.

A. SELECTED APPROACHES
First, from the NN-based approaches shown on the right-
hand side of Fig. 4, we select the typical NN architectures,
i.e., RV-TDNN, RNN, and CV-TDNN [90], [97]; being the
first literature benchmarks to apply ML approaches for SIC
in FD transceivers. Further, we select the OF-based NN ar-
chitectures, i.e., 2HLNN and DN-2HLNN, as proved to be
efficient in terms of memory storage and computational com-
plexity when compared to the other NNs [101]. Second, from
the SVR-based approaches shown on the upper hand-side of
Fig. 4, we select the RTDSVR [108] as it is shown to out-
perform the NTDSVR [107], especially for low or moderate
transmit power levels. Additionally, we consider the investi-
gated OF-TDSVR to be compared in reference to the existing
NN and SVR benchmarks. Third and last, from the advanced

FIGURE 7. Measurement setup.

and other ML approaches, shown on the lower- and left-
hand sides of Fig. 4, we select the TC [109] and DU [122]
approaches, as proven to be efficient in terms of memory stor-
age and/or computational complexity when compared to the
RV-TDNN and CV-TDNN, respectively. In the following sub-
sections, we will evaluate and compare the previously selected
approaches based on two test setups and using various perfor-
mance metrics, such as the achieved SIC, PSD performance,
training overhead, memory storage, and computational com-
plexity.9

B. MEASUREMENT SETUP
The measurement setup utilized to capture the datasets em-
ployed for training the prominent ML-based approaches
selected in Section V-A is described in Fig. 7. Herein, an
FD testbed, employing one transmit antenna and one receive
antenna (1T1R), was set up in an indoor lab environment
to generate two datasets [90], [96], [109]. The first dataset
[90] applies an orthogonal frequency division multiplexing
(OFDM) signal with a quadrature phase-shift keying (QPSK)
modulation and 10 MHz bandwidth, while the second [96],
[109] uses a QPSK-modulated OFDM signal with 20 MHz
bandwidth. The average transmit power is set to 10 dBm
and 32 dBm in the first and second datasets, respectively.
The transmitted and received data are captured at 20 MHz
and 80 MHz sampling rate for the first and second datasets,
respectively. It is worth noting that using a higher sampling
frequency enables the ML approaches to model the higher-
order intermodulation distortion terms to efficiently suppress
the SI, especially when high-transmit power levels are uti-
lized.

At the Rx side of the FD testbed, total analog (i.e., passive
and active) cancellations of 53 dB and 65 dB are applied in
the first and second datasets, respectively, to refrain the SI
signal from saturating the FD-sensitive Rx chain. The digital
received data after the ADC is then captured and retrieved to
a personal computer (PC) for offline post-processing. In order

9Up to the authors’ knowledge, it is the first time in literature to compare
the different ML-based SIC approaches based on two different test setups, i.e.,
two training datasets, and using various performance metrics, such as the SIC,
PSD, training overhead, memory storage, and computational complexity.
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TABLE 1. Summary of ML-Based Approaches Applied for SIC in FD Transceivers
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TABLE 2. Measurement Setup Specifications

to post-process the captured data at the PC, a 3.7.5 version of
Python is installed in a Windows environment, using the 5.1.5
version of Spyder as the integrated environment for devel-
opment, comparisons, and evaluation of different ML-based
SIC approaches.10 Finally, for analyzing the performance of
various ML-based approaches at different dataset sizes, we
have split each of the above-mentioned datasets into four sep-
arate datasets containing 2000, 3000, 4000, and 5000 samples,
respectively. In all test cases, the first 90% of samples are used
for training (and validation, if any), while the last 10% are
reserved for testing. The specifications of the measurement
setup employed in this work are detailed in Table 2.

C. PARAMETERS SETTING
The goal of this work is to find the peak performance of each
SI canceler, e.g., polynomial, NN, SVR, TC, and DU. In other
words, we aim to find the maximum SIC that each canceler
can attain. Then, we compare the different cancelers in terms
of the training overhead, memory storage, and computational
complexity required to achieve their maximum SIC. To that
extent: 1) for the polynomial canceler [90], we have optimized
the non-linearity order P and memory length Mi; 2) for the
NN-based cancelers, e.g., RV-TDNN, RNN, and CV-TDNN,
etc. [90], [97], [101], we have optimized the memory length
Mi along with the NN’s hyperparameters, such as the number
of hidden layers’ neurons nh , batch size (BS), learning rate
(LR), activation function, and training optimizer; 3) for the
SVR-based cancelers, i.e., RTDSVR and OF-TDSVR [108],
we have obtained the optimum value for the memory length
Mi, regularization term C, margin ε, along with the kernel
hyperparameter, namely γ ; 4) for the TC approach [109], we

10We note that all ML-based SIC approaches selected for comparison in
this work are implemented using Python integrated development environ-
ment, except for the TC, which is developed using the MATLAB independent
development environment [109].

have tuned the memory length Mi, along with the optimiza-
tion problem’s hyperparameters, such as the tensor rank F ,
number of quantization levels I , regularization parameter ρ,
and the smoothness factor μn; 5) for the DU approach, we
have optimized the memory length Mi, and the LR and BS
of the follow the regularized leader (FTRL) optimizer as in
[122]. The ranges for hyperparameter tuning and the optimal
values for hyperparameters over the first and second datasets
are summarized in Tables 3 and 4, respectively.

D. PERFORMANCE COMPARISON
In this subsection, we assess the performance of the promi-
nent ML-based SIC approaches in terms of their SIC, PSD,
training time, memory storage, and computational complex-
ity and compare them with those of the polynomial model.
Afterward, we evaluate the efficiency of each canceler accord-
ing to system demands. All the SIC approaches considered
in this analysis are trained using the datasets described
in Section V-B, and with parameter settings optimized in
Section V-C.

1) SIC PERFORMANCE
The total SIC achieved by different ML-based SIC approaches
compared to the polynomial model upon tested using the first
and second datasets, and with 2000, 3000, 4000, and 5000
samples is shown in Fig. 8(a) and (b), respectively.11 From
the figures, one can observe that in the first dataset, where
a low average transmit power is employed, the polynomial-
based canceler achieves the highest cancellation performance
compared to other cancelers for most of the dataset sizes.
However, in the second dataset, where a high average transmit
power is utilized, the RV-TDNN-based canceler provides the
highest cancellation among the other cancelers for all dataset
sizes. It can also be inferred from the figures that the RTDSVR
achieves the lowest cancellation performance among the oth-
ers, even if a low or high transmit power is utilized. Further,
one can notice that employing a part of the output samples
as features for training the SVR models can enhance the
cancellation performance compared to the existing RTDSVR,
i.e., the OF-TDSVR attains a significantly higher SIC than the
RTDSVR benchmark. In sum, the polynomial canceler could
be a good choice when a low transmit power is utilized, i.e.,
low transmit power generates less non-linearity SI signals.
However, when a higher transmit power is employed, the
RV-TDNN could be a better choice, i.e., high transmit power
generates higher non-linearity SI signals.12

11In this work, we provide a case study to compare the performance of
different ML approaches with the polynomial canceler when achieving the
maximum SIC (i.e., peak-performance) at short dataset sizes, e.g., 2000,
3000, 4000, and 5000 samples. However, in our previous works in [99], [100],
[101], we have compared the different ML approaches with the polynomial
canceler when attaining a similar SIC (i.e., equi-performance) at a large
dataset size, e.g., 20,000 samples. Accordingly, some of the results obtained
in this work may differ from those reported in [99], [100], [101].

12Although all SI cancelers achieve a high non-linear cancellation in the
second dataset compared to that attained in the first, as a result of having
increased non-linearity, we interestingly note that the total SIC achieved in the
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TABLE 3. Ranges for Hyperparameters Tuning for Various SIC Approaches

FIGURE 8. SIC of different ML-based SI cancelers compared to the polynomial canceler over the first and second datasets.

2) PSD PERFORMANCE
The power spectra of the residual SI signal after applying the
different ML-based SIC approaches compared to that of the
polynomial-based canceler when tested using the first and sec-
ond datasets and with 5000 samples, as an example, is shown
in Fig. 9(a) and (b), respectively. From Fig. 9(a), one can
observe that the polynomial-based canceler is able to suppress
the SI signal with the lowest gap to Rx noise floor among

former is lower than that in the latter, as can be seen from the sample results
in Table 5. This is due to the degradation of the linear canceler’s performance
with increased non-linearity.

the other cancelers in the first dataset; it can provide a gap
to Rx noise floor value of (90.8 − 88.7 = 2.1 dB), bringing
the SI signal very close to the Rx noise floor level. It can also
be inferred from Fig. 9(b) that the RV-TDNN-based canceler
provides the lowest gap to Rx noise floor compared to the
others in the second dataset; it attains a gap to Rx noise
floor value of (85.3 − 81.3 = 4 dB), bringing the SI signal
close to the Rx noise floor level. The low gap to Rx noise
floor achieved by the RV-TDNN compared to the polynomial
canceler comes from the fact that it can reduce the leakage
of the carrier around the DC tone, as shown in Fig. 9(b)
[96]. Finally, one can observe from the figures that the SIC
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TABLE 4. Optimal Hyperparameters for Different SIC Approaches Over the First and Second Datasets

FIGURE 9. PSD of different ML-based SI cancelers compared to the polynomial canceler over the first and second datasets.

VOLUME 5, 2024 37



ELSAYED ET AL.: MACHINE LEARNING-BASED SIC FOR FD RADIO: APPROACHES, OPEN CHALLENGES, AND FUTURE RESEARCH DIRECTIONS

FIGURE 10. Training time of different ML-based SI cancelers compared to the polynomial canceler over the first and second datasets.

TABLE 5. SIC of Different Approaches When Trained Using 5000 Samples
of the First and Second Datasets

values achieved by the polynomial, RV-TDNN, and RTDSVR
cancelers, as an example, match those reported in Table 5.

3) TRAINING OVERHEAD
In this subsection, we assess the training time, i.e., fitting
time, required by each SI canceler to complete the training
process. Specifically, for the polynomial-based canceler, we
evaluate the training time needed to estimate the polynomial
model’s coefficients based on the LS algorithm. For the NN-
and DU-based cancelers, we calculate the training time as the
average training time required over different random seeds.
For the SVR models, we approximate the training time as
the maximum between the times needed to fit the SV R� and
SV R�, associated with estimating the real and imaginary parts
of the non-linear SI signal, respectively, as shown in Fig. 6.
Finally, for the TC-based canceler, we evaluate the training
time required for fitting the low-rank tensor decomposition
problem. Based on the aforementioned, in Fig. 10(a) and (b),
we depict the training time of all the ML-based cancelers
compared to the polynomial model upon tested using the
first and second datasets, respectively. From the figures, it
can be observed that the polynomial-based canceler requires

the lowest training time among the others even if low or
high average transmit power is employed, i.e., even if it is
trained using the first or second dataset. Further, one can
notice that the RTDSVR shows a good training time, i.e., it
requires a lower training time than all other cancelers except
the polynomial-based canceler. One can also observe that the
SIC enhancement provided by the OF-TDSVR comes at the
cost of increasing its training time compared to the RTDSVR
benchmark. Additionally, it can be noticed that the TC- and
DU-based cancelers require significantly higher training than
the others, making them unfavorable choices for SIC, espe-
cially for operating scenarios where the training time is of
interest. Finally, it can be observed from the figures that typ-
ically, as the dataset size increases, the training time of all SI
cancelers increases as well.

4) MEMORY STORAGE
In this subsection, we assess the memory storage of different
ML approaches in terms of the total number of parameters
required in the inference stage and compare it with that
of the polynomial model. Specifically, the number of pa-
rameters of the polynomial-based canceler is calculated as
2Mi + 2Mi{( P+1

2 )( P+1
2 + 1) − 1} [90]. Further, the number of

parameters of the typical RV-TDNN, RNN, and CV-TDNN
is respectively evaluated as 2Mi(nh + 1) + 3nh + 2, 2Mi +
nh(nh + 5) + 2, and 2Mi + 2(Minh + 2nh + 1), with nh as the
number of hidden neurons [90], [97]. The number of pa-
rameters of the OF-based NN structures, i.e., 2HLNN and
DN-2HLNN, is respectively calculated as 2Mi + 2{nh1(Mi +
Mo + nh2 + 1) + 2nh2 + 1}, and 2Mi + 2(Mi + Mo + 4nh2 +
3), with nh1 and nh2 as the number of neurons in the first and
second hidden layers, respectively [101]. The number of pa-
rameters of the SVR models, i.e., RTDSVR and OF-TDSVR,
employing a radial basis function (RBF) kernel, is evaluated
as 2Mi + N�

sv + N�
sv + 8, with N�

sv and N�
sv as the number of
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TABLE 6. Memory Storage and Computational Complexity of Different SIC Approaches

FIGURE 11. Memory storage of different ML-based SI cancelers compared to the polynomial canceler over the first and second datasets.

support vectors required to approximate the unknown func-
tions of SV R� and SV R�, respectively [108], [129]. Finally,
the number of parameters for the TC- and DU-based cancelers
is respectively given by 2{Mi(2FI + 1)} and 2{Mi( P+1

2 ) + 2},
with F and I indicating the tensor rank and the number of
quantization levels employed in the TC approach, respectively
[109], [122]. A summary of the total parameters utilized to
evaluate the memory storage of various SI cancelers is shown
in Table 6.

Based on the aforementioned, we depict the number of
parameters required by the various SI cancelers when tested
by the first and second datasets in Fig. 11(a) and (b), respec-
tively. From the figures, one can observe that the DU-based
canceler requires the lowest number of parameters compared
to the others for both datasets and for all dataset sizes. The
SVR-based cancelers, i.e., RTDSVR and OF-TDSVR, require
the highest number of parameters among the others in the first
dataset, as their parameters basically depend on the number
of support vectors, i.e., N�

sv and N�
sv , which in turn depend on

the number of training data [129]. Thus, one can notice from
Fig. 11(a) and (b) that as the dataset size increases, the SVR

models’ parameters significantly increase as well. Finally, it
can be inferred from the figures that the RNN-based canceler
requires the highest number of parameters compared to the
others in the second dataset as a result of using many recurrent
connections.

5) COMPUTATIONAL COMPLEXITY
In this subsection, we evaluate the computational complexity
of various ML-based SIC approaches in terms of the total
number of floating-point operations (FLOPs) required in the
inference stage and compare it with that of the polynomial
model. Particularly, the number of FLOPs of the polynomial-
based canceler is calculated as 10Mi + 10Mi{( P+1

2 )( P+1
2 +

1) − 1} − 2 [90]. Besides, the number of FLOPs of the
typical RV-TDNN, RNN, and CV-TDNN are respectively
evaluated as 10Mi + nh(4Mi + 5), 10Mi + 2nh(nh + 9

2 ), and
10{Mi(nh + 1) + 6

5 nh} [90], [97]. Further, the number of
FLOPs of the 2HLNN and DN-2HLNN are calculated
as 10Mi + 10{nh1(Mi + Mo) + nh1nh2 + 6

5 nh2} and 10Mi +
10(Mi + Mo + 16

5 nh2), respectively [101]. On the other hand,
the number of FLOPs of the SVR models, i.e., RTDSVR
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FIGURE 12. FLOPs of different ML-based SI cancelers compared to the polynomial canceler over the first and second datasets.

and OF-TDSVR, employing an RBF kernel, are respectively

evaluated in the worst case as 10Mi + 4dMi(
N�

sv+N�
sv

2 )Q and

10Mi + 4d (Mi + Mo)( N�
sv+N�

sv
2 )Q, with d and Q as the degree

(e.g., d = 3 for RTDSVR and d = 1 for OF-TDSVR) and
the number of testing samples, respectively [108]. Finally, the
number of FLOPs of the TC and DU approaches are respec-
tively given by 8Mi(2F + 1) − 3F − 7 and 10{Mi( P+1

2 ) + 2}
[109], [122]. A summary of the number of FLOPs utilized
to asses the computational complexity of various cancelers is
shown in Table 6.13

Based on the aforementioned, in Fig. 12(a) and (b), we
depict the FLOPs required by various SI cancelers when tested
using the first and second datasets, respectively. From the
figures, one can observe that the DU- and TC-based can-
celers require the lowest number of FLOPs for all dataset
sizes in the first and second datasets, respectively. Further, the
polynomial-, RV-TDNN-, and DN-2HLNN-based cancelers
require a reasonable number of FLOPs when compared to the
others for all dataset sizes. Finally, it can be inferred from
the figures that the SVR-based cancelers, i.e., RTDSVR and
OF-TDSVR require an intolerable computational complexity
compared to the others, as their FLOPs depend on the number
of support vectors, N�

sv and N�
sv , as well as the number of

testing samples Q [108].

6) CANCELER EFFICIENCY
In the previous subsections, we evaluated the performance
of each SI canceler in terms of its SIC (or PSD), training
overhead, memory storage, and computational complexity.
Based on this analysis, we have found that some of the can-
celers outperform in terms of SIC performance, and some are

13In Table 6, we assume for simplicity that each RV and CV activation
function costs one and two RV additions, respectively [97].

promising in terms of training time, memory storage, and/or
computational complexity. So, the question is how to select a
certain ML-based SIC approach to fit a target application, i.e.,
meet system criteria. This subsection will help to address the
above question to select a suitable SIC approach depending
on the system requirements.

As the challenge in the SIC problem is to find an SI can-
celer that maximizes the achieved SIC while minimizing the
training time, memory storage, and computational complexity
requirements, we have devised an efficiency measure η to
evaluate each canceler based on the aforementioned metrics
as follows:

η = wCηC + wτ ητ + w�η� + wF ηF
wC + wτ + w� + wF

, (15)

where wC ∈ {0, 1}, wτ ∈ {0, 1}, w� ∈ {0, 1}, wF ∈ {0, 1} rep-
resent the cancellation, training, storage, and complexity
weighting factors, respectively, which take either 0 or 1 values
depending on the system requirements.14 Moreover, ηC , ητ ,
η�, and ηF indicate the cancellation, training, storage, and
complexity efficiencies of each canceler, which can be respec-
tively expressed as

ηC = C − Cmin

Cmax − Cmin
, (16a)

ητ = 1 − τ − τmin

τmax − τmin
, (16b)

η� = 1 − � − �min

�max − �min
, (16c)

ηF = 1 − F − Fmin

Fmax − Fmin
, (16d)

14In the following results, we will fix wC = 1 for all test cases as the SIC
is the main requirement for any SI canceler.
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with C as the total SIC achieved by each canceler over a
certain dataset, while Cmax and Cmin are the maximum and
minimum SIC attained by any of the cancelers within this
dataset, respectively. Similarly, τ is the training time needed
by each canceler over a certain dataset, whereas τmax and τmin

are the maximum and minimum training time required by any
of the cancelers within this dataset, respectively. Likewise, �

represents the number of parameters required by each of the
cancelers over a certain dataset, while �max and �min indicate
the maximum and minimum parameters needed by any of the
cancelers within this dataset, respectively. Finally, F repre-
sents the number of FLOPs required by each of the cancelers
over a certain dataset, whereas Fmax and Fmin denote the
maximum and minimum number of FLOPs required by any
of the cancelers within this dataset, respectively.

Based on the above, we have assessed the efficiency η

for various SI cancelers over the first and second datasets in
Table 7. It can be observed from the table that the polyno-
mial model achieves the highest efficiency among the other
SI cancelers for most of the test cases in the first dataset;
i.e., the polynomial-based canceler is efficient for the test
cases where a low average transmit power is utilized, and the
non-linearity is not severe. However, in the second dataset,
where a high transmit power is used, the RV-TDNN-based
canceler achieves the highest efficiency among the others for
most of the test cases. One can also notice from Table 7
that the polynomial-based canceler requires a large number
of training examples to achieve the highest efficiency, e.g.,
the polynomial-based canceler is unable to attain the highest
efficiency when being trained using 2000 samples of the first
dataset. In addition, one can infer from the table that the
RV-TDNN works well in the test cases where the training
overhead is not of the system demands, e.g., the RV-TDNN-
based canceler is unable to attain the highest efficiency in
the second dataset for all test cases where wτ = 1 and the
polynomial-based canceler becomes a better choice in such
test cases.

In sum, upon testing several ML-based approaches for SIC
in FD transceivers, using two test setups and over short dataset
sizes, we can conclude that the model-driven approaches, i.e.,
polynomial-based canceler, can be a good choice in operating
scenarios where a low transmit power is employed; however,
at high transmit power levels, the data-driven ML approaches,
i.e., RV-TDNN-based canceler, can be a better choice.

VI. CHALLENGES AND FUTURE RESEARCH DIRECTIONS
The previous sections provided a comprehensive overview of
applying ML-based approaches for SIC in FD transceivers.
Suitable SIC approaches have also been selected for SIC,
depending on the system criteria. Although the literature
works surveyed in this manuscript provide a significant role
in empowering the application of ML techniques for SIC in
FD transceivers, more efforts remain to be made to adopt
such techniques in practical wireless systems employing FD
transmission. The following subsections delve into the main

challenges of applying ML-based approaches for SIC in FD
transceivers and provide a guide for future research directions.

A. CONSIDERING THE EFFECT OF SOI WHILE
PERFORMING THE SIC
The existing ML-based SIC approaches consider the cancel-
lation of the SI signal only, i.e., no signal from any remote
FD or half-duplex TRPs is considered. However, in prac-
tical situations, i.e., real-time FD systems, the SIC in one
FD node has to be done while an SoI from another TRP
is received and demodulated. Initial works in [127], [130]
investigated a joint detection of the SI and SoI and proved that
an NN-based SI canceler is beneficial to enhance the signal
demodulation. Despite the potential of the works in [127],
[130], there are still more issues remaining to be addressed,
and the point of detecting the SoI while performing the SIC is
open to improvements from both performance and complexity
perspectives. For instance, one issue is that all ML-based ap-
proaches surveyed in this manuscript are trained and verified
using time-domain samples, i.e., they are completely working
in the time domain. However, if the SoI signal employs any of
the frequency-domain modulation formats, e.g., OFDM mod-
ulation, performing the SIC could be done in the frequency
domain; this would be similar to the fifth-generation new radio
or future 6G demodulation pilots (demodulation reference
signals uplink or downlink) which are in specific time and
frequency symbols [127]. Thus, adapting the ML-based SIC
approaches to work with frequency- rather than time-domain
samples can be a direction for future investigation.

B. TACKLING THE TIME-VARYING SI CHANNELS
The existing ML-based SIC approaches use offline-trained
ML algorithms to estimate the SI signal over a static SI chan-
nel. However, in practical situations, the movements of user
equipment TRPs and/or environmental changes can vary the
SI channel over time, and the ML algorithms may need to
be retrained in order to adapt to the time-varying SI channel.
Nevertheless, as presented in Fig. 10, some ML algorithms
require a higher training time, i.e., they are not fast enough
to be retrained during the FD transmission, which can lead
to significant performance degradation. Initial works in [102],
[131] investigate the effect of canceling the SI signal under
time-varying SI channels. However, these are incipient works,
and the point is open to improvements in both performance
and complexity perspectives. For instance, applying reinforce-
ment and online learning to iteratively tackle the time-varying
SI channel can be a future direction of investigation. Scaling
the performance and/or complexity as a result of employing
reinforcement and online learning can also be considered for
future investigation.

C. APPLYING ML APPROACHES FOR SIC IN FD MIMO
SYSTEMS
The ML-based SIC approaches surveyed in this work are
trained and verified using a single-input single-output (SISO)
FD testbed. However, in recent communication standards, the
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TABLE 7. Efficiency η of Different ML-Based SI Cancelers Compared to the Polynomial Canceler for the First and Second datasets

MIMO technology has become a basic transmit/receive
scheme. Hence, extending the above ML-based SIC
techniques to MIMO rather than SISO FD transceivers is
imperative. Typically, the complexity of the SIC approaches
exponentially increases under MIMO operation where M
transmit antennas interfere with N receive antennas. A
straightforward approach—to process several SI signals in the

digital domain—is to perform the SIC using separate SI can-
celers, which consider the interfering signals from all transmit
antennas; however, this results in excessive complexity. To
address this issue, alternative approaches can be designed.
For instance, exploiting the spatial correlation between the
MIMO channels to develop a common SI canceler, i.e., not
separate cancelers, can be a direction for future investigation
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in order to reduce the impractical computational complexity
of the traditional MIMO SIC-based approaches [132].

D. TRAINING COMPLEXITY OF ML-BASED SIC
APPROACHES
The computational complexity of the existing ML-based SIC
approaches is typically evaluated and compared in terms of
FLOPs required in the inference stage, i.e., upon performing
and finalizing the training process. However, estimating the
training complexity (in terms of FLOPs) is crucial and should
be considered, especially for ML algorithms targeted to be
integrated with online learning as described in Section VI-B.
For instance, calculating the number of FLOPs required for
performing the backpropagation in NNs, approximating the
unknown function using optimization in SVRs, and solv-
ing the low-rank tensor decomposition problem in TC-based
cancelers should be explored to provide insights about the fea-
sibility of applying ML-based approaches for SIC in real-time
FD transceivers.

VII. CONCLUSIONS
In this paper, we have surveyed the up-to-date contributions
in applying ML approaches for SIC in FD transceivers. Based
on a comprehensive review, we have found that canceling
the interference in FD transceivers using ML has been ini-
tially performed by traditional approaches, such as NNs and
SVRs. Advanced ML approaches, such as TC, TensorFlow
graphs, and RFFs, integrated with online learning, have been
employed for SIC as well. Further, other ML approaches
proven in other disciplines, such as DR, GMMs, DU, LL,
and APSM, have also been utilized for modeling the SI
in FD transceivers. Upon surveying the literature, we have
provided a case study to evaluate the performance of the
prominent ML-based approaches over short dataset sizes and
using two test setups employing different transmit power
levels. Specifically, we have assessed the performance of
the prominent data-driven ML-based approaches in terms of
the SIC, PSD, training time, memory storage, and compu-
tational complexity and compared them with those of the
model-driven approaches, e.g., polynomial-based canceler.
Afterward, we evaluated the efficiency of the different SIC
approaches based on the aforementioned metrics to select a
suitable approach for SIC, depending on system requirements.
Based on this study, we have found that the model-driven
approaches, i.e., polynomial-based canceler, could be a good
choice when a low transmit power is utilized (i.e., low non-
linearity exists). However, at high transmit power (i.e., high
non-linearity exists), the data-driven ML-based approaches,
i.e., RV-TDNN-based canceler, could be a better choice. We
have finally identified the research gaps in applying ML ap-
proaches for SIC in FD transceivers, paving the way for future
research directions, such as considering the SoI effect, exten-
sion to MIMO FD transceivers, and tackling the time-varying
SI channels.

REFERENCES
[1] L. Bariah et al., “A prospective look: Key enabling technologies,

applications and open research topics in 6G networks,” IEEE Access,
vol. 8, pp. 174792–174820, 2020.

[2] P. Yang, Y. Xiao, M. Xiao, and S. Li, “6G wireless communica-
tions: Vision and potential techniques,” IEEE Netw., vol. 33, no. 4,
pp. 70–75, Jul./Aug. 2019.

[3] S. Dang, O. Amin, B. Shihada, and M.-S. Alouini, “What should 6G
be?,” Nature Electron., vol. 3, no. 1, pp. 20–29, Jan. 2020.

[4] X. You et al., “Towards 6G wireless communication networks: Vision,
enabling technologies, and new paradigm shifts,” Sci. China Inf. Sci.,
vol. 64, no. 1, pp. 1–74, Nov. 2020.

[5] Z. Zhang et al., “6G wireless networks: Vision, requirements, architec-
ture, and key technologies,” IEEE Veh. Technol. Mag., vol. 14, no. 3,
pp. 28–41, Sep. 2019.

[6] E. Calvanese Strinati et al., “6G: The next frontier: From holographic
messaging to artificial intelligence using subterahertz and visible light
communication,” IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 42–50,
Sep. 2019.

[7] K. David and H. Berndt, “6G vision and requirements: Is there any
need for beyond 5G?,” IEEE Veh. Technol. Mag., vol. 13, no. 3,
pp. 72–80, Sep. 2018.

[8] S. Zhang, C. Xiang, and S. Xu, “6G: Connecting everything by
1000 times price reduction,” IEEE Open J. Veh. Technol., vol. 1,
pp. 107–115, 2020.

[9] H. Viswanathan and P. E. Mogensen, “Communications in the 6G era,”
IEEE Access, vol. 8, pp. 57063–57074, 2020.

[10] M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi,
“Toward 6G networks: Use cases and technologies,” IEEE Commun.
Mag., vol. 58, no. 3, pp. 55–61, Mar. 2020.

[11] S. Chen, Y.-C. Liang, S. Sun, S. Kang, W. Cheng, and M. Peng,
“Vision, requirements, and technology trend of 6G: How to tackle the
challenges of system coverage, capacity, user data-rate and movement
speed,” IEEE Wireless Commun. Mag., vol. 27, no. 2, pp. 218–228,
Apr. 2020.

[12] F. Tariq, M. R. A. Khandaker, K.-K. Wong, M. A. Imran, M. Bennis,
and M. Debbah, “A speculative study on 6G,” IEEE Wireless Com-
mun., vol. 27, no. 4, pp. 118–125, Aug. 2020.

[13] M. Z. Chowdhury, M. Shahjalal, S. Ahmed, and Y. M. Jang, “6G
wireless communication systems: Applications, requirements, tech-
nologies, challenges, and research directions,” IEEE Open J. Commun.
Soc., vol. 1, pp. 957–975, 2020.

[14] I. F. Akyildiz, A. Kak, and S. Nie, “6G and beyond: The fu-
ture of wireless communications systems,” IEEE Access, vol. 8,
pp. 133995–134030, 2020.

[15] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems:
Applications, trends, technologies, and open research problems,” IEEE
Netw., vol. 34, no. 3, pp. 134–142, May/Jun. 2020.

[16] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang, “The
roadmap to 6G: AI empowered wireless networks,” IEEE Commun.
Mag., vol. 57, no. 8, pp. 84–90, Aug. 2019.

[17] B. Zong, C. Fan, X. Wang, X. Duan, B. Wang, and J. Wang, “6G
technologies: Key drivers, core requirements, system architectures,
and enabling technologies,” IEEE Veh. Technol. Mag., vol. 14, no. 3,
pp. 18–27, Sep. 2019.

[18] W. Jiang, B. Han, M. A. Habibi, and H. D. Schotten, “The road towards
6G: A comprehensive survey,” IEEE Open J. Commun. Soc., vol. 2,
pp. 334–366, 2021.

[19] A. Shahraki, M. Abbasi, M. J. Piran, and A. Taherkordi,
“A comprehensive survey on 6G networks: Applications, core
services, enabling technologies, and future challenges,” 2021,
arXiv:2101.12475.

[20] D. C. Nguyen et al., “6G Internet of Things: A comprehensive survey,”
IEEE Internet Things J., vol. 9, no. 1, pp. 359–383, Jan. 2022.

[21] M. Duarte, C. Dick, and A. Sabharwal, “Experiment-driven char-
acterization of full-duplex wireless systems,” IEEE Trans. Wireless
Commun., vol. 11, no. 12, pp. 4296–4307, Dec. 2012.

[22] H. V. Nguyen, V.-D. Nguyen, O. A. Dobre, and O.-S. Shin,
“Sum rate maximization based on sub-array antenna selection in
a full-duplex system,” in Proc. IEEE Glob. Commun. Conf., 2017,
pp. 1–6.

[23] A. Yadav, O. A. Dobre, and N. Ansari, “Energy and traffic aware
full-duplex communications for 5G systems,” IEEE Access, vol. 5,
pp. 11278–11290, 2017.

VOLUME 5, 2024 43



ELSAYED ET AL.: MACHINE LEARNING-BASED SIC FOR FD RADIO: APPROACHES, OPEN CHALLENGES, AND FUTURE RESEARCH DIRECTIONS

[24] A. Yadav, O. A. Dobre, and H. V. Poor, “Is self-interference in full-
duplex communications a foe or a friend?,” IEEE Signal Process. Lett.,
vol. 25, no. 7, pp. 951–955, Jul. 2018.

[25] E. Everett, A. Sahai, and A. Sabharwal, “Passive self-interference sup-
pression for full-duplex infrastructure nodes,” IEEE Trans. Wireless
Commun., vol. 13, no. 2, pp. 680–694, Feb. 2014.

[26] S. Hong et al., “Applications of self-interference cancellation in 5G
and beyond,” IEEE Commun. Mag., vol. 52, no. 2, pp. 114–121,
Feb. 2014.

[27] D. Korpi, T. Riihonen, V. Syrjälä, L. Anttila, M. Valkama, and
R. Wichman, “Full-duplex transceiver system calculations: Analysis
of ADC and linearity challenges,” IEEE Trans. Wireless Commun.,
vol. 13, no. 7, pp. 3821–3836, Jul. 2014.

[28] A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and
R. Wichman, “In-band full-duplex wireless: Challenges and opportu-
nities,” IEEE J. Sel. Areas Commun., vol. 32, no. 9, pp. 1637–1652,
Sep. 2014.

[29] A. Yadav, G. I. Tsiropoulos, and O. A. Dobre, “Full-duplex com-
munications: Performance in ultradense mm-Wave small-cell wireless
networks,” IEEE Veh. Technol. Mag., vol. 13, no. 2, pp. 40–47,
Jun. 2018.

[30] Z. Zhang, X. Chai, K. Long, A. V. Vasilakos, and L. Hanzo, “Full
duplex techniques for 5G networks: Self-interference cancellation,
protocol design, and relay selection,” IEEE Commun. Mag., vol. 53,
no. 5, pp. 128–137, May 2015.

[31] M. Chung, M. S. Sim, J. Kim, D. K. Kim, and C.-B. Chae, “Prototyp-
ing real-time full duplex radios,” IEEE Commun. Mag., vol. 53, no. 9,
pp. 56–63, Sep. 2015.

[32] D. Kim, H. Lee, and D. Hong, “A survey of in-band full-duplex
transmission: From the perspective of PHY and MAC layers,” IEEE
Commun. Surveys Tuts., vol. 17, no. 4, pp. 2017–2046, Fourthquarter
2015.

[33] Z. Zhang, K. Long, A. V. Vasilakos, and L. Hanzo, “Full-duplex
wireless communications: Challenges, solutions, and future research
directions,” Proc. IEEE, vol. 104, no. 7, pp. 1369–1409, Jul. 2016.

[34] D. Korpi et al., “Full-duplex mobile device: Pushing the limits,” IEEE
Commun. Mag., vol. 54, no. 9, pp. 80–87, Sep. 2016.

[35] M. Amjad, F. Akhtar, M. H. Rehmani, M. Reisslein, and T. Umer,
“Full-duplex communication in cognitive radio networks: A sur-
vey,” IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2158–2191,
Fourthquarter 2017.

[36] V.-D. Nguyen, H. V. Nguyen, O. A. Dobre, and O.-S. Shin, “A new
design paradigm for secure full-duplex multiuser systems,” IEEE J.
Sel. Areas Commun., vol. 36, no. 7, pp. 1480–1498, Jul. 2018.

[37] H. V. Nguyen, V.-D. Nguyen, O. A. Dobre, Y. Wu, and O.-S. Shin,
“Joint antenna array mode selection and user assignment for full-
duplex MU-MISO systems,” IEEE Trans. Wireless Commun., vol. 18,
no. 6, pp. 2946–2963, Jun. 2019.

[38] H. V. Nguyen, V.-D. Nguyen, O. A. Dobre, D. N. Nguyen,
E. Dutkiewicz, and O.-S. Shin, “Joint power control and user associ-
ation for NOMA-based full-duplex systems,” IEEE Trans. Commun.,
vol. 67, no. 11, pp. 8037–8055, Nov. 2019.

[39] Q. N. Le, N.-P. Nguyen, A. Yadav, and O. A. Dobre, “Outage perfor-
mance of full-duplex overlay CR-NOMA networks with SWIPT,” in
Proc. IEEE Glob. Commun. Conf., 2019, pp. 1–6.

[40] H. V. Nguyen et al., “On the spectral and energy efficiencies of
full-duplex cell-free massive MIMO,” IEEE J. Sel. Areas Commun.,
vol. 38, no. 8, pp. 1698–1718, Aug. 2020.

[41] Q. N. Le, A. Yadav, N.-P. Nguyen, O. A. Dobre, and R. Zhao, “Full-
duplex non-orthogonal access cooperative overlay spectrum-sharing
networks with SWIPT,” IEEE Trans. Green Commun. Netw., vol. 5,
no. 1, pp. 322–334, Mar. 2021.

[42] E. A. Makled and O. A. Dobre, “On the security of full-duplex relay-
assisted underwater acoustic network with NOMA,” IEEE Trans. Veh.
Technol., vol. 71, no. 6, pp. 6255–6265, Jun. 2022.

[43] K. E. Kolodziej, B. T. Perry, and J. S. Herd, “In-band full-duplex
technology: Techniques and systems survey,” IEEE Trans. Microw.
Theory Techn., vol. 67, no. 7, pp. 3025–3041, Jul. 2019.

[44] B. Debaillie et al., “Analog/RF solutions enabling compact full-duplex
radios,” IEEE J. Sel. Areas Commun., vol. 32, no. 9, pp. 1662–1673,
Sep. 2014.

[45] Y.-S. Choi and H. Shirani-Mehr, “Simultaneous transmission and
reception: Algorithm, design and system level performance,” IEEE
Trans. Wireless Commun., vol. 12, no. 12, pp. 5992–6010, Dec. 2013.

[46] L. Laughlin, M. A. Beach, K. A. Morris, and J. L. Haine, “Optimum
single antenna full duplex using hybrid junctions,” IEEE J. Sel. Areas
Commun., vol. 32, no. 9, pp. 1653–1661, Sep. 2014.

[47] D. Korpi, L. Anttila, V. Syrjala, and M. Valkama, “Widely lin-
ear digital self-interference cancellation in direct-conversion fulldu-
plex transceiver,” IEEE J. Sel. Areas Commun., vol. 32, no. 9,
pp. 1674–1687, Sep. 2014.

[48] D. Korpi, L. Anttila, and M. Valkama, “Reference receiver
based digital self-interference cancellation in MIMO full-duplex
transceivers,” in Proc. IEEE Glob. Commun. Conf., 2014,
pp. 1001–1007.

[49] D. Korpi, T. Huusari, Y.-S. Choi, L. Anttila, S. Talwar, and
M. Valkama, “Digital self-interference cancellation under nonideal
RF components: Advanced algorithms and measured performance,”
in Proc. IEEE 16th Int. Workshop Signal Process. Adv. Wireless Com-
mun., 2015, pp. 286–290.

[50] E. Ahmed and A. M. Eltawil, “All-digital self-interference can-
cellation technique for full-duplex systems,” IEEE Trans. Wireless
Commun., vol. 14, no. 7, pp. 3519–3532, Jul. 2015.

[51] D. Korpi, Y.-S. Choi, T. Huusari, L. Anttila, S. Talwar, and
M. Valkama, “Adaptive nonlinear digital self-interference cancellation
for mobile inband full-duplex radio: Algorithms and RF measure-
ments,” in Proc. IEEE Glob. Commun. Conf., 2015, pp. 1–7.

[52] M. A. Tafreshi, M. Koskela, D. Korpi, P. Jääskeläinen, M. Valkama,
and J. Takala, “Software defined radio implementation of adap-
tive nonlinear digital self-interference cancellation for mobile inband
fullduplex radio,” in Proc. IEEE Glob. Conf. Signal Inform. Process.,
2016, pp. 733–737.

[53] M. S. Amjad and O. Gurbuz, “Linear digital cancellation with reduced
computational complexity for full-duplex radios,” in Proc. IEEE Wire-
less Commun. Netw. Conf., 2017, pp. 1–6.

[54] X. Quan, Y. Liu, S. Shao, C. Huang, and Y. Tang, “Impacts of phase
noise on digital self-interference cancellation in full-duplex communi-
cations,” IEEE Trans. Signal Process., vol. 65, no. 7, pp. 1881–1893,
Apr. 2017.

[55] Y. Liu, X. Quan, W. Pan, and Y. Tang, “Digitally assisted analog inter-
ference cancellation for in-band full-duplex radios,” IEEE Commun.
Lett., vol. 21, no. 5, pp. 1079–1082, May 2017.

[56] P. Ferrand and M. Duarte, “Multi-tap digital canceller for full-duplex
applications,” in Proc. IEEE 18th Int. Workshop Signal Process. Adv.
Wireless Commun., 2017, pp. 1–5.

[57] D. Korpi, L. Anttila, and M. Valkama, “Nonlinear self-interference
cancellation in MIMO full-duplex transceivers under crosstalk,”
EURASIP J. Wireless Commun. Netw., vol. 2017, no. 1, pp. 1–15,
Dec. 2017.

[58] R. V. Kulkarni, A. Forster, and G. K. Venayagamoorthy, “Compu-
tational intelligence in wireless sensor networks: A survey,” IEEE
Commun. Surveys Tuts., vol. 13, no. 1, pp. 68–96, First Quarter 2011.

[59] M. Bkassiny, Y. Li, and S. K. Jayaweera, “A survey on machine-
learning techniques in cognitive radios,” IEEE Commun. Surv. Tuts.,
vol. 15, no. 3, pp. 1136–1159, Third Quarter 2013.

[60] M. A. Alsheikh, S. Lin, D. Niyato, and H.-P. Tan, “Machine learning
in wireless sensor networks: Algorithms, strategies, and applica-
tions,” IEEE Commun. Surveys Tuts., vol. 16, no. 4, pp. 1996–2018,
Fourthquarter 2014.

[61] H. A. Al-Rawi, M. A. Ng, and K.-L. A. Yau, “Application of reinforce-
ment learning to routing in distributed wireless networks: A review,”
Artif. Intell. Rev., vol. 43, no. 3, pp. 381–416, Jan. 2015.

[62] P. V. Klaine, M. A. Imran, O. Onireti, and R. D. Souza, “A. survey
of machine learning techniques applied to self-organizing cellular net-
works,” IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2392–2431,
Fourthquarter 2017.

[63] T. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Trans. Cogn. Commun. Netw., vol. 3, no. 4,
pp. 563–575, Dec. 2017.

[64] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein,
and Y. Be’ery, “Deep learning methods for improved decoding of
linear codes,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 1,
pp. 119–131, Feb. 2018.

[65] F. Liang, C. Shen, and F. Wu, “An iterative BP-CNN architecture for
channel decoding,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 1,
pp. 144–159, Feb. 2018.

[66] F. Pacheco, E. Exposito, M. Gineste, C. Baudoin, and J. Aguilar,
“Towards the deployment of machine learning solutions in network

44 VOLUME 5, 2024



traffic classification: A systematic survey,” IEEE Commun. Surveys
Tuts., vol. 21, no. 2, pp. 1988–2014, Secondquarter 2019.

[67] D. He, C. Liu, T. Q. S. Quek, and H. Wang, “Transmit an-
tenna selection in MIMO wiretap channels: A machine learning
approach,” IEEE Wireless Commun. Lett., vol. 7, no. 4, pp. 634–637,
Aug. 2018.

[68] H. He, C.-K. Wen, S. Jin, and G. Y. Li, “Deep learning-based channel
estimation for beamspace mmWave massive MIMO systems,” IEEE
Wireless Commun. Lett., vol. 7, no. 5, pp. 852–855, Oct. 2018.

[69] Q. Mao, F. Hu, and Q. Hao, “Deep learning for intelligent wireless
networks: A comprehensive survey,” IEEE Commun. Surveys Tuts.,
vol. 20, no. 4, pp. 2595–2621, Fourthquarter 2018.

[70] M. Gao, Y. Li, O. A. Dobre, and N. Al-Dhahir, “Joint blind identifi-
cation of the number of transmit antennas and MIMO schemes using
Gerschgorin radii and FNN,” IEEE Trans. Wireless Commun., vol. 18,
no. 1, pp. 373–387, Jan. 2019.

[71] J. Xie et al., “A survey of machine learning techniques applied to
software defined networking (SDN): Research issues and challenges,”
IEEE Commun. Surv. Tuts., vol. 21, no. 1, pp. 393–430, Firstquarter
2019.

[72] M. Usama et al., “Unsupervised machine learning for network-
ing: Techniques, applications and research challenges,” IEEE Access,
vol. 7, pp. 65579–65615, 2019.

[73] X. Cheng, D. Liu, C. Wang, S. Yan, and Z. Zhu, “Deep learning-
based channel estimation and equalization scheme for FBMC/OQAM
systems,” IEEE Wireless Commun. Lett., vol. 8, no. 3, pp. 881–884,
Jun. 2019.

[74] M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, “Artificial
neural networks-based machine learning for wireless networks: A tu-
torial,” IEEE Commun. Surveys Tuts., vol. 21, no. 4, pp. 3039–3071,
Fourthquarter 2019.

[75] N. C. Luong et al., “Applications of deep reinforcement learning in
communications and networking: A survey,” IEEE Commun. Surveys
Tuts., vol. 21, no. 4, pp. 3133–3174, Fourthquarter 2019.

[76] Y. Sun, M. Peng, Y. Zhou, Y. Huang, and S. Mao, “Application of
machine learning in wireless networks: Key techniques and open is-
sues,” IEEE Commun. Surveys Tuts., vol. 21, no. 4, pp. 3072–3108,
Fourthquarter 2019.

[77] S. Niknam, H. S. Dhillon, and J. H. Reed, “Federated learn-
ing for wireless communications: Motivation, opportunities and
challenges,” IEEE Commun. Mag., vol. 58, no. 6, pp. 46–51,
Jun. 2020.

[78] A. Faisal, I. Al-Nahhal, O. A. Dobre, and T. M. N. Ngatched, “Deep
reinforcement learning for optimizing RIS-assisted HD-FD wireless
systems,” IEEE Commun. Lett., vol. 25, no. 12, pp. 3893–3897,
Dec. 2021.

[79] S. Zhang, S. Zhang, F. Gao, J. Ma, and O. A. Dobre, “Deep learning
based RIS channel extrapolation with element-grouping,” IEEE Wire-
less Commun. Lett., vol. 10, no. 12, pp. 2644–2648, Dec. 2021.

[80] M. Xu, S. Zhang, J. Ma, and O. A. Dobre, “Deep learning-based time-
varying channel estimation for RIS assisted communication,” IEEE
Commun. Lett., vol. 26, no. 1, pp. 94–98, Jan. 2022.

[81] A. Faisal, I. Al-Nahhal, O. A. Dobre, and T. M. N. Ngatched, “Deep
reinforcement learning for RIS-assisted FD systems: Single or dis-
tributed RIS?,” IEEE Commun. Lett., vol. 26, no. 7, pp. 1563–1567,
Jul. 2022.

[82] M. Al-Nahhal, I. Al-Nahhal, O. A. Dobre, X. Lin, D. Chang, and C. Li,
“Joint estimation of linear and nonlinear coherent optical fiber signal
to-noise ratio,” IEEE Photon. Technol. Lett., vol. 35, no. 1, pp. 23–26,
Jan. 2023.

[83] M. Al-Nahhal, I. Al-Nahhal, O. A. Dobre, S. K. O. Soman, D. Chang,
and C. Li, “Learned signal-to-noise ratio estimation in optical fiber
communication links,” IEEE Photon. J., vol. 14, no. 6, Dec. 2022,
Art. no. 7260107.

[84] A. Faisal, I. Al-Nahhal, O. A. Dobre, and T. M. N. Ngatched,
“Distributed RIS-assisted FD systems with discrete phase shifts: A re-
inforcement learning approach,” in Proc. IEEE Glob. Commun. Conf.,
2022, pp. 5862–5867.

[85] Y. Liu, I. Al-Nahhal, O. A. Dobre, and F. Wang, “Deep-learning-based
channel estimation for IRS-assisted ISAC system,” in Proc. IEEE
Glob. Commun. Conf., 2022, pp. 4220–4225.

[86] Y. Liu, I. Al-Nahhal, O. A. Dobre, and F. Wang, “Deep-learning chan-
nel estimation for IRS-assisted integrated sensing and communication
system,” IEEE Trans. Veh. Technol., vol. 72, no. 5, pp. 6181–6193,
May 2023.

[87] E. A. Makled, I. Al-Nahhal, O. A. Dobre, and O. Üreten, “Identifica-
tion of cellular signal measurements using machine learning,” IEEE
Trans. Instrum. Meas., vol. 72, no. 1, Jan. 2023, Art. no. 5501104.

[88] R. Hongyo, Y. Egashira, T. M. Hone, and K. Yamaguchi, “Deep neu-
ral network-based digital predistorter for Doherty power amplifiers,”
IEEE Microw. Wireless Compon. Lett., vol. 29, no. 2, pp. 146–148,
Feb. 2019.

[89] X. Hu et al., “Convolutional neural network for behavioral modeling
and predistortion of wideband power amplifiers,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 33, no. 8, pp. 3923–3937, Aug. 2022.

[90] A. Balatsoukas-Stimming, “Non-linear digital self-interference can-
cellation for in-band full-duplex radios using neural networks,” in
Proc. IEEE 19th Int. Workshop Signal Process. Adv. Wireless Com-
mun., 2018, pp. 1–5.

[91] C. Shi, Y. Hao, Y. Liu, and S. Shao, “Digital self-interference can-
cellation for full duplex wireless communication based on neural
networks,” in Proc. IEEE 4th Int. Conf. Commun. Inform. Syst., 2019,
pp. 53–57.

[92] K. E. Kolodziej, A. U. Cookson, and B. T. Perry, “Neural network
tuning for analog-RF self-interference cancellation,” in Proc. IEEE
MTT-S Int. Microw. Symp., 2021, pp. 673–676.

[93] K. E. Kolodziej, A. U. Cookson, and B. T. Perry, “RF canceller tuning
acceleration using neural network machine learning for in-band full-
duplex systems,” IEEE Open J. Commun. Soc., vol. 2, pp. 1158–1170,
2021.

[94] V. Tapio and M. Juntti, “Non-linear self-interference cancelation for
full-duplex transceivers based on Hammerstein-Wiener model,” IEEE
Commun. Lett., vol. 25, no. 11, pp. 3684–3688, Nov. 2021.

[95] Y. Kurzo, A. Burg, and A. Balatsoukas-Stimming, “Design and im-
plementation of a neural network aided self-interference cancellation
scheme for full-duplex radios,” in Proc. IEEE 52nd Asilomar Conf.
Signals, Syst., Comput., 2018, pp. 589–593.

[96] Y. Kurzo, A. T. Kristensen, A. Burg, and A. Balatsoukas-Stimming,
“Hardware implementation of neural self-interference cancellation,”
IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 10, no. 2, pp. 204–216,
Jun. 2020.

[97] A. T. Kristensen, A. Burg, and A. Balatsoukas-Stimming, “Advanced
machine learning techniques for self-interference cancellation in full-
duplex radios,” in Proc. IEEE 53rd Asilomar Conf. Signals, Syst.,
Comput., 2019, pp. 1149–1153.

[98] Q. Wang, F. He, and J. Meng, “Performance comparison of real
and complex valued neural networks for digital self-interference can-
cellation,” in Proc. IEEE 19th Int. Conf. Commun. Technol., 2019,
pp. 1193–1199.

[99] M. Elsayed, A. A. A. El-Banna, O. A. Dobre, W. Shiu, and P. Wang,
“Low complexity neural network structures for self-interference can-
cellation in full-duplex radio,” IEEE Commun. Lett., vol. 25, no. 1,
pp. 181–185, Jan. 2021.

[100] M. Elsayed, A. A. A. El-Banna, O. A. Dobre, W. Shiu, and
P. Wang, “Hybrid-layers neural network architectures for modeling the
self-interference in full-duplex systems,” IEEE Trans. Veh Technol.,
vol. 71, no. 6, pp. 6291–6307, Jun. 2022.

[101] M. Elsayed, A. A. A. El-Banna, O. A. Dobre, W. Shiu, and P. Wang,
“Full-duplex self-interference cancellation using dual-neurons neu-
ral networks,” IEEE Commun. Lett., vol. 26, no. 3, pp. 557–561,
Mar. 2022.

[102] D. H. Kong, Y.-S. Kil, and S.-H. Kim, “Neural network aided digi-
tal self-interference cancellation for full-duplex communication over
time-varying channels,” IEEE Trans. Veh. Technol., vol. 71, no. 6,
pp. 6201–6213, Jun. 2022.

[103] H. Guo, S. Wu, H. Wang, and M. Daneshmand, “DSIC: Deep learning
based self-interference cancellation for in-band full duplex wireless,”
in Proc. IEEE Glob. Commun. Conf., 2019, pp. 1–6.

[104] W. Zhang, J. Yin, D. Wu, G. Guo, and Z. Lai, “A self-interference
cancellation method based on deep learning for beyond 5G full-duplex
system,” in Proc. IEEE Int. Conf. Signal Process., Commun. Comput.,
2018, pp. 1–5.

[105] K. Muranov, M. A. Islam, B. Smida, and N. Devroye, “On deep
learning assisted self-interference estimation in a full-duplex relay
link,” IEEE Wireless Commun. Lett., vol. 10, no. 12, pp. 2762–2766,
Dec. 2021.

[106] C. Auer, K. Kostoglou, T. Paireder, O. Ploder, and M. Huemer,
“Support vector machines for self-interference cancellation in mobile
communication transceivers,” in Proc. IEEE Veh. Technol. Conf., 2020,
pp. 1–6.

VOLUME 5, 2024 45



ELSAYED ET AL.: MACHINE LEARNING-BASED SIC FOR FD RADIO: APPROACHES, OPEN CHALLENGES, AND FUTURE RESEARCH DIRECTIONS

[107] M. Erdem, H. Ozkan, and O. Gurbuz, “Nonlinear digital self-
interference cancellation with SVR for full duplex communication,”
in Proc. IEEE Wireless Commun. Netw. Conf., 2020, pp. 1–6.

[108] M. Yilan, O. Gurbuz, and H. Ozkan, “Integrated linear and nonlinear
digital cancellation for full duplex communication,” IEEE Wireless
Commun., vol. 28, no. 1, pp. 20–27, Feb. 2021.

[109] F. Jochems and A. Balatsoukas-Stimming, “Non-linear self-
interference cancellation via tensor completion,” in Proc. IEEE 54th
Asilomar Conf. Signals, Syst., Comput, Comput., 2020, pp. 905–909.

[110] H. Guo, J. Xu, S. Zhu, and S. Wu, “Realtime software defined self-
interference cancellation based on machine learning for in-band full
duplex wireless communications,” in Proc. IEEE Int. Conf. Comput.,
Netw. Commun., 2018, pp. 779–783.

[111] K. Wongsuphasawat et al., “Visualizing dataflow graphs of deep learn-
ing models in TensorFlow,” IEEE Trans. Vis. Comput. Graph., vol. 24,
no. 1, pp. 1–12, Jan. 2018.

[112] M. Erdem, H. Ozkan, and O. Gurbuz, “A new online nonlin-
ear self-interference cancelation method with random fourier fea-
tures,” IEEE Wireless Commun. Lett., vol. 11, no. 7, pp. 1379–1383,
Jul. 2022.

[113] R. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” in Proc. 20th Int. Conf. Adv. Neural Inf. Process. Syst.,
2007, pp. 1177–1184.

[114] J. Lu, S. C. Hoi, J. Wang, P. Zhao, and Z.-Y. Liu, “Large scale online
kernel learning,” J. Mach. Learn. Res., vol. 17, no. 47, pp. 1–43,
Jan. 2016.

[115] S. Mehrkanoon and J. A. K. Suykens, “Deep hybrid neural-kernel
networks using random fourier features,” Neurocomputing, vol. 298,
no. 7, pp. 46–54, Jul. 2018.

[116] R. Mitra, V. Bhatia, S. Jain, and K. Choi, “Performance analysis of
random Fourier features based unsupervised multistage-clustering for
VLC,” IEEE Commun. Lett., vol. 25, no. 8, pp. 2659–2663, Aug. 2021.

[117] R. Mitra, G. Kaddoum, and G. Poitau, “Analytical guarantees
for hyperparameter free RFF based deep learning in the low-data
regime,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 69, no. 2,
pp. 634–638, Feb. 2022.

[118] R. Mitra and G. Kaddoum, “Random fourier feature based deep learn-
ing for wireless communications,” IEEE Trans. Cogn. Commun. Netw.,
vol. 11, no. 2, pp. 468–479, Jun. 2022.

[119] Y.-H. Lin, Y.-T. Liao, J.-Y. Chu, P.-J. Su, and T.-Y. Hsu, “Digital
self interference cancellation via dynamic regression for in-band full-
duplex system,” in Proc. IEEE 5th Glob. Conf. Consum. Electron.,
2016, pp. 1–3.

[120] J. Chen, L. Zhang, and Y.-C. Liang, “Exploiting Gaussian mixture
model clustering for full-duplex transceiver design,” IEEE Trans.
Commun., vol. 67, no. 8, pp. 5802–5816, Aug. 2019.

[121] X. F. He, D. Cai, Y. L. Shao, H. J. Bao, and J. W. Han, “Laplacian
regularized Gaussian mixture model for data clustering,” IEEE Trans.
Knowl. Data Eng., vol. 23, no. 9, pp. 1406–1418, Sep. 2011.

[122] A. T. Kristensen, A. Burg, and A. Balatsoukas-Stimming, “Identifica-
tion of non-linear RF systems using backpropagation,” in Proc. IEEE
Int. Conf. Commun. Workshops, 2020, pp. 1–6.

[123] J. R. Hershey, J. Le Roux, and F. Weninger, “Deep unfolding:
Model-based inspiration of novel deep architectures,” Nov. 2014,
arxXv:1409.2574.

[124] A. Balatsoukas-Stimming and C. Studer, “Deep unfolding for commu-
nications systems: A survey and some new directions,” in Proc. IEEE
Int. Workshop Signal Process. Syst., 2019, pp. 266–271.

[125] O. Zhao, W-S Liao, K. Li, T. Matsumura, F. Kojima, and H. Harada,
“Lazy learning-based self-interference cancellation for wireless com-
munication systems with in-band full-duplex operations,” in Proc.
IEEE 32nd Annu. Int. Symp. Pers., Indoor Mobile Radio Commun.,
2021, pp. 1589–1594.

[126] M. H. Attar, O. Taghizadeh, K. Chang, R. Askar, M. Mehlhose, and
S. Stanczak, “Parallel APSM for fast and adaptive digital SIC in full-
duplex transceivers with nonlinearity,” in Proc. IEEE Int. Workshop
Signal Process. Adv. Wireless Commun., 2022, pp. 1–5.

[127] A. Balatsoukas-Stimming, “Joint detection and self-interference can-
cellation in full-duplex systems using machine learning,” in Proc.
IEEE 55th Asilomar Conf. Signals, Syst., Comput., 2021, pp. 989–992.

[128] T. Liu, S. Boumaiza, and F. M. Ghannouchi, “Dynamic behavioral
modeling of 3G power amplifiers using real-valued time delay neu-
ral networks,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 3,
pp. 1025–1033, Mar. 2004.

[129] J. Cai, C. Yu, L. Sun, S. Chen, and J. B. King, “Dynamic behavioral
modeling of RF power amplifier based on time-delay support vec-
tor regression,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 2,
pp. 533–543, Feb. 2019.

[130] A. Balatsoukas-Stimming, “End-to-end learned self-interference can-
cellation,” in Proc. IEEE 56th Asilomar Conf. Signals, Syst., Comput.,
2022, pp. 1334–1338.

[131] O. Ploder, C. Auer, C. Motz, T. Paireder, O. Lang, and M. Hue-
mer, “SICNet–Low complexity sample adaptive neural network-based
self-interference cancellation in LTE-A/5G mobile transceivers,” IEEE
Open J. Commun. Soc., vol. 3, pp. 958–972, 2022.

[132] Y. Chen, R. K. Mishra, D. Schwartz, and S. Vishwanath, “MIMO full
duplex radios with deep learning,” in Proc. IEEE Int. Conf. Commun.
Workshops, 2020, pp. 1–6.

MOHAMED ELSAYED (Graduate Student Mem-
ber, IEEE) received the B.Sc. degree in electronics
and communications engineering from Sohag Uni-
versity, Sohag, Egypt, in 2014, and the M.Sc.
degree in electronics and communications engi-
neering from Assiut University, Assiut, Egypt, in
2018. He is currently working toward the Ph.D.
degree in electrical engineering from Memorial
University, St. John’s, NL, Canada. He is also
on leave from the Faculty of Engineering, Sohag
University. His research interests include multiple-

input multiple-output systems, wireless networks, index modulation, spatial
modulation, full-duplex, and machine learning for wireless communications.
He was the recipient of the Best Paper Award from the 35th National Radio
Science Conference in 2018 and also the IEEE NL Graduate Scholarship in
2023.

AHMAD A. AZIZ EL-BANNA (Member, IEEE)
received the Ph.D. degree in electronic and com-
munication engineering from the Egypt-Japan Uni-
versity of Science and Technology, New Borg El
Arab, Egypt, in 2014. He is currently an Associate
Professor with Benha University, Benha, Egypt.
From 2018 to 2020, he was a Postdoctoral Fel-
low with Shenzhen University, Shenzhen, China.
From 2013 to 2014, he was a Visiting Researcher
with Osaka University, Osaka, Japan. Since 2020,
he has been a Postdoctoral Fellow with Memorial

University, St. John’s, NL, Canada. His research interests include coopera-
tive networking, MIMO, space-time coding, IoT, underwater communication,
full-duplex, and machine learning.

OCTAVIA A. DOBRE (Fellow, IEEE) received the
Dipl. Ing. and Ph.D. degrees from the Polytech-
nic Institute of Bucharest, Bucharest, Romania,
in 1991 and 2000, respectively. Between 2002
and 2005, she was with the New Jersey Insti-
tute of Technology, Newark, NJ, USA. In 2005,
she joined Memorial University, Canada, where
she is currently a Professor and Canada Research
Chair Tier 1. She was a Visiting Professor with the
Massachusetts Institute of Technology, Cambridge,
MA, USA, and Université de Bretagne Occiden-

tale, France. She has coauthored more than 450 refereed papers in her
research areas, which include wireless communication and networking tech-
nologies, as well as optical and underwater communications. Dr. Dobre is the
Director of Journals of the Communications Society. She was the inaugural
Editor-in-Chief (EiC) of the IEEE OPEN JOURNAL OF THE COMMUNICATIONS

SOCIETY and IEEE COMMUNICATIONS LETTERS. Dr. Dobre was a Fulbright
Scholar, Royal Society Scholar, and Distinguished Lecturer of the IEEE
Communications Society. She was the recipient of the Best Paper Awards
at various conferences, including IEEE ICC, IEEE Globecom, IEEE WCNC,
and IEEE PIMRC. Dr. Dobre is an elected Member of the European Academy
of Sciences and Arts, a Fellow of the Engineering Institute of Canada, and a
Fellow of the Canadian Academy of Engineering.

46 VOLUME 5, 2024



WAN YI SHIU received the B.Eng. degree in com-
puter engineering from McGill University, Mon-
treal, QC, Canada, in 1994, and the M.Sc.(Eng.)
degree in electrical engineering from Queen’s Uni-
versity, Kingston, ON, Canada, in 1998. From
1997 to 2009, she was with Nortel Networks, Ot-
tawa, ON, Canada, as a Physical Layer Digital
Signal Processing software designer and FPGA
firmware designer for base station cellular com-
munication systems research and product devel-
opment. Since 2010, she has been with Huawei

Technologies Canada Company, Ltd., Ottawa, Canada, where she is currently
a Principal Engineer. Her current research focus at Huawei is Full Duplex
and machine learning Technologies. She specializes in base station cellular
physical layer digital signal processing, direct digital radio frequency signal
processing, software and firmware FPGA real time implementations.

PEIWEI WANG received the B.Eng. degree in
computer engineering and the M.Sc. degree in
computer science from Chongqing University,
Chongqing, China, in 1982 and 1987, respectively.
From 1995 to 1997, he was a visiting Scholar of
electrical and computer science with University of
Texas, Austin, TX, USA. From 1998 to 2013, he
was a CDMA/DSP Designer, Architect of wireless
systems with Nortel Networks and BlackBerry.
In 2014, he joined Huawei Canada, where he is
leading the R&D team for full duplex in wireless
applications.

VOLUME 5, 2024 47



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


